• German

Main Navigation

Sat Chatterjee, Google AI, Mountain View, CA, USA, ONLINE

Event Date: November 4, 2021 16:15

Using Logic to Understand Learning

Abstract -  A fundamental question in Deep Learning today is the following: Why do neural networks generalize when they have sufficient capacity to memorize their training set. In this talk, I will describe how ideas from logic synthesis can help answer this question. In particular, using the idea of small lookup tables, such as those used in FPGAs, we will see if memorization alone can lead to generalization; and then using ideas from logic simulation, we will see if neural networks do in fact behave like lookup tables. Finally, I’ll present a brief overview of a new theory of generalization for deep learning that has emerged from this line of work.

Biography - Sat Chatterjee is an Engineering Leader and Machine Learning Researcher at Google AI. His current research focuses on fundamental questions in deep learning (such as understanding why neural networks generalize at all) as well as various applications of ML (such as hardware design and verification). Before Google, he was a Senior Vice President at Two Sigma, a leading quantitative investment manager, where he founded one of the first successful deep learning-based alpha research groups on Wall Street and led a team that built one of the earliest end-to-end FPGA-based trading systems for general-purpose ultra-low latency trading. Prior to that, he was a Research Scientist at Intel where he worked on microarchitectural performance analysis and formal verification for on-chip networks. He did his undergraduate studies at IIT Bombay, has a PhD in Computer Science from UC Berkeley, and has published in the top machine learning, design automation, and formal verification conferences.

Rings at TU Dortmund
Newsletter RSS Twitter