• German

Main Navigation

Stefanie Jegelka, MIT (EECS), Cambridge (MA), ONLINE

Event Date: July 15, 2021 16:15

Learning in Graph Neural Networks

Abstract - Graph Neural Networks (GNNs) have become a popular tool for learning representations of graph-structured inputs, with applications in computational chemistry, recommendation, pharmacy, reasoning, and many other areas. In this talk, I will show some recent results on learning with message-passing GNNs. In particular, GNNs possess important invariances and inductive biases that affect learning and generalization. We relate these properties and the choice of the “aggregation function” to predictions within and outside the training distribution.

This talk is based on joint work with Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S. Du, Ken-ichi Kawarabayashi, Vikas Garg and Tommi Jaakkola.

Short bio - Stefanie Jegelka is an Associate Professor in the Department of EECS at MIT. She is a member of the Computer Science and AI Lab (CSAIL), the Center for Statistics, and an affiliate of IDSS and the ORC. Before joining MIT, she was a postdoctoral researcher at UC Berkeley, and obtained her PhD from ETH Zurich and the Max Planck Institute for Intelligent Systems. Stefanie has received a Sloan Research Fellowship, an NSF CAREER Award, a DARPA Young Faculty Award, a Google research award, a Two Sigma faculty research award, the German Pattern Recognition Award and a Best Paper Award at the International Conference for Machine Learning (ICML). Her research interests span the theory and practice of algorithmic machine learning.

Rings at TU Dortmund
Newsletter RSS Twitter