• German

Main Navigation

Geoff Webb, Monash University Melbourne, OH 14, E23

Event Date: May 9, 2019 16:15

Learning in a dynamic and ever changing world

The world is dynamic – in a constant state of flux – but most learned models are static. Models learned from historical data are likely to decline in accuracy over time. I will present our recent work on how to address this serious issue that confronts many real-world applications of machine learning. Methodology: we are developing objective quantitative measures of drift and effective techniques for assessing them from sample data. Theory: we posit a strong relationship between drift rate, optimal forgetting rate and optimal bias/variance profile, with the profound implication that the fundamental nature of a learning algorithm should ideally change as drift rate changes. Techniques: we have developed the Extremely Fast Decision Tree, a statistically more efficient variant of the incremental learning workhorse, the Very Fast Decision Tree.

Short bio:
Geoff Webb is a leading data scientist. He is Director of the Monash University Centre for Data Science and a Technical Advisor to data science startups FROOMLE and BigML Inc. The latter have incorporated his best of class association discovery software, Magnum Opus, as a core component of their advanced Machine Learning service.
He developed many of the key mechanisms of support-confidence association discovery in the late 1980s. His OPUS search algorithm remains the state-of-the-art in rule search. He pioneered multiple research areas as diverse as black-box user modelling, interactive data analytics and statistically-sound pattern discovery. He has developed many useful machine learning algorithms that are widely deployed.
He was editor in chief of the premier data mining journal, Data Mining and Knowledge Discovery from 2005 to 2014. He has been Program Committee Chair of the two top data mining conferences, ACM SIGKDD and IEEE ICDM, as well as General Chair of ICDM. He is an IEEE Fellow.
His many awards include the prestigious inaugural Australian Museum Eureka Prize for Excellence in Data Science.

Newsletter RSS Twitter