• German

Main Navigation

Volker Tresp, LMU Munich / Siemens, OH14 E23

Event Date: May 18, 2017 16:15

Learning with Knowledge Graphs

In recent years a number of large-scale triple-oriented knowledge graphs have been generated. They are being used in research and in applications to support search, text understanding and question answering. Knowledge graphs pose new challenges for machine learning, and research groups have developed novel statistical models that can be used to compress knowledge graphs, to derive implicit facts, to detect errors, and to support the above mentioned applications. Some of the most successful statistical models are based on tensor decompositions that use latent representations of the involved generalized entities. In my talk I will introduce knowledge graphs and approaches to learning with knowledge graphs. I will discuss how knowledge graphs can be related to cognitive semantic memory, episodic memory and perception. Finally I will address the question if knowledge graphs and their statistical models might also provide insight into the brain's memory system.

Volker Tresp received a Diploma degree from the University of Goettingen, Germany, in 1984 and the M.Sc. and Ph.D. degrees from Yale University, New Haven, CT, in 1986 and 1989 respectively. Since 1989 he is the head of various research teams in machine learning at Siemens, Research and Technology. He filed more than 70 patent applications and was inventor of the year of Siemens in 1996. He has published more than 100 scientific articles and administered over 20 Ph.D. theses. The company Panoratio is a spin-off out of his team. His research focus in recent years has been „Machine Learning in Information Networks“ for modeling Knowledge Graphs, medical decision processes and sensor networks. He is the coordinator of one of the first nationally funded Big Data projects for the realization of „Precision Medicine“. Since 2011 he is also a Professor at the Ludwig Maximilian University of Munich where he teaches an annual course on Machine Learning.

Newsletter RSS Twitter