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Abstract In domain adaptation, the goal is to find common ground between two, potentially
differently distributed, data sets. By finding common concepts present in two sets of words
pertaining to different domains, one could leverage the performance of a classifier for one
domain for use on the other domain. We propose a solution to the domain adaptation task, by
efficiently solving an optimization problem through Stochastic Gradient Descent. We provide
update rules that allow us to run Stochastic Gradient Descent directly on a matrix manifold:
the steps compel the solution to stay on the Stiefel manifold. This manifold encompasses
projection matrices of word vectors onto low-dimensional latent feature representations, which
allows us to interpret the results: the rotation magnitude of the word vector projection for a
given word corresponds to the importance of that word towards making the adaptation. Beyond
this interpretability benefit, experiments show that the Stiefel manifold method performs better
than state-of-the-art methods.
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1 Introduction

Text classification is an important data mining task with many applications. E.g.,
sentiment analysis assesses texts to be written positively or negatively. This infor-
mation can help companies to find out how well their products catch on. When
we want to solve such text classification tasks via supervised learning, we need
labelled training data. Such data can be quite hard to get; in sentiment analysis
the identification of a positive tone can be ambiguous, and sarcasm or individual
writing styles can make the labelling difficult even for experts with a linguistic
background. To forego labelling an unlabelled data set, we can reuse other data
sets that have already been labelled for a similar task: review texts for electronic
appliances with labels about their sentiment could be used to train a classifier for
unlabelled review texts about DVDs. When the dissimilarity increases between
texts from the labelled data set and the texts we want to classify, expected per-
formance decreases. Ben-David et al. (2010) showed that the expected error on a
data set A of a classifier trained on a data set B correlates positively with the
distributional difference between the data sets. The task to find common distribu-
tional ground between data sets, with the goal of training a classifier on one data
set and applying it on another, is called domain adaptation.
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One approach to domain adaptation is to find a low-dimensional latent fea-
ture representation on which the two data sets of text documents are more similar
in distribution. We expect that many data sets share similarities on latent fea-
ture representations. For instance, a book might be described as tedious while a
toaster might be described as malfunctioning. Both words have a negative conno-
tation and very likely appear together with other negative words like bad, poor or
poorly. Projecting the reviews results in a low-dimensional latent feature represen-
tation, in which we expect these words to jointly span a dimension representing
their common ground. These latent features represent the common concepts (e.g.,
sentiments) between different words from different domains, and can be expected
to contain less noise. We propose to find a latent feature representation in the
space spanned by word vectors. This is done by a linear projection that optimally
matches text documents from one domain to another domain with different data
distributions. The projection is performed on the word vectors of the documents
from the different domains and maps into a low-dimensional latent feature repre-
sentation. The goal is to make the training and the test data more similar in the
new feature representation, in order to safely apply a classifier on the test data
that is trained on the differently distributed training data. We concentrate on la-
tent features that are linear projections of the original data, for two reasons: linear
approaches can be better interpreted in terms of the transformation of individual
features (or individual words!) required to make the two data sets similar in dis-
tribution, and linear methods scale better than non-linear projections via kernels,
as pointed out for instance by Pan et al. (2009). The main disadvantage of these
non-linear kernel approaches is that they scale quadratically or even cubically in
the number of examples, and new data points must be projected via kernel evalu-
ation of up to all other data points. Linear projections are more efficient since the
word vectors from texts are usually sparse, allowing linear maps via a projection
matrix to be efficiently implemented with sparse matrix operations.

To find an optimal projection, we propose a matrix-variate optimization that
minimizes the distance in distribution between the training and the test data. The
optimal matrix is the projection matrix mapping all training and test data into
a low-dimensional feature representation with minimal distributional difference
between projected training and test data. To solve this optimization problem, we
employ Stochastic Gradient Descent (SGD), which allows for larger data sets. This
is important, since review text collections are usually large: for Sentiment Anal-
ysis, more than 34.000.000 Amazon reviews are available (McAuley and Leskovec
2013). Closed-form solutions or other optimization methods like plain Gradient
Descent would be prohibitively expensive when using all data. Solving SGD with-
out constraints on the matrix will easily end in rank-deficient matrices that map
the data onto too low-dimensional representations. Hence, we add the constraint
to the optimization problem that the matrices must be projection matrices: they
must contain only orthogonal columns. This constraint makes the optimization
more difficult, which is traditionally resolved by projecting the matrices onto the
set of orthogonal matrices. The induced additional error is amplified by SGD, since
we perform many optimization steps. To avoid poor convergence, we perform the
optimization directly on the matrix manifold M(p, q), encompassing projection
matrices from a p-dimensional Euclidean space into q-dimensional linear feature
representations. Thus, we remove the constraint and the need of projecting the
matrices during the SGD steps onto the set of orthogonal matrices.
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1.1 Main Contributions

This paper provides update rules, enabling the running on large document col-
lections of Stochastic Gradient Descent (SGD) directly on the Stiefel manifold.
The optimization problem encompassing the SGD steps efficiently identifies pro-
jections into low-dimensional latent feature representations for domain adaptation.
The resulting projection matrices are interpretable: the rotation magnitude of the
word vector projection for a given word into a latent feature dimension represents
the contribution of that word towards the underlying concept represented by that
latent feature. Therefore, the rotation corresponds to the importance of the word
for the domain adaptation. This interpretability of the solutions for the domain
adaptation task provided by the Stiefel method is the main contribution of this
paper. Collateral benefit is that the Stiefel method delivers high-accuracy results
in comparison with state-of-the-art methods.

In contrast to previous approaches like TCA (Pan et al. 2009) and JCA (Long
et al. 2013), we propose an optimization that extracts interpretable linear factors
based on the Bag-of-Words representation of documents. Echoing the previous
approaches, we match the distributions of the documents based on Maximum
Mean Discrepancy. This measure estimates the discrepancy of the two data sets
based on all moments estimated from the data. This makes the problem harder,
since it is no longer convex. We have no closed-form solution, and must resort to
gradient-based approaches. The reason to apply SGD is twofold. First, we make our
approach applicable to large-scale scenarios. For large text collections, we resort to
an online solution. Second, since our problem is non-convex and high-dimensional,
we will easily end up with local optima during the optimization. SGD, in contrast
to plain Gradient Descent (GD), adds randomness into the optimization that is
gradually reduced in the course of the optimization. This allows to skip local
minima in the beginning.

2 Related Work

Before turning to the question of transferring knowledge from one domain to an-
other, we need to discuss how to measure the distributional difference between
different data sets from different domains. In the context of domain adaptation,
divergence measures like KL-divergence (Sugiyama et al. 2008) or A-distance (Ben-
David et al. 2006) have been used. We use the kernelized Maximum Mean Dis-
crepancy (MMD) as proposed by Gretton et al. (2008) for an estimation of the
difference in distribution between two data domains using samples. We do so, since
this method is able to compare distributions by using all moments of the distri-
butions. This choice is not pivotal to the contributions of this paper; it’s merely a
parameter that can be changed at will.

A large part of the research on domain adaptation concentrates on estimating
weights for the target domain: data from one domain will be weighted to increase
distributional similarity to data from another domain. Under the so-called sample
selection bias, the target domain can be made similar to a source domain by
adapted weighted sampling. For instance, Dud́ık et al. (2005) propose density
estimators that incorporate sample selection bias to adapt different test domains
to training domains. In (Bickel et al. 2009), the distance between the data from the
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two domains is directly minimized to find the optimal weights. Huang et al. (2007)
propose to learn weights for a target domain such that the distance in distribution
of the weighted target domain to a source domain is minimized, using Kernel Mean
Matching as distance measure between the domains and performing the search for
optimal weights in a universal Reproducing Kernel Hilbert Space. By contrast,
Sugiyama et al. (2007) find the optimal weights via matching distributions by
minimizing the KL-divergence.

Subspace-based domain adaptation strives to increase similarity, not by adapt-
ing distributions, but by transform their support. This results in a low-dimensional
feature representation of the original data. The transformation is done by a pro-
jection onto an appropriate subspace. Si et al. (2010) propose to minimize the
Bregman divergence for regularized subspace learning. Via a matrix-variate op-
timization problem they find an optimal subspace for a given cost function. On
this subspace, two given data sets are gauged to be similar with respect to a di-
vergence criterion. Contrary to the Stiefel approach that we propose in Section 4,
this optimization is directly done in <n. In (Shao et al. 2012), a low-dimensional
subspace is extracted such that the data from a target domain can be expressed as
linear combination of a basis from a source domain. The authors solve this problem
by inexact Augmented Lagrangian Multipliers, which is computationally expen-
sive, especially since it demands several Singular Value Decompositions (SVDs)
on the data matrix. Ni et al. (2013) propose to find a sequence of subspaces in
which the data from the target domain can be expressed as linear combination of
a source domain. For domain adaptation they project all data onto each subspace
and concatenate all resulting feature representations. This approach also needs to
perform several expensive SVDs on the data matrix. In (Chen et al. 2009) and
(Chattopadhyay et al. 2012), domain adaptation is coupled with the training of
a classifier. Chen et al. (2009) do this by inverting the whole data matrix, which
can be quite expensive. The approach in (Chattopadhyay et al. 2012) needs ad-
ditional labels for the target domain, and a kernel matrix which might become
prohibitively expensive to use.

As an alternative to the subspaces in <n of the word vectors, Kernel-based
methods have been proposed to find non-linear data representations for domain
adaptation. Pan et al. (2008) introduce a transfer learning by feature transforma-
tion that optimizes the MMD. In Pan et al. (2011), Transfer Component Analysis
finds low-dimensional representations in a kernel-defined Hilbert space to make
two given data domains more similar. Long et al. (2013) extend this approach by
including class label information. Zhang et al. (2013) propose to transfer knowl-
edge in a Hilbert space by aligning a kernel with the target domain. Muandet
et al. (2013) propose to learn domain invariant data transformation to minimize
differences in source and target domain distributions while preserving functional
relations of the data.

2.1 Related Manifold Methods

We use optimization directly on matrix manifolds. A general introduction can be
found in (Absil et al. 2008). An early work on such optimization is (Edelman et al.
1999). The authors develop a gradient-based optimization method on Grassmann
and Stiefel manifolds. They provide a general framework for the optimization on
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Table 1 Notation employed throughout the paper

Symbol Description
S Source domain data
T Target domain data
pS Distribution of the source domain
pT Distribution of the target domain
P Projection matrix
M Stiefel manifold
Exp Exponential map
Z Set of matrices zi = [xi, yi] with xi ∼ pS , yi ∼ pT

these matrix manifolds. Both Balzano et al. (2010) and Bonnabel (2013) describe
a stochastic gradient descent on Riemann manifolds and illustrate its use for sub-
space tracking and optimization on matrices with rank constraints.

Gong et al. (2012) and Gong et al. (2013) perform domain adaptation on
manifolds. They project the data onto all subspaces that lie on the shortest path
(geodesic) between two subspaces from, respectively, the source and target domain.
They define a kernel on the concatenation of all projections to extract a new fea-
ture representation. Gopalan et al. (2011) sample interpolated subspaces on the
Grassmann manifold between a target and a source subspace, extracting domain,
intermediate, and possibly invariant information. Projections onto subspace sam-
ples transform the data into new feature representations. Gopalan et al. (2011)
sample these subspaces, and use projections onto these samples to transform the
data into new feature representations. Baktashmotlagh et al. (2013) perform gra-
dient descent on a Grassmann manifold to find a subspace where the two given
data domains have a low distance. In Cheng and Pan (2014), the authors propose
semi-supervised learning for domain adaptation on manifolds.

3 Preliminaries

The classic assumption for a supervised classification task is that training and test
data come from the same distribution. By contrast, domain adaptation methods
adapt data from a source domain S with a certain distribution pS to a target do-
main T with a different distribution pT . For the source domain we have additional
information like labels to train a classifier. For the target domain we have no ad-
ditional information. The task is to extract information from the source domain
that is also relevant for classification on the target domain. In this paper, each do-
main is represented by a set of word vectors of the corresponding documents, and
each word vector contains frequency information of the words in the document.
The notation in Table 1 will be used throughout the paper; we will write P for a
projection matrix, M for the Stiefel manifold, Exp for the exponential map, and
Z for a set of matrices with columns: zi = [xi, yi], with xi ∼ pS , yi ∼ pT . These
terms will be further explained when their time is due.
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3.1 Matrix Manifolds

For two given data sets from a source domain and a target domain we want to find
an optimal projection matrix onto a low-dimensional feature representation. The
optimal projection projects onto a representation in which the distribution of the
projected data points from the source domain is the most similar to the distribution
of the projected data points from the target domain. Within this representation,
a discriminative classifier is trained on the source domain. Since the distributions
are similar on this representation, we can expect that this classifier can be safely
applied to the projected data points from the target domain. Such projections
have been successfully used in text mining and Natural Language Processing. For
example, in text classification, latent semantic analysis (LSA) has proven to be
quite successful to approximate documents by low-dimensional concept vectors.
See for instance (Deerwester et al. 1990) for an introduction. This motivates the
hypothesis that such low-dimensional representations in the vector space of the
documents might be beneficial for transferring knowledge from one domain of
documents to another.

A latent subspace L in a vector space V is identified by a projection matrix
P such that PT · x ∈ L ∀x ∈ V and PT · P = I, where PT is the transpose of P
and I the identity matrix. The projected data PT · x is the new low-dimensional
feature representation of the data. The optimal projection matrix is found via
minimizing the difference between the document distributions projected via P .
The set M(p, q) = {P | P ∈ <q×p, PT · P = I}, together with an inner product ·,
forms a Stiefel manifold. A manifold is a topological space that is locally Euclidean:
for each point on the manifold we find a neighbourhood that is isomorphic to <q×p.
Also, a metric is defined on each manifold that measures the distance between two
points on the manifold. This local linearity and the metric enable us to define
gradients, required for performing Stochastic Gradient Descent.

3.2 Maximum Mean Discrepancy

In order to make the source and target domain similar, we need a way to measure
how different their distributions pS and pT are. Gretton et al. (2008) propose to use
the Maximum Mean Discrepancy (MMD) to estimate the difference in distribution
between two domains:

MMD2[pS , pT ] = ‖µ[pS ]− µ[pT ]‖2H (1)

where µ[p] is the mean operator
and H denotes the unit ball in a universal Reproducing Kernel Hilbert Space

(RKHS). Hence, the MMD measures the difference in distribution as the norm
in the RKHS between the means of the mappings of the distributions into this
universal RKHS. In all experiments we use Gaussian kernels, which are universal.
Using a universal kernel, the MMD measures the difference based on any moment
of the two distributions. Gretton et al. (2008) describe how a linear estimation
of MMD2 can be defined as empirical mean over the distances of random draws
from the two distributions in the RKHS:

MMD2[Z] =
1

m

bm/2c∑
i=1

h(z2i, z2i+1) (2)
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where Z = {z1, · · · , zm} is a sample of random variables zi = (xi, yi) with xi ∼ pS ,
yi ∼ pT , and where h(zi, zj) = k(xi, xj) − k(xi, yj) − k(xj , yi) + k(yi, yj) for a
universal kernel k(., .) which induces the RKHS H. This estimation enables us to
use SGD to minimize the MMD between two distributions pS and pT .

4 Optimization on the Stiefel Manifold

To find the optimal projection matrix onto a low-dimensional feature representa-
tion for domain adaptation, we define an optimization problem that minimizes the
MMD with respect to a matrix P such that PT · P = I. The latter constraint is
added to avoid rank deficiency. Minimizing the distance with respect to a projec-
tion matrix will easily end up with projections that make the data points small in
length, collapse them into the origin, or destroy the data structure to match the
two distributions (regardless of the rank). To avoid this, we propose to regularize
P via ‖P · Z‖22. This leads to the optimization problem:

min
P

MMD[ZP ]2 − λ 1

m
·

n∑
i=1

∥∥z′i∥∥22 s.t. PT · P = I

with samples ZP = {z′1, · · · , z′m} of random variables z′i = (PT · xi, PT · yi) for
xi ∼ pS and yi ∼ pT .

To derive a joint update rule for stochastic gradient descent for both the MMD
and the expected length, we define the partial cost Cp of the optimization problem
for the pair of matrices (z2i, z2i+1) from Z as:

Cp([z2i, z2i+1], P ) = h(z′2i, z
′
2i+1)− λ ·

∥∥[z′2i, z′2i+1]
∥∥2
2

(3)

where the first term comes from the linear approximation of the MMD and the
second term regularizes the length of the new feature representation for the drawn
data points from the sources. The overall cost after having seen m pairs is derived
from the m partial costs:

C(Z,P ) =
1

m
·

m∑
i=1

Cp([z2i, z2i+1], P ) (4)

4.1 Stochastic Gradient Descent over the Stiefel Manifold

We perform Stochastic Gradient Descent (SGD) on the Stiefel manifold M to find
the optimal projection matrix that solves the optimization problem. SGD esti-
mates a sequence of gradients with respect to random draws from the data. Under
simple conditions, this sequence converges to the optimum of the corresponding
optimization problem; cf. (Bottou 1998). For the SGD, we use the following update
rule for the projection matrix P at step t (Bonnabel 2013):

Pt+1 = ExpPt(H(zt, Pt),−γt · ‖H(zt, Pt)‖) (5)

where H is the gradient of the cost function on the manifold. From the current
projection matrix Pt, we move along the geodesic in the direction of the negative
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M
* P

∇PC

ExpP (∇PC)

P + γ∇PC

Proj(P + γ∇PC)

Q : Q · R = P +∇PC

‖ExpP (∇PC) − Q‖M

Fig. 1 An optimization step on the Stiefel manifold M . Starting at point P on M , we move in
the direction of the gradient ∇PC. Moving along M ends in ExpP (∇PC). Moving simply in
direction of the gradient ends in a point that must be projected back onto M via (for instance)
QR decomposition. The difference of the two points is ‖ExpP (∇PC)−Q‖M , the norm of the
difference on the Stiefel manifold.

gradient of the cost function with respect to Pt. We denote by Exp the exponential
map that moves a point along the manifold in a given direction (Wen and Yin
2013):

ExpP (H, t) =

(
I +

t

2
·H
)−1

·
(
I − t

2
·H
)
· P (6)

The major reason for directly optimizing on the Stiefel manifold is that SGD
performs a large number of gradient steps. If we do not stay on the Stiefel manifold,
we need to project back onto the manifold after each step due to the constraint
PT · P = I. Figure 1 illustrates this with a schematic view on the manifold. The
curved line pictures the Stiefel manifold. At each step in the SGD we move from a
current point P in the direction of the gradient ∇PC. Moving just in the direction
of the gradient can result in matrices that are far away from the manifold. These
matrices must be projected back onto the Stiefel manifold. This results in an
error at each step. These errors can result in slower convergence and suboptimal
solutions. We investigate this issue in detail in the experimental section.

Nevertheless, we will explore the use of projections onto the Stiefel manifold.
This is much easier to compute than the exponential map. Such a projection
is a smooth mapping from tangent space (in which the gradient H lies) to the
manifold. We can calculate the projection ProjSt onto the Stiefel manifold via
QR decomposition (Absil et al. 2008):

ProjSt
P (H, t) = Q (7)

Q ·R = P + t ·H (8)



Interpretable Domain Adaptation by Stiefel Manifold Optimization 9

For the cost function Cp([zi, zj ], P ) and the next random pair (zi, zj) from Z
building a new matrix ẑt = [zi, zj ] we get the gradient:

H([zi, zj ], P ) = ∂PCp([zi, zj ], P ) (9)

= ∂Ph(zi, zj)− λ2(zi + zj)T · (zi + zj) · PT

consisting of the gradient of the new part of the linear approximation of the
MMD and the gradient of the norm of the projected data: we minimize the
distance on any two samples from the target and the source domain in Z, projected
onto a low-dimensional subspace, in a universal RKHS, while maximizing their
length.

The gradient of h depends on the used kernel. For the Gaussian kernel k on
the projected points, for instance, we obtain the following kernel definition with
respect to the projection matrix P :

k
(
PT · x, PT · y

)
= exp

(
− (x− y)T · P · PT · (x− y)

2 · σ2

)
(10)

which has a gradient of:

∂P k
(
PT · x, PT · y

)
= − 1

σ2
· k
(
PT · x, PT · y

)
· (x− y)T · (x− y) · PT (11)

4.2 Convergence and Optimality

For Stochastic Gradient Descent convergence, we need a bounded cost function
and a compact set over which we optimize. Further, we need to specify the step
size γ such that

∑
γ2t < ∞ and

∑
γt = ∞. For further details on SGD and

convergences see Bonnabel (2013). Our cost function C consists of two parts that
both are bounded. On the one hand, the MMD is bounded since it is the norm
in a universal RKHS with bounded kernel k(x, y) ≤ K, hence 0 ≤MMD2[ZP ] <
∞. On the other hand, the norm of the projected documents is bounded, since
we know that norm of the projection matrix is one and the norm of the data
matrix is bounded since the data is already bounded. All together, we see that

0 ≤
∥∥∥PT · Z

∥∥∥
2
≤ ‖P‖2 ·‖Z‖2 <∞. The Stiefel manifold is a compact set, since any

sequence of projection matrices from the Stiefel manifold stays on the manifold.
Therefore, our proposed optimization by SGD on the Stiefel manifold converges.

Stochastic Gradient Descent might converge to a local minimum or saddle
point instead of a global minimum; cf. (Bottou 1998). To overcome this, we per-
form multiple starts for the optimization: we randomly sample starting points
on the manifold and perform the optimization. The optimization result with the
smallest cost is used as projection matrix. We use the following calculations to
draw uniformly distributed points as starting points for the optimizations over the
manifolds. For an arbitrary point W on the Stiefel manifold, X = X1 ·W ·X2 is
uniformly distributed over the Stiefel manifold, with X1 a q × q and X2 a p × p
normally distributed orthogonal matrix; cf. (Mezzadri 2007).
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4.3 Informativeness

An advantage of using linear projections to find low-dimensional latent feature rep-
resentations for domain adaptation is that they are interpretable. The projection
is performed in the vector space that is spanned by the words. Hence, the pro-
jection in the individual dimensions corresponds to the word adaptation required
to make two domains similar in distribution. The word vectors are rotated and
stretched, where the stretching is limited due to the regularization on the feature
vector sizes. The amount of rotation in the vector space in certain dimensions tells
how much individual words need to be adapted (of weighted). We can gauge how
strongly individual words need to be adapted by inspecting the magnitude of the
rotation in the vector space in the corresponding dimensions.

Figure 2 illustrates this concept with an artificial example. In two dimensions of
a vector space, word vectors of two domains are plotted. Each axis displays the nor-
malized term frequency values (tf-idf values) in one component; each component
tells the frequency of a certain word in a document multiplied by a normalization
term. The Stiefel method finds latent subspaces such as the diagonal line in the
figure. Projecting the vectors from both domains onto this space via the found
projection matrix P implies rotating the word vectors. The vectors for “word 1”
and “word 2” are rotated to adapt domains. The average rotation required for the
red circles is lower than the average rotation required for the blue circles. Hence,
although both words are important to adapt domains, “word 2” is more differ-
ent in the two domains than “word 1”. If we find little or no rotation in some
dimensions, we conclude that the corresponding words are less important for do-
main adaptation. In the experimental section, we explore this concept on concrete
real-world results.

4.4 Complexity

The complexity of our proposed method depends on two factors. On the one hand,
the initialization needs to sample random points on the Stiefel manifold. For this,
two random Gaussian matrices X1 and X2 must be sampled and orthogonalized.
For the matrix X1 this can be done in O(q3) and for matrix X2 in O(p3), where p
is the dimension of the word vectors and q is the dimension of the latent feature
representations. In general, we assume that q < p � nT + nS , where nx denotes
the number of data samples from domain x. On the other hand, the exponential
maps that move the projection matrices along a geodesic need the inversion on
the matrix (I + t

2 · H)−1. This can be done in O(p3) with standard techniques.

All this results in a complexity of O(sp3) for s SGD steps. Transfer Component
Analysis; cf. (Pan et al. 2009), which has similar objectives to our methods, has
complexity O(q(nS + nT )2). Hence, our method is to be preferred on data sets
that are so large, that O

(
(nS + nT )2

)
storage space or computational complexity

is prohibitively expensive.
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Fig. 2 Informativeness of the projections for domain adaptation: word vectors from Domain
1 and Domain 2 are rotated onto a common latent feature; the rotation magnitude represents
how strongly the words need to be adapted to make the domains similar.

5 Experiments

We test the proposed method to find projection matrices onto low-dimensional
latent feature representations for domain adaptation, on three standard benchmark
data sets that are commonly used in the domain adaptation literature. As first
data set, we use the Amazon reviews (Blitzer et al. 2007) about products from the
categories books (B), DVDs (D), electronics (E) and kitchen (K). The classification
task is to predict a given document as being written in a positive or negative
context. We use stop word removal and keep only the words that appear in less
than 95% and more than 5% of all documents. This results in n = 1993 words.
The second data set is Reuters-21578 (Lewis et al. 2004). It contains texts about
categories like organizations, people and places. For each two of these categories
a classification task is set up to distinguish texts by category. Each category is
further split into subcategories; different subcategories are used as source and
target domains. We denote the categories Organization by C1, Places by C2 and
People by C3. The third data set is 20 newsgroups (http://qwone.com/~jason/
20Newsgroups/). We use the top-four categories (comp, rec, sci, and talk) in the
experiments. Again, we set up a classification task for each pair of categories.
Each category is further split into subcategories and different subcategories are
used as source and target domains; each such configuration is denoted by Confi.
Documents of categories comp and rec shall be distinguished in Conf1, comp and
sci in Conf2, comp and talk in Conf3, rec and sci in Conf4, rec and talk in Conf5,
and sci and talk in Conf6.
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We implement the SGD in Matlab in the ManOpt library (Boumal et al. 2013)
for general Riemann manifolds. The implementations are available at: http://

sfb876.tu-dortmund.de/auto?self=Software under the link to Stochastic Gra-
dient Descent on Stiefel Manifolds.

We compare our proposed SGD on the Stiefel manifold using exponential maps
(StOpt) and projections based on QR decomposition (PrOpt) with five state-of-
the-art domain adaptation methods: covariate shift adaptation by Kernel Mean
Matching (KMM) by Huang et al. (2007), Transfer Component Analysis (TCA)
by Pan et al. (2009), SGD on the Grassmann manifold (GrExp) by Baktashmot-
lagh et al. (2013), Gradient Flow Kernel (GFK) by Gong et al. (2012) and Joint
Distribution Adaptation (JCA) by Long et al. (2013).

All experiments were repeated several times; the reported accuracy values cor-
respond to the smallest cost reached during the optimizations. The start points
for the optimization are uniformly drawn from the Stiefel manifold.

For all experiments we set the dimension q = 100 for all methods and the
weight λ to 5. These values have proven empirically to perform best over all data
sets; additionally, we show a sensitivity analysis on these two parameters. Unless
stated otherwise, we let the SGD perform 1000 steps, after which all experiments
showed convergence. We also investigate how the dimension q influences the quality
of the domain adaptation for the subspace based methods. Although we get better
results for higher dimensions on some data sets, the ranking of the methods by
accuracy does not change.

We project all sampled documents onto the new feature representation, and
train an SVM classifier on the source documents (after projection) and their labels.
Finally, we use labels for the target domain to evaluate the accuracy of the classifier
on the target domain (after projection). The labels from the target domain are only
used for evaluation. We use an RBF kernel for the SVM with the meta parameter
γ. The reported accuracies are the highest ones found by a grid search over the
two parameters γ for the kernel and C for the misclassification penalty for the
training of the SVM.

5.1 Single-to-Single Domain Experiments

In the first experiment, we use only documents belonging to one designated domain
(different from the target domain) as source domain. For example, we use DVD
reviews as source domain and book reviews as target domain. On the Amazon
data set, we experiment with all possible choices for source and target domain. On
the Reuters and the 20 newsgroups data set, we configure the target and source
domains as explained above. We perform SGD on the Stiefel manifold to obtain
an optimal projection matrix. Here, we use both domains but no labels. Then,
the reviews from both domains are projected into the new low-dimensional latent
feature representation. An SVM is trained on the projected source domain reviews
and evaluated on the projected target domain reviews.

In Tables 2 and 3 we report the results of the first experiment. The SGD on
the Stiefel manifold results in a new feature representation for domain adaptation
with the highest accuracies over all domains. KMM, TCA and GFK also show
good results on some of the domains, but on average they deliver worse accuracies
than SGD on the Stiefel manifold. On the Reuters data set, Stiefel outperforms
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Table 2 Accuracies on the Amazon reviews, performing domain adaptation from one source
domain to one target domain. X→Y denotes training on reviews from X and testing the
classifier on reviews from Y.

E→D E→B E→K D→E D→B D→K
KMM 64.7 65.2 80.3 73.7 69.55 77.2
TCA 68.7 70.7 81.8 70.7 74.3 74.1

GrExp 61.8 61.8 66.2 58.2 66.0 58.8
GFK 59.8 59.3 68.2 59.4 56.3 61.2
JCA 71.0 67.2 80.8 71.6 76.6 75.4

PrOpt 75.0 73.7 77.2 67.6 71.7 71.2
StOpt 75.2 75.0 81.4 75.0 78.9 76.2

B→E B→D B→K K→E K→D K→B
KMM 73.0 69.55 73.8 76.7 67.8 63.7
TCA 68.0 71.2 69.6 83.9 73.5 74.6

GrExp 57.0 59.6 59.2 62.2 60.4 60.4
GFK 60.4 58.5 61.7 66.2 62.7 60.5
JCA 70.8 73.8 75.7 77.4 71.0 62.6

PrOpt 66.0 71.5 68.2 79.8 78.5 74.1
StOpt 73.4 78.1 76.8 83.3 78.9 76.2

Table 3 Accuracies on the Reuters and 20 newsgroups data sets.

Reuters
C1→C2 C2→C1 C2→C3 C3→C2

KMM 60.1 56.8 58.5 56.2
TCA 53.0 51.5 58.1 55.8

GrExp 65.0 65.0 70.0 56.8
GFK 72.9 66.1 68.7 66.4
JCA 77.4 80.7 75.3 72.8

PrOpt 70.0 69.3 72.9 58.2
StOpt 84.2 80.9 74.7 62.4

20 newsgroups
Conf1 Conf2 Conf3 Conf4 Conf5 Conf6

KMM 96.8 84.4 98.4 91.2 98.5 95.3
TCA 94.4 87.7 96.1 90.1 94.0 88.9

GrExp 88.8 86.4 98.6 87.8 96.7 89.3
GFK 84.0 74.6 91.9 72.4 86.5 79.0
JCA 99.7 73.6 55.5 73.0 96.8 88.6

PrOpt 98.7 87.1 99.4 96.2 99.6 96.4
StOpt 99.4 93.0 99.3 96.6 99.5 97.4

KMM and TCA. On the 20 newsgroups data set, Stiefel outperforms TCA and
GrExp. The optimization on the Grassmann manifold has the worst performance
of all methods tested.

Comparing the projection and exponential map on the Stiefel manifold, we see
differences on all data sets. On the Amazon data set and the Reuters data set, the
optimization with exponential map performs much better.

To investigate the quality of the SGD solution, we perform additional experi-
ments. We compare SGD to standard gradient descent (GD1) with random starting
points. Further, we use the optimal projection matrix P ∗ found by SGD as starting
point for a gradient descent (GD2). The second setting serves to illustrate that the
optimum found by SGD cannot improve much more. The rationale behind using
SGD is, besides its applicability to large data sets, that the random behaviour at
the start of the SGD process makes its less prone to get stuck in local optima.
While GD will stay in the first local optimum it finds, SGD still can escape the
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Table 4 Minimal MMD values found when using row X as source domain and column Y
as target domain; the first part of the Table gives these values directly for SGD, while the
second and third part gives differentials with MMD values found through GD with various
starting points. The second part investigates minima reached by GD with random starting
points (GD1), and the third part investigates minima reached by GD starting from the SGD
results (GD2). The values given are MMDGDx–MMDSGD, and since lower values for MMD
are better, a negative value in this cell means that the GD variant finds a better result than
SGD, while a positive value means that the GD variant finds a worse result than SGD. This
effect is highlighted through cell shading.

MMDSGD E D B K
E 0 0.0024364 0.0021104 0.0046920
D 0.0028555 0 0.0004567 0.0033506
B 0.0020263 0.0004198 0 0.0027398
K 0.0044783 0.0034033 0.0026004 0

MMDGD1–MMDSGD E D B K
E 0 0.0006637 0.0012029 -0.0021750
D 0.0000310 0 0.0008182 0.0001125
B 0.0006695 0.0011025 0 0.0007358
K -0.0019814 0.0000122 0.0009033 0

MMDGD2–MMDSGD E D B K
E 0 -0.0000004 -0.0000003 0
D -0.0000002 0 -0.0000007 -0.0000003
B -0.0000009 -0.0000004 0 -0.0000005
K -0.0000001 -0.0000001 -0.0000004 0

trap and end up in a possibly better local optimum. This is important, since our
optimization problem is non-convex: while the MMD is convex in the Hilbert space
induced by the corresponding kernel, it is not convex with respect to a projection
matrix of the word vectors. All experiments are repeated 10 times and the results
presented are the lowest minimum found for the corresponding methods.

In Table 4, we report the difference of the optimal values found by minimizing
only the linearized MMD (see Equation (2)) using the gradient methods with
SGD. The first part of the table displays the optimal MMD values found by SGD
using row X as source domain and column Y as target domain (where X,Y ∈
{E,D,B,K}). The second part of the table displays the difference in MMD optima
found by SGD and found by gradient descent using random starting points (GD1).
The third and final part of the table displays the same differences, between the
optima found by SGD and the optima found by gradient descent using the result
from SGD as starting point for optimization (GD2).

Comparing the different gradient methods, SGD finds always a better local
optimum than GD1 except for the categories kitchen (K) and electronics (E).
These two text collections are already similar in terms of MMD, as we will discuss
in the next section. We assume that this closeness in distribution results in fewer
local minima. When we start a standard gradient descent from the result found by
SGD (GD2), we see that MMD values can only be insignificantly improved (at the
seventh position after the decimal point; less than 1‰ of the raw MMD value).

5.2 Multiple-to-Single Domain Experiment

Table 2 shows the accuracies on the target domains using documents from only
one category as source domain. Choosing the right category might result in bet-
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Table 5 Maximum Mean Discrepancy (MMD) measure on the Amazon data set.

E D B K
E 0 0.0177 0.0207 0.0067
D 0.0177 0 0.0174 0.0173
B 0.0207 0.0174 0 0.0200
K 0.0067 0.0174 0.0200 0

Table 6 Accuracies on the target domains using all the other categories as source domain.
The column with label X corresponds to the domain adaptation task (E∪D∪B∪K\X)→ X.

E D B K
KMM 81.0 75.2 72.5 83.9
TCA 81.4 77.8 74.7 84.9

GrExp 68.7 66.3 62.2 70.7
GFK 68.7 66.3 62.2 70.7
JCA 77.0 72.7 74.9 82.3

PrOpt 81.0 75.1 72.7 80.8
StOpt 82.0 78.6 76.3 83.7

ter performance. In the experiments on the Amazon reviews data, we find always
one category that outperforms the other categories. For instance, for the cate-
gories kitchen (K) the best results are attained when we use the documents from
the category electronics (E) as source domain. All other categories cannot bring
equivalently good results when employed as source domain.

To investigate this behavior we calculate the Maximum Mean Discrepancy as
defined in Equation (1) to estimate the difference of the distributions of the target
and source domains; results are displayed in Table 5. For the category electron-
ics (E), the documents from the category kitchen (K) are closest in distributions.
Comparing this result with the accuracies in Table 2 on the target domain with
documents from category electronics, the documents from category kitchen per-
forms best for domain adaptation. The documents from reviews about DVDs (D)
have similar MMD-values among the other categories. This is also reflected in the
accuracies above that show no clear category that performs best as source domain.
The category kitchen behaves similar to electronics, and books similar to DVDs.

Hence, employing prior knowledge of the target domain to choose the right
source domain would be beneficial. Since in many cases this information might not
be available, one could resort to using documents from a mixture of all categories
but the one used as target domain. In the next experiment, we investigate this
setting on the Amazon data set.

The documents from a designated category (E,D,B,K) are used as target do-
main. From this category we use only the documents. From the other categories
we use documents and labels as source domain (as before). Since the source docu-
ments stem from three times as many categories as before, in this experiment we
let the SGD run for three times as many steps.

In Table 6 we report the accuracies on the target domains for one category using
all other categories as source domains. The overall performance on the subspace
found by the optimization on the Stiefel manifold is better than KMM and TCA.
Again, the optimization on the Grassmann manifold results in the worst results.
Comparing the exponential maps to the projections, the computationally more
expensive exponential maps find more optimal subspaces. This shows that also on
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Table 7 Accuracies on the target domains using all the other categories as source domain using
cross validation for the optimal dimension parameter. The column with label X corresponds
to the domain adaptation task (E ∪D ∪B ∪K\X)→ X.

E D B K
TCA 81.4 78.3 75.4 85.2

GrExp 68.7 66.3 62.2 70.7
GFK 81.0 77.5 76.3 82.7
StOpt 82.3 78.4 77.0 85.3

Fig. 3 Convergence of the costs from the optimization problem after a number of documents
have been seen. As target domain we use electronic reviews and the source domain consists of
the kitchen reviews. On all other possible settings of target and source domains, we get similar
convergence results.

a mixture of different categories as source domain, Stiefel manifold optimization
results in suitable projection matrices for domain adaptation.

Additionally, we perform an experiment with cross validation for the dimen-
sionality of the subspace for the methods: Transfer Component Analysis (TCA),
SGD on the Grassmann manifold (GrExp), Gradient Flow Kernel (GFK) and our
approach (Stiefel). We cut off 10% of the target data to find the optimal dimension-
ality by maximizing the accuracy. On the remaining data, we calculate the final
accuracies. The results are reported in Table 7. The SGD on the Stiefel manifold
results in the highest accuracies, TCA and GFK perform slightly worse.

5.3 Convergence

The advantage of SGD directly on the Stiefel manifold is that we avoid additional
projection steps after each SGD step to satisfy the orthogonality constraint of
the matrices. This additional step will induce errors after each SGD step. Con-
sequently, we expect slower convergence when we perform only projections onto
the Stiefel manifold. Here we investigate the convergence of the stochastic gradient
descent on the Stiefel manifold. We show the costs of the optimization function for
the target domain of electronic reviews. As source domain we use reviews about
kitchens. Figure 3 plots these costs against the number of documents from both
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the target and source domain for the optimization. We report the course of the
costs during the optimization of the Stiefel manifold using both a projection by a
QR decomposition onto the manifold and the exponential map that moves along
the manifold.

Figure 3 shows a fast convergence for both methods. The exponential map
has a faster convergence than the projection method, from having seen only few
documents onwards. The convergence is quite stable for both methods. The op-
timization with exponential maps reaches lower cost than the optimization with
the projection. This shows that exponential maps can indeed result in better opti-
mization performance using the proposed cost function: optimization on the Stiefel
manifold with exponential maps converges faster and reaches a lower cost. This
matches the results from the previous experiment that showed typically better
performance when using exponential maps as opposed to using projections.

6 Parameter Sensitivity Analysis

The proposed optimization method fixes the dimension of the latent feature rep-
resentation and the regularization parameter in the cost function. While in the
main experiments we used fixed values for the dimension and the regularization
parameter, here we investigate different values in a sensitivity analysis.

The dimensionality of the latent feature representation and hence the used
manifold M is a meta parameter that has to be chosen beforehand. It is clear
that for a good performance we need a large enough number of dimensions to
capture all necessary information. On the other hand, the higher the dimension-
ality, the more computation is needed to estimate the gradient steps. Beside this,
too high-dimensional representations might introduce too much variance from the
different domains. In Table 8 we show the accuracies on the target domains in the
feature representations from the projection matrices found by SGD on the Stiefel
manifold for various dimensionalities q. The results show that higher numbers of
dimensions generally but not consistently correspond to slightly better accuracies.
Hence, without labels for the target domain, the choice should be in favour of large
dimensionalities. In case we have labels for the target domain, we can perform cross
validation to find the optimal parameter q.

In the experiments so far, we used maximum mean discrepancy and regular-
ization on the norm for the optimization with a fixed parameter λ = 5. Here, we
analyse the difference of the accuracy from the projections that have been found
by SGD with various weights on the regularization of the norm. Table 9 shows
the accuracies for various weights λ. We see that the regularization of the norm is
vital for the performance of the domain adaptation. Without the regularization,
the found projection is not able to capture enough information from the domains
for a good classifier on the target domain. Higher weights result in better perfor-
mance on average. This means, that the regularization on the norm helps retaining
enough information from the domains necessary to train a good classifier for the
target domain.
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Table 8 Accuracies on the projected target domain onto subspaces of various dimensionalities
q for the target domains. The optimization is on the Stiefel manifold. The classifier is trained
on the source domains projected onto the corresponding subspace. The first four columns with
labelX corresponds to the domain adaptation task on Amazon reviews (E∪D∪B∪K\X)→ X;
the next four columns correspond to the domain adaptation task on Reuters; the last six
columns correspond to the domain adaptation task on the 20 newsgroups data set.

dimensionality q E D B K C1→C2 C2→C1 C2→C3 C3→C1
40 77.0 75.9 73.3 79.9 76.5 70.7 66.8 59.0
60 72.2 66.3 70.8 75.4 75.7 70.6 65.3 58.6
80 76.3 74.1 72.2 78.3 73.2 72.3 69.8 58.1
100 74.8 73.5 72.4 80.0 72.6 72.4 72.9 58.2

dimensionality q Conf1 Conf2 Conf3 Conf4 Conf5 Conf6
40 97.7 92.5 99.9 97.3 99.2 97.0
60 99.6 92.0 99.6 97.7 99.5 98.2
80 99.2 90.8 99.7 96.3 99.7 97.4
100 99.4 91.7 99.5 95.8 99.6 98.2

Table 9 Accuracies on the projected target domain onto subspaces with various weights λ in
the optimization problem. The optimization is on the Stiefel manifold. The classifier is trained
on the source domains projected onto the corresponding subspace. The first four columns with
labelX corresponds to the domain adaptation task on Amazon reviews (E∪D∪B∪K\X)→ X;
the next four columns correspond to the domain adaptation task on Reuters; the last six
columns correspond to the domain adaptation task on the 20 newsgroups data set.

weights λ E D B K C1→C2 C2→C1 C2→C3 C3→C1
0 64.7 62.3 62.2 64.4 76.5 70.7 66.8 59
1 79.1 71.8 70.9 80.8 74.9 70.8 69.9 58.4
4 78.9 73.2 73.9 82.3 72.4 71.6 71.3 58.8
5 79.4 73.6 74.6 81.7 75.7 70.8 71.0 59.4
10 78.9 73.6 72.8 81.5 73.4 70.6 71.1 58.8

weights λ Conf1 Conf2 Conf3 Conf4 Conf5 Conf6
0 92.4 82.2 98.8 78.3 94.0 87.7
1 99.3 89.9 99.5 97.4 99.5 98.5
4 99.1 89.4 99.4 96.6 99.5 96.4
5 99.7 87.9 98.9 96.5 99.7 96.4
10 98.8 86.8 99.5 97.1 99.4 97.0

6.1 Informativeness

An important argument for the proposed method is its interpretability. In Figure 4
we plot (as introduced in Section 4.3) for two words the tf-idf values in the vector
space of the word vectors for Amazon reviews about books (the source domain)
and electronics (the target domain). The top figure shows the tf-idf values that
correspond to the words “professional” and “interesting” in the word vectors from
both domains. The bottom figure shows the tf-idf values that correspond to the
words “display” and “author”. The word vectors from the book reviews are repre-
sented by blue crosses and the word vectors from the electronic reviews are plotted
as red circles. In each figure, the left plot shows the word vectors that correspond
to the words before projection, and the right plot shows the word vectors after
projecting them with the matrix we found with the proposed method.

We see that the words “professional” and “interesting” are important for the
domain adaptation since the corresponding word vectors are rotated in the vector
space. The found projection matrix makes the corresponding components of the
word vector also more similar in the latent feature representation. This makes
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Fig. 4 Tf-idf values of word vectors in the original feature space (left) and projected space
(right), for the adaptation of “professional” and “interesting” (top), and “display” and “au-
thor” (bottom).

sense, since both words represent a common positive connotation; they are only
differently distributed in the two original domains. On the other hand, the con-
ceptually orthogonal words “display” and “author” are less important for domain
adaptation: there is only little rotation of the word vectors in the correspond-
ing components. This corroborates the hypothesis that the found projections help
interpreting the adaptation needed to adapt the given domains of word vectors.

To further investigate the informativeness of the projections learned for domain
adaptation, we visualize the words in a 2-dimensional map. We use the method
of Stochastic Neighbourhood Embedding by van der Maaten and Hinton (2008).
This methods models the joint probability of two words wi, wj as p(wi, wj) ∝
e−‖xi−xj‖2 , where xi, xj are low-dimensional feature representations of the words.

In Figure 5 we visualize positive adjectives before and after projection with
the optimal projection matrix for domain adaptation in the same two-dimensional
space for reviews from books and electronic articles. The distance between the
adjectives gets smaller after projecting. For instance, the words “perfect” and
“useful” are much closer after projection compared to the original data. The word
“perfect” appears in 54 reviews of books but in none of the reviews of electronic
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Fig. 5 Visualization of positive adjectives before and after projection.

articles. The word “useful” appears in 106 reviews of electronic articles but only
in 54 reviews of books. This distributional mismatch can be seen in the distance
of the words in the original space. Clearly, the new feature representation by the
optimal projection matrix results in smaller Euclidean distance and hence larger
joint probability of the two words.

7 Conclusions

We propose to use Stochastic Gradient Descent (SGD) on Stiefel manifolds to find
a projection onto a latent subspace that is best suited for domain adaptation. We
provide update rules that compel the SGD steps to remain on the Stiefel mani-
fold, and solve an optimization problem employing these steps. Since the Stiefel
manifold encompasses projection matrices on word vectors, the results are inter-
pretable: the importance of a word towards making the domain adaptation can be
gauged by measuring the rotation magnitude of the projection of that word, as is
illustrated by Figure 4. Furthermore, we have seen that in terms of accuracy, the
Stiefel method performs at least as good as or simply better than competing state-
of-the-art domain adaptation methods; optimization on the Grassmann manifold
cannot compete (cf. Table 2). Kernel Mean Matching and Transfer Component
Analysis can deliver comparable accuracies, but these methods are regularly out-
performed by Stiefel method as well (cf. Table 3). When increasing the amount of
domains from which source documents are taken, this behavior remains (cf. Table
6): accuracy of the Stiefel method is typically best or equivalent to best, while every
competing method performs sometimes equivalently and sometimes substantially
worse. For domain adaptation, the Stiefel method delivers interpretable results
without substantial loss, and even regularly to the benefit, of accuracy.

Analysis of the (dis-)similarities between the multiple category domains on the
Amazon data set (cf. Table 5), and their relation to domain adaptation accuracies,
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suggests that the Stiefel methods might deliver the greatest benefit when source
and target domain are more dissimilar, when domain adaptation typically struggles
(Ben-David et al. 2010); the MMD scores in Table 5 show that the E and K domains
form the pair which is by far the most similar, and in Table 2 we see that this is
the only pair on which the Stiefel method is outperformed. We plan to fortify the
hypothesis that Stiefel shines in difficult cases in future work, by further studying
larger data sets with many more domains. Also, we plan to investigate what cost
functions can be used to find good projections for domain adaptation. Especially,
we are interested in different regularizations on the projections. One direction
could also be how to integrate external knowledge in the optimization. We could
use different sources and different views of the data to bridge the domains for
domain adaptation. One possible extension is to use additional class labels given
for the different domains. So far we assume to have no such label information for
the domain adaptation. Since we show the quality of the domain adaptation based
on a trained classifier with given labels for a source domain, the domain adaptation
might also use this information. As a preliminary empirical exploration into the
potential benefit of using class labels, we can compare the results from JCA and
TCA, since JCA can be seen as a variant of TCA which incorporates knowledge
about the class labels. For the Single-to-Single domain adaptation, taken over
all 22 test cases in Tables 2 and 3, we find that JCA outperforms TCA in 13
cases, whereas TCA ourperforms JCA in 9 cases. In fact, if we remove the Reuters
data set (where JCA dominates TCA) from this experiment, we find a perfect tie
between the two methods on the remaining two data sets: on the Amazon and 20
newsgroups data sets, TCA outperforms JCA exactly as often (9 times) as vice
versa. This is a surprising negative initial result regarding the value of class label
information for domain adaptation, which clearly requires further study. domains
are already

In the multi-to-Single domain adaptation, the used method also showed no
benefit in using additional class label information. In this setting, the label distri-
bution is a mixture from the different source domains. This makes the adaptation
with respect to the labels complicated. Different domain adaptation methods using
class label information might results in different results but are not the scope of
this paper. For the future, we want to further investigate when and how to inte-
grate label information into the domain adaptation, and we would like to explore
the generality of the newly proposed methods by experimentally evaluating them
on data sets beyond the text domain, such as image data.
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