Project C1
Feature selection in high dimensional data for risk prognosis in oncology

Prof. Dr. Alexander Schramm, Prof. Dr. Sven Rahmann

New Dimension of Data Volume: Whole genome & nanopore sequencing

Features are derived from molecular probes or sequences (reads).

Goals:
- Identifying molecular biomarkers for risk prognosis
- Modeling prediction functions

Challenges:
- data volume (100s of GBs sequence or ion current data)
- limited number of samples vs. an extremely high number of features
 ($n < p$ problem)
- resource-efficient feature generation from raw data

Efficient Whole Genome Analysis with DNA k-mers

Use genomewide-unique k-mers ($k \in \{21, 23, 25, \ldots \}$) for:
- single nucleotide variant (SNV) discovery
- copy number variants (CNVs)
- structural variants (translocations, fusions)
- methylation analysis from WGS data
- gene expression analysis from RNA-seq

Feature generation from whole genomes on a standard laptop:
- Output only unique k-mers that deviate from expected count: new k-mers, lost k-mers, surprising copy number, ...
- Project deviant k-mers to biological entities (regions, genes, transcripts, pathways)
- Detect enrichment of deviant k-mers and deviant biological entities in tumour samples

Feature reduction:
- Aggregation: Variant \rightarrow Gene \rightarrow Pathway
- Clustering of similar features with graph-based methods

Key Data Structure: Efficient DNA k-mer Key-Value Store

Challenge: small hash table and fast look-ups.

Speed bottleneck: cache misses during memory look-ups

New proposal: 3-way bucketed Cuckoo hashing with quotienting

Maximal fill rates of hash table for different numbers of hash functions ($H: 2$ or 3), bucket sizes (x-axis, 1–15) and bounds on random walk length during insertion ($W: 100, 500, 1000, 5000, 10000$).

Look-up needs H cache misses in the worst case.

Analysis of Ion Current Data

Establishment of the technology and preliminary experiments on microbiomes:

- Validation of CRISPR / Cas9 based knock-out and overexpression of PRKCI.
- Biological Target Validation

Computational challenge: Lightweight conversion of ion current signal to DNA sequence
- Signal segmentation: Fused LASSO; given signal $y = (y_j)$,

$$\min \{ f(x) \} = \frac{1}{2} \sum_{j=1}^{n} (y_j - x_j)^2 + \lambda \sum_{i=1}^{m} |x_i|$$

- Discretisation of signal levels; new efficient algorithms for discretised fused LASSO, where x_i must be from a finite known level set \mathcal{L}.
- Learn mapping between k-mers of level set \mathcal{L} to (modified) DNA sequence

Alternative approach:
- Work with k-mers of discretised signal space \mathcal{L} directly (richer representation)
- Discover variants as for WGS analysis in \mathcal{L}-space

Biological Target Validation

Validation of CRISPR / Cas9 based knock-out and overexpression by Western Blot analysis

3D culture reveals decreased spheroid formation ability and invasiveness upon PRKCI knock-out, while over-expression of PRKCI increases the invasiveness of SH-EP cells (neuroblastoma cell line).