

C4

Universitätsklinikum Essen

Project C1 Feature selection in high dimensional data for risk prognosis in oncology

Dr. Sangkyun Lee, Prof. Dr. Alexander Schramm, Prof. Dr. Sven Rahmann

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken

Cancer is an Evolutionary Process

Progression of cancer is driven by both natural selection and therapy, which requires adaptation to different niches and microenvironments.

Feature Extraction and Selection from High-Throughput Sequence Data

Extremely high feature dimension vs. small number of samples:

- Up to millions of genetic variants
- How to find interpretable tumour-specific variants?

Tumours are Moving Targets

- Understanding inter- and intra-tumour heterogeneity
- Identifying genomic biomarkers for risk prognosis

Read mapping ACTGT---CTATCAATGGAC GGTACTGTGGACTATCTATGGACCGTTAGAGCGG

Feature extraction

A T C G C A G C G A A T C A A A A T C A C A G C G A A T C A A A G G A A T C A C A G C G A A T C A G G A A T C A C A G C G A A G G A A T C A C A G C G A A T G A G G A A T C A C A G C G A A T C A A C A

A6

Analysis of Multiple Data Types

- Next-generation sequencing, microarrays, arrayCGH
- Gene expression, methylation, copy number variations

Computational Efficiency

- Resource-efficient read mapping and alignment (using GPUs) [Köster and Rahmann 2014]
- Resource-efficient variant filtering

Resource-Efficient Feature Generation from DNA

Detailed Analysis of Variant-Tolerant Read Mapping by Min-Hashing

- Min-hashing to estimate the Jaccard similarity
 - $J(K_Q, K_R) := |K_Q \cap K_R| / |K_Q \cup K_R|$
- between *k*-mer sets *K*_{*Q*}, *K*_{*R*}
- Known variants yield additional k-mers which may be added to the reference K_R .

Identification of Sparse Feature Graphs

LASSO:

 $\blacktriangleright R(\Theta) = \lambda \|\Theta\|_1$

Determine λ by

controlling the

(restrictive) or by

cross-validation

family-wise error rate

(sample dependent)

- Preliminary: Model similarity between protein complexes
- Focus: Dependencies between expression levels of genes
 Estimation of inverse covariance matrix Θ = Σ⁻¹ with partial correlations

Tumour Subtype Identification

We showed: beneficial only for variants with high population frequency. [Quedenfeld and Rahmann 2017]

Correspondence between specific SNVs and Methylation Level Changes

- Inter-individual methylation changes may often be traced to a single causative SNV.
- State (unmethylated, semi-methylated, fully methylated) requires discretisation of methylation level in [0, 1].
- Achieved with beta mixture models; computed with a novel EM-type algorithm using moment estimators in the M step. [Schröder and Rahmann 2017]

Penalized likelihood approach, assuming multivariate normal distribution:

 $\min_{\Theta \in \mathbb{R}^{\boldsymbol{p} \times \boldsymbol{p}}} - \log \det \Theta + \operatorname{tr}(\boldsymbol{S} \Theta) + \boldsymbol{R}(\Theta)$

SLOPE:

- $\mathbf{R}(\Theta) = \sum_{i=1}^{p^2} \lambda_i |\Theta|_{(i)}$
- Determine λ_i by False
 Discovery Rate (FDR) control
- Efficient saddle point optimisation for the Dantzig selector formalisation

[Lee, Brzyski, and Bogdan 2016]

 Biclustering of patients and variants by a modified Boolean matrix factorization (BMF)

 $\min_{X,V,Y} \sum_{a=1}^{c} \|D^{(a)} - Y^{(a)} \cdot (X + V^{(a)})^{T}\|^{2} + S(X,Y)$

V indicates tissue-specific variants for each cluster, S(X, Y) regulates specificity of V [Hess and Morik 2017]

- Solve NP-hard BMF by proximal alternating minimization of relaxed objective
 Determine the rank by EDP centrel
- Determine the rank by FDR control

[Hess, Morik, and Piatkowski 2017; Hess, Piatkowski, and Morik 2018]

Tumour Evolution

- Mutational dynamics were analyzed in one primary tumour and multiple relapse samples from a single neuroblastoma patient.
- A phylogenetic tree was built according to Hamming distances between the primary tumour and the relapse samples (Neighbor Joining).
- A stable pattern of bifurcation emerged, suggesting that at least two different subclones developed independently from the primary tumour.
- Every branch has 100% bootstrap support and is robust against various perturbations of the input data.
 [Schramm et al. 2015]

Intratumoural Heterogeneity

Relapse 1

 Allele frequency shifts between matched pretreatment primary and relapse neuroblastomas.
 Most SNVs detected in relapse tumours are below the whole-exome sequencing detection limit in the primary tumour.

tumorzentrum

Chair of Genome Informatics Institute of Human Genetics University Hospital Essen University of Duisburg-Essen