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Complexity of Hyperparameter Space: Prediction Quality versus Resource Utilization

Misclassification Rate
Depending on
Hyperparameters

Runtime Depending on

» Single evaluation of algorithms expensive (long runtimes) Hyperparameters

» Large number of competing candidates of algorithms

» Each algorithm has specific hyperparameters to be tuned

» Exhaustive search not possible due to resource constraints
» e.g.in embedded systems (heterogeneous architectures)

Misclassification Rate vs. Runtime
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Expensive Black-Box Optimization

» Typical application: hyperparameter tuning for machine learning methods

Goal: Optimize the resource utilization and improve prediction quality
» Sustainable (open source) software required for reproducibility

Example: Resource Utilization Profile during Optimization

processes

Hyperparameter optimization:
SVM on 4 CPUs
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Complex search space
» SVM: good
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Model-Based Optimisation (MBO)

» Regression model as a surrogate to approximate
relationship between x and f(x)

» Predictions of model help to move quickly to re-
gions with promising prediction quality

» Infill criterion balances exploitation and explo-
ration: LCB(x, \) = [i(x) — X - 5()
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Infill criterion with different weighting of uncertainty
(different values for \) leads to multiple independent
proposals

RAMBO Uses Resources Efficiently

» Asynchronous strategy
» asyn.ei.bel: Worker determines next evalua-
tion immediately. Estimated results of running
jobs are fed into the surrogate model

» Synchronous strategy with multipoint proposals
» RAMBO: Central process creates set of sched-
uled jobs for all workers
» qLCB: One proposal for each worker after eval-
uations are finished on all workers

Result:
» RAMBO reduces idle time in comparison to qLCB

» RAMBO has similar resource utilization compared
[0 asyn.ei.bel
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Resource-Aware Model-Based Optimisation (RAMBO)

» RAMBO extends MBO to parallel systems with opti-

mized resource utilization for heterogeneous runtimes

» Resource Demands Estimator: Additional regres-
sion model to predict runtime

» Job Selection: runtime estimates + execution prior-
ity — interaction between scheduling and infill

» Scheduling: Controlled job selection to converge
faster to optimum

Surrogate Model
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Job Profile:
Priority, Resource Demands

RAMBO Approaches Optimum Faster

» RAMBO: beneficial due to controlled exploration

» asyn.eei: Overhead of calculating the EEI via MC
Simulation decreases performance

» asyn.ei.bel: Estimated results deteriorate perfor-
mance

» gLCB + ei.bel: Less evaluations due to idling
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Software:

self-contained, well-documented, open-source i

packages, assuring reproducibility:
» mir, mirMBO, mIrMBO + RAMBO,
mirHyperopt, traceR \Q
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Heterogeneous

runtimes

»  SVM: runtime
depends heavily on
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Scheduling Strategies for Efficient Resource Utilization

» Inputs for scheduling in each MBQO iteration
» pj: Priority of jobs determined by infill criterion
» 1 Estimated runtime of jobs

» Resource-aware strategy
» Determine job with highest priority and set MBO itera-
tion time bound to its runtime
» Map most promising job to one CPU exclusively
» Solve knapsack problem to maximize sum of priorities
and map remaining jobs on CPUs

» Job priority refinement: based on hierarchical clustering
to prefer jobs scattered across the search space
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MBO Improves Prediction of Survival Times

Heterogeneous patient cohort (e.g. different clinical centers):

» Prediction of survival curves for subgroup
» Problem:
» Subgroup model: small sample size
» Pooled model: high heterogeneity between subgroups
»  Solution:
» @Group-specific weights to select subgroups that improve
prediction quality
» Weighted version of partial log-likelihood
»  Optimize C-index by setting weights using MBO:
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Results:
»  Subgroup 1: Few similar subgroups with large weight
»  Subgroup 2+3: Most subgroups with medium weight

» MBO improves prediction quality by selecting suitable
weights as hyperparameters
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