
Project A3
Methods for Efficient Resource Utilization in
Machine Learning Algorithms
Prof. Dr. Peter Marwedel, Prof. Dr. Jörg Rahnenführer

P
ro

bl
em

M
et

ho
do

lo
gy

R
es

ul
ts

fakultät
statistik

Development of Methods for Algorithm Selection and Configuration under Re-
source Constraints

I Single evaluation of algorithms expensive (long runtimes)
I Large number of competing candidates of algorithms
I Each algorithm has specific hyperparameters to be tuned
I Exhaustive search not possible due to resource constraints

I e.g. in embedded systems (heterogeneous architectures)

Expensive Black-Box Optimization
I Typical application: hyperparameter tuning for machine learning methods

Goal: Optimize the resource utilization and improve prediction quality
I Sustainable (open source) software required for reproducibility

Example: Resource Utilization Profile during Optimization

fr
e
e
 m

e
m

o
ry

 [
M

B
]

Hyperparameter optimization:
SVM on 4 CPUs

Top: CPU usage, blank space
between blocks indicates CPU idling
due to heterogeneous runtimes of the
SVM

Bottom: Free main memory

Complexity of Hyperparameter Space: Prediction Quality versus Resource Utilization

Misclassification Rate
Depending on
Hyperparameters

Complex search space
I SVM: good

prediction quality
only for specific
hyperparameters

I RF: stable
prediction quality

Misclassification Rate vs. Runtime

0.175

0.200

0.225

10 100
timetrain.test.mean

m
m

ce
.te

st
.m

ea
n

selected.learner

classif.ranger

classif.svm.radial

But: Best prediction quality
reached by SVM with tuned hy-
perparameters

Runtime Depending on
Hyperparameters

−10

0

10

−10 0 10

classif.svm.radial.cost

cl
a

ss
if.

sv
m

.r
a
d
ia

l.g
a
m

m
a

100

200

300

400

500

time

0.0

2.5

5.0

7.5

10.0

5 8 12 16 19 23 26 30 33 37

classif.ranger.mtry

cl
a
ss

if.
ra

n
g
e
r.

m
in

.n
o
d
e
.s

iz
e

100

200

300

400

500

time

Heterogeneous
runtimes
I SVM: runtime

depends heavily on
hyperparameters

I RF: homogeneous
runtimes

Model-Based Optimisation (MBO)

I Regression model as a surrogate to approximate
relationship between x and f (x)

I Predictions of model help to move quickly to re-
gions with promising prediction quality

I Infill criterion balances exploitation and explo-
ration: LCB(x, λ) = µ̂(x)− λ · ŝ(x)

Infill criterion with different weighting of uncertainty
(different values for λ) leads to multiple independent
proposals

Resource-Aware Model-Based Optimisation (RAMBO)

I RAMBO extends MBO to parallel systems with opti-
mized resource utilization for heterogeneous runtimes
I Resource Demands Estimator: Additional regres-

sion model to predict runtime
I Job Selection: runtime estimates + execution prior-

ity→ interaction between scheduling and infill
I Scheduling: Controlled job selection to converge

faster to optimum

MBO Method Job Selection

Scheduling
Job Tracker

Syn vs. Asyn.
Feedback

Surrogate Model
Resource Demands Estimator Infill Crit

Job Profile:
Priority, Resource Demands

Outlier handling etc.

Scheduling Strategies for Efficient Resource Utilization

I Inputs for scheduling in each MBO iteration
I pj : Priority of jobs determined by infill criterion
I t̂j : Estimated runtime of jobs

I Resource-aware strategy
I Determine job with highest priority and set MBO itera-

tion time bound to its runtime
I Map most promising job to one CPU exclusively
I Solve knapsack problem to maximize sum of priorities

and map remaining jobs on CPUs
I Job priority refinement: based on hierarchical clustering

to prefer jobs scattered across the search space

RAMBO Uses Resources Efficiently

I Asynchronous strategy
I asyn.ei.bel: Worker determines next evalua-

tion immediately. Estimated results of running
jobs are fed into the surrogate model

I Synchronous strategy with multipoint proposals
I RAMBO: Central process creates set of sched-

uled jobs for all workers
I qLCB: One proposal for each worker after eval-

uations are finished on all workers

Result:
I RAMBO reduces idle time in comparison to qLCB
I RAMBO has similar resource utilization compared

to asyn.ei.bel

ackley.rosenbrock_5d bohachevsky.rosenbrock_5d rastrigin.rosenbrock_5d

asyn.ei.bel
R

A
M

B
O

qLC
B

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 

0
4
8

12
16

0
4
8

12
16

0
4
8

12
16

hours

C
P

U

Synthetic benchmarks on 16 CPUs

RAMBO Approaches Optimum Faster

I RAMBO: beneficial due to controlled exploration
I asyn.eei: Overhead of calculating the EEI via MC

Simulation decreases performance
I asyn.ei.bel: Estimated results deteriorate perfor-

mance
I qLCB + ei.bel: Less evaluations due to idling

●●

●●●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

bohachevsky.rosenbrock ackley.rosenbrock rastrigin.rosenbrock

10d (16 C
P

U
s)

0.5 0.1 0.01 0.5 0.1 0.01 0.5 0.1 0.01

0.0

0.5

1.0

1.5

2.0

accuracy level

ho
ur

s

Algorithm asyn.eei asyn.ei.bel RAMBO ei.bel qLCB rs

Software:

self-contained, well-documented, open-source
packages, assuring reproducibility:
I mlr, mlrMBO, mlrMBO + RAMBO,

mlrHyperopt, traceR

MBO Improves Prediction of Survival Times

Heterogeneous patient cohort (e.g. different clinical centers):
I Prediction of survival curves for subgroup
I Problem:

I Subgroup model: small sample size
I Pooled model: high heterogeneity between subgroups

I Solution:
I Group-specific weights to select subgroups that improve

prediction quality
I Weighted version of partial log-likelihood

I Optimize C-index by setting weights using MBO:
NSCLC

G
S

E
14814

G
S

E
29013

G
S

E
50081

GSE14814

GSE19188

GSE29013

GSE30219

GSE31210

GSE3141

GSE37745

GSE4573

GSE50081

Shedden

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

Additional Subgroup

w
(g

)

Weighting Strategy

Init

MBO

NSCLC

0.00 0.25 0.50 0.75 1.00

GSE14814

GSE29013

GSE50081

C−index

Ta
rg

et
 S

ub
gr

ou
p Weighting Strategy

Subgroup

All

Init

MBO

Results:
I Subgroup 1: Few similar subgroups with large weight
I Subgroup 2+3: Most subgroups with medium weight
I MBO improves prediction quality by selecting suitable

weights as hyperparameters


