

Project A3 Methods for Efficient Resource Utilization in Machine Learning Algorithms

Prof. Dr. Peter Marwedel, Prof. Dr. Jörg Rahnenführer

Development of Methods for Algorithm Selection and Configuration under Resource Constraints

- Single evaluation of algorithms expensive (long runtimes)
- Large number of competing candidates of algorithms
- Each algorithm has specific hyperparameters to be tuned
- Exhaustive search not possible due to resource constraints
- e.g. in embedded systems (heterogeneous architectures)

Expensive Black-Box Optimization

Typical application: hyperparameter tuning for machine learning methods Goal: Optimize the resource utilization and improve prediction quality Sustainable (open source) software required for reproducibility

Complexity of Hyperparameter Space: Prediction Quality versus Resource Utilization

Misclassification Rate Depending on Hyperparameters

Runtime Depending on Hyperparameters

Misclassification Rate vs. Runtime

Example: Resource Utilization Profile during Optimization

Hyperparameter optimization: SVM on 4 CPUs

Top: CPU usage, blank space between blocks indicates CPU idling due to heterogeneous runtimes of the SVM

Bottom: Free main memory

Model-Based Optimisation (MBO)

- Regression model as a surrogate to approximate relationship between x and f(x)
- Predictions of model help to move quickly to regions with promising prediction quality
- Infill criterion balances exploitation and exploration: $LCB(\mathbf{x}, \lambda) = \hat{\mu}(\mathbf{x}) - \lambda \cdot \hat{s}(\mathbf{x})$

Resource-Aware Model-Based Optimisation (RAMBO)

- RAMBO extends MBO to parallel systems with optimized resource utilization for heterogeneous runtimes
- Resource Demands Estimator: Additional regression model to predict runtime
- Job Selection: runtime estimates + execution priority \rightarrow interaction between scheduling and infill
- Scheduling: Controlled job selection to converge faster to optimum

Scheduling Strategies for Efficient Resource Utilization

- Inputs for scheduling in each MBO iteration
 - *p_i*: Priority of jobs determined by infill criterion
 - \rightarrow \hat{t}_i : Estimated runtime of jobs
- Resource-aware strategy
 - Determine job with highest priority and set MBO iteration time bound to its runtime
 - Map most promising job to one CPU exclusively
 - Solve knapsack problem to maximize sum of priorities and map remaining jobs on CPUs

Infill criterion with different weighting of uncertainty (different values for λ) leads to multiple independent proposals

Job priority refinement: based on hierarchical clustering to prefer jobs scattered across the search space

RAMBO Uses Resources Efficiently

- Asynchronous strategy
 - asyn.ei.bel: Worker determines next evaluation immediately. Estimated results of running jobs are fed into the surrogate model
- Synchronous strategy with multipoint proposals
 - ► RAMBO: Central process creates set of scheduled jobs for all workers
 - ▶ qLCB: One proposal for each worker after evaluations are finished on all workers

Result:

RAMBO reduces idle time in comparison to qLCB

RAMBO Approaches Optimum Faster

- RAMBO: beneficial due to controlled exploration
- asyn.eei: Overhead of calculating the EEI via MC Simulation decreases performance
- asyn.ei.bel: Estimated results deteriorate performance
- qLCB + ei.bel: Less evaluations due to idling

MBO Improves Prediction of Survival Times

Heterogeneous patient cohort (e.g. different clinical centers):

- Prediction of survival curves for subgroup
- Problem:
 - Subgroup model: small sample size
- Pooled model: high heterogeneity between subgroups
- Solution:
 - Group-specific weights to select subgroups that improve prediction quality
 - Weighted version of partial log-likelihood
- Optimize C-index by setting weights using MBO:

	NSCLC			
1.0 -				G

Sults

- RAMBO has similar resource utilization compared to asyn.ei.bel

Synthetic benchmarks on 16 CPUs

Software:

self-contained, well-documented, open-source packages, assuring reproducibility:

mlr, mlrMBO, mlrMBO + RAMBO, mlrHyperopt, traceR

Results:

- Subgroup 1: Few similar subgroups with large weight
- Subgroup 2+3: Most subgroups with medium weight
- MBO improves prediction quality by selecting suitable weights as hyperparameters

