

Project A1 Data Mining for Ubiquitous System Software

Prof. Dr. Katharina Morik, Prof. Dr. Jian-Jia Chen

Phase 1 & 2

Central objectives

- ► Fast inference
- Small models
- Minimum resources assignment
- Minimum energy consumption
 Real-time guarantee

Limited to a single device

Phase 3

Extend analysis to

- Network of heterogenous devices
- Emerging new memory models
- Dynamic and adaptive execution of learning

Additional aspects

- Communication costs
- Synchronization costs
- Exploitation of heterogenous hardware
- Mapping models onto hardware

Energy Consumption

Hardware/Software Co-Design

Goal Reduce the gap between hardware design and machine learning

- Analyse model application
- Analyse model learning
- Analyse hardware architecture
- Explore applications in A4 B2 B4 C3

Preliminary Results [Buschjaeger; Chen; Chen; Morik; ICDM; 2018] Architecture-specific implementation accelerates Random Forest application exploiting

- Model-dependent execution graph
- Data-dependent code synthesis
- Architecture-specific caching behaviour

Distributed Machine Learning

Goal How to learn utilizing the edge?

Open questions

Machine Learning & Emerging Memory

Goal Identify resource saving potentials of nonvolatile memories to enable architecture-aware learning algorithms

Non-volatile memories (NVM)

- Slow write, but fast read
- Only infrequent / no refresh required
- Potential drop-in replacement for DDR

Speed-up on Intel over tree size.

e. Speed-up on ARM over tree size.

Open questions

- Can we optimise compilation?
- Can we generalise to model learning?
- Can we include different models?
- Can we target FPGAs, GPUs, etc?

Data Aggregation and Sampling

Goal Extract representatives from stream

$$S^* = rg \max_{oldsymbol{S}\subseteq P(V), |oldsymbol{S}|=k} f(oldsymbol{S})$$

where *f* is a sub-modular function.

Approach Apply Sieve-Streaming

- Add element if gain exceeds threshold
- Each Sieve has its own threshold
- Guarantees $1/2 \varepsilon$ approximation by using $\mathcal{O}(\log k/\varepsilon)$ sieves

For example

- ► How to post-process or prune *f*?
- Regularisation instead of post-processing?
- ► What are the statistical guarantees? B2
- ► What are the real-time guarantees? (C3)

Approaches

- Constrained model families $\mathcal{H} \subset \mathcal{G} \subset \mathcal{F}$
- Model learning via constrained optimization

 $g = \arg\min_{f \in \mathcal{G}} L(f, \mathcal{D})$

• Model application via regularisation $a = \arg \min I (f \mathcal{D}) + \lambda R(f)$

 $g = rg \min_{f \in \mathcal{F}} L(f, \mathcal{D}) + \lambda R(f)$

Potential benefits for ML

- Apply ML in heavily resource restricted environments, e.g. smart bins
- Faster and more efficient model learning

Central question How to utilize NVM? For example, when to use NVM and DDR?

$$\theta^{(t+1)} = \theta^{(t)} - \eta^{(t)} \sum_{i=1}^{N} \nabla \ell(f_{\theta^{(t)}}, \mathbf{x}_i, \mathbf{y}_i)$$

Number of Processors: M

Fotal Workload: $10 \cdot M$

Longest Path: 20

2

3

9

Representation, Execution, and Dependency of Learning

Goal Derive scheduling strategies for classes of ML models

- Probabilistic guarantees for both timing behaviour and statistical performance
- Respect precedence constraints using Dependency Graphs (DGs)
- Flexible DG construction and scheduling

Two orthogonal approaches during schedule design

Start from DG with the best learning output, and remove constraints

 $f(S) = \log \det(\Sigma_S)$ So far Bounding $\log \det(\Sigma_S)$ leads to fewer

SIEVES [Buschjaeger; Morik; Schmidt; IOTStreaming@ECMLPKDD; 2017]

Open questions

► How can we use summaries, e.g. for concept drift detection? B3 C3

- Can we merge/delete elements from a summary?
- ► What is the relationship with coresets? (A2)

Start from DG with the minimum required learning output, and add constraints

Preliminary results Probability of deadline misses for multi-mode tasks with independent probability [v.d.Brueggen; Piatkowski; Chen; Chen; Morik; ECRTS; 2018]

Open problems

- Probabilistic timing guarantees for dependent random variables
- Dependent execution times in probabilistic graphical models
- Flexible precedence-constraints in scheduling and ML

