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Abstract—With the advent of cyber-physical systems, real-
time tasks shall be run in different modes over time to react
to the change of the physical environment. It is preferable to
adopt high expressive models in real-time systems. In the light
of simple implementation in kernels, fixed-priority scheduling
has been widely adopted in commercial real-time systems. In
this work we derive a technique for analyzing schedulability
of the system where tasks can undergo mode change under
fixed-priority scheduling. We study two types of fixed-priority
scheduling in mode change systems: task-level and mode-level
fixed-priority scheduling. The proposed tests run in polynomial
time. We further show that a utilization of 2 −

√
2 ≈ 0.5857

can be guaranteed in implicit-deadline multi-mode systems if
each mode is prioritized according to rate-monotonic policy. The
effectiveness of the proposed tests is also shown via extensive
simulation results.

1 Introduction
In the last decade, accessible networks and sensor devices

have become ubiquitous. This gives rise to Cyber-Physical
Systems (CPS) in which a system is designed as a network of
interacting elements with physical input and output. Such an
embedded real-time system continuously monitors and affects
the physical environment which also interactively imposes the
feedback to the embedded system.

In CPS, the characteristics of a real-time task may be
able to change over time, e.g., the computational demand
or the resource allocation. Such behavior is referred to as
mode changes. The importance of mode changes for real-
time systems has been pointed out in many perspectives,
for instance, aircraft control systems, automotive Electronic
Control Units (ECU) [10], [18], energy management [20], and
server-based systems [7], [16], [19].

In automotive systems, the engine control has different
computational demands according to different angular rota-
tions. In each periodic interval, the engine control software
calculates the engine speed and position to determine when
to fire the next spark signal and evaluates the accelera-
tion/deceleration commands from the driver to adjust the
settings of fuel flow [10]. Such a control has the nature of
computation mode changes according to the physical environ-
ment. Besides, the stringent timing requirement has to be met
to inject and to deliver fuel to each cylinder at every revolution.

On the other hand, when the server-based system is used to
achieve temporal isolation among applications, the reservation
server parameters may need to change from one mode to
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another [16], [19]. Hence, an additional guarantee is required
to ensure feasibility not only in the steady state but also during
mode changes.

Related mode change models. In the classical problem of
mode changes in hard real-time systems [21], [24], on the
request of mode change, all tasks have to switch to their new
parameters. Before the new mode of the task system is fully
established, no further mode changes are permitted. Several
real-time task models have been proposed recently in the
literature to analyze the schedulability of adaptive embedded
systems [21], [24].

In this paper, the mode changes are associated to individual
tasks. Such mode changes can be found in the generalized mul-
tiframe (GMF) model [3], digraph real-time model (DRT) [22],
and variable rate-dependent behavior (VRB) task model [6],
[8], [10], [13]. The generalized multiframe (GMF) model [3]
allows a task to cycle through a static list of job types, each
with potentially different WCET bounds and relative deadlines.
Stigge et al. [22] propose a more expressive model, called
digraph real-time model (DRT), in which the release structures
of different types of jobs are represented by a directed graph.
Some approaches on sufficient schedulability tests for DRT
model for fixed priority scheduling have been reported [23].
In addition, the recent study by Guan et al. [12] presents
two pseudo-polynomial-time approximations to improve the
efficiency by losing some accuracy. In automotive applications,
several tasks are linked to rotation (e.g., of the crankshaft,
gears, or wheels). Thus their activation rate is proportional to
the angular velocity of a specific device. In such a system
a common practice is to design a rate-dependent task, called
variable rate-dependent behavior (VRB) task model [6], [8],
[10], [13]. Typically, at lower rotation some functions that
minimize fuel consumption and emissions have to be executed,
whereas they are shed at higher rotation speeds to reduce the
processor utilization. Table I illustrates an example of a task
with four levels of functionality, specified for different speed
intervals.

TABLE I: An example of variable-rate behav-
ior task with four types of execution modes
dependent on the rotation speed.

rotation (rpm) functions to be executed
[0, 2000] f1(); f2(); f3(); f4();

(2000, 4000] f1(); f2(); f3();
(4000, 6000] f1(); f2();
(6000, 8000] f1();



This work and contribution. In this work we study a real-time
system comprised of n independent, preemptive uniprocessor
multi-mode tasks τ = {τ1, τ2, ..., τn} where each task has
several execution modes to switch during the runtime. The cost
of synchronization on mode change within a task is assumed
to be subsumed into the worst-case execution time of each
mode. A multi-mode task τi is denoted by a set of triplets:

τi = {τ1i = (C1
i , T

1
i , D

1
i ),

τ2i = (C2
i , T

2
i , D

2
i ), ...,

τMi
i = (CMi

i , TMi
i , DMi

i )}
Cmi denotes the worst-case execution time (WCET) of task τi
under mode m, Tmi denotes the minimum inter-arrival time of
task τi under mode m, and Dm

i denotes the relative deadline.
That is, when a job of mode τmi is released at time t, the next
release time of task τi is no earlier than t + Tmi , and when
a job of mode τmi is released at time t, this job has to be
finished no later than its absolute deadline at time t+Dm

i .

The studied mode change model is a generalization of the
sporadic model [17]. The concept of mode change is distinct
from that of system-wide operating modes [21], [24]. This
model characterizes the system where different tasks may
progress through their different execution modes independent
of each other.

Even though the studied mode change model essentially
differs from the VRB model where different angular sources
drive the inter-arrival time, the mode change model is still ap-
plicable when considering only those thresholds that determine
which level of functionality should be executed, and in fact the
worst-case scenario occurs at the particular value of thresholds.
Similar concepts have been presented in [10]. In general, the
mode change model can be thought of as a relaxation model of
variable rate-dependent behavior (VRB) task model [10], [13]
and digraph real-time model (DRT) [22]. From the designer’s
perspective, the studied mode change model provides an easier
way to specify and reason comparing to the more general DRT
model.

This paper studies two scheduling algorithms upon multi-
mode task systems: fixed-priority task-level (FPT) and mode-
level (FPM). In this work, we derive a technique for analyzing
the schedulability in multi-mode systems. Based on this tech-
nique, we propose tests that leverage the accuracy and the time
complexity for both FPT and FPM scheduling in multi-mode
systems.

We summarize our contributions as follows:

1) The proposed test can be efficiently run in polynomial
time and is shown to be comparable to the existing state-
of-the-art pseudo-polynomial tests for FPT scheduling.

2) Previous tests for determining whether multi-mode sys-
tems can be successfully scheduled are only applicable to
the system under FPT scheduling. In this work we show
that the FPT scheduling can perform rather poorly in the
worst case.

3) We prove that a utilization bound of 2−
√

2 ≈ 0.5857 can
be guaranteed in implicit-deadline multi-mode systems
under rate-monotonic (RM) scheduling, one example of
FPM scheduling. Moreover, empirical results show that
our proposed tests under RM scheduling are able to accept
task sets that are deemed schedulable with utilizations of

up to 80%.

To the best of our knowledge, this is the first work studying
the mode change systems under FPM scheduling.

2 System Properties and Notations
In this work we study a real-time system to execute a set

of n independent, preemptive uniprocessor real-time tasks τ =
{τ1, τ2, ..., τn}. As presented and defined in Section 1, a multi-
mode task τi with Mi modes is denoted by a set of triplets:
τi = {τ1i = (C1

i , T
1
i , D

1
i ), τ

2
i = (C2

i , T
2
i , D

2
i ), ..., τ

Mi
i =

(CMi
i , TMi

i , DMi
i )}, to specify the worst-case execution time

Cmi , the minimum inter-arrival time Tmi , and the relative
deadline Dm

i of the corresponding task mode.

Throughout this paper, we restrict ourselves to either
constrained-deadline (Dm

i ≤ Tmi ) or implicit-deadline
(Dm

i = Tmi ) multi-mode task systems. For any multi-mode
task τi = {τ1i = (C1

i , T
1
i , D

1
i ), τ

2
i = (C2

i , T
2
i , D

2
i ), ..., τ

Mi
i =

(CMi
i , TMi

i , DMi
i )}, the utilization Umi of mode τmi denotes

the ratio Cmi /T
m
i of its worst-case execution time to the

minimum inter-arrival time. We only consider meaningful
cases, in which

∑n
i=1(maxm=1,2,...,Mi

Umi ) ≤ 1.

We do not impose any constraint on the mode changes
between two modes except the temporal distance specified by
the minimal inter-arrival time. When a job of task τi under
the execution mode m is released at time t, the next job of
task τi cannot be released earlier than t+Tmi , independent of
its next mode. Which mode to be selected as the next mode
depends upon the required system properties for reacting to the
physical environment or the configuration of the system, which
is completely independent from the scheduler. As a result, the
difficulty to analyze and schedule such mode change tasks is
to precisely quantify and consider the worst-case execution
patterns with mode changes.

In this paper we keep our focus on fixed-priority schedul-
ing. We highlight the advantage of fixed-priority scheduling
over dynamic scheduling, e.g., earliest-deadline-first (EDF),
by its light overhead of the implementation. In commercial
real-time kernel the explicit support for timing constraints,
such as absolute deadlines, is not needed under fixed-priority
scheduling.

There are two potential categories of associating the fixed
priority level: fixed-priority task-level (FPT) and mode-level
(FPM). In FPM scheduling algorithms, the priority of a mode
does not change during runtime; however, different modes of
the same task may have different priorities. In contrast, fixed-
priority task-level (FPT) algorithms require that all modes of a
task have the same priority. It is evident from these definitions
that FPM scheduling is a generalization of FPT scheduling.
The Rate Monotonic (RM) scheduling algorithm is an example
of FPM scheduling algorithms. The RM scheduling algorithm
prioritizes each mode according to its period generated by the
task: the smaller the period, the higher the priority assigned.
Despite that FPM allows different priority levels for different
modes of a task, all the jobs generated by a task mode have
the same priority level, whereas the jobs of a task mode in
EDF have different priority levels, depending on the absolute
deadlines.

The response time of a job in a mode is defined as the
completion time of the job minus the release time of the job.



The worst-case response time Rhk of task τk for its mode h
under a scheduling policy is defined as the longest response
time among all released jobs by the mode.

Definition 1 (Schedulability). A task τk is schedulable under
a scheduling policy if for every execution mode h of the task,
Rhk ≤ Dh

k , and a task set is schedulable under a scheduling
policy if all of its tasks are schedulable under the scheduling
policy.

We will analyze the schedulability of a task mode τhk
under the interference of higher-priority tasks (under FPT) or
higher-priority task modes (under FPM). This requires proper
definitions of the maximum execution time and the maximum
utilization of task τi among the modes that are assigned with
higher priority than mode τhk . For FPT, as all the modes of
a task τi are either with higher priority or lower priority than
task mode τhk , we define

Cmaxi = maxτm
i ∈τi(C

m
i )

and
Umaxi = maxτm

i ∈τi(U
m
i )

With the above definition, we denote the total utilization as
Usum =

∑n
i=1 U

max
i , in which Usum ≤ 1. Note that the

task modes resulting in Cmaxi and Umaxi may be different.
We further define the load factor of task τi as follows:

βi =
Cmaxi

Umaxi

For FPM, let hp(τhk ) denote the set of the modes that are
assigned with higher priority than mode τhk . Therefore, the
intersect set hp(τhk ) ∩ τi consists of the task modes of task τi
that are assigned with higher priority than hp(τhk ). Similarly,
the maximum execution time and the maximum utilization of
task τi among the modes that are assigned with higher priority
than mode τhk are denoted as follows:

Cmaxi (τhk ) = maxτm
i ∈(hp(τh

k )∩τi)(C
m
i )

and
Umaxi (τhk ) = maxτm

i ∈(hp(τh
k )∩τi)(U

m
i )

Similarly, the load factor of task τi with respect to mode τhk
in FPM is

βi(τ
h
k ) =

Cmaxi (τhk )

Umaxi (τhk )

Note that if task τi does not have any higher-priority task
mode than mode τhk , we can simply remove such a task τi in
the schedulability analysis of task mode τhk .

3 Problem Statement and Existing Results
The objective of the mode change schedulability analysis

is to guarantee that a system is feasible not only in the steady
state but also during the mode transition. In mode change
systems, during mode transitions, the phenomenon of demand
strides may occur and lead to an unfeasible scheduling, even
if there is no deadline miss in the steady state. The following
example will further motivate the difficulty of mode change.

Example Consider a system with one multi-mode task and one
sporadic task: τ1 = {(2, 3, 3), (4, 8, 8)} and τ2 = {(4, 12, 12)}.
Both tasks are schedulable by RM without mode transition.

However, task τ2 will miss its deadline at time-instant 12 when
task τ1 switches from mode τ21 to mode τ11 at time-instant 9,
as illustrated in Figure 1.

τ 11 = (2, 3, 3)
τ2 = (4, 12, 12)

τ2 τ2 τ2 τ2τ 11

0

τ 11

3

τ 11

6

τ 11

9

τ 11 , τ2 τ 11 τ 11 τ 11

τ 21 = (4, 8, 8)
τ2 = (4, 12, 12)

τ2τ 21 τ 21

τ 21

0

τ 21

8

τ 11 = (2, 3, 3)
τ 21 = (4, 8, 8)
τ2 = (4, 12, 12)

τ2 τ2 τ2τ 11 τ 11 τ 11 τ 21

τ 11 , τ2 τ 11 τ 11 τ 21 miss

×

0 3 6 9 12

Figure 1: The missed deadline during mode
transition

As a result, it is inevitable that the combinatorial releases
have to be taken into account to identify the worst-case
scenario. Towards this end, we shall first inspect multi-mode
tasks’ critical instant, which is defined as the instant at which
the execution of a task will have the longest response time [14].
For sporadic tasks with constrained deadlines, it is proven
that the critical instant for a task occurs whenever the task
is released simultaneously with all higher priority tasks and
all the following jobs are released as early as possible [14].

The critical instant for a multi-mode task under FPT
scheduling has been presented in Theorem 1 in [10].1 For
completeness, we paraphrase this theorem in the following
lemma:

Lemma 1 (Davis et al. [10]). There is a sequence Y of jobs
of task τi , that τi releases the maximum interference Ii(w) in
a window [0, w), where

1) the offset, from the start of the window, of the first job of
τi is zero;

2) each of the jobs of τi released in the window has
the minimum period commensurate with its particular
execution mode;

3) the last job has the largest WCET for any execution mode.

We notice that unlike for the sporadic task, the critical
instant provided in Lemma 1 is only necessary for creating
the maximum interference. The exact worst-case interference
from all tasks has to enumerate all possible release sequences
that satisfy the above conditions for all the tasks, but is,
however, computationally intractable since the time complexity
is O(W1×W2× ...Wn−1) where Wi is the possible release se-
quences within the input period and is ≥Mi. As an amenable
solution, instead of enumerating all possible sequences for all
tasks, a method using integer linear programming (ILP) solvers
for deriving the maximum demand has been proposed in [10].
Also, a dynamic programming method has been reported
in [22] for the DRT model, which is a generalization of mode
change model. However, both approaches may lead to an over-
approximation of the exact response time, due to the non-
concrete traces.

1Although the focus in [10] was for the VRB task model, the critical instant
theorem in [10] works for the mode change task model in this paper as well.
The proof to create the maximum interference is exactly the same.



4 Schedulabiliy Analysis under FPT Scheduling
In this section, we first introduce the concept of the

multi-mode demand bound function, and derive a sufficient
schedulability test for multi-mode task systems under a given
FPT assignment, in Theorem 1.

By Lemma 1, no matter how the sequence of task τi
releases prior to the arrival time of the last release, we can
replace the last release mode in [0, w) by the mode with
the largest WCET among all modes without decreasing the
interference. Based on this observation, we can decompose
the interference from a multi-mode task into two parts: (i) the
execution time from the last release that has the largest WCET
among modes and (ii) the total demand prior to the arrival time
of the last release. We formally define the last release time and
multi-mode demand bound function as follows:

Definition 2 (Last Release Time). For a given sequence of
releases of task τi in the interval [t0, t0 + t), we define ti as
the time of the last release of task τi upon the sequence.

Definition 3 (Multi-mode demand bound function). For any
interval length of t, the demand bound function DBFi(t, τhk )
of a multi-mode task τi is defined as the maximum cumulative
execution requirement by jobs of τi that are assigned with
higher priority than mode τhk and have both arrive time and
next release time within an interval length of t.

4.1 Multi-Mode Demand Bound Function
The concept of demand bound function (DBF) has been

widely used in real-time schedulability analysis [4]. The con-
ventional demand bound function (DBF) [4] bounds the max-
imum cumulative execution requirement by jobs of sporadic
task τi that both arrive in and have absolute deadlines within
any interval of length t. As for the multi-mode demand bound
function, the function involves the combinatorial releases.

In fact, by the definition of the multi-mode demand bound
function, calculating the multi-mode demand bound function
is equivalent to the well-known unbounded knapsack problem
(UKP) [15]. The unbounded knapsack problem is to determine
the number of each item to include in a collection of items so
that total weight (execution time) of the selected items is less
than or equal to a given limit (interval length) (called knapsack)
and total value (cumulative executions) of the selected items
is maximized.

As a result, the multi-mode demand bound function can
be computed in pseudo-polynomial time using dynamic pro-
gramming [15]. Furthermore, it has been shown in [15] that
an upper bound B for UKP is

B =

⌊
c
p1
w1

⌋
(1)

where pi denotes the profit of an item of type i, wi denotes
the weight of an item of type i, c is the limit of the knapsack,
and the item types are ordered so that

p1
w1
≥ p2
w2
≥ ... ≥ pn

wn
(2)

In the above transformations, p1
w1

is corresponding to the
maximum utilization among the eligible modes. Lemma 2
follows immediately:

Lemma 2. For any τi and a higher-priority mode τhk , for t > 0

DBFi(t, τ
h
k ) ≤ t · Umaxi (τhk )

Proof: Notice that p1
w1

= Umaxi (τhk ).

By Eq. (1) DBFi(t, τ
h
k ) ≤

⌊
tUmaxi (τhk )

⌋
⇒ DBFi(t, τ

h
k ) ≤t · Umaxi (τhk )

It is worth noting that by definition it is possible that the
mode belonging to Umaxi (τhk ) has a period > t and thus cannot
both arrive in and have next release time within interval length
of t. Nevertheless, the upper bound still holds. We will use
the upper bound on the multi-mode demand function to derive
a schedulability technique that requires the continuity of the
upper bound with the interval length of t. The mode having
period larger than t can be removed only if the interval of
interest is known, e.g., under FPT 0 < t ≤ Dh

k . Due to space
limitation, we do not explicitly present the detail.

4.2 Sufficient Test
In this section, we use the concept of the interference de-

composition to derive a technique for analyzing schedulability
of real-time systems represented using the mode change model.

Consider any legal sequence of jobs of task system τ , on
which a deadline miss occurs. Suppose that a mode m of the
kth- highest priority task is the one to first miss a deadline
and that the mode arrives at time-instant ta and this deadline
miss occurs at time-instant ta +Dh

k .

Without loss of generality, by Lemma 1, we set ta = 0.
We first assume that the tasks assigned with higher priority
than mode τhk are indexed according to the last release time
ordering π, upon which the deadline miss occurs.

Definition 4 (Last Release Time Ordering). Let π be the
assignment of a last release time ordering as a bijective
function π : τ → {1, 2, . . . , k − 1} to define the last release
time ordering of task τi ∈ hp(τhk ). The ordering of last releases
is numbered from 1 to k− 1 where 1 is the earliest and k− 1
the latest.

We now derive a necessary condition for a deadline miss
to occur with a last release time ordering π in the following
lemma:

Lemma 3. If task mode τhk misses its deadline under FPT upon
a last release assignment π, then there exists an assignment
t1, t2, . . . , tk−1 ∈ [0, Dh

k ) of the last release of task τi such
that ∀i ∈ {1, ..., k − 1, k}

k−1∑
j=1

DBFj(tj , τ
h
k ) +

i−1∑
j=1

Cmaxj + Chk > ti (3)

where tk ≡ Dh
k .

Proof: By Lemma 1 and the assumption of the deadline
miss of mode τhk , the released pattern described in Lemma 1
will result in a deadline miss for the job released by mode
τhk at time ta = 0. Let π be such a last release ordering, and
define the last release time ti of task τi for i = 1, 2, . . . , k− 1
accordingly with ti ≤ ti+1. The executed workload of the job



released by mode τhk must be strictly less than Chk amount of
execution time over [0, Dh

k ]. We observe the followings:

• At time point ti for any i = 1, 2, . . . , k−1, the requested
higher-priority execution time prior to ti plus Chk is larger
than ti.

• Up to time ti, a task τj with j = 1, 2, . . . , i − 1 has
requested DBFj(tj , τ

h
k ) + Cmaxj amount of execution

time to be executed.
• Up to time ti, a task τj with j = i, i + 1, . . . , k − 1 has

requested DBFj(ti, τhk ) amount of execution time to be
executed.

The above observation results in ∀i = 1, 2, . . . , k,

Chk +

i−1∑
j=1

(DBFj(tj , τ
h
k ) + Cmaxj ) +

k−1∑
j=i

DBFj(ti, τ
h
k ) > ti

By the fact that DBFj(t, τhk ) is monotonically non-decreasing
with respect to the interval length t, we know that
DBFj(ti, τ

h
k ) ≤ DBFj(tj , τ

h
k ) when j ≥ i. (Due to the last

release ordering π, we have tj ≥ ti for such cases.) As a
result, we reach the conclusion in Eq. (3).

Without knowing the exact last release times ti, all possible
last release time-instants of ti have to be enumerated by com-
binatorial releases as shown in [10]. In contrast, in this work
we are aiming at obtaining tests that leverage the accuracy
and the time complexity (in polynomial). In the following
lemma we provide a necessary condition for a deadline miss by
maximizing the higher-priority tasks’ interference in Eq. (3),
depending on the assignment of last release times:

Lemma 4. If mode τhk misses its deadline upon a last release
time assignment π, it must be either the case that

Chk +

k−1∑
i=1

Cmaxi > Dh
k (4)

or

Chk > Dh
k −

k−1∑
i=1

Umaxi ·

Dh
k −

k−1∑
j=i

Cmaxj

− k−1∑
i=1

Cmaxi

(5)

Proof: In the case of Eq. (4), it is clear that there will be
a deadline miss.

We now consider the case where Eq. (4) does not hold.
From Lemma 3, we know that it is necessary for a deadline
miss to occur: there exists an assignment t1, t2, . . . , tk−1 ∈
[0, Dh

k ) of the last release of task τi, ∀i ∈ {1, ..., k − 1, k}
k−1∑
j=1

DBFj(tj , τ
h
k ) +

i−1∑
j=1

Cmaxj + Chk > ti

(By Lemma 2)⇒
k−1∑
j=1

Umaxj tj +

i−1∑
j=1

Cmaxj + Chk > ti

where tk ≡ Dh
k . Our objective is to find the infimum Chk

such that the above constraints always hold. In fact, this is
equivalent to the following linear programming (LP):

inf C∗

s.t.
k−1∑
j=1

Umaxj tj +

i−1∑
j=1

Cmaxj + C∗ > ti, ∀1 ≤ i ≤ k (6a)

ti ≤ ti+1, ∀1 ≤ i ≤ k − 1 (6b)
ti ≥ 0, ∀1 ≤ i ≤ k − 1 (6c)

where Eq. (6c) and Eq. (6b) come from the definition of ti
and tk ≡ Dh

k for notational brevity. We now replace > with
≥ in Eq. (6a) as infimum and minimum are the same if ≥ is
used.

From Eq. (6a) when i = k, we get C∗ ≥ tk −∑k−1
j=1 U

max
j tj+

∑k−1
j=1 C

max
j . Then, we can use this inequality

by adding a slack variable s ≥ 0 into its RHS to replace
C∗ in our objective, and thus finding the minimum Chk is
equivalent to finding the maximum

∑k−1
j=1 U

max
j tj − s as tk

and
∑k−1
j=1 C

max
j are constant. Additionally, by replacing C∗

in Eq. (6a), we get
k−1∑
j=1

Umaxj tj +

i−1∑
j=1

Cmaxj + tk −
k−1∑
j=1

Umaxj tj +

k−1∑
j=1

Cmaxj + s ≥ ti

≡tk −
k−1∑
j=i

Cmaxj + s ≥ ti, ∀1 ≤ i ≤ k − 1

After reformulation, we have the following LP:

max
k−1∑
j=1

Umaxj tj − s

s.t. tk −
k−1∑
j=i

Cmaxj + s ≥ ti, ∀1 ≤ i ≤ k − 1 (7a)

ti ≤ ti+1, ∀1 ≤ i ≤ k − 1 (7b)
s, ti ≥ 0, ∀1 ≤ i ≤ k − 1 (7c)

The objective function is maximized when ti is maximized
and s is minimized if all the constraints in Eq. (7a), Eq. (7b)
and Eq. (7c) are feasible. From Eq. (7a), any increase ∆ on
s will increase the feasible range of ti by at most ∆, but,
at the same time, the objective function decreases due to the
assumption that

∑n
i=1 Ui ≤ 1, i.e., ∆

∑n
i=1 Ui − ∆ ≤ 0.

Thus, the objective function is maximized when s = 0. From
Eq. (7a), ti is upper bounded by tk−

∑k−1
j=i C

max
j , by assuming

s = 0. In other words, if there are no constraints violated by
setting ti = tk −

∑k−1
j=i C

max
j and s = 0, then the objective

function is maximized.

By setting ti = tk −
∑k−1
j=i C

max
j and s = 0, the given

condition that Eq. (4) does not hold implies ti’s non-negativity
by Eq. (7c), i.e., tk −

∑k−1
j=i C

max
j ≥ Dh

k −
∑k−1
j=1 C

max
j ≥

Chk > 0. In addition, this setting assures that ti ≤ ti+1

by Eq. (7b). This immediately follows that the maximum∑k−1
j=1 U

max
j tj − s occurs when all the constraints in Eq. (7a)

are active and s = 0, and thus we have that for 1 ≤ i ≤ k− 1

ti = tk −
k−1∑
j=i

Cmaxj (8)

Replacing ti in C∗ = tk −
∑k−1
j=1 U

max
j tj +

∑k−1
j=1 C

max
j − s

by the above equalities and s = 0, we obtain the minimum
C∗, as represented in the RHS of Eq. (5). Thus, we conclude



that if mode τhk misses its deadline upon a last release time
assignment π and Eq. (4) does not hold, it must the case that
Chk > C∗. Hence, this lemma is proven.

However, the necessary condition above for a deadline miss
is established upon a given last release ordering π. Without
knowing the exact ordering observed in the schedule, intu-
itively, one may relax the ordering assumption by examining
all the possible permutations. However, this is computationally
intractable as (k − 1)! permutations have to be necessar-
ily checked. Fortunately, the following lemma shows that
Dh
k −

∑k−1
i=1

(
Umaxi ·

(
Dh
k −

∑k−1
j=i C

max
j

))
−∑k−1

i=1 C
max
i

is minimized for a specific ordering of π.

Lemma 5. Dh
k −

∑k−1
i=1

(
Umaxi ·

(
Dh
k −

∑k−1
j=i C

max
j

))
−∑k−1

i=1 C
max
i is minimized when the last release time ordering

π of the k − 1 higher priority tasks is with a non-increasing
order of βi.

Proof: Suppose that π∗ does not follow a non-increasing
order of βi. That is, there exists ` in the ordering π∗

such that β` < β`+1 for some ` = 1, 2, . . . , k − 2.
We can now swap these two tasks, and this results in
a new last release time ordering π′. By inspecting the
term to be proved, we know that the last release ordering
only changes

∑k−1
i=1

(
Umaxi

∑k−1
j=i C

max
j

)
. Therefore, to

prove the lemma, we just have to show that the ordering
π′ has smaller

∑k−1
i=1

(
Umaxi

∑k−1
j=i C

max
j

)
than the

ordering π∗. By comparing these two orderings π∗ and
π′, the term

(
Umaxi

∑k−1
j=i C

max
j

)
remains the same in

π and π′ for any i 6= ` and i 6= ` + 1. Therefore,
the difference (the result by using π′ minus the result
by using π∗) in the term

∑k−1
i=1

(
Umaxi

∑k−1
j=i C

max
j

)
is

(
Umax`+1

∑k−1
j=` C

max
j + Umax`

∑k−1
j=`+1 C

max
j

)
−(

Umax`

∑k−1
j=` C

max
j + Umax`+1

∑k−1
j=`+1 C

max
j

)
, which results

in

Umax`+1 C
max
` − Umax` Cmax`+1 =Umax`+1 U

max
`

(
Cmax`

Umax`

− Cmax`+1

Umax`+1

)
=Umax`+1 U

max
` (β` − β`+1) <1 0,

where the last inequality comes from the definition of ` and
<1 is due to the non-increasing order of βi.

Therefore, we can keep swapping the last release ordering
to reduce

∑k−1
i=1

(
Umaxi

∑k−1
j=i C

max
j

)
. By adopting the above

swapping procedure repeatedly, we reach the conclusion.

Since Lemma 4 is the necessary condition for a deadline
miss to occur, equivalently, the negation of Lemma 4 is the
sufficient condition for a deadline to be met. We can now
conclude the following schedulability test by using Lemma 4
and Lemma 5.

Theorem 1 (QT-FPT). A constrained-deadline multi-mode
task τhk is schedulable if

Dh
k −

k−1∑
i=1

Cmaxi − Chk ≥ 0

and

Chk ≤ Dh
k −

k−1∑
i=1

Umaxi ·

Dh
k −

k−1∑
j=i

Cmaxj

− k−1∑
i=1

Cmaxi

where the higher priority tasks τi are indexed by non-
increasing βi.

4.3 Computational Complexity
There are (M1 +M2 + ...+Mn) task modes to be checked

for the schedulability. The test for each mode runs in time
of O(n2) without any optimization while higher-priority tasks
have to be sorted by non-increasing βi beforehand, which
requires O(n · log n). Therefore, the proposed test can be
computed in polynomial time of O(n2 ·(M1+M2+...+Mn)).

5 Schedulabiliy Analysis under FPM Schedul-
ing

In this section, we derive the schedulability test for multi-
mode systems under FPM scheduling by using the similar
technique provided in Section 4. Specifically, we study RM
scheduling, one example of FPM, and then provide utilization
bounds for implicit-deadline multi-mode systems, in Theo-
rem 4 and Theorem 5.

Several results have been reported on FPT scheduling [10],
[23]. We here show that FPT scheduling may perform rather
poorly comparing to FPM scheduling.

Example. Consider the set of tasks defined in Table II where
task τ1 is a sporadic task; τ2 is a multi-mode task; 0 < ε ≤ 0.5.
If τ1 has higher priority than τ2, mode τ12 cannot meet its
deadline. Similarly, if τ2 has higher priority than τ1, task τ1
cannot meet its deadline due to the preemption resulting from
the mode τ22 .

Task Mode Cmi Tmi Dm
i

τ1 1 1 1/ε 1/ε
τ2 1 ε 1 1

2 1/ε (1/ε)2 (1/ε)2

TABLE II: An example of associating fixed
priority with the task set

According to the example, when FPT is adopted, a feasible
scheduling that will always meet deadlines does not exist, no
matter task τ1 or task τ2 is assigned to the higher priority for
any ε > 0. Therefore, the utilization bound for such a case is 0
when ε is close to 0. That is, there exist input instances with a
very small utilization such that the task set is not schedulable
under any FPT assignments.

A naive way to check the schedulability under RM is to
pessimistically consider each mode as an individual sporadic
task. Subsequently, by inspecting the Liu & Layland bound
[14], the schedulability of the above example can be guaran-
teed when C1

1

T 1
1

+
C1

2

T 1
2

+
C2

2

T 2
2
≤ 3(2

1
3−1) = 0.779 and accordingly

ε ≤ 0.779
3 . Nevertheless, the schedulability bound is inversely

proportional to the total number of modes in a system, and it
thus cannot be put into practice.

To the best of our knowledge, there is no previous work
studying on the mode change system under FPM.



5.1 Carry-in Effect under FPM Scheduling
Unfortunately, the critical instant provided by Lemma 1 is

no longer satisfied under FPM scheduling due to the so-called
carry-in effect. We show this with the following example.

Example. Consider a system with two tasks: a sporadic task
τ1 = {(10, 30, 30)} and a multi-mode task τ2 = {τ12 =
(5, 10, 10), τ22 = (16, 30, 30)}. We assign the highest, the
middle, and the lowest priority to task τ12 , task τ1, and task τ22 ,
respectively. As shown in Figure 2, five additional time-units
jobs from mode τ1 are carried into the interval of task τ22 ’s
releases due to the preemption from higher-priority mode τ12
under FPM scheduling. Hence, task τ21 misses its deadline at
time 40, whereas it will meet its deadline if released as the
synchronous arrival sequence, mentioned in Lemma 1.

τ 12 = (5, 10, 10)
τ 22 = (16, 30, 30)

τ 12 τ 22 miss

×
0 5 10 15 20 25 30 35 40

τ1 = (10, 30, 30)

Figure 2: An example of carry-in effects un-
der FPM.

5.2 Sufficient Test for FPM Scheduling
In this section, we first use the concept of problem window

extension to quantify the carry-in job and then reuse the
technique derived in the previous section for FPT scheduling
to establish schedulability tests for FPM scheduling.

Consider any legal sequence of jobs of task system τ , on
which a deadline miss occurs. Without loss of generality, we
assume mode τhk is the mode that there exist k− 1 tasks such
that each task has at least one mode that is assigned higher
priority than mode τhk . Suppose that mode τhk is the one to
first miss a deadline and arrives at time-instant ta, and this
deadline miss occurs at time-instant ta +Dh

k .

We now discard all those jobs that have priority lower than
τhk ’s priority from this sequence. Since those jobs with priority
lower than τhk ’s have no effect on the scheduling of the jobs
with priority higher than or equals to task τhk , this schedule will
see a deadline miss of mode τhk at time-instant ta +Dh

k , and
it will also be the first deadline miss in the schedule. Hence
in this section, we consider only such a reduced sequence of
jobs.

Let t0 denote the latest time-instant with t0 ≤ ta at which
the processor is idle (or executing some lower-priority jobs
before discarding), c.f. Figure 3. Clearly, t0 exists and is well-
defined. Let Ahk = ta − t0 and td = ta + Dh

k . The technique
to extend the interval of interest is needed for identifying the
necessary condition for a deadline miss where the carry-in
effect may occur. We have the following observation:

• Let X denote the workload contributed from task τk,
that is to under anlaysis, over [t0, td). Due to mode τhk ’s
deadline miss, the amount of execution time, executed
for mode τhk , is strictly less than Chk over [ta, td). By
the definition of t0, the jobs of task τk that contribute to
the interval [t0, td) must arrive no earlier than t0. The
jobs of task τk contributing to [t0, ta) is bounded by

tdtat0

proc. idled deadline miss

Ah
k Dh

k

Figure 3: Illustration: a mode of task τi arrives
at ta and misses its deadline at time-instant
td. The latest time-instant prior to ta when the
processor is idle is denoted t0.

the multi-mode demand bound function of task τi over
[t0, ta). Hence, we have

X ≤ Chk +DBFi(ta − t0, τhk ) (9)

• The higher-priority jobs of any multi-mode task must
arrive no earlier than time-instant t0. Hence, the work
executing prior to the last release time ti is bounded from
above by its multi-mode demand bound function with an
interval length of ti − t0.

Consequently, we provide a necessary condition for a deadline
to be missed under FPM scheduling in the following lemma:

Lemma 6. If task mode τhk misses its deadline under FPM
upon an assignment π, it must be the case that there exist an
Ahk ≥ 0 and an assignment t1, t2, . . . , tk−1 of the last release
of task τi such that ∀i ∈ {1, ..., k − 1, k},

X +
∑

τj∈hp(τh
k )

DBFj(tj− t0, τhk )+
∑

j:tj≤ti

Cmaxj (τhk ) > ti− t0

and for time td

X +
∑

τj∈hp(τh
k )

DBFj(tj− t0, τhk )+

k−1∑
j=1

Cmaxj (τhk ) > Ahk +Dh
k

Proof: This is by the above discussions with a similar
proof as in Lemma 3.

Without loss of generality, we can simply set t0 to 0.

Theorem 2 (QT-FPM). Task mode τhk is schedulable under
an FPM scheduling if

Dh
k −

k−1∑
i=1

Cmaxi (τhk )− Chk ≥ 0 (10)

and

Chk ≤ Dh
k −

k−1∑
i=1

(
Umaxi (τhk ) · t∗i

)
−
k−1∑
i=1

Cmaxi (τhk ) (11)

where

t∗i = Dh
k −

k−1∑
j=i

Cmaxj (τhk )

in which higher-priority tasks τi are indexed by non-increasing
βi(τ

h
k ).

Proof: In case of Eq. (10), it is clear that there will be a
deadline miss.



By Lemma 6 and Eq. (9) and using the same concept of
Lemma 4 and Lemma 5, we then have the necessary condition
for the deadline miss under FPM:

Chk > Dh
k −

k−1∑
i=1

(
Umaxi (τhk ) · t∗i

)
−
k−1∑
i=1

Cmaxi (τhk )

+Ahk

(
1−

k∑
i=1

Umaxi (τhk )

)
(12)

where

t∗i = Dh
k −

k−1∑
j=i

Cmaxj (τhk )

Notice that due to the assumption that Usum ≤ 1, the RHS
of the above inequality is monotonically increasing with the
length of interval Ahk . By substituting Ahk = 0 and taking the
negation of Eq. (12), this theorem is proven.

Roughly speaking, the work contributing over interval
[t0, td) where t0 6= ta will be no more than that in the case
t0 = ta. One may observe that in order to make the interval
[t0, ta) busy, there will be a loss of some workloads over
[ta, td) due to Usum ≤ 1 according to our analysis.

5.3 Utilization Bounds for Implicit-Deadline
Tasks under RM

Here, we specifically study RM scheduling in implicit-
deadline multi-mode systems where the relative deadline of
each mode is equal to its period. Under RM scheduling, we
first observe that the interference from the last release can be
naturally bounded:

Lemma 7. Under RM scheduling, for any task τi with respect
to mode τhk

Cmaxi (τhk ) ≤ Umaxi (τhk ) · Thk

Proof: Under RM scheduling, only those modes with
period T ba ≤ Thk will be assigned higher priority than τhk . By
the definition of Cmaxi (τhk ) we have that

Cmaxi (τhk ) = max
τb
a∈hp(τh

k )∩τi
{U ba · T ba} ≤ Umaxi (τhk ) · Thk

By Lemma 7 we now pessimistically inflate each
Cmaxi (τhk ) to Umaxi (τhk ) ·Thk . Note that thereafter we can sim-
ply relax the ordering specified in Theorem 2 since according
to Theorem 2 for all tasks τi

β1 = β2 = ... = βk−1 =
Cmaxi (τhk )

Umaxi (τhk )
= Thk

after the inflation. Theorem 3 immediately follows:

Theorem 3. Implicit-deadline mode τhk is schedulable under
RM if

Uhk ≤ 1− 2

k−1∑
i=1

Umaxi (τhk ) +
1

2

(
k−1∑
i=1

Umaxi (τhk )

)2

+
1

2

k−1∑
i=1

(
Umaxi (τhk )

)2
(13)

Proof: In case of Eq. (10), due to Usum ≤ 1, we know
that Thk ·

(
1−∑k−1

i=1 U
max
i (τhk )− Uhk

)
≥ 0. For notational

simplicity, we denote Ui as Umaxi (τhk ) in this proof. In case
of Eq. (11), substituting Cmaxi in Eq. (11) by Umaxi · Thk and
Dh
k by Thk , we have

Chk
Thk
≤ 1−

k−1∑
i=1

Ui ·
1−

k−1∑
j=i

Uj

− k−1∑
i=1

Ui

= 1− 2

k−1∑
i=1

Uj +

k−1∑
i=1

Ui ·
k−1∑
j=i

Uj


= 1− 2

k−1∑
i=1

Ui +
1

2

(
k−1∑
i=1

Ui

)2

+
1

2

k−1∑
i=1

U2
i

Hence this theorem is proven.

The schedulability test proposed in the previous section
must check each task mode τhk individually. If one is will-
ing to sacrifice some precision, we can further provide two
linear-time schedulability tests for a task set, called quadratic
bound (QB) and total utilization bound, in Theorem 4 and 5,
respectively.

Theorem 4 (QB-RM). A multi-mode task set τ with implicit-
deadline is schedulable under RM scheduling if

Ua ≤ 1− 2
∑

τi∈τ\{τa}

Umaxi +
1

2

 ∑
τi∈τ\{τa}

Umaxi

2

+
1

2

∑
τi∈τ\{τa}

(Umaxi )
2 (14)

where Ua = minτi∈τ{Umaxi }.

Proof: The details are in the Appendix.

Theorem 5. An implicit-deadline multi-mode tasks system τ
is schedulable under RM scheduling if

Usum ≤


2(n− 1)−

√
2(n− 1)(n− 2)

n
if n ≥ 3 (15)

1

2
+

1

2n
if n = 2 (16)

Proof: The details are in the appendix.

Theorem 6. An implicit-deadline multi-mode tasks system τ
is schedulable under RM scheduling if

Usum ≤ 2−
√

2 ≈ 0.5857

Proof: By taking n → ∞ for n ≥ 3 in Theorem 5,
Theorem 6 follows immediately.

It is not difficult to see that QB and the total utilization
bound are tight in Theorem 4 and in Theorem 5, respectively.
The idea is that increasing the maximum utilization of any
higher-priority task mode τi leads to mode τhn ’s deadline miss.
We illustrate this with the following example.

Example. For a given n, there are two modes in τi for

i = 1, 2, . . . , n−1 with given Umaxi =
2(n−1)−

√
2(n−1)(n−2)
n ·

1
n−1 , in which T 2

i is Thn , C2
i is Thn · Umaxi , T 1

i is Thn ·
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Figure 4: Utilization Bounds for 2 implicit-deadline multi-mode tasks under RM

(
1−∑n−1

j=i U
max
j

)
, and C1

i is T 1
i · Umaxi . Thus, task mode

τhn can only be schedulable when its utilization is 0.

Comparing the total utilization bounds and quadratic
bounds: Figure 4 illustrates the difference between QB and
the total utilization bound in Theorem 4 and in Theorem 5, re-
spectively, for two tasks. We can clearly see that the feasibility
region below QB is larger than that below the total utilization
bound, in Figure 4a. Moreover, as shown in Figure 4b, the
summation of utilizations that can be schedulable under QB is
larger, especially when U1 is away from 0.5.

5.4 Computational Complexity.
Considering all deadlines to be met, QT-RM runs in O(n2 ·

(M1+M2+...+Mn)+(M1+M2+...+Mn)log(M1+M2+...+
Mn)) where n2 comes from the time complexity of the test for
each mode and (M1+M2+ ...+Mn)log(M1+M2+ ...+Mn)
is the sorting time for prioritizing the modes at the beginning.
Moreover, Theorem 3 can be computed in O(n · (M1 +M2 +
...+Mn)+(M1 +M2 + ...+Mn) · log(M1 +M2 + ...+Mn)),
and QB-RM requires only O(n+(M1+M2+...+Mn)) where
(M1 +M2 + ...+Mn) accounts for the time of deciding the
maximum utilization among modes.

6 Evaluations
As can be seen, we have established several utilization-

based tests for FPT and RM scheduling. In this section we
evaluate the effectiveness of the existing tests and the proposed
utilization-based tests in terms of the number of tasksets that
are deemed schedulable. First, we recap these tests as follows:

• Demand-based Test under FPT (DT-FPT): the time-
demand test approach under FPT presented in Section
III.D in [10].

• Quadratic Test under FPT (QT-FPT): Theorem 1.
• Quadratic Bound under RM (QB-RM): Theorem 4.
• Quadratic Test under RM (QT-RM): RM is an example

of QT-FPM test of Theorem 2.

The metric to compare the results is to measure the success
ratio of these tests for a given goal of task set utilization. We
generate 100 task sets for each utilization level. The success
ratio of a level is said to be the number of task sets that are
schedulable divided by the number of task sets for this level.

6.1 Task Set Generation
The task set was generated in a similar manner to the

method in [10], for testing the variable rate-behavior (VRB)
task models, as mentioned in Section 1. We first generated
a set of sporadic tasks. The cardinality of the task set was
10. The UUniFast method [5] was adopted to generate a
set of utilization values with the given goal. We here use
the approach presented by Davis and Burns [11] to generate
task periods according to an exponential distribution. Here the
two orders of magnitude to control the period values between
largest and smallest periods are explored, i.e., 1−100ms. Task
relative deadlines were implicit. The worst-case execution time
was computed accordingly, i.e. Ci = TiUi. We converted a
proportion p of tasks to multi-mode tasks:

• A multi-mode task has M execution modes
• The generated sporadic task triplet (Ci, Ti, Di) was as-

signed to the setting of task mode τ1i .
• We use a scaling factor 1.5 to assign the parameters of the

other modes2, i.e., Cm+1
i = 1.5Cmi and Tm+1

i = 1.5Tmi .
• We randomly choose a mode to have the largest utiliza-

tion. The worst-case execution times of the remaining
modes were adjusted by multiplying them by uniform
random values in the range [0.75, 1].

Checking the FPT feasibility of a multi-mode task set
was achieved by using the method for sporadic tasks, called
Audsley’s Algorithm [2], since the above tests comply with the
required conditions for the compatibility provided in [9]. Due
to the page limitation, we report only the results evaluating a
variety of M and p in the following subsection.

6.2 Experimental Results
We first evaluated the impact on different numbers of

modes when p was set to 0.5, as illustrated in Figure 5a.
With a less number of modes, the schedulability of multi-
mode tasks under FPT scheduling can be provided with up to
90% of utilizations; however, it drops significantly when the
number of modes increases. This also accords to the discussion

2We use the dynamic programming approach to implement DT-FPT instead
of using the ILP solver for the sake of efficiency. To comply with it, we apply
a correction factor dTie

Ti
on both the generated period and execution time to

ensure the discrete time model.
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Figure 5: Comparison with different numbers of modes and proportions of multi-mode tasks.

in previous section: the FPT scheduling may perform rather
poorly. In fact, under FPT, some jobs with sizable WCET
released by different tasks may dominate each other, and this
thus results in poor performance of the schedulability. On the
other hand, RM scheduling is expected to be more sustainable
due to the essential utilization bound guarantee. Moreover, QT-
RM can accept the task set with total utilizations of up to 80%
compared to only 65% by QB-RM. However, QB-RM takes
the advantage on the runtime overhead and can be applied
on-line efficiently when long execution times are prohibitive.

For FPT scheduling, the proposed QT-FPT is comparable to
the pseudo-polynomial-time DT-FPT. With a number of modes,
the workload we overly approximate before the last release
may be very close to the actual workload. One can imagine
that a task with a larger number of modes is more flexible
to generate a worse release sequence for interfering the lower
priority one.

We further evaluate different proportions of multi-mode
tasks when M = 5. Similar results are observed in Figure 5b.

7 Conclusion
This paper addresses the scheduling problem of mode

change real-time tasks under fixed-priority scheduling. Simu-
lation results show that our proposed tests are comparable with
the pseudo-polynomial-time demand-based test under FPT. To
the best of our knowledge, this is the first work providing
the utilization-based test for RM scheduling for multi-mode
tasks. Empirical results show that our proposed tests for RM
scheduling can accept test sets with utilizations of up to 80%.

Although we focus ourselves on the schedulability tests on
multi-mode tasks, the utilization-based tests can also be used
to analyze GMF tasks [3], digraph model [22], since the multi-
mode task model has complete freedom to change modes,
whereas the GMF task model and digraph model have some
additional constraints. Our proposed tests in Theorems 5 and
6 for RM scheduling can also be adopted on aperiodic models,
as proposed in [1], by relaxing the finite number of modes and
are able to accept more tasks during on-line changes.
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Appendix
Proof of Theorem 4. It is clear that for any task τk ∈ τ if

Umaxk ≤ 1− 2
∑

τi∈τ\{τk}

Umaxi +
1

2

 ∑
τi∈τ\{τk}

Umaxi

2

+
1

2

∑
τi∈τ\{τk}

(Umaxi )2 (17)

then Eq. (13) must hold for all modes τhk ∈ τk. We then
show that if Eq. (17) holds by the choice of Umaxk =
minτi∈τ{Umaxi }, then it also holds for all the other cases.

Let τa denote the task with minimum Umaxi among all
tasks. Given that Eq. (17) holds for τa, we have that

Umaxa ≤ 1− 2
∑

τi∈τ\{τa}

Umaxi +
1

2

 ∑
τi∈τ\{τa}

Umaxi

2

+
1

2

∑
τi∈τ\{τa}

(Umaxi )2

We prove this by contradiction: suppose for some Umaxb ≥
Umaxa Eq. (14) does not hold:

Umaxb > 1− 2
∑

τi∈τ\{τb}

Umaxi +
1

2

 ∑
τi∈τ\{τb}

Umaxi

2

+
1

2

∑
τi∈τ\{τb}

(Umaxi )2

For notational simplicity, let Umaxa and Umaxb denote Ua and
Ub. Summing the above two inequities we have

Ua − Ub < 2 (Ua − Ub) +
1

2

(
U2
a − U2

b

)
+

1

2

Ua + Ub + 2
∑

τi∈τ\{τa,τb}

Umaxi

 (Ub − Ua)

= (Ua − Ub)

1−
∑

τi∈τ\{τa,τb}

Umaxi


≡

∑
τi∈τ\{τa,τb}

Umaxi > 1

which contradicts the fact that Usum ≤ 1 and Ua, Ub > 0.
Hence this theorem is proven.

Proof of Theorem 5. Our objective in this proof is to find the
minimum Usum such that Eq. (14) always holds. For n = 2 the
minimization can be done directly by solving the differential
equation in two variables. We discuss the case for n ≥ 3 by
using Lagrange Multiplier Method.

min
n∑
i=1

Ui

s.t. Un = 1− 2

n−1∑
i=1

Ui +
1

2
(

n−1∑
i=1

Ui)
2 +

1

2

n−1∑
i=1

U2
i (18a)

Un ≥ 0 (18b)

Let λ be the multiplier of the schedulability constraint by
Eq. (18a) and µ be the multiplier of the constraint Un ≥ 0.
The Lagrange function is

L(U1, U2, ..., Un) =

n∑
i=1

Ui + µ(−Un)

+λ

(
1− 2

n−1∑
i=1

Ui +
1

2
(

n−1∑
i=1

Ui)
2 +

1

2

n−1∑
i=1

U2
i − Un

)
with derivatives

∂L

∂Ui
=


1− µ− λ, if i = n (19a)

1 + λ

(
−2 + Ui +

n−1∑
i=1

Ui

)
otherwise (19b)

A necessary condition for the minimum is that the two
derivatives of (19a) and (19b) are zero. Eq. (19b) implies that
for all i 6= n

U1 = U2 = ... = Un−1 (20)

To solve these equations, we look at several cases:

Case 1: µ = 0 Case 2: λ = 0 Case 3: µ, λ 6= 0 When µ = 0,
λ = 1 by Eq. (19a) according to the necessary condition for
the minimum. Setting λ = 1 in Eq. (19b) and using the above
condition, we obtain optimum values Ui ∀1 ≤ i ≤ n− 1:

Ui =
n− 1

n
(21)

which leads to the violation of the nonnegative constraint Un ≥
0 after solving the condition of (18a).

Case 2: µ 6= 0

When µ 6= 0, it must be the case Un = 0 due to the
complementarity.

After solving Eq. (18a) with the condition (20) and Un = 0,
we get for all i 6= n

Ui =
2(n− 1)−

√
2(n− 1)(n− 2)

n
· 1

n− 1
(22)

It follows that
n∑
i=1

Ui =
2(n− 1)−

√
2(n− 1)(n− 2)

n
(23)


