
Resource-Efficient Processing and Communication in
Sensor/Actuator Environments

Dissertation
zur Erlangung des Grades eines

Doktors der Ingenieurwissenschaften

der Technischen Universität Dortmund
an der Fakultät für Informatik

von

Constantin Timm

Dortmund
2012

Tag der mündlichen Prüfung: 18. Oktober 2012
Dekan /Dekanin: Prof. Dr. Gabriele Kern-Isberner
Gutachter /Gutachterinnen: Prof. Dr. Peter Marwedel

Prof. Dr. Heinrich Müller

Dedication

To my wife and my child.

Acknowledgements

Die folgende Danksagung richtet sich an alle, die mich auf dem Weg meiner Promo-
tion begleitet haben.

Zuallererst möchte ich mich herzlich bei meinem Betreuer und Erstgutachter, Prof.
Dr. Peter Marwedel bedanken. Insbesondere möchte ich dabei hervorheben, dass
mir – neben fachlicher Unterstützung – auch die Möglichkeit gegeben worden ist, in
interessanten Projekten mit internationalen Schwerpunkten zu arbeiten. Desweit-
eren bedanke ich mich bei meinem Zweitgutachter und Betreuer, Prof. Dr. Heinrich
Müller.

Mein Dank gilt den Korrekturlesern dieser Dissertationsschrift oder Kollegen, Dr.
Sascha Plazar, Dr. Frank Weichert, Pascal Libuschweski, Olaf Neugebauer, Jens
Schmutzler, Dominic Siedhoff und Anneliese Bähr-Böhm. Insbesondere Sascha und
Frank haben mich nicht nur fachlich – in endlosen Diskussionen – unterstützt, son-
dern mich auch durch wertvolle Ratschläge im Rahmen dieser Arbeit begleitet. Für
letzteres bedanke ich mich auch herzlich bei Prof. Dr. Heiko Falk, der dadurch
einen signifikanten Beitrag zum Gelingen dieser Arbeit geleistet hat.

Desweiteren habe ich im Zuge der Promotion verschiedenste Leute kennenlernen
dürfen, die alle – in der einen oder anderen Weise – zum Gelingen dieses Vorhabens
beigetragen haben, sei es als Korrekturleser oder Koautor von Veröffentlichungen,
als fachlicher oder mentaler Unterstützer, als Diplomand oder als Projektpartner.
Meinen Dank möchte ich deshalb den folgenden Personen aussprechen: Daniel
Cordes, Andrej Gelenberg, Markus Görlich, Dr. Michael Engel, David Fiedler, An-
dreas Heinig, Timon Kelter, Jan Kleinsorge, Helena Kotthaus, Dr. Paul Lokuciejew-
ski, Dr. Stefan Michaelis, Jens Nellesen, Christian Prasse und Andreas Wolff.

Einen besonderen Dank widme ich meiner Familie, die mich während der Promotion
unterstützt und mir die Kraft zum Vollenden dieser Arbeit gegeben hat.

Zuletzt möchte ich mich bei der Deutschen Forschungsgemeinschaft (DFG) für die
finanzielle Unterstützung im Sonderforschungsbereich SFB 876 “Verfügbarkeit von
Information durch Analyse unter Ressourcenbeschränkung”, Projekt B2, bedanken.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Design Challenges for Networked Embedded Many-Core Systems . . 2
1.3 Contribution of this Work . 5
1.4 Organization of the Thesis . 7
1.5 Author’s Contribution to this Dissertation 8

2 Sensor/Actuator Environments & Applications 11
2.1 Biomedical Scenario . 11
2.2 Intra-Logistics Scenario . 13
2.3 Scientific Sensor Network Scenario 16
2.4 Application Benchmarks . 17

3 Energy Consumption and Performance Testbed 19
3.1 Introduction . 19
3.2 Testbed . 21

3.2.1 Architecture . 22
3.2.2 Source Code Annotation . 23
3.2.3 Exemplary Hardware Platform Test Configuration 24

4 Optimizations for GPGPU Applications: Basics 25
4.1 Programming GPGPU-based Many-Core Systems 26

4.1.1 Programming Concepts . 27
4.1.2 Hardware Structure and Runtime Concept 28
4.1.3 GPGPU Application Mapping 29

4.1.3.1 General . 29
4.1.3.2 Compilation . 30

4.2 Genetic Algorithms . 31
4.2.1 Specification . 32
4.2.2 Elitism-based Multi-objective Genetic Algorithms 34

4.2.2.1 Pareto Optimization 34
4.2.2.2 Examples . 35

5 Multi-objective Hardware/Software Codesign for GPGPU Appli-
cations 37
5.1 Introduction . 38

5.1.1 Optimization Potential in Classical GPGPU Application De-
sign Process . 39

5.1.2 Hardware/Software Codesign for GPGPU Applications 41

iv Contents

5.2 Related Work . 43
5.2.1 Energy-Aware and Embedded High Performance Computing . 43
5.2.2 Compiler Optimizations . 44
5.2.3 System-level Design Space Exploration 45

5.3 Multi-objective Local Instruction Scheduling 45
5.3.1 Introduction . 45
5.3.2 MOBLIS - Materials and Methods 47

5.3.2.1 Genetic Algorithm Specification 49
5.3.2.2 Optimization Workflow 50
5.3.2.3 Evolution Operation 51

5.3.3 Evaluation . 51
5.3.3.1 Parameters / Configuration / Optimization Runtime 51
5.3.3.2 Single Platform Results 52
5.3.3.3 SPEA2 and NSGA-II Comparison Results 55
5.3.3.4 Platform Variants Comparison Results 55
5.3.3.5 Parallel Register Utilization 56

5.3.4 Summary . 57
5.4 Multi-objective Global Instruction Scheduling 58

5.4.1 Introduction . 58
5.4.2 FALIS - Materials and Methods 60

5.4.2.1 Extracting Mobile Instructions 61
5.4.2.2 Calculating Mobility of Instructions on Extended Ba-

sic Blocks . 61
5.4.2.3 FALIS Genetic Algorithm Specification 64
5.4.2.4 Optimization Workflow 64
5.4.2.5 Evolution Operations 65

5.4.3 Evaluation . 65
5.4.3.1 Parameters / Configuration / Optimization Runtime 66
5.4.3.2 Single Platform Results 66
5.4.3.3 SPEA2 and NSGA-II Comparison Results 68
5.4.3.4 Platform Variants Comparison Results 68

5.4.4 Summary . 70
5.5 Design Space Exploration for Embedded Image Processing Systems . 71

5.5.1 Introduction . 71
5.5.2 Materials and Methods . 74
5.5.3 Evaluation . 76

5.5.3.1 Parameters and Configuration 76
5.5.3.2 Input Data Dependency 77
5.5.3.3 Parallel Processing Scalability 78
5.5.3.4 Energy/Runtime Considerations 78

5.5.4 Summary . 79
5.6 Design Space Exploration for GPGPU-Accelerated Embedded Systems 80

5.6.1 Introduction . 80

Contents v

5.6.2 Materials and Methods . 81
5.6.3 Evaluation . 83

5.6.3.1 Parameters and Configuration 83
5.6.3.2 Results . 84

5.6.4 Summary . 85
5.7 Conclusion . 86

6 Embedded System Middleware: Basics 89
6.1 Service-Oriented Architectures . 89
6.2 Projects and Specifications based on SOA 90

6.2.1 OSGi . 90
6.2.2 Device Profile for Web Services 91

6.2.2.1 Basic Features . 92
6.2.2.2 Protocols . 93

6.2.3 Classical Web Service Development Process 94
6.2.4 Web Service Business Process Execution Language 95

7 Service-Oriented and Resource-Aware Middleware for Embedded
Systems 97
7.1 Introduction . 98

7.1.1 Optimization Potential in Classical Web Service Development
Process . 98

7.1.2 Flexible Middleware Techniques and Resource Awareness . . . 99
7.2 Embedded System Middleware Architecture 99

7.2.1 Introduction . 99
7.2.2 Related Work . 101
7.2.3 MORE - Materials and Methods 103

7.2.3.1 Service Development and Deployment 104
7.2.4 Use Case Evaluation . 105

7.2.4.1 Scientific Sensor Network Scenario 105
7.2.4.2 Intra-Logistics Scenario 106

7.2.5 Summary . 107
7.3 Lightweight Service Orchestration . 108

7.3.1 Introduction . 108
7.3.2 Related Work . 110
7.3.3 Service Chaining - Materials and Methods 111
7.3.4 Evaluation . 113

7.3.4.1 Resource Considerations 113
7.3.4.2 Use Case Evaluation 114

7.3.5 Summary . 115
7.4 Resource Management . 115

7.4.1 Introduction . 115
7.4.2 Related Work . 117

vi Contents

7.4.3 Resource Management - Materials and Methods 118
7.4.3.1 Resource Accounting and Control 118
7.4.3.2 Non-Functional Requirements Aware Service Invo-

cation (NOFURSI) 119
7.4.3.3 Non-Functional Requirements Aware Subscription (NO-

FURAS) . 120
7.4.4 Evaluation . 122

7.4.4.1 NOFURSI . 122
7.4.4.2 NOFURAS . 123

7.4.5 Summary . 126
7.5 Conclusion . 127

8 Conclusion and Future Work 129
8.1 Summary . 129
8.2 Future Work . 131

A Appendix 133
A.1 Definitions . 133
A.2 Mathematical Symbols & Style Sheet 134

List of Tables 135

List of Figures 138

List of Listings 139

Bibliography 141

Chapter 1

Introduction

1.1 Motivation

The future of computer systems will not be dominated by personal computer like
hardware platforms but by systems assisting humans in a hidden but omnipresent
manner [152]. These computer systems can, for example, be utilized in the home
automation sector to create sensor/actuator networks supporting the inhabitants of
a house in everyday life. These kinds of systems are often summarized in literature
by the terms ubiquitous computing [152] and pervasive computing [66]. According
to [84], two emerging research areas exist, in which basic technologies have to be
developed on the way to pervasive computing devices (illustrated in Figure 1.1):

• Embedded and Cyber-Physical Systems

• Communication Technologies.

Embedded and cyber-physical systems comprise a large variety of different hard-
ware platforms in a vast variety of application domains. They can be found in the
automation domain, in robots, in control systems for cars or air planes and in the
multimedia equipment at home. The common feature of embedded systems is that
they are “information processing systems embedded in an enclosing product” [84]. A
subset of embedded systems comprises cyber-physical systems. They are “integra-
tions of computation and physical processes” [76].

The other emerging area for pervasive computing devices are communication tech-
nologies, which spawn different challenges in the scope of distributed applications
and networking. Especially, communication and middleware libraries must be de-
signed efficiently in terms of quality of service but also with respect to resources
like energy, memory space or processing resources. Processing resources and energy
consumption are especially important for pervasive computing devices which are
often battery-driven mobile devices.

The efficient usage of resources is an important topic at design time and at opera-
tion time of embedded and cyber-physical systems. The same applies to communi-
cation technologies. Therefore, this thesis presents methods which allow an efficient
use of energy and processing resources in SANETs (Sensor/Actuator NETworks).
SANETs comprise different sensor/actuator nodes cooperating for a “smart” joint

2 Chapter 1. Introduction

Communication
Technologies

• networks

• distributed
applications

• quality of
service

Embedded and
Cyber-Physical
Systems

• control systems

• real-time

• dependability

Pervasive/Ubiquitous
Computing

• information anytime,
anywhere

Figure 1.1: Embedded/Cyber-Physical Systems and Communication Technologies
enabling Pervasive Computing (modified [84])

control function. Sensor/actuator nodes are typical cyber-physical systems compris-
ing sensors/actuators and processing and communication components.

1.2 Design Challenges for Networked Embedded Many-
Core Systems

A special class of distributed embedded systems are Networked Embedded Many-
Core Systems which are considered in this thesis. The design and development
process for this class of devices needs dedicated methodologies focusing on efficient
resource usage. The challenges with respect to these methodologies will be outlined
in the following.

The future of networked embedded and cyber-physical systems is sketched in sev-
eral technology development roadmaps. The Nationale Roadmap Embedded Systems
of BITKOM [11] identifies several important development challenges towards net-
worked embedded systems:

• Overcome diversity of programming languages and protocol heterogeneity.

• Develop efficient design methods and tools for higher productivity.

• Provide applications with sufficient quality of service and increase efficiency
in terms of costs and time.

With respect to challenges in the two design areas Embedded and Cyber-Physical
Systems and Communication Technologies, three additional important technology

1.2. Design Challenges for Networked Embedded Many-Core Systems3

roadmaps must be taken into account: SOCRADES [124], HIPEAC [21] and ARTIST
Design [24]. They will be considered in the following.

Embedded and Cyber-Physical Systems: Many-core chips are of interest for
embedded system design [119] because of several reasons. On the one hand, more
and more applications running on embedded systems are computationally expen-
sive such as augmented reality. On the other hand, many of such applications are
highly parallel and therefore, they can be efficiently executed on many-core systems
comprising a large number of “simple” processing cores. The use of many-core chips
is not only advantageous to the performance but also for energy consumption as
shown in [119, 154]. One class of many-core systems in the HPC (High Performance
Computing) context are modern GPUs (Graphic Processing Unit). These GPU chips
made a significant paradigm change from ASICs (Application-Specific Integrated
Circuits) to a grid of general purpose processing units. This change was mandatory
due to the growing demands for “non-graphics” computations (physical effects and
artificial intelligence) in games and the resulting requirement for flexible program-
ming. The new paradigm is called GPGPU (General Purpose computing on GPUs).
In recent times, these complex GPU chips have also been employed in embedded
chips [1, 157] to accelerate computationally expensive applications.

The evolution of computer systems towards multi-core and many-core systems is
subject of the HIPEAC roadmap [21]. On the one hand, the roadmap states that
the development of single core processors and the availability of higher performance
achieved by higher clock frequencies have reached an impasse. On the other hand,
the necessary shift towards multi-core and many-core systems is cumbersome be-
cause of the change in programming paradigms and the difficulties by utilizing mas-
sive parallelism. From a design perspective, the HIPEAC roadmap comprises the
following important challenges:

1. Automatically adapting compilers providing optimizations that tailor a certain
application code to a particular execution platform should be developed, in
order to achieve the best possible performance of the application.

2. Workflows should be designed that map computations efficiently to acceler-
ators such as FPGAs (Field Programmable Gate Arrays) or GPUs. Espe-
cially parallelizable applications should be mapped to these systems, to pro-
vide higher performance.

3. Optimizing compilers should be created that consider energy consumption
of an application or a set of applications as an additional objective beside
performance.

4. The design space for high-performance platforms is often large, e.g. due to
the possibility to map applications to different processors. Therefore, the
conception of efficient design space techniques is mandatory.

4 Chapter 1. Introduction

Communication Technologies: In the design of distributed and embedded
applications, SOA (Service-Oriented Architectures) and middleware libraries based
on SOA became popular [9, 62, 124, 142]. The referenced SOAs are utilizing one
instance of service-oriented architectures called web services. Web services are com-
mon for application designs at server level. SOAs enable a high level of abstraction
and a simpler development of distributed applications. Furthermore, the utilization
of service-oriented architectures was required to overcome device and protocol het-
erogeneity by providing a unified interface architecture. Besides these advantages,
the porting of web services to the embedded and cyber-physical world is challenging
due to many resource constraints in these devices.

The SOCRADES roadmap [124] targets industrial automation systems which com-
prise “networked systems made up of smart embedded devices”. For theses industrial
automation systems, the SOCRADES roadmap provides a summary of challenges
for a framework, including service design, service execution and management func-
tionalities. An excerpt of the challenges is given in the following:

1. Service-oriented architectures and system engineering/management

(a) The divers resource constraints of embedded and cyber-physical systems
demand for a conception of tailored high-level and process-oriented com-
munication and interaction libraries.

(b) The creation of efficient orchestration mechanisms is mandatory for SOA
in order to design complex processes from existing services.

(c) Context awareness for services which are sensible of the environment
should be provided. This is especially important for pervasive computing
devices operating in a large variety of different environments. For each
environment, e.g. another version of a service can be optimal.

(d) Dynamic deployment, efficient (re-)configuration mechanisms and an elab-
orated life cycle management must be developed to work in ad-hoc envi-
ronments.

2. Sensor/actuator networks

(a) The consideration of QoS (Quality of Service) in sensor/actuactor net-
work can enable a more efficient use of resource such as communication
link bandwidth.

(b) For decentralizing of control logic, different sensor/actuator nodes should
cooperate for a smart joint control function. This will increase the effi-
ciency of the controlled systems.

Analogous to HIPEAC, the ARTIST design roadmap [24] gives trends towards
efficient resource utilization in middleware environments. In the ARTIST design
roadmap it is described that managing power consumption at middleware layer can

1.3. Contribution of this Work 5

Multi-objective Hardware/Software
Codesign for GPGPU Applications

Service-Oriented and Resource-Aware
Middleware for Embedded Systems

E
ffi
ci
en
t

R
es
ou

rc
e

U
ti
liz
at
io
n

Code
Optimization

Platform
Variants

Single
Platform

Different
Platforms

Mapping
Optimization

Design of Network
Embedded Manycore Systems

Flexible
Middleware

Service Or-
chestration

Middleware Design

Accounting
& Control

Context
Awareness

Resource Management

Figure 1.2: Overview on the Overall Design Process

be advantageous to reducing the energy consumption. It can be accomplished by
taking into account the system level information, such as the interaction pattern
between services or the availability of workload information, which can be available
at the middleware layer.

1.3 Contribution of this Work

This thesis addresses the challenges described by providing new methodologies and
mechanisms for the embedded system design employing GPUs for application accel-
eration and the design of service-oriented architectures. An overview on the different
research areas in which these methods were developed and utilized in this thesis is
depicted in Figure 1.2. The methods can be divided in two classes having an efficient
resource utilization as the coherent objective. The first class consists of methods
related to a Multi-objective Hardware/Software Codesign for GPGPU Applications
and the second class comprises methods related to Service-Oriented and Resource-
Aware Middleware for Embedded Systems. The two resources considered in this
thesis are processing resources and energy. Energy consumption has also been iden-
tified as one of the major objectives by the technology roadmaps of HIPEAC and
ARTIST design.

Multi-objective Hardware/Software Codesign for GPGPU Applications:
The need for an extension of the GPGPU application design process towards

optimizing compilers arises from the HIPEAC challenge to optimize the mapping
process of computationally expensive applications onto accelerators such as GPUs.
GPGPU-capable GPUs can already be found in a large variety of embedded SoCs
(Systems on Chip)[1, 157]. As can be noticed from the left-hand side of Figure
1.2, the GPGPU application design process comprises two large areas: the mapping
optimization and the code optimization. For both optimization types, innovative

6 Chapter 1. Introduction

methods will be introduced and novel evaluation results will be presented in Chap-
ter 5.

The mapping optimization for combined CPU and GPU platforms is realized by
means of (multi-objective) design space explorations. These design space explo-
rations can comprise a single platform, a platform family or different platforms. All
different types of design space explorations will be introduced in the scope of the
Multi-objective Hardware/Software Codesign for GPGPU Applications. The novel-
ties for mapping optimizations to be presented in this thesis are:

1. The mapping optimization for GPUs is extended to explicitly consider energy
consumption and runtime simultaneously as objectives. Energy consumption
and runtime values are provided by an automatic energy consumption and
performance testbed.

2. A design space exploration is performed which targets the decision, which
platform is the most suitable for a GPGPU application under the constraint
of deadlines.

3. At embedded systems level, a design space exploration is conducted which
is targeted towards the decision whether or not an integration of a GPGPU-
capable graphics card for parallel application acceleration is beneficial to en-
ergy consumption or not.

Code optimizations should be automatically performed by an optimizing compiler [90].
Thereby, GPGPU application code can be optimized for a particular platform with
the objectives of minimal energy consumption and/or of minimal runtime. These
two objectives are targeted with the help of multi-objective optimization techniques.
The novelties for code optimizations to be presented in this thesis comprise the fol-
lowing subjects:

1. Energy consumption and runtime profiling data are utilized inside an optimiz-
ing compiler for an automatic energy consumption and performance evaluation
of optimization process decisions.

2. Local instruction scheduling methods in a compiler are evaluated for the capa-
bility to decrease the register pressure and to change load behavior of graphics
card pipelines.

3. A global instruction scheduling method optimizes the distribution of memory
accesses. This can be beneficial to the energy consumption and the perfor-
mance of a GPGPU application.

4. A multi-objective evolutionary algorithm is employed in both instruction schedul-
ing processes, which is capable of optimizing both energy consumption and
runtime as objectives.

1.4. Organization of the Thesis 7

Service-Oriented and Resource-Aware Middleware for Embedded Sys-
tems: In standard programming languages, communication cannot be described
efficiently. Therefore, communication and middleware libraries are needed. The
SOCRADES roadmap introduces a couple of challenges in the context of service-
oriented architectures. The design of network embedded many-core systems with
the help of SOA is depicted on the right-hand side of Figure 1.2. Its main purpose is
to enable the efficient development of large sensor/actuator networks. The service-
oriented architecture based middleware framework to be introduced in this thesis,
comprises the following novelties:

1. A flexible middleware core is provided which allow the runtime deployment
and configuration of services. Additionally, generic added-value-services are
introduced, which can be re-used in a wide range to application scenarios.
The added-value-services can be modularly combined.

2. A lightweight but powerful service orchestration mechanism is designed and
evaluated.

In addition to the two aforementioned novelties, resource utilization will be consid-
ered in this thesis and the design of a flexible resource management mechanism will
be introduced. This resource management adapts resource utilization and services
to an environmental context. Especially energy consumption is an optimization
criterion for that resource management. The novelties for resource management
services at middleware layer to be presented in this thesis comprise the following
subjects:

1. A resource management service is described, which enables an application
designer with the possibility to create energy-aware sensor/actuator networks.
This is achieved by extending a publish/subscribe protocol by the capability
of adding non-functional requirements.

2. A second resource management service is introduced, which extends a SOA-
based middleware with the capability to request resources at runtime and
control their utilization at service execution.

1.4 Organization of the Thesis

The following section provides an overview on the structure of this thesis:

• An overview on the different use cases and benchmark suites on which the
optimizations and design space explorations are conducted throughout the
thesis will be provided in Chapter 2.

• In Chapter 3, an energy consumption and performance testbed will be intro-
duced which is utilized to evaluate the optimization gain and design space
decisions in design space explorations.

8 Chapter 1. Introduction

Chapter
2

Chapter
3

Chapter
6

Chapter
4

Chapter 5 Chapter 7

Basic Technologies

Application
Scenarios

Mapping
Optimizations

&
Code

Optimizations

Middleware
Design

&
Resource

Management

Figure 1.3: Structure of the Thesis

• In Chapter 4, the basics of GPGPU programming will be given along with
compiler basics and the fundamental concepts of multi-objective optimization.

• The GPGPU application design process and methods to optimize it, will be
described in Chapter 5. In addition to that, suggestions will be made for
utilizing many-core chip architectures in the field of embedded systems.

• The basic technologies and example cases for specifications in the field of
service-oriented architectures will be introduced in Chapter 6.

• In Chapter 7, a novel service-oriented middleware for embedded and cyber-
physical systems and a novel resource management approach in the same field
will be introduced.

• The conclusion of this thesis will be described in Chapter 8 and furthermore
possible directions for future work will be given.

The dependencies between the chapters of this thesis are depicted in Figure 1.3.
The application scenarios presented in Chapter 2 are optimized and act as use cases
throughout the thesis, especially in Chapters 5 and 7. The energy consumption and
performance testbed introduced in Chapter 3 is also a basic technology utilized in
Chapters 5 and 7. Chapters 5 and 7 also have their own basic technology chapters
(Chapters 4 and 6 respectively) in which basic concepts needed for describing the
methods developed and utilized in this thesis will be introduced.

1.5 Author’s Contribution to this Dissertation

§10(2) of “Promotionsordnung der Fakultät für Informatik der Technischen Univer-
sität Dortmund vom 29. August 2011” states that a separate list has to be provided

1.5. Author’s Contribution to this Dissertation 9

in each dissertation revealing the contributions of the author to cooperative research
and results. Therefore, the following enumeration lists the contribution of the au-
thor to publications which are the basis for different chapters (2, 3, 5 and 7) of the
thesis. In these chapters the following publications were taken into consideration:

• Main author: [129, 130, 131, 132, 134, 135, 136, 138]

• Co-author: [4, 79, 121, 132, 133, 148, 149, 150, 151]

The detailed contribution ratio in these publications is as follows:

• Chapter 2: In this chapter use cases and benchmarks are introduced, which
are optimized and evaluated in later chapters. The author of this thesis was
co-author of topic-related publications. The publication [151] about a real-
time GPGPU biosensor analysis pipeline was written by the author of this
thesis by about 50 per cent. For publications [79, 121, 132, 148, 149, 150, 151]
on the same subject, the author of this thesis wrote only a small fraction. The
author of this thesis was one of the main authors of [135] with a contribution
of around 50 per cent. This publication introduced the intra-logistics use
case. The publication [138] was written by the author of this thesis. The
other authors contributed by providing the application context/scenarios and
technical/methodical support.

• Chapter 3: In all publications in which the author of this thesis was the main
author, the energy and performance testbed was utilized. The publication
utilizing the testbed were entirely written by the author of this thesis.

• Chapter 5: The main publications which build the basis of this chapter are
[129, 130, 131, 136, 137]. They were entirely written by the author of this
thesis. The other authors contributed by providing the application contex-
t/scenarios and technical/methodical support. The evaluation in this chapter
was also completely done by the author of this thesis, except for the results
in Section 5.6.3 which were conducted in cooperation with Andrej Gelenberg.
The ideas and concepts for the compiler optimizations were developed by the
author of the thesis. However, the implementation of the control flow and
data dependency graph and some further compiler level functions were done
by Markus Görlich.

• Chapter 7: That chapter is based on several publications [134, 135, 138]. For
the publication [138] concerning the context-aware resource management, the
author of this thesis was the main writer. The other authors contributed by
providing the application context/scenarios and technical/methodical support.
The author of this thesis wrote the parts comprising the middleware and the
resource management of [135]. The author was also one of the main writers
of that publication with a contribution of about 50 per cent. The concepts
for the resource management were entirely developed by the author of this

10 Chapter 1. Introduction

thesis. The service orchestration article [134] was mainly written by the au-
thor of this thesis. Parts of the introduction, the middleware architecture and
deployment were written by Jens Schmutzler. The idea of the service orches-
tration was completely designed and implemented by the author of this thesis.
The middleware presented in the chapter was work of the MORE consortium
[4, 5, 53, 75, 87, 116, 133, 153] but essential concepts and implementations of
the MORE middleware core module were done by the author of this thesis.
The author of this thesis wrote multiple chapters of several (technical) reports
[4, 133] in this context.

Chapter 2

Sensor/Actuator Environments &
Applications

In this chapter several use case scenarios and application benchmarks are described
which will be optimized with the techniques to be presented in Chapters 5 and 7 of
this thesis. The use case scenarios and application benchmarks are evaluated with
the energy consumption and performance testbed presented in Chapter 3.

Contents
2.1 Biomedical Scenario . 11
2.2 Intra-Logistics Scenario . 13
2.3 Scientific Sensor Network Scenario 16
2.4 Application Benchmarks . 17

In the course of this chapter, three use case scenarios are introduced which will be
utilized for evaluation purposes in this thesis. In Section 2.1, a biomedical scenario
will be presented. An intra-logistics scenario will be introduced in Section 2.2 and a
scientific sensor network scenario in Section 2.3. In this chapter, it will be evaluated
why these scenarios have been chosen for this thesis and need to be optimized.
Furthermore, an overview on different benchmark suites is given (see Section 2.4),
which will be also utilized in this thesis to show the general applicability of the
proposed optimizations.

2.1 Biomedical Scenario

The first use case scenario is from the field of bio-medics. The development of locally
available, specialized virus detection systems becomes increasingly important in the
face of worldwide spreading virus infections [48]. Advances in the medical sector
facilitate the utilization of optical microscopy for the detection of viruses and – in
general – nano-objects. The microscopy can then be used for a rapid and distributed
epidemic infection control. A novel technique which can achieve the latter is called
PAMONO (Plasmon Assisted Microscopy Of Nano-Size Objects) [149, 159]. The
high processing requirements of the biosensor demands for a many-core embedded
system [149]. The processing requirements will be described by introducing the
structure of the biosensor.

12 Chapter 2. Sensor/Actuator Environments & Applications

Data Analysis

Image Sequence Containing
Several Images Time Series Pixel by Pixel

time

time

in
te
ns
it
y

Nano-objects

Virus

No VirusSuperlum
ines-

cent
D
iode CC

D
/C

M
O
SG

ol
d
L a

ye
r

Fluid

G
la
ss

P
rs
im

Figure 2.1: Schematic Illustration of the PAMONO Biosensor Experimental Setup
& Data Analysis (modified [149])

The fundamental concept of the PAMONO biosensor exploits surface plasmon ef-
fects. These effects allow the identification (by optical methods) of nano-objects
that are smaller than the wavelength of the light, such as viruses or fine particles of
auto-mobile emissions. In order to induce this effect, a super-luminescent diode is
utilized to activate surface plasmons in a thin gold layer. The gold layer is deposited
on a glass prism as depicted in Figure 2.1. The reflected light is projected onto an
– at least – 12-Bit CCD or CMOS camera chip, where a high resolution image is
acquired. A liquid containing nano-objects is pumped through a flow cell, attached
to the sensor surface. Nano-objects being close to the sensor surface are bound to
the gold layer by corresponding selective antibodies or by electrostatics. The re-
flected intensity on the sensor surface increases locally, resulting in a bright mark
appearing in the image. The increase in intensity can be identified by evaluating
the time series of each pixel as depicted on the right-hand side of Figure 2.1. The
detection capability of the PAMONO biosensor is influenced by several artefacts,
e.g. unevenness of the gold layer, production tolerance of the optical sensor. One
of the most important issues for the wide range usability of this virus detection
method is the processing and the analysis of the acquired images in real-time. This
is demanded by the circumstance that the result of a detection in progress should be
visualized online, while inserting the specimen. An image processing and analysis
pipeline is designed as a GPGPU application to accelerate the detection algorithm
of nano-objects and to meet realtime requirements.

The pipeline is – from an image processing and analysis view – divided into three
processing steps as depicted in Figure 2.2. The sets of images provided by the cam-
era are transferred to the GPU memory without any image processing on the CPU.
Each set of images, comprising b images, is then processed on the GPU and the
results are transferred back to the host main memory. The algorithms are highly

2.2. Intra-Logistics Scenario 13

Preprocessing Nano-object candidate dectetion Segmentation and Classification

convert
input

denoising
pattern
matching

marching
squares

post
processing

convert
output

Figure 2.2: Schematic Illustration of the PAMONO GPGPU Image Processing and
Analysis Pipeline (modified [149])

data parallel and as a result well-suited for the execution on a graphics card [151].
The processing is done on different presentations of the data. There are algorithms
which work on time series basis, meaning that for m ·n pixels sized images, m ·n
time series can be processed concurrently. The length of the time series is b. The
other type of algorithms work on single images. These single images are divided into
sub frames comprising several pixels. The processing can then be done for the sub
frames concurrently. The processing steps on the GPU comprise – in that order –
the preprocessing, the detection of time series (pattern matching) comprising nano-
objects and the aggregation of pixels to connected areas (polygons), respectively the
classification. Pattern matching and denoising are both working on a time series
basis. The Segmentation and Classification processing steps work on single images.

As a summary, the use case scenario demands efficient design in the following area:

Many-Core ES: A high data rate and data parallel algorithms demand for a design
of an efficient processing system (see Chapter 5). Especially, the choice of the most
appropriate platform is interesting for this use case.

2.2 Intra-Logistics Scenario

The second use case scenario is from the field of automation systems. Tradi-
tional conveyor belt systems comprise central control mechanisms such as PLCs
(Programmable Logic Controllers). They administrate a large variety of sensors
and actuators. In recent times, efforts have been made which try to substitute this
infrastructure by a decentralized SANET (Sensor/Actuator NETwork) [135, 147].
The network concept of this SANET will be introduced in the following, preceded
by the description of the processing demands.

14 Chapter 2. Sensor/Actuator Environments & Applications

VSU
Switch

Communication Infrastructure

Infrastructure
RFID Scanner
& RFID Tag

Database

Figure 2.3: Concept of the Intra-logistics Scenario (modified [149])

The SANET controlling the conveyor belt system (depicted in Figure 2.3) com-
prises different sensor nodes and actuator nodes, directly connected with the help
of a middleware. This is fundamentally different, but more efficient, compared to
traditional systems where there is only a central controlling instance. The routing
of the bins or parcels in that conveyor belt system is done by identifying a QR code
[44] on the parcel by a camera system and by requiring routes for that QR code
from a central database. In addition to a QR code, the parcels are equipped with
a RFID tag equipped with the same information as the QR code. Identifying QR
codes in arbitrary images is a challenging task [14, 102] and therefore, the data store
in a central RFID tag database is utilized to verify whether a detected and decoded
QR code is available or whether there were errors in the detection. The RFID tags
are recognized by a few RFID scanners. The switches of the conveyor belt systems
are controlled by the camera systems. The camera systems are called Visual System
Units (VSU).

The considered conveyor system as depicted in Figure 2.3 has different types of
hardware platforms, based on the intended purpose. At the topmost level, large
computer systems are used which run e.g. the RFID central database. At a lower
level, sensor nodes such as VSUs are used which control single switches locally. They
are connected among each other, to the controlled switch and to the central RFID
database. The processing demands for detecting and processing QR codes are de-
scribed in the following.

An example QR code is depicted on the left-hand side of Figure 2.4, next to the
camera. A QR code is a two-dimensional code. As can been seen there, the QR
code is built of three position patterns, an optional alignment pattern and the code
area. The position patterns specify the orientation and the size of the marker. The
alignment pattern is used for handling possible distortion effects – for detailed in-
formation refer to [102]. The data is encoded inside the black-white-pattern in a

2.2. Intra-Logistics Scenario 15

Filtering Binarization
Detect Posi-
tion Marker

Perspective
Transformation

Decode
Information

Control
Actuators

Control
Command

Code Area

Position
Pattern

Alignment Pattern

Figure 2.4: Processing Concept of Intra-logistics Scenario

hierarchical fashion. The atomic unit of a QR code is a module comprising one or
more pixels. The number of pixels inside a module depends on the scaling of a QR
code. The QR code size qrsize is defined by the number of modules in the code:

qrsize = (17 + 4 · i) · (17 + 4 · i), (2.1)

where 1 ≤ i ≤ 40. For i = 40, up to 4296 alphanumeric characters can be en-
coded [44].

The extraction and processing of such a QR code is a challenging task for an em-
bedded system [14, 102]. Real-time processing of the images is necessary, in order
to activate actuators in time. The image is acquired by a standard digital camera
(see Figure 2.4). In the first phase, the image is filtered to remove artefacts etc. In
the second phase, the image is binarized. In the third phase, the position patterns
of the QR code are detected. Based on the position patterns and the alignment
pattern, the code area is extracted and QR code size qrsize is determined. The QR
code is then transformed perspectively and scaled to the calculated QR code size
qrsize. In the next to last phase, information is decoded from the QR code and in
the last phase, the routing decision is performed by the controlled switch. The algo-
rithms of the first four phases can be parallelized and are predestined for execution
on many-core systems.

As a summary, the intra-logistics scenario demands for an efficient design in the
following areas:

Many-Core ES: Data parallel image processing and analysis algorithms demand
an efficient design of the processing system (see Chapter 5).

Sensor/Actuator Network: The decentralized control in the use case scenario
requires an efficient middleware infrastructure (see Chapter 7) and the consideration
of quality of service.

16 Chapter 2. Sensor/Actuator Environments & Applications

Central Database

End User Device
e.g. Smart phone

Temperature
Sensor

Moisture
Sensor

Figure 2.5: Concept of the Mitigation Management Scenario (modified [63])

2.3 Scientific Sensor Network Scenario

The third use case scenario is from the field of scientific data acquisition. The gath-
ering of scientific data – in the Mitigation Management project of TU Dresden [57] –
from sensors at remote locations is time-consuming and done manually. The use of
a sensor network will provide a more sophisticated way of utilizing the data and will
enable ad-hoc usability. The challenges for sensor network design will be described
in the following.

A number of sensor nodes are distributed at remote locations in the forest. The
sensors include temperature, moisture and gas sensors. In the past, data from these
sensors were transferred manually to scientists for evaluation. The new architecture
of this scenario, derived from user requirements, is depicted in Figure 2.5. As can be
seen in this figure, there is a central data server storing all measured data. The data
on this central data server is provided to end user devices such as smart phones and
personal computers as raw data or processed data. The second purpose of the data
server is to act as a data sink for the sensor data. Therefore, the data server com-
municates with remote devices in the forest. Each of them comprises one or more
sensors and a wide-area link, e.g. a UMTS or GSM link. The limited bandwidth
demands for an efficient design towards local processing capabilities.

As a summary, the scientific sensor network scenario demands for efficient design in
the following area:

Sensor/Actuator Network: The decentralized nature of this use case scenario
requires an efficient middleware infrastructure (see Chapter 7).

2.4. Application Benchmarks 17

2.4 Application Benchmarks

The optimization and design space techniques presented in this thesis are not re-
stricted to the described use case scenarios but can also be applied the other bench-
marks. Several benchmark suites and single benchmarks are used for evaluation in
this thesis for demonstrating the applicability of the proposed GPGPU application
design techniques (see Chapter 5).

The following three benchmark suites comprise a large variety of application do-
mains such as: medical imaging, data mining, image processing, pattern recognition,
simulation etc. The benchmark characteristics cover benchmarks with and without
extensive main memory utilization and benchmarks which are more computationally
expensive:

• Nvidia CUDA examples [97]

• VSIPL-GPU-Library [58]

• Rodinia benchmark suite [33].

For comparison between applications written for CPUs and applications written for
GPUs, several manually optimized benchmarks have been utilized:

1. Matrix Multiplication: CPU [125], GPU [99]

2. Fast Fourier Transform: CPU [56], GPU [99]

3. Air Pollution Simulation: CPU [89], GPU [89]

4. Range-Doppler Algorithm: CPU [58], GPU [58].

Chapter 3

Energy Consumption and
Performance Testbed

In Chapter 2, the use case scenarios optimized in this thesis were outlined. In
this chapter, the energy consumption and performance testbed is described which
will be used in Chapters 5 and 7 to evaluate the optimization gain or single space
points in a design space exploration. It is followed by Chapter 4, in which basics
on the GPGPU application design process and multi-objective optimizations will be
provided.

Contents
3.1 Introduction . 19

3.2 Testbed . 21

3.2.1 Architecture . 22

3.2.2 Source Code Annotation . 23

3.2.3 Exemplary Hardware Platform Test Configuration 24

In the introduction (see Section 3.1), basics for energy and power efficiency will
be given. In Section 3.2, the testbed utilized in this thesis will be presented.

3.1 Introduction

As mentioned in Chapter 1, energy-aware design is mandatory in the embedded and
cyber-physical systems domain [21, 24] because of several different requirements [85]:

• Usefulness/Usability: Smart phones and mobile devices are omnipresent but
their usability is directly impacted by the capacity of their batteries and the
efficient use of energy.

• Green Computing: Green computing targets energy-aware design throughout
the complete life cycle of embedded and cyber-physical systems in order to
make their use possible in the face of scarce resources. For example, a fore-
cast [112] estimates 2.2 millions worldwide operating ATMs (Automatic Teller

20 Chapter 3. Energy Consumption and Performance Testbed

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

50

Time (s)

P
ow

er
C
on

su
m
pt
io
n
(W

)

Program - Variant 2
Program - Variant 1

(a) Power Consumption

0 10 20 30 40 50 60 70 80 90 100
0

500

1,000

1,500

2,000

2,500

Time (s)

E
ne

rg
y
C
on

su
m
pt
io
n
(J
)

Program - Variant 2
Program - Variant 1

(b) Energy Consumption

Figure 3.1: (a) Power Consumption and (b) Energy Consumption

Machines) in 2016. An energy-aware design of such stationary devices which
consumes several tens of watts and operates 24/7 is beneficial in terms of green
computing.

• Cost Reduction: Due to pervasive and ubiquitous computing, the use of em-
bedded and cyber-physicals systems also emerges in the automation and busi-
ness sectors. The utilization of many of them makes their energy consumption
an emerging sector for saving costs. Energy-aware designs are therefore bene-
ficial.

In order, to understand the optimizations done in this thesis, the definition of the
energy consumption is important. Especially the distinction between power-aware
and energy-aware optimization is important as they are not the same [84].

The energy consumption Econt for a time interval [tstart, tend] is defined as

Econt =

tend∫
tstart

P (t)dt. (3.1)

P (t) is a power consumption measured in watt (W) at time stamp t ∈ [tstart, tend].
The unit of the energy consumption Econt is Joule (J). For discrete measurements,
the energy consumption edisc can be calculated by using a Riemann sum:

Edisc =
1

fs

∑
t∈{tstart,...,tend}

P (t) (3.2)

in which fs is the sampling frequency (Hz) of the measurements, P (t) the power
consumption measured in watt (W) at time stamp t, t is a sampling point in the set
of measurement sampling points {tstart, ..., tend}, tstart ≤ tend. tstart is the starting

3.2. Testbed 21

point for the measurements and tend is the end time for the measurements. The
unit of the energy consumption Edisc is Joule (J).

As can be easily derived, optimization for power consumption is not the same as
optimization for energy consumption. In Figure 3.1 on the left-hand side, a power
consumption over time diagram showing two program variants (Variant 1 and Vari-
ant 2) is given. As can be seen, during the entire runtime, the power consumption
of Variant 2 is higher than the power consumption of Variant 1. That means, that
Variant 1 is more power efficient than Variant 2. On the right-hand side of Fig-
ure 3.1 the energy consumption – in the interval [0,100] – of both program variants
can be seen. It can be noticed that due to the smaller runtime of Variant 2 its
energy consumption is lower than the energy consumption of Variant 1. Therefore,
Variant 2 is more energy efficient than Variant 1.

Besides a profiling-based approach, such as the one described later in this chap-
ter, several power and energy consumption models exist. An excerpt from common
literature reveals several types of energy or power models:

• Measurement-based Models: The authors of [123] and [139] provide fine-
grained energy models on instruction level. They were both derived by mea-
surements of the energy consumption for a single instruction type and for dif-
ferent sequences of instructions. The latter is important as different sequences
lead to different energy consumptions of an instruction type. The utilization of
power/energy models is not restricted to embedded systems. For example, also
models for other architectures such as GPUs exist. A statistical power model
for determining the average power consumption while running a GPGPU pro-
gram was developed in [82]. With the help of the runtime and this power
model, the energy consumption of a GPGPU program can be calculated.

• Specification-based Models: The energy model of the authors of [122] is based
on the utilization of the data sheets of the different functional units such as
memory or processors. Based on this information the energy consumption for
memory accesses and for processor cycles are estimated.

• Analytical Models: Especially, memory accesses can be modelled with analyt-
ical methods, such as CACTI [104]. CACTI describes the memory structure
by a gate-level model and estimates the power consumption, access time and
circuit area with this model. Other analytical models describe the leakage and
dynamic power consumption of transistors [32, 126].

3.2 Testbed

In this section, the testbed which will be utilized in the thesis will be presented.
Therefore, the architecture of the testbed will be given in Section 3.2.1. In Sec-

22 Chapter 3. Energy Consumption and Performance Testbed

Analog
Digital
Current Clamp

Testbed Control and Measurement System

Control & TriggerPower Supply Oscilloscope

Device under Test

Figure 3.2: Energy Consumption and Performance Testbed

tion 3.2.2, the mechanism for measuring energy consumption for application is de-
scribed and in the end (see Section 3.2.3) some results for the idle power consumption
of some hardware platforms are given.

3.2.1 Architecture

The two major goals of the optimizations to be presented in Chapter 5 and 7 are
energy consumption decrease and performance increase. Both can be measured with
an energy consumption and performance testbed as depicted in Figure 3.2. There
is always a system controlling the tests – called testing system – and DUT (Devices
Under Test). For getting the power consumption Pd for a devices, the current Id
at the power supply lines is measured. The power supply must be a DC power
supply. A current clamp measures the amount of current Id running through the
probed lines by a proportional voltage which can then be measured employing an
oscilloscope. The power consumption Pd can then be calculated by

Pd = Id ·Vd, (3.3)

where Vd is the voltage of the power supply line.

The energy consumption and the runtime of an application are evaluated as follows:
The runtime interval [t0, trun] is delimited by a trigger signal which is initiated by
the testing system and can be measured at the output of the RS232 serial port.
This is also performed by the oscilloscope of the testing system. A trigger signal
is triggered by marking it in the source code before start. This will be explained
in Section 3.2.2. If the DUT is an acceleration device such as a graphics card, the
RS232 can be directly controlled. If the DUT is an external device, the RS232 port
is controlled over a socket connection or by the RS232 of the external device.

3.2. Testbed 23

. . .

. . .

. . .
P r o f i l i n g S t a r t (”P1 ”) ;
. . .
Pro f i l i ngEnde (”P1 ”) ;
. . .
P r o f i l i n g S t a r t (”P2 ”) ;
. . .
Pro f i l i ngEnde (”P2 ”) ;
. . .
. . .
. . .

0 0.5 1 1.5 2 2.5 3
3

4

5

6

7

8

P
ow

er
C
on

su
m
pt
io
n
(W

)

Time (s)

Figure 3.3: Source Code Annotated Profiling

3.2.2 Source Code Annotation

In order to measure the energy consumption of (parts of) an application, the time
frame must be available in which the power consumption of the hardware platform
must be measured. Therefore, several markers can be inserted into the source code
of an application as depicted in Figure 3.3. As can be seen in this figure, the start
and the end of the power consumption measurements are marked with a start marker
ProfilingStart respectively with an end marker ProfilingEnd. In order to assign a
certain source code part to a functionality, an identifier id is attributed to a pair of
ProfilingStart and ProfilingEnd. If the identifiers of two or more application code
sections are the same, average values are returned. If an application is running on
remote devices, additional functions are required in the source code to force the
application code section to run in the desired time interval. More details on this are
given in Section 4.1. In Figure 3.3 two application code sections P1 and P2 of an
application Pa on a platform Pl were measured. The testbed can provide the energy
consumption

EPa,Pl
P1 = energy(Pa, Pl, t

Pa,Pl
P1start

, tPa,Pl
P1end

) (3.4)

respectively
EPa,Pl

P2 = energy(Pa, Pl, t
P,Pl
P2start

, tPa,Pl
P2end

). (3.5)

The runtimes of P1 and P2 are then given by

rPa,Pl
P1 = runtime(Pa, Pl) = tPa,Pl

P1start
− tPa,Pl

P1end
(3.6)

and
rPa,Pl
P2 = runtime(Pa, Pl) = tPa,Pl

P2start
− tPa,Pl

P2end
. (3.7)

The start triggers such as tPa,Pl
P1start

always start at 0 and the end triggers like tPa,Pl
P1end

are always relative to the start triggers.

24 Chapter 3. Energy Consumption and Performance Testbed

Graphics Cores Shader Memory Idle
Card Clock Interface Power
Card Clock Width Consumption

(MHz) (Bit) (W)
8400GS 8 1400 64 up to 4
NextION 16 1400 64 5.4 - 6.6
9500GT 32 1400 128 15.8 - 20.3
9600GT 64 1625 256 33.48 - 43.2
GTS250 128 1836 256 24.0 - 45.6

Table 3.1: Performance Specification of Devices under Test (data from [100] – except
for power consumption)

3.2.3 Exemplary Hardware Platform Test Configuration

This evaluation explains, how a particular platform class can be evaluated. Exem-
plarily, the testbed configuration for graphics cards is given in the following.

A typical PCI Express graphics card is powered via different power supply con-
nections. The eight power supply lines (12 Vand 3.3 V) of the PCI Express bus
provide a maximal power of 75 W. For graphics cards, which have a higher power
consumption, additional power supply lines (12 V) are directly connected to the
main power supply unit of the system. For measuring the power consumption of the
graphics card, current clamps at the bundled 12 Vpower lines and at the bundled 3.3
Vpower lines are utilized. For different graphics cards the idle power consumptions
have been measured. The results are listed in Table 3.1. Because of the graphics
card’s power consumption saving techniques, for some of the graphics cards, a power
consumption range is given. As can be seen, the idle power consumption increases
with the number of built-in cores.

Chapter 4

Optimizations for GPGPU
Applications: Basics

After presenting the energy consumption and performance testbed in Chapter 3, in
this chapter the basics of the GPGPU application design process and multi-objective
optimizations will be outlined. Basic technologies and methods are provided for
Chapter 5 in which optimizations and design space explorations for GPGPU appli-
cations will be described.

Contents
4.1 Programming GPGPU-based Many-Core Systems 26

4.1.1 Programming Concepts . 27

4.1.2 Hardware Structure and Runtime Concept 28

4.1.3 GPGPU Application Mapping 29

4.2 Genetic Algorithms . 31

4.2.1 Specification . 32

4.2.2 Elitism-based Multi-objective Genetic Algorithms 34

In this chapter, the programming and mapping process of Nvidia graphics cards
with the help of CUDA C and OpenCL C (see Section 4.1) will be described. The
major focus will then be the compilation process of GPGPU applications in par-
ticular. In this area, different intermediate representations will be delineated and
it is shown how applications will be optimized with the help of these intermediate
representations.

In addition to the GPGPU application design process, a heuristic optimization tech-
nique, called GA (Genetic Algorithms), will be outlined in Section 4.2. It will be
described how genetic algorithms can be used to solve optimization problems and
how genetic algorithms are specified. Furthermore, multi-objective genetic algo-
rithms will be presented which allow to handle optimization problems pursuing two
or more objectives. In the scope of that presentation, two example algorithms,
SPEA2 and NSGA-II will be shown which both utilize the elitism paradigm [74].

26 Chapter 4. Optimizations for GPGPU Applications: Basics

HCS

ACS

ACS

HCS

ACS ACS

ACS

HCS

(a)

__kernel void vector_add (__global const float* In1,
__global const float* In2,

__global float* Out)
{

int pos = get_global_id(0);

Out[pos] = In1[pos] + In2[pos];
}

Data Parallel Execution

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

In1

In2

Out

(b)

Figure 4.1: (a) Application with accelerated parts (ACS) and non-accelerated parts
(HCS) and (b) Data Parallelism with OpenCL

4.1 Programming GPGPU-based Many-Core Systems

In order to tackle high throughput data-parallel applications in embedded systems,
parallel processing capabilities are indispensable. In the past, this was done by
designing application-specific and parallel processing accelerators such as ASICs or
FPGAs. They were used to accelerate parts of an application which can be processed
in parallel. An example for such a kind of application is depicted in Figure 4.1(a).
The application parts denoted with HCS (Host Code Sections) are running on the
host system which controls the accelerator. The application parts denoted by ACS
(Accelerator Code Sections) are running on the accelerator. Typical examples for
such systems are up-to-date television sets where the video and audio decoding is
done on the accelerator and the other parts are running on the general-purpose
CPU [140].

Since 2003 [29], graphics processing units have been equipped with programmable
processing elements, capable of executing general-purpose applications and easily
programmable by application designers. This capability is often summarized by the
term GPGPU (General Purpose Computing on Graphics Processing Units). The
parallel processing capability and the availability of such GPUs in a wide range of
hardware designs made them attractive for low-cost high performance computing
and as an accelerator technique. In this section two programming concepts for GPUs
are described: CUDA C and OpenCL. Both concepts are used in this thesis. While
the first is targeted towards the programming of Nvidia graphics cards only, the lat-
ter is designed to program a wide range of accelerator devices including multi-core
CPUs [69], graphics cards [96] and FPGAs [6].

The section is structured as follows: Firstly, the programming concepts of CUDA
and OpenCL are delineated in Section 4.1.1. Secondly in Section 4.1.2, some impor-
tant hardware features of Nvidia graphics cards are described and finally, in Section
4.1.3, the mapping process of a CUDA application is outlined.

4.1. Programming GPGPU-based Many-Core Systems 27

Grid

Block (0,0) Block (1,0)

Block (0,1) Block (1,1)

Thread (1,0)Thread (0,0)

Thread (0,1) Thread (1,1)

Thread (1,0)Thread (0,0)

Thread (0,1) Thread (1,1)

Thread (1,0)Thread (0,0)

Thread (0,1) Thread (1,1)

Thread (1,0)Thread (0,0)

Thread (0,1) Thread (1,1)

(a)

NDRange

work-group (0,0) work-group (1,0)

work-group (0,1) work-group (1,1)

work-item(1,0)work-item(0,0)

work-item(0,1) work-item(1,1)

work-item(1,0)work-item(0,0)

work-item(0,1) work-item(1,1)

work-item(1,0)work-item(0,0)

work-item(0,1) work-item(1,1)

work-item(1,0)work-item(0,0)

work-item(0,1) work-item(1,1)

(b)

Figure 4.2: (a) CUDA Thread Hierarchy and (b) OpenCL WorkItem Hierarchy

4.1.1 Programming Concepts

Both programming concepts, OpenCL and CUDA C can be used for specifying par-
allel applications. There are two major types of parallelism: data parallelism and
task parallelism. Data parallelism, on the one hand, means that “similar operations
... are performed on elements of a large data structure...” [38]. Task parallelism,
on the other hand, means that, “entirely different calculations can be performed on
either the same or different data” [38]. The focus of this thesis are data paral-
lel applications and therefore, this section is limited to this aspect of parallelism
only. OpenCL and CUDA C, both start their application specification by writing
single-threaded code (as shown on the left hand side of Figure 4.1(b)), called ker-
nel. A kernel is written in a C99 dialect including OpenCL and CUDA specific
programming language qualifiers, data type modifiers and some restrictions such as
the unavailability of recursion.

An example for a data-parallel application is depicted in Figure 4.1(b). In this
figure, a vector addition of two arrays In1 and In2 into a third array Out is shown.
As can easily be noticed, the vector addition can be done independently over the
length of the array. An important concept of OpenCL and CUDA is that of a posi-
tion identifier – here get_global_id(0). Position identifiers allow a single thread to
identify the position in the data where it can work on.

In the example in Figure 4.1(b) also the need of another important feature ofOpenCL
and CUDA can be derived. The arrays in this example can be quite large and there-
fore the processing must possibly be partitioned in order to be executed in the face
of bounded processing and memory resources. For this, OpenCL and CUDA include
a thread hierarchy as depicted in Figure 4.2(a) respectively in Figure 4.2(b). The
hierarchy can be one-, two- and three-dimensional. In Figures 4.2(a) and 4.2(b) the
two-dimensional case is depicted. A single runtime instance of a kernel is called
thread in CUDA and work-item in OpenCL. One step higher in the hierarchy level,
the threads and work-items are bundled in a group called thread block respectively

28 Chapter 4. Optimizations for GPGPU Applications: Basics

work-group. These groups are then again bundled in a larger group called grid in
CUDA and NDRange in OpenCL. With position identifiers as described above, it
is possible to identify a thread (work-item) and the thread block (work-group) at
runtime to coordinate the processing on the same data set.

For processing data on a common data set, the data set has to be stored in a
memory available for threads and work-items . The different memory spaces are de-
picted in Figures 4.3(a) and 4.3(b). As can be seen in this figure, OpenCL provides
two types of main memory, global memory and constant memory. Both memories
are cached. The global memory is readable and writeable from a work-item and the
constant memory is only readable. The global memory can be used for work-item to
work-item communication in the whole NDRange. In order to communicate inside
a work-group, a fast local memory is available. To provide memory consistency for
this communication, an explicit barrier synchronisation statement must be used in
a kernel. The last type of memory in OpenCL is the so-called private memory. This
memory is accessible by a work-item only. This concept also applies to CUDA C
by mapping the elements as depicted in Table 4. CUDA provides two more memory

OpenCL CUDA
Global Memory Texture & Global Memory

Constant Memory Constant Memory
Local Memory Shared Memory
Private Memory Registers

Table 4.1: Mapping Memory Concepts between OpenCL and CUDA

spaces local memory and global memory. Both memory spaces are unchached main
memory. While local memory is only readable and writeable from a thread, global
memory can also be used for thread to thread communication.

4.1.2 Hardware Structure and Runtime Concept

The programming language view on OpenCL C and CUDA C was described in the
last section. In this section now the mapping of these programming language con-
cepts on Nvidia hardware is explained. As this is similar for OpenCL and CUDA
for Nvidia graphics, the mapping will only be outlined for CUDA. A schematic
depiction of a Nvidia graphics card is presented in Figure 4.3(a). The atomic func-
tional unit executing a thread is an SP (Streaming Processor). A thread ’s thread
block is allocated to a particular SM (Streaming Multiprocessor) comprising several
Streaming Processors and a scratchpad memory. On one streaming multiprocessor
a subgroup of a thread block called warp is running. A warp contains exactly 32
threads and they are executing the same instruction. This method is called SIMT
(Single Instruction Multiple Threads). The different warps are the scheduling unit of
a Streaming Multiprocessor. They are scheduled using a scoreboard mechanism [67].

4.1. Programming GPGPU-based Many-Core Systems 29

Graphics Card

Graphics Cards’ Main Memory

Streaming Multiprocessor 1 Streaming Multiprocessor N

Shared Memory Shared Memory

Constant/Texture Memory Data Cache

Texture Memory Constant Memory

Shared Register File Shared Register File

Streaming
Processor

1

Streaming
Processor

M

Streaming
Processor

1

Streaming
Processor

M

Global Memory

Local Memory

(a)

Compute Device

Compute Device Memory

Compute Unit 1 Compute Unit N

Local Memory 1 Local Memory N

Global/Constant Memory Data Cache

Global Memory Constant Memory

Private
Memory

1

Private
Memory

M

Private
Memory

1

Private
Memory

M

Processing
Element

1

Processing
Element

M

Processing
Element

1

Processing
Element

M

(b)

Figure 4.3: (a) CUDA C Memory Hierarchy (modified [98]) and (b) OpenCL C
Memory Hierarchy (modified [61])

This mechanism is called warp scheduling at Nvidia. Warp scheduling enables a
Streaming Multiprocessor to issue other warps while some warps are waiting for
the results of instructions or for data from the global memory. If enough warps are
available, this parallel instruction and memory pipeline mechanism can hide memory
latency arising from the uncached global memory. [96]

4.1.3 GPGPU Application Mapping

In this section, Nvidia’s GPGPU application mapping process for CUDA C is de-
scribed and the compilation process is delineated.

4.1.3.1 General

Thread blocks are allocated – depending on the resource usage – to a streaming
multiprocessor. This is done by the CUDA runtime based on statically derived pa-
rameters for shared memory and number of registers. This is accomplished as follows
(depicted in Figure 4.4): First of all, the application designer specifies manually how
many threads are in a block TPB (Threads Per Block). For the allocation of the
blocks, it is then statically evaluated by the compiler, how much shared memory
one thread needs and how many registers RPT (Registers Per thread) are needed
maximally [96]. Finally, the number of blocks is evaluated which can be allocated to
an SM depending on the resources. If e.g. three blocks are allocated, then RPT ×
TPB ×3 registers are used. Furthermore, according to [96] registers are allocated in
banks, so the actual register allocation count can be higher. There must be at least
resources (shared memory and registers) to run one block for a program. The im-
portant performance indicator in this context is called occupancy [96]. It describes
how efficient the different SMs of a GPU are utilized in terms of running threads.
The occupancy o is described by a value between 0 and 1, in which o = 1 means,
that a SM is fully utilized.

30 Chapter 4. Optimizations for GPGPU Applications: Basics

Thread
Source
Code

Compiler

Register
Usage

Thread
Executable

Shared
Memory
Usage

CUDA
or

OpenCL
Runtime

GPU
Execution

Application
Designer

Grid&
Block

Dimension

Figure 4.4: Overview on GPGPU Application Mapping and Execution Process

4.1.3.2 Compilation

The compilation toolchain for CUDA [101] is depicted in Figure 4.5. It starts with
the specification of the application for the host and the graphics card. The host code
and the GPU code are separated by the CUDA frontend (cudafe). The GPU code is
then compiled in several steps. At first, it is preprocessed by cudafe again. Then it
is transformed by the frontend of the NvOpenCC [97] to its intermediate representa-
tion, called WHIRL. WHIRL comprises a set of IRs (Intermediate Representations)
from HIR (High-level IR) over MIR (Mid-level IR) to LLIR (LLow-Level IR). After
the transformation to WHIRL, all functions are inlined. The most important part
in the NvOpenCC is the backend where several optimizations take place. In the
end, the WHIRL representation is transformed into a PTX representation. PTX is
a MIR tailored towards the use on Nvidia graphics cards for parallel programming
[96]. This PTX code is transformed to GPU machine code by PTXas with the help
of register allocation, code selection and several low level optimizations. The GPU
machine code is then embedded into the host code and compiled along with other
host code files by a compiler for the host platform.

The GPU code can be optimized at several stages. Especially the two interme-
diate representations WHIRL and PTX of the compilation toolchain can be utilized
for optimization purposes. An interesting optimization technique is IS (Instruction
Scheduling) which works on low-level and mid-level intermediate representations.
IS changes the order of instructions in the IR (while respecting the semantics), to
tune the performance of an application. An example for this will be given in Section
5.3.2. The semantics is maintained by employing data dependency and control flow
graphs. Instruction scheduling can be divided in two categories: local scheduling
and global scheduling. Within local scheduling techniques, instructions are only

4.2. Genetic Algorithms 31

NVCC

NVOpenCC

Host and
GPU Source

Code

Cudafe
GPU Source

Code
Host Source

Code

whirl gfec

inline whirl

Backendptx

PTXas
cuda

binaries

Fatbin

cuda
binaries
embedded
in C source

code

host
compiler

Host and
GPU

Executables

Figure 4.5: CUDA Compilation Toolchain (Inspired by [101])

scheduled within a single basic block (Definition 5). Global scheduling is more pow-
erful because it also allows the movement of instructions from one basic block to
another and the scheduling inside a basic block but it has several disadvantages,
such as the utilization of compensation code, which is often needed for preserving
program semantics while moving instructions over basic block boundaries in the
face of divergent control flows. Compensation code is a duplicate of the original
instructions.

4.2 Genetic Algorithms

Many optimization techniques, like the Instruction Scheduling presented in the for-
mer section, are NP-equivalent [90]. Therefore, efficient heuristics such as GAs
(Genetic Algorithms) are needed which find good solutions in the solution space
but require only polynomial runtime. Genetic algorithms are population-based op-

32 Chapter 4. Optimizations for GPGPU Applications: Basics

0 2 3 2 3 2 3 0 1 0 1 1

Chromosome 1 Chromosome 2

Gene
Allele

Individual

Figure 4.6: Genetic Algorithms - Individual Structure

timization methods [81] which utilize biology as a metaphor for describing heuristics.
Other biology-inspired algorithms are e.g. ant colony optimization [47] or optimiza-
tion techniques based on swarm intelligence [17]. The principle of genetic algorithms
is simple. A population of individuals exists. An individual represents a solution
of the optimization problem. Each individual is assessed with regard to a fitness
criterion. Based on this criterion and affected by their environment, the population
evolves and unfit individuals are discarded. At the end, the fittest individual of the
population survives, which represents the optimization result.

In addition to the utilization as a heuristic, GAs have another advantage. They
can be tailored towards a use in environments where the optimization function is
unknown but can be evaluated [81]. For example, the energy consumption of an
application can be evaluated, but the contribution of the different functional units
to that consumption is unknown. This is especially important for the optimization
techniques to be presented in Chapter 5.

First of all in this section, the terminology of genetic algorithms is summarized
in Section 4.2.1, and then multi-objective genetic algorithms are described.

4.2.1 Specification

Genetic algorithms describe and solve optimization problems with the help of biology
– especially genetics – mechanisms [81]. A genetic algorithm comprises the following
entities (also depicted in Figure 4.6):

Definition 1 (Genetic Algorithm Entities)

• Solution Space X: Is a n-dimensional space. n depends on the problem to
be solved.

• Individual d: An element of the solution space X. The set of all possible
individuals is denoted as I. The elements of I are discrete sampling points of
X. Each individual d ∈ I contains a gene sequence g1, ..., gn, representing a
solution of the problem.

4.2. Genetic Algorithms 33

0 9 3 2 3 2 5

4 2 3 4 3 5 3

Crossover Point

Parent Chromosomes

0 2 3 2 3 2 3

4 9 3 4 3 5 5

Sibling Chromosomes

(a) Crossover

0 9 3 2 3 2 5

Mutation Points

Chromosome

0 2 3 2 3 2 3

Mutated Chromosome

Mutation Points

(b) Mutation

Figure 4.7: Genetic Algorithms - Genetic Operators (modified [49])

• Gene gi: A gene gi ∈ {g1, ..., gn} represents a certain variable parameter of
the problem to be solved.

• Population Ix: Set of considered individuals Ix ⊆ I. The population size
|Ix| is denoted by µ. x identifies an iteration of the evolution, starting at zero.

A genetic algorithm comprises the following functions:

Definition 2 (Genetic Algorithm Functions)

• Fitness Function f : Based on the knowledge about the problem, a fitness
function f : I → R is defined. f enables to evaluate the quality of each
individual d ∈ I. The fitness value of a certain individual d ∈ I is described
by f(d).

• Crossover Function fc: fc : I × I → I exchanges a part of the genes
between two individuals dx,dy ∈ Ix. An exemplary function is depicted in
Figure 4.7(a). For the one point crossover depicted in that figure, one gene
gj ∈ G, j ≤ n is chosen (randomly) and then genes gj to gn are exchanged
between dx,dy. fc is applied to two individuals with a certain probability
pc ∈ [0, 1]. pc is defined based on the optimization problem [81].

• Mutation Function fm: A randomized mutation of genes of an individual
d ∈ Ix is defined with fm : I → I. An exemplary function is depicted in Figure
4.7(b). For the one point mutation depicted in that figure, genes gj ∈ G are
mutated randomly with a probability pm ∈ [0, 1]. pm is defined based on the
optimization problem [81].

• Selection Function fs: The selection function fs : I1 ⊆ I → I2 ⊆ I selects
certain individuals to take part in the crossover and mutation process.

The workflow of the genetic algorithm (as listed in Algorithm 1) starts with the
generation of an initial population I0 with a function FillWithRandomInvidiuals.
The population size is µ. For the individuals in that population d ∈ I0, the fit-
ness values are evaluated with the function AssignFitness. Based on these fitness
values, a selection of the most appropriate candidates for the creation of the next
generation Isel is done. A subset of the elements of the Isel takes part in the two
evolutionary processes: mutation and crossover. The evolutionary processes create

34 Chapter 4. Optimizations for GPGPU Applications: Basics

Algorithm 1 Genetic Algorithms - Workflow
µ user defined
x← 0

FillWithRandomInvidiuals(Ix,µ)
repeat

AssignFitness(Ix)
Isel ← Selected(Ix)
x← x+ 1

Ix ← PerformGeneticOperators(Isel)
until convergence criterion is reached or x > Threshold

return Best(Ix)

new individuals. When population size µ is reached for population Ix+1, the pro-
cess then restarts with this population. The process is repeated until the population
converges in terms of a convergence criterion or if a certain threshold of iterations
is reached.

4.2.2 Elitism-based Multi-objective Genetic Algorithms

In areas where optimization is needed or genetic algorithms are utilized, the opti-
mization often takes multiple objectives into account. Especially with embedded
system design, the designers and users would like to have devices which cost little
and have unlimited battery capacity. This demands for multi-objective optimiza-
tion heuristics as MOGA (Multi-Objective Genetic Algorithms). The challenging
task for MOGAs is the construction of the fitness function because of the multi-
dimensional solution space. The simplest way to create that fitness function, is a
projection into a one-dimensional solution space, e.g. by taking the average over
the values for each objective. A more elaborated way are fitness functions which
are based on the utilization of the Pareto dominance relation which is outlined
in Section 4.2.2.1. A special group of these algorithms are elitism-based methods
which will be described in Section 4.2.2.2. The latter algorithm class is based on
the utilization of an individual archive containing best-performing individuals.

4.2.2.1 Pareto Optimization

Instead of one value representing the fitness of an individual d, in multi-objective
GAs a objective value vector v = (v1, .., vm) ∈ Rm is assigned to each individual by
a function fp:

fp : I → Rm, (4.1)

where m is the number of different objectives. In order to evaluate this vector v
with regard to the vectors of other individuals, a relation called Pareto dominance
was developed [145] to evaluate the fitness.

4.2. Genetic Algorithms 35

O
b
je
ct
iv
e
1

Objective 2
min

m
in

Dominated
Solutions

Indifferent
Solutions

Pareto
Front

(a)

O
b
je
ct
iv
e
1

Objective 2
min

m
in

Pareto
Rank
1

Pareto
Rank
2

Pareto
Rank
3

(b)

Figure 4.8: (a) Design Space with Pareto Front (modified [84]) and (b) Pareto Ranks
(modified [43])

Definition 3 (Pareto Dominance)
Let dx,dy ∈ I be two individuals and v = fp(dx) and u = fp(dy),v,u ∈ Rm.
dx � dy is the Pareto dominance function and means dx dominates dy (or dy is
dominated by dx), if the condition∧

i∈1,..,n
(vi ≤ ui) ∧

∨
i∈1,..,n

(vi < ui) (4.2)

is true. If neither dx dominates dy nor dy dominates dx, the two individuals are
indifferent.

Definition 4 (Pareto Optimality)
An individual dx ∈ I is called a non-dominated solution, if

¬∃dy ∈ I : dy � dx, (4.3)

i.e dx is not dominated by any other individual dy ∈ I.

As can be seen from Figure 4.8(a), the solution space is built upon the Pareto dom-
inance as follows. The individuals which are not dominated by any other solution
are called Pareto front. Solutions on the Pareto front are indifferent solutions.

4.2.2.2 Examples

In this section, two exemplary elitism-based multi-objective algorithms are de-
scribed. The critical point while optimizing based on the Pareto dominance function
is the selection of the individuals for the next generation and the creating of an effi-
cient multi-objective fitness function. In order to avoid withdrawing good solutions,
elitism-based MOGAs use an archive containing the solutions on the Pareto front.

36 Chapter 4. Optimizations for GPGPU Applications: Basics

SPEA2: SPEA2 [158] is a multi-objective algorithm providing a fitness func-
tion based on the Pareto dominance relation. Additionally, it provides an effi-
cient selection mechanism for elitism-based populations. SPEA2 assigns the fitness
f(dx) = R(dx) +D(dx) to an individual dx.

R(dx) =
∑

dy∈Ix,dy�dx

S(dy) (4.4)

is the raw fitness of an individual I which takes into account the strength

S(dy) = |{dz|dz ∈ Ix,dy � dz}| (4.5)

of the individuals dy which dominate dx. In addition to that, SPEA2 also provides
a correction function D(dx) to take density information into account. For this, the
Euclidean distance from one individual to all other individuals is calculated and then
the inverse of the distance to k neighbours is used. This has the effect that indi-
viduals nearby get a higher fitness value and are probably not selected for the next
population, because these individuals have often similar characteristics. Further-
more, SPEA2 provides a multi-objective tailored selection process, utilizing natural
selection, meaning that the fitness individuals will for group the next generation.
All non-dominating individuals are copied to the aforementioned archive.

NSGA-II: Another multi-objective genetic algorithm based on the Pareto dom-
inance relation is NSGA-II [43]. It is not directly using a direct fitness function like
SPEA2 but is based on non-dominated sorting. The sorting mechanism includes
the definition of Pareto ranks. As can be seen in Figure 4.8(b), the solutions can be
divided into different Pareto fronts called Pareto ranks (F1, F2, ...). F1 is the original
Pareto front and Fi, i > 1 are sets of indifferent solutions behind F1 (as illustrated
in Figure 4.8(b)). NSGA-II uses these Pareto-ranks to select the individuals for the
next generation. The population for the next generation is filled with Pareto-ranks
until the populations size µ is reached or the last selected Pareto rank does not fit
into the population. In order to fill the population with individuals from the last
selected Pareto rank, a diversity operator is utilized which selects individuals that
are equally distributed in the Pareto rank in terms of distance.

Chapter 5

Multi-objective
Hardware/Software Codesign for

GPGPU Applications

In this chapter, the GPGPU application design process will be targeted and methods
to optimize it will be presented. In addition to that, primarily suggestions are made
for utilizing many-core chip architectures in the field of embedded systems. In Chap-
ters 2, 3 and 4 the basics for the code optimizations, the design space explorations
and the application scenarios were provided. Especially, the energy and runtime
testbed presented in Chapter 3 is utilized in this chapter for profiling. Furthermore,
compiler basics and the fundamental concepts of multi-objective optimization are
essential requirements for understanding this chapter. This chapter is then followed
by the communication-related chapters of this thesis.

Contents
5.1 Introduction . 38

5.1.1 Optimization Potential in Classical GPGPU Application De-
sign Process . 39

5.1.2 Hardware/Software Codesign for GPGPU Applications 41

5.2 Related Work . 43

5.2.1 Energy-Aware and Embedded High Performance Computing 43

5.2.2 Compiler Optimizations . 44

5.2.3 System-level Design Space Exploration 45

5.3 Multi-objective Local Instruction Scheduling 45

5.3.1 Introduction . 45

5.3.2 MOBLIS - Materials and Methods 47

5.3.3 Evaluation . 51

5.3.4 Summary . 57

5.4 Multi-objective Global Instruction Scheduling 58

5.4.1 Introduction . 58

5.4.2 FALIS - Materials and Methods 60

5.4.3 Evaluation . 65

5.4.4 Summary . 70

38 Chapter 5. Multi-objective GPGPU HW/SW Codesign

5.5 Design Space Exploration for Embedded Image Processing
Systems . 71

5.5.1 Introduction . 71

5.5.2 Materials and Methods . 74

5.5.3 Evaluation . 76

5.5.4 Summary . 79

5.6 Design Space Exploration for GPGPU-Accelerated Em-
bedded Systems . 80

5.6.1 Introduction . 80

5.6.2 Materials and Methods . 81

5.6.3 Evaluation . 83

5.6.4 Summary . 85

5.7 Conclusion . 86

5.1 Introduction

Nowadays, industrial and scientific GPGPU applications are designed with the help
of BSP (Board Support Packages) provided by the graphics chip vendors such as
Nvidia with its CUDA architecture [97]. These board support packages have been
released to make the programming of graphics chips as easy as possible and provide
also the possibility to evaluate the performance of GPGPU applications. GPGPU
programming with these board support packages has some disadvantages when uti-
lized in special purpose systems such as embedded systems. These disadvantages
will be summarized in the following.

One of the major disadvantages is that this type of GPGPU programming is dom-
inated by manually performing code optimizations. The mapping optimization of
computation kernels to graphics card cores is also done manually in order to achieve
the optimal acceleration of an application. This is time-consuming and error-prone.
In addition, the situation is aggravated by the fact that some parameters in the work-
flow of GPGPU programming, such as the number of parallel allocatable threads on
each core, are static for one graphics chip generation but change from one graphics
chip generation to the next. This leads to longer design times when re-using software
components and libraries, since these application parts must be manually optimized
again. When using many-core systems such as GPUs in embedded systems and
especially in mobile systems, another disadvantage can be noticed. The energy con-
sumption of a GPGPU application is not taken into account and the most suitable
platform variant of a graphics chip family cannot be determined. These are chal-
lenges suggested to be addressed by the HIPEAC roadmap [21] and should be taken
into account. Neglecting the energy consumption and choosing the wrong platform

5.1. Introduction 39

can lead to the situation that a far too powerful chip is utilized which consumes too
much energy. This can have a negative impact on the usability of battery-driven
systems such as mobile systems but also on large scale systems that have require-
ments towards an energy efficient design. For large scale systems, this is especially
important when facing global warming and the resulting need for green computing
and, of course, energy costs. Besides energy efficiency, the choice of the graphics
cards variant is also crucial if a GPGPU application is part of an embedded or
cyber-physical system in a real-time scenario. Then, the optimal GPU variant must
be found to cope with real-time deadlines. Such a strategy is not natively supported
by the board support packages. The last disadvantage of up-to-date board support
packages is the way of programming, because the code is written in a single-thread
fashion without the possibility to express parallelism in a sophisticated way.

In the following it is presented, how the disadvantages of up-to-date board sup-
port packages can be counteracted by the methods presented in this thesis:

1. The manual optimization process is substituted by an automated feedback-
based optimization which provides energy consumption and performance val-
ues.

2. Static parameters of the board support packages are taken into account within
the automatic optimization.

3. Energy consumption and runtime performance are the objectives of the opti-
mization.

4. The platform selection itself is taken into account in a design space explo-
ration.

This chapter is structured as follows: First of all, related work is presented in
Section 5.2. Two GPGPU compiler optimizations exploiting instruction scheduling
to optimize GPGPU applications towards energy conservation and runtime decrease
will be introduced in Sections 5.3 and 5.4. In Section 5.5, a design space exploration
for an exemplary GPGPU application is presented towards the same objectives but
with the platform variant selection in mind. Afterwards, in Section 5.6 it will be
shown that integrating a graphics card for application acceleration does not need
to be counter-productive with respect to energy efficiency. This chapter ends with
a conclusion for GPGPU application optimization.

5.1.1 Optimization Potential in Classical GPGPU Application De-
sign Process

The process of how GPGPU applications are specified, mapped and executed on
a GPU with the board support packages of Nvidia, called CUDA is depicted in

40 Chapter 5. Multi-objective GPGPU HW/SW Codesign

Thread
Source
Code

Compiler

Register
Usage

Thread
Executable

Shared
Memory
Usage

CUDA
or

OpenCL
Runtime

GPU
Execution

Application
Designer

Grid &
Block

Dimension

Optimization Area 2

Optimization Area 1

Optimization Area 3

Figure 5.1: Overview on Variable Parameters in GPGPU Application Mapping and
Execution Process

Figure 5.1. In this process several parameters influence the performance and the
energy consumption of a GPGPU application. This section reveals those parameters
which are considered by the optimizations and design space explorations of the
next sections. A detailed description of the GPGPU application design process was
already presented in Chapter 2.

The process starts with the specification of the application in form of CUDA C
(or OpenCL) source code and the specification of the mapping/allocation parameters
(CUDA: grid and thread block size, OpenCL: NDRange and work-group size) by the
GPGPU application designer. These mapping/allocation parameters (Optimization
Area 1) have a direct impact on the allocation of the work-groups, respectively the
thread blocks onto the GPU, and therefore also on the performance and the energy
consumption.

The mapping/allocation parameters are not the only parameters that have an
influence on the execution time of a GPGPU application. The other parameters
which are variable in the mapping and execution process of GPGPU applications
are called compiler-related parameters (Optimization Area 2). The set of compiler-
related parameters comprises the maximal number of registers that are used by a
single thread of the application and the amount of shared memory used per thread.
These parameters are used by the thread block scheduler to allocate the thread blocks

5.1. Introduction 41

respectively the work-groups on the different streaming multi-processor. The latter
can result in a performance and/or in an energy consumption decrease/increase. In
addition to that Optimization Area 2 also comprises GPGPU machine code opti-
mizations.

When talking about energy efficiency, an additional parameter is the execution
platform itself, e.g. a too powerful platform is selected, it consumes too much energy.
Another case is that the platform is efficient towards the consumption of energy but
not powerful enough to meet real-time deadlines. Therefore, the platform decision
is Optimization Area 3.

5.1.2 Hardware/Software Codesign for GPGPU Applications

Due to the use of many-core chips in the embedded system world [157], embedded
system design and high performance computing design techniques are merging. Es-
pecially, HW/SW Codesign (HardWare/SoftWare Codesign) is one technique which
can be used in both areas. A special case of HW/SW Codesign is the platform-based
design. Platform-based design has the objective to efficiently map an application
or a set of applications to an execution platform (family) such as GPUs. According
to [84] and [128], this mapping problem is defined – in a simplified way – as follows:

Given:

1. Application or set of applications

2. Use case descriptions of the application(s)

3. A set of possible target platforms, including processor type, communication
methods or the scheduling policy.

Find:

1. The most efficient platform (combination)

2. An efficient mapping of the application to the platform(s), including scheduling

Objectives:

1. Functional objectives such as number of met hard deadlines

2. Non-functional objectives such as available QoS, produced costs or energy
consumption

Constraints:

1. Functional constraints, e.g. perform task in 100ms

2. Non-functional constraints, e.g. perform task and consume 100J

42 Chapter 5. Multi-objective GPGPU HW/SW Codesign

Multi-objective Hardware/Software
Codesign for GPGPU Applications

Service-Oriented and Resource-Aware
Middleware for Embedded Systems

E
ffi
ci
en
t

R
es
ou

rc
e

U
ti
liz
at
io
n

Code
Optimization

Platform
Variants

Single
Platform

Different
Platforms

Mapping
Optimization

Design of Network
Embedded Manycore Systems

Flexible
Middleware

Service Or-
chestration

Middleware Design

Accounting
& Control

Context
Awareness

Resource Management

Figure 5.2: Overview on the Overall Design Process

The code optimization and design space exploration techniques to be presented in
the chapter adapt the mapping problem and are targeted towards theMulti-objective
Hardware/Software Codesign for GPGPU Applications as described in Figure 5.2.
Especially the combined consideration of mapping optimization and code optimiza-
tion is important with respect to an efficient utilization in GPGPU application
design. Mapping and code optimizations are also major challenges of the HIPEAC
roadmap [21]. Therefore, the structure of this chapter follows a bottom-up approach
towards a Multi-objective Hardware/Software Codesign for GPGPU Applications,
meaning that at first, code optimization techniques will be introduced and then the
mapping optimizations. The first mapping optimization introduces an optimization
for a single platform (single GPU). Then several variants of a platform (GPU vari-
ant) are taken into account and finally, different hardware platforms (GPU or CPU)
are considered. In the scope of this thesis, it is assumed that the parallel applica-
tion is available as source code for the different target architectures: CPU and GPU.
In addition to that, the code has to be partitioned into sequential sections for the
host system and into sections which can be executed in parallel on an accelerator
(ACS (Accelerator Code Sections)) connected to the host system. ACSs have to
be parallelized in an adequate way, e.g. by an efficient manual parallelization or
an automatic parallelization (Loopo: [60], Pluto: [20]) and they can be executed
on platforms such as GPU or FPGA. The optimization and mapping of ACSs are
considered in this chapter of the thesis and the following targets are focussed on:

1. Where is an ACCs executed efficiently in terms of energy consumption and
runtime?

2. How can an ACS be optimized in terms of energy consumption and runtime?

3. How can energy consumption and runtime be efficiently evaluated?

These three targets are addressed with Multi-objective Hardware/Software Codesign
for GPGPU Applications, presented in Figure 5.2. in Sections 5.3.1 and 5.4.1, code

5.2. Related Work 43

optimization and mapping optimization techniques (Optimization Area 2) will be
presented. The code optimization techniques are based on the utilization of instruc-
tion scheduling but differ in the scope where instructions can be placed which are
optimized. Due to the automatic mapping capabilities of modern GPUs it is not
possible to decide on a block basis where single blocks are mapped to. In addition
to that, the mapping of blocks is also influenced by the maximal register usage and
therefore, both code optimization techniques cover the mapping and code optimiza-
tion area. Both code optimizations pursue a profiling-based approach meaning that
performance and energy values of reference platforms are determined and considered
within the optimization. This has the advantage that the accuracy of the perfor-
mance and energy values are much more precise in comparison to a model-based
approach [82].

In Sections 5.5 and 5.6, design space explorations in the field of GPGPU appli-
cations are described. While in Section 5.5 an GPGPU application towards the
most energy efficient GPU platform (Optimization Area 3) and mapping/allocation
parameters (Optimization Area 1) is evaluated, in Section 5.6, the decision whether
an integration of a GPU for accelerating a parallel application is energy efficient
or not (Optimization Area 3) is focussed on. Both design space explorations are
again supported by the energy consumption and performance testbed presented in
Chapter 3.

5.2 Related Work

The related work section in this chapter comprises three different areas which are
important for the consideration of how the work in this thesis is classified towards
other work in the context. The first area presented in Section 5.2.1 comprises the
methods in the context of energy-aware high performance computing and especially
energy-aware GPGPU computing. With respect to the design space explorations
and code optimizations in this chapter, related compiler optimization approaches
will be presented in Section 5.2.2 whereas in Section 5.2.3 related work in the scope
of system-level design space exploration will be discussed.

5.2.1 Energy-Aware and Embedded High Performance Computing

In this section, related work with respect to energy-aware embedded high perfor-
mance computing will be presented which are related to optimization techniques
of the Multi-objective Hardware/Software Codesign for GPGPU Applications to be
presented in this chapter.

OpenCL [61], a standard for programming multi-core systems, provides high
portability capabilities and the ability to run GPGPU applications even on small
embedded devices [109, 157]. The authors of [109] used it for an image processing
and transformation pipeline which could be executed on the CPU of a mobile phone

44 Chapter 5. Multi-objective GPGPU HW/SW Codesign

and on the GPU of the same phone. The authors showed that the execution on the
GPU is more energy efficient. Compared to HPC, the optimal platform in embedded
system design – the GPU in this case – can be chosen at design time, because these
systems are tailored towards a special purpose, i.e. the application or application
domain is fixed at design time. GPGPU is widely utilized in the high performance
computing community for scientific and industrial applications (see e.g. [30, 93])
and an increasing number of graphics chip vendors is able to integrate powerful
graphics chips in smaller systems. Previous papers from the HPC community of-
ten have the objective to accelerate an application as much as possible. This is
also the main objective when designing a real-time system because the system has
to be accelerated in a way that the deadline is met. Several authors have taken
the energy consumption of GPGPU applications into account [36, 114, 154] – not
from a compiler perspective, but to answer the question how and when the integra-
tion of a graphics card/chip for GPGPU is energy efficient. Especially the authors
of [34, 155] examined the potential of integrating graphics card/chip for GPGPU in
terms of energy savings. The authors of [155], for instance, evaluated the influence
of kernel fusion on the energy consumption. The authors of [34] evaluated the en-
ergy efficiency of the analysis of neural signals on a GPGPU cluster. In [110] the
multiplication of large matrices was optimized with regard to energy consumption
but without extending a compiler.

5.2.2 Compiler Optimizations

The code optimizations to be presented in this chapter are based on compiler opti-
mizations. Therefore, relevant related work will be presented in this section.

In [143], the authors showed that in traditional single-core environments, in-
struction scheduling can have a negative effect on energy consumption. The authors
of [72] developed an algorithm called balanced scheduling which performs scheduling
of the instructions based on an availability on instruction level parallelism. How-
ever, energy consumption was not part of that work and the runtime environment
was not taken into account as it has to be done for a GPU with its hardware
thread scheduler. For special purpose systems such as DSPs, several approaches
with instruction scheduling methods [78, 146] exist to produce optimized applica-
tions with respect to performance [78] and energy consumption [146]. Both works
only targeted single-core and single-threaded code. The first work which used local
instruction scheduling for optimizing GPGPU applications was presented in [46]. In
that work, a performance degradation was possible, because the optimizations had
no information about the later stages of the compilation process and the resulting
influence on the runtime performance. Theoretical work which evaluates the register
utilization of GPGPU applications was presented in [95]. The authors presented a
framework for displaying the machine code of GPGPU applications which helps to
identify register live ranges and to visualize the gain of optimizations. This infor-
mation enables a manual optimization of a GPGPU application in a trial-and-error

5.3. Multi-objective Local Instruction Scheduling 45

based fashion. Again, the energy consumption of a GPGPU application was not
considered.

5.2.3 System-level Design Space Exploration

The mapping optimizations to be presented in this chapter are based on design space
exploration techniques. Therefore, relevant related work will be presented in this
section.

Especially in the design process in the field of embedded systems, a design space
exploration can be performed at design time to obtain an optimized system con-
figuration. In this domain, many different approaches [15, 71, 94, 158] exist which
provide the capability to automatically explore the design space – often with genetic
algorithms. The different design space approaches are utilized for mapping commu-
nication channels and tasks of an application (or a set of applications) on buses and
processing units. Except that they are working on a completely distinct domain,
i.e. MPSoC (MultiProcessor System on Chip) system design, the multi-objectively
design space approaches could possibly be adopted and tailored towards designing
GPGPU applications. Especially [15], where authors map applications to the IBM
CELL BE [35], is important by introducing efficient techniques for scheduling and
allocating of the processing jobs. The major difference to mapping optimizations
to be presented is the fact that energy-efficiency was not an objective and the IBM
CELL BE allows a more fine grained mapping. That is not suitable for a utilization
on graphics cards.

5.3 Multi-objective Local Instruction Scheduling

The first code optimizations for GPGPU code will be introduced in this chapter. The
code optimization technique is called MOBLIS (Multi-OBjective Local Instruction
Scheduling). After a short motivation in Section 5.3.1, an optimization technique
based on local instruction scheduling and the utilization of state-of-the-art multi-
objective genetic algorithms is presented in Section 5.3.2. The results of applying
MOBLIS to several benchmarks are provided in Section 5.3.3. The section ends
with a conclusion in Section 5.3.4.

5.3.1 Introduction

The emergence of international research projects about optimizing compilers for
GPGPUs such as Ocelot [45] followed the need for optimizing GPGPU applications
beyond the code quality achieved by the board support package of modern graphics
chips. Especially the time-consuming manual GPGPU programming process must
be extended by an automatic evaluation of the performed code changes.

Although projects and initiatives exist and several source code optimizations have

46 Chapter 5. Multi-objective GPGPU HW/SW Codesign

Multi-objective Hardware/Software
Codesign for GPGPU Applications

Service-Oriented and Resource-Aware
Middleware for Embedded Systems

E
ffi
ci
en
t

R
es
ou

rc
e

U
ti
liz
at
io
n

Code
Optimization

Platform
Variants

Single
Platform

Different
Platforms

Mapping
Optimization

Design of Network
Embedded Manycore Systems

Flexible
Middleware

Service Or-
chestration

Middleware Design

Accounting
& Control

Context
Awareness

Resource Management

Figure 5.3: Overview on the Overall Design Process

been carried out (see Section 5.2) aiming at energy consumption efficiency of graph-
ics cards and the corresponding programming, only little effort has been spent on
accounting the power and energy consumption efficiency in the compilation process
of a GPGPU application.
The optimization area which is considered for this optimization is Optimization Area
2 (shown in Figure 5.1) which means that the machine code is optimized with the
help of an optimizing compiler. In the scope of the overall design process depicted
in Figure 5.3, this section provides a code optimization technique and will provide
mapping optimization methods for a single GPU platform. In addition to that, the
following important requirements should be handled in MOBLIS :

1. Optimal Parallel Register Utilization: A Nvidia GPU utilizes a shared register
file for an efficient register access. Depending on the hardware generation,
the number of registers ranges from 8192 up to 32768 which are shared by all
allocated threads on a processor (see Section 4.1.3). Therefore, optimization
potential is available by changing the number of registers per thread which
leads to more threads and blocks that can be allocated to a streaming mul-
tiprocessor and to a performance increase. E.g. when 2 blocks – with 128
threads per block and 32 registers per thread – are allocated to a streaming
multiprocessor, 8192 registers are required in total. A possible register reduc-
tion to 21 registers allows the allocation of 3 blocks to a streaming multipro-
cessor and a possible performance boost (and energy consumption reduction
due to runtime reduction). This is possible if the kernel performance is not
limited by the memory bandwidth [68]. Furthermore, the mapping optimiza-
tion should also be evaluated if an increase/decrease in the parallel register
utilization leads to a performance decrease.

2. Pipeline Load Optimizations: Warp scheduling and scoreboarding (see Sec-
tion 4.1.3 for both) allow a graphics card to process instructions of other
warps while some warps wait for data from the global memory. This is done

5.3. Multi-objective Local Instruction Scheduling 47

in order to avoid pipeline stalls and to hide the latency of un-cached main
memory accesses on Nvidia GPUs [98]. A code optimization has to change
the instruction scheduling of each thread and to optimize the load distribu-
tion between the instruction and memory pipeline in order to decrease the
energy consumption and the runtime of a GPGPU application.

3. Black Box Optimization: Due to the lack of a detailed architectural or func-
tional description, not all features of the graphics cards are publicly known.
Therefore, optimization techniques have to work in the face of lacking a con-
crete model of the underlying hardware features. In addition to that, some of
the features such as the warp scheduling are too complex to simulate for large
GPGPU applications. Another area which is not under control of an appli-
cation designer is the actual machine code generation, the register allocation
and some low-level optimizations. Therefore, optimization on the available
intermediate representation need not necessarily lead to optimizations at all.

4. Multi-objective Optimization: When optimizing towards performance, it is of-
ten the question whether this is also an optimization towards energy efficiency.
As already shown in Section 3.1, a reduction in runtime need not necessarily
lead to a reduction of the energy consumption.

5. Platform-aware Optimization: In comparison to optimizing compilers, the
hardware characteristics of the actual platform variant are not considered ex-
plicitly in most compilers. Especially the clock speed of the memory and the
processors are crucial parameters because a change in these parameters will re-
sult in a different scheduling on the GPU and that will influences the optimiza-
tion of the GPGPU application. In addition to that, GPGPU programming
parameters such as number of concurrently running threads or the number of
concurrently allocatable blocks to a streaming multiprocessor should be taken
into account.

6. Avoiding Unfavourable Solutions: Many compilers provide optimizations which
are targeted at increasing the average-case performance. This means that for
some optimizations and platforms, a possible performance degradation and a
possible increase of the energy consumption can be the result. This should
be avoided in MOBLIS. In [59], it was shown that applying a single local
scheduling technique is not sufficient to optimize all benchmarks. Therefore,
an adaptive approach should be applied for optimization.

5.3.2 MOBLIS - Materials and Methods

The optimization process of MOBLIS is depicted in Figure 5.4. It takes the six
requirements listed in Section 5.3.1 into account. Up to now, no other code opti-
mization techniques of GPGPU application presented in literature has been aware

48 Chapter 5. Multi-objective GPGPU HW/SW Codesign

Basic Block
Information

Chooose Design
Point from
Pareto Front

Multi-objective
Genetic Algoritm

Process

MOBLIS

Optimized
CUDA
Machine
Code

Unoptimized
CUDA
Kernel

Figure 5.4: Multi-objective Local Instruction Scheduling (MOBLIS) Framework

of all of these requirements. The MOBLIS optimization process starts with reading
in GPGPU code in C for CUDA and transforming it into a WHIRL intermediate
representation (see Section 4.1.3.2). There are no dependencies between the kernels
because each kernel runs a new application on the graphics cards and therefore,
optimizations can be done separately for each kernel. The output of the MOBLIS
process is optimized machine code for a GPGPU kernel. All optimized kernels are
then combined into one complete optimized GPGPU application.

The optimization technique which is exploited in this section is IS (Instruction
Scheduling). It is performed on the WHIRL intermediate representation. Instruc-
tion scheduling techniques can be divided in two categories: local scheduling and
global scheduling. With local scheduling techniques, instructions are only scheduled
within a single basic block. Global scheduling is more powerful because it allows the
movement of instructions from one basic block to another in addition to schedul-
ing inside a basic block. Instruction scheduling can cope with the first requirement
which is the optimization of the register file utilization. In Figure 5.5(a), an ex-
emplary unoptimized IR code sequence is depicted. The first two instructions load
data from global memory to registers R1 and R2 (in that order). After these two
instructions, firstly R2 is accessed and then R1. This leads to the situation that the
value in R1 must be available concurrently to the value in R2. In Figure 5.5(b), an
optimized version of the same code section is presented. The lifetimes of the register
values are not overlapping any longer and therefore, more threads can possibly be
mapped to the same streaming multiprocessor. The detailed mapping process was
described in Section 4.1. The second requirement, the optimized pipeline load, can
also be achieved by instruction scheduling, e.g. by changing the position of memory
and non-memory instructions.

The last three requirements cannot be considered with the help of plain local in-
struction scheduling. Therefore, the local IS presented in this section was extended
to consider global information about energy consumption and runtime. The energy
consumption and runtime values, which are collected with profiling, are used by a

5.3. Multi-objective Local Instruction Scheduling 49

LD R1 g[0x410];
LD R2 g[0x418];
ADD R2, R4, R2;
ADD R1, R3, R1;

Lifetime
R2

Lifetime
R1

(a) Unoptimized Sequence

LD R1 g[0x410];
ADD R1, R3, R1;
LD R2 g[0x418];
ADD R2, R4, R2;

Lifetime
R2

Lifetime
R1

(b) Optimized Sequence

Figure 5.5: Example for Register Usage Reduction

genetic algorithm to find an optimal instruction schedule for a GPGPU kernel. Ge-
netic algorithms are well suited for two different optimization scenarios. Firstly, they
can be used as a heuristic in order to get improved run-times for an optimization
problem. Secondly, they can be tailored to a use in environments, where no closed
form of the objective function is known but the function can be evaluated [81], e.g.
the energy consumption of an application can be evaluated, but the contribution of
the different functional units to the overall energy consumption is unknown. Both
are important in the context of this section because the search space is quite large
and the real objective function for energy consumption and runtime is unknown
but evaluable. By employing a GA evaluating profiling values, MOBLIS is able to
cope with the requirements Black Box Optimization, Platform-aware Optimization
and Avoid Unfavourable Solutions. The requirement Multi-objective Optimization
is covered by the use of MOGA (Multi-Objective Genetic Algorithms) which were
introduced in Section 4.2.2.2. The MOGAs used in MOBLIS are NSGA-II and
SPEA2 which are population and elitism based algorithms approximating a Pareto-
front for the different objectives meaning that “the distance to the optimal front is
to be minimized and the diversity of the generated solutions is to be maximized” [158].

The optimization process inside the MOBLIS framework, as depicted in Figure 5.4,
comprises three steps. Firstly, the number of basic blocks (Definition 5) and the
sequence of the basic blocks are extracted from the WHIRL intermediate repre-
sentation of a GPGPU kernel. The basic block information is then used in the
multi-objective genetic algorithm process to create the entities of the GA as will be
described in Section 5.3.2.2. The last step within the MOBLIS framework is the
choice of generated CUDA Kernel machine code as the final design. This can be a
CUDA kernel optimized for energy consumption and/or runtime performance.

5.3.2.1 Genetic Algorithm Specification

The instruction scheduling policy is applied per basic block. In the following, utilized
terms in the scope of MOBLIS are presented:

• n: Number of all basic blocks in the WHRIL representation of one kernel.

• B: The set of all basic blocks is denoted by B = {bi|1 ≤ i ≤ n}.

50 Chapter 5. Multi-objective GPGPU HW/SW Codesign

NvOpenCC

Backend

Kernel Code Frontend ... Code
Generation

PTX Code PTX AS

Machine
Code

Profile
Kernel

Performance
& Energy
Values

MOBLIS
Individual
Evaluator

(3) Getting Performance
& Energy Values

(2)
Transferring
Individual

(1)
Triggering
Kernel
Compiling

BB 2
ALAP

BB 1
ASAP

BB 3
RP

Figure 5.6: MOBLIS -Individual Evaluation Flow

• Gene gi ∈ G = {gi|1 ≤ i ≤ n}: A gene gi represents a scheduling policy
applied to a basic block bi ∈ B.

• Individual d: In the compilation process an individual d is an instance of a
GPGPU kernel. Each individual d ∈ I comprises a gene sequence g1, ..., gn.
Within this gene sequence for each gi, a value is assigned which represents a
scheduling policy. Each scheduling policy is represented by a natural number
as follows:

1. Schedule unchanged

2. ASAP schedule

3. ALAP schedule

4. RP [46] list scheduler

5.3.2.2 Optimization Workflow

In Figure 5.6 the MOBLIS individual evaluation flow is depicted. For local instruc-
tion scheduling NVOpenCC from Nvidia (Open64 [80]) was enhanced. NVOpenCC’s
code generation module was extended to communicate with MOBLIS. The MOBLIS
individual evaluation flow starts with the generation of an individual d. Afterwards,
d is utilized in the NVOpenCC to apply a scheduling policy to each basic block.

5.3. Multi-objective Local Instruction Scheduling 51

For evaluating the energy consumption and the runtime of the created individuals,
the testbed presented in Section 3.2 is employed. As described in that section, the
testbed provides the energy consumption energy(Pd, Pl, t

Pd,Pl
start , t

Pd,Pl
end), where Pd is

the program (corresponding to one individual d) to be profiled, Pl the execution
platform, tPd,Pl

start the profiling start point in time and tPd,Pl
end the profiling end point

in time. tPd,Pl
start and tPd,Pl

end denoted the start and the end of the program and there-
fore, it depends on Pd and Pl. They are delivered by the testbed. The runtime
of a program P on a platform Pl is therefore runtime(Pd, Pl) = tPd,Pl

end − tPd,Pl
start .

The optimization gain of an individual is measured as the ratio to the individual
dun (PdUN

) where for each gene the allele a1 is assigned. One solution space point
(individual d) comprises the two values for runtime rPd,Pl

ratio and energy consumption
Eratio(d) for a platform Pl:

rPd,Pl
ratio =

runtime(Pd, Pl)

runtime(Pun, Pl)
(5.1)

EPd,Pl
ratio =

energy(Pd, Pl, t
Pd,Pl
start , t

Pd,Pl
end)

energy(Pun, Pl, t
Pun,Pl
start , tPun,Pl

end)
(5.2)

The fitness values are then calculated with methods specified in SPEA2 and NSGA-
II (see Section 4.2.2.2).

5.3.2.3 Evolution Operation

The crossover and the mutation operators for MOBLIS are single point operators.
Thus, a certain gene position is randomly chosen as crossover point. From this posi-
tion on, the succeeding genes are exchanged between the chromosomes as described
in Section 4.2.1. For the mutation process, genes are chosen and mutated with a
certain probability.

5.3.3 Evaluation

In this section, the evaluation of the optimization potential by applying MOBLIS
is presented. Firstly, the configuration and parameters for the evaluation are given
in Section 5.3.3.1. Results on one GPU are presented in Section 5.3.3.2, then the
results for several GAs are compared. In Section 5.3.3.3, the results for the first GPU
are compared to another GPU variant. Afterwards, in Section 5.3.3.5 an additional
analysis on the parallel register usage is provided.

5.3.3.1 Parameters / Configuration / Optimization Runtime

The population size µ equals the number of genes (respectively number of basic
blocks) in an individual of a certain benchmark to ensure that the solution space
is sufficiently explored. The number of basic blocks are listed in Table 5.1. As
can be seen in that table, the number of basic blocks per kernel is between 3 and

52 Chapter 5. Multi-objective GPGPU HW/SW Codesign

Benchmark Kernel Number of Basic Blocks

Eigenvalues bisectKernelLarge_MultIntervals 86
Matrix Multiplication matrixMul 7

DirectX Texture Compressor compress 47
Binomial Option Pricing binomialOptionsKernel 22

Back Propagation bpnn_adjust_weights_cuda 3
Recursive Gaussian Filter d_recursiveGaussian_rgba 13

Table 5.1: Number of Basic Blocks for Kernels optimized by MOBLIS

86. The genetic algorithms last 30 generations. The probability for mutating genes
of a chromosome was pm = 0.80 and the probability for crossover was pc = 0.20

– according to the definitions in Section 4.2.1. The high mutating rate aims at
exploring the solutions space in a sufficient way. Each individual is evaluated 10
times and the median was selected as average energy consumption and runtime
result.

Graphics cards from Nvidia have the capability to use performance counters to
estimate the performance of a kernel. In this evaluation, the performance counters
were employed to verify the functionality of the optimizations and to take a deeper
look to the performance indicators, such as the warp serialization rate or number of
instructions needed. The results of section 5.3.3 were obtained with the presented
energy consumption and runtime testbed. The graphics cards used in the evaluation
comprise a 8400GS and a GTS250. The SPEA2 and NSGA-II implementations from
the JECO library [113] were used in MOBLIS. For the Sections 5.3.3.2 to 5.3.3.4 it
was not allowed to increase the parallel register utilization. This was only applied
to the benchmark presented in Section 5.3.3.5.

The runtime of applying MOBLIS to a GPGPU kernel strongly depends on
the runtime of the GPGPU kernel on a particular platform itself, because for each
individual the benchmark is executed. Therefore, runtimes between several hours
and multiple days were observed.

5.3.3.2 Single Platform Results

Figures 5.7(a) - 5.7(d) depict the energy consumption and runtime reductions which
are achieved with MOBLIS for different benchmarks on a Nvidia 8400GS. The fig-
ures show the proportional energy consumption (EPd,Pl

ratio) and proportional runtime
(rPd,Pl

ratio) reduction – as percentage of the unoptimized version – for all evaluated
individuals. Furthermore, the Pareto front connects the Pareto-optimal points with
a line. Figure 5.7(a) presents the results from kernel bpnn_adjust_weights_cuda of
the benchmark Back Propagation [33]. Figure 5.7(b) presents kernel compress of the
benchmark DirectX Texture Compressor [97]. Figure 5.7(c) presents kernel bisec-
tKernelLarge_MultIntervals of the benchmark Eigenvalues [97] and Figure 5.7(d)
presents kernel matrixMul of the benchmark Matrix Multiplication [97]. The MOB-
LIS optimization was able to achieve reductions of the energy consumption by up

5.3. Multi-objective Local Instruction Scheduling 53

99.6 99.8 100 100.2 100.4 100.6 100.8 101
99.5

100

100.5

101

Proportional Energy Consumption (%)

P
ro
po

rt
io
na

lR
un

ti
m
e(
%
)

10 registers/thread
12 registers/thread

Pareto Front

(a) Kernel: bpnn_adjust_weights_cuda

96 97 98 99 100 101
96

97

98

99

100

101

Proportional Energy Consumption (%)

P
ro
po

rt
io
na

lR
un

ti
m
e(
%
)

24 registers/thread
21 registers/thread
25 registers/thread
27 registers/thread
Pareto Front

(b) Kernel: compress

96 98 100 102 104 106

96

98

100

102

104

Proportional Energy Consumption (%)

P
ro
po

rt
io
na

lR
un

ti
m
e(
%
)

17 registers/thread
Pareto Front

(c) Kernel: bisectKernelLarge_MultIntervals

98 98.5 99 99.5 100
99

99.5

100

100.5

101

Proportional Energy Consumption (%)

P
ro
po

rt
io
na

lR
un

ti
m
e(
%
)

13 registers/thread
Pareto Front

(d) Kernel: matrixMul

Figure 5.7: MOBLIS - Proportional Energy Consumption (EPd,Pl
ratio) and Proportional

Runtime (rPd,Pl
ratio) Reduction for All Evaluated Individuals

to 9.12% whereas the runtime was reduced by up to 12.01%. They were measured
for the kernel d_recursiveGaussian_rgba of the benchmark Recursive Gaussian Fil-
ter [97]. For other kernels, such as the matrixMul kernel no reduction in energy
consumption and runtime was achieved.

Local instruction scheduling is a tedious optimization with the possibility of per-
formance degradation and higher energy consumption as described in [59]. In that
work the author applied different scheduling policies to GPGPU applications. As
it turned out, no scheduling policy was able to optimize all benchmarks. A similar
behaviour can be observed in Figures 5.7(a) - 5.7(d) by the fact that also values
greater than 100% exist, which means that the runtime is longer and the energy
consumption higher than without scheduling. Because of its adaptive approach,
MOBLIS is able to avoid performance degradation and higher energy consumption.

A benchmark with a higher occupancy value but no performance increase is depicted
in Figure 5.7(a). The Pareto front of kernel bpnn_adjust_weights_cuda exclusively

54 Chapter 5. Multi-objective GPGPU HW/SW Codesign

/*01c0*/ SYNC 01d0;
/*01c8*/ ST g[0x411], R8;
/*01d0*/ NOP;
/*01d8*/ BAR.SYNC;
/*01e0*/ MOV R10, R124;

(a) Unoptimized Sequence

/*01c0*/ SYNC 01d0;
/*01c8*/ ST g[0x411], R8;
/*01d0*/ MOV R10, R124;
/*01d8*/ BAR.SYNC;
/*01e0*/ ...

(b) Optimized Sequence

Figure 5.8: Instruction Sequences for Kernel bisectKernelLarge_MultIntervals

consists of individuals with 10 registers per thread while the unscheduled version
has 12 RPT. The occupancy value increases from 0.6 to 1. As can be seen, the
performance increase and the energy consumption decrease is negligible. 1% of run-
time reduction is equivalent to 0.5 milliseconds which is close to the measurement
accuracy. As can be observed from Figure 5.7(b), the individuals are ordered in
clusters. The two clusters in Figure 5.7(b) exist due to the high occupancy value for
the allocation of threads/blocks to a streaming multiprocessor. In the unoptimized
version of the kernel, each thread of the kernel compress needs 27 registers. After
the optimization for each individual on the Pareto-front, a threads makes use of less
than 25 registers, which ends up with an occupancy increase from 0.333 to 0.417.
This leads to an energy consumption reduction of 3.5% and a runtime reduction of
3.3%. The most energy efficient individual has a maximal register use of 21 registers
per thread (RPT), while the fastest solution has 24 RPT. Figure 5.7(c) shows the
results for kernel bisectKernelLarge_MultIntervals. The number of registers needed
by a thread is constant at 17 registers. It is also remarkable that the performance
counters derived for each individual count a different number of executed instruc-
tions and the same warp serialize rate at unchanged semantics of the program. The
reduction of instructions arises from the fact that less instructions were executed,
due to elimination of superfluous no-ops. Figures 5.8(a) and 5.8(b) illustrate the
dissembled machine code for the Kernel bisectKernelLarge_MultIntervals. Figure
5.8(a) shows the unoptimized version and Figure 5.8(b) shows an optimized version.
As can be seen in Figure 5.8(a), there is a no-op at address 0x01d0 where divergent
thread paths must converge (sync instruction: SY NC01d0;). Figure 5.8(b) shows
an optimized kernel where the MOV instruction, which does not depend on the
barrier synchronisation at 0x01d8, substitutes the NOP as synchronisation point.
This leads to an energy consumption reduction of 2.4% and a runtime reduction of
3.4%. Figure 5.7(d) shows the kernel matrixMult from the benchmark Matrix Mul-
tiplication. The register usage is 13 registers per thread and there is no reduction of
the energy consumption and no improvement of the runtime possible with MOBLIS.

5.3. Multi-objective Local Instruction Scheduling 55

bisectKernel-
Large_Mult-
Intervals

matrixMult compress d_recursive-
Gaussian_rgba

binomial-
OptionsKernel

0

2

4

6

8

Benchmark Name

R
el
at
iv
e
D
ec
re
as
e
(%

)

SPEA2 - Energy Consumption
SPEA2 - Runtime
NSGA-II - Energy Consumption
NSGA-II - Runtime

Figure 5.9: MOBLIS - Energy Consumption and Runtime Analysis for Different
Multi-Objective Algorithms

5.3.3.3 SPEA2 and NSGA-II Comparison Results

MOBLIS can make use of different multi-objective algorithms (SPEA2, NSGA-
II). This section presents an analysis on which GA is more suitable for MOBLIS.
The results for energy consumption and runtime decreases – as percentage of the
unoptimized version – for optimizations applying SPEA2 or NSGA-II are presented
in Figure 5.9 (in percent on the Y axis). All values were measured on the GTS
250 and only exemplary kernels, which have an optimization gain, are shown. As
can be summarized from Figure 5.9, there is no significant difference between the
SPEA2 and NSGA-II. The same can be concluded from Figure 5.9 with the fact
in mind that the energy consumption is less precise in comparison to the runtime
measurements. In addition to the kernels presented in Figure 5.7, reductions of
the following kernels are presented in Figure 5.9: kernel d_recursiveGaussian_rgba
of the benchmark Recursive Gaussian Filter and Kernel binomialOptionsKernel of
benchmark Binomial Option Pricing. For these kernels, runtime reductions between
2.19% and 7.12% and energy consumption reductions between 2.21% and 8.50% were
achieved.

5.3.3.4 Platform Variants Comparison Results

In order to show that the optimization is not bound to a specific platform variant, the
performance of MOBLIS for two different platforms is evaluated in this section. The
first platform is the Nvidia 8400GS comprising one streaming multiprocessor with
a memory bandwidth of 6.4GB/s. The second test candidate is a GTS 250 having
16 streaming multiprocessors with a memory bandwidth of 70.4GB/s. The latter
corresponds to a memory bandwidth of 4.4GB/s per streaming multiprocessor. The

56 Chapter 5. Multi-objective GPGPU HW/SW Codesign

bisectKernel-
Large_Mult-
Intervals

matrixMult compress d_recursive-
Gaussian_rgba

binomial-
OptionsKernel

0

2

4

6

8

10

12

Benchmark Name

R
el
at
iv
e
D
ec
re
as
e
(%

)

8400GS - Energy Consumption
8400GS - Runtime
GTS250 - Energy Consumption
GTS250 - Runtime

Figure 5.10: MOBLIS - Runtime and Energy Consumption Analysis for Different
Graphics Cards

results for the achieved energy consumption and runtime reductions are presented in
Figure 5.10. As in the former section, the same exemplary kernels are shown. Kernel
d_recursiveGaussian_rgba has a higher optimization potential on the 8400GS. On
the 8400GS, reductions in energy consumption of up to 9.12% respectively 12% in
runtime can be achieved. For the GTS, only reductions in energy consumption of
up to 6.67% respectively 8.50% in runtime can be achieved. For the other kernels,
it can be summarized that there is only little difference between the optimization
potentials on the different platforms.

5.3.3.5 Parallel Register Utilization

As described in the last section for the kernel d_recursiveGaussian_rgba, the run-
time was optimized by up to 9% on the 8400GS and up to 7% on the GTS250. The
parallel register utilization was restricted to register utilization decrease. Figure 5.11
shows that a register utilization reduction is not always the best solution. The test
was conducted on the GTS 250. As can be seen a maximal energy consumption
decrease of up to 14.46% and a runtime decrease of a up to 15.22% were achieved.
This solution has a parallel register utilization of 37 RPT. An overview on the per-
formance counters for two individuals with 37 RPT and 28 RPT is given in Table
5.2. As can be seen, the occupancy value (0.25) for individuals with 37 RPT is
smaller in comparison to a 28 RPT solution (occupancy: 0.333). Nevertheless, the
performance increases in the face of this lower occupancy value. It can be concluded
that the kernel d_recursiveGaussian_rgba is highly sensible to the memory access
pattern, the distribution of the memory instructions in the code and the allocation
of the blocks onto the different streaming multiprocessors.

5.3. Multi-objective Local Instruction Scheduling 57

80 85 90 95 100

85

90

95

100

Proportional Energy Consumption (%)

P
ro
po

rt
io
na

lR
un

ti
m
e(
%
)

37 registers/thread
25 registers/thread
28 registers/thread
Pareto Front

Figure 5.11: MOBLIS - Runtime and Energy Consumption Decrease for Kernel
d_recursiveGaussian_rgba with Increased Parallel Register Utilization

Individual with 37 RPT Individual with 28 RPT

Register Ratio 0.9375 (7680 / 8192) 0.875 (7168 / 8192)
Active Blocks per SM 3/8 4/8

Active Threads per SM 192/768 256/768
Occupancy 0.25 0.3333

Table 5.2: MOBLIS - Performance Counter for Two Individuals of Kernel
d_recursiveGaussian_rgba

5.3.4 Summary

Optimizations of GPGPU applications are usually performed in a manual error-
prone trial-and-error process. In addition to that, the lack of energy consumption
aware optimizations is unfavorable for green computing and the use of GPGPU-
capable devices in mobile systems. Furthermore, the efficiency of a platform for
a certain GPGPU application is not considered in the GPGPU application design
process.

Therefore, this section presented an optimization process based on local instruc-
tion scheduling methods (MOBLIS). Six requirements listed in Section 5.3.1 had to
be accomplished. The two most important requirements were optimal parallel regis-
ter utilization and load balancing for concurrently running instruction and memory
pipelines. These two requirements have been challenged by MOBLIS by changing
the instruction sequence on a low-level representation with the help of local instruc-
tion scheduling. MOBLIS is based on a state-of-the-art multi-objective genetic
algorithms to increase the performance and to decrease the energy consumption of
the GPGPU applications. In addition to that, the use of a GA enables MOBLIS
to optimize a GPGPU kernel in the face of lacking knowledge about the architec-
ture of the platform (Black Box Optimization). The utilization of a profiling-based
approach enables MOBLIS to take hardware platform characteristics into account.

58 Chapter 5. Multi-objective GPGPU HW/SW Codesign

Multi-objective Hardware/Software
Codesign for GPGPU Applications

Service-Oriented and Resource-Aware
Middleware for Embedded Systems

E
ffi
ci
en
t

R
es
ou

rc
e

U
ti
liz
at
io
n

Code
Optimization

Platform
Variants

Single
Platform

Different
Platforms

Mapping
Optimization

Design of Network
Embedded Manycore Systems

Flexible
Middleware

Service Or-
chestration

Middleware Design

Accounting
& Control

Context
Awareness

Resource Management

Figure 5.12: FALIS - Overview on the Overall Design Process

By applying MOBLIS to a set of real-world benchmarks, up to 9% of energy and
12% of runtime could be saved on an Nvidia 8400GS and up to 6.67% of energy and
8.5% of runtime on a Nvidia GTS 250. Two state-of-the-art multi-objective genetic
algorithms have been utilized to explore the solution space efficiently.

The technique of determining the local instruction scheduling policy with the
help of a multi-objective optimization on a per basic block level is more efficient
than pure local scheduling methods.

5.4 Multi-objective Global Instruction Scheduling

In this chapter, the second code optimizations for GPGPU application code will
be introduced. The code optimization technique described in this section is called
FALIS (Feedback-based and memory-Aware gLobal Instruction Scheduling) and
is targeted towards an optimal distribution of memory-related instructions in a
GPGPU application kernel. After a short introduction in Section 5.4.1 on why
the optimization is needed, the optimization technique based on global instruction
scheduling and state-of-the-art multi-objective genetic algorithms is presented in
Section 5.4.2. The results of applying FALIS to several benchmarks are provided in
Section 5.4.3. Finally, conclusions are presented in Section 5.4.4.

5.4.1 Introduction

The development of faster single core processors and the availability of higher per-
formance due to higher clock frequency is at an impasse [21]. The shift towards
multi-core and many-core systems is cumbersome because of the increasing com-
plexity on programming and the efficient utilization of parallelism. In addition to
that, the memory wall [83] still exists. On graphics cards, a larger number of pro-
cessing cores exists which share a common memory. For these processing cores a
sufficient amount of memory bandwidth must be available to exploit the parallel

5.4. Multi-objective Global Instruction Scheduling 59

processing power. The authors of [68] showed that the number of load/store in-
structions, the number of all instructions and the bandwidth to the processing core
of a GPU are crucial parameters to the performance of GPGPU applications. The
overall number of load/store instructions is important w.r.t the performance due to
possible pipeline stalls in the face of high main memory latencies. Nvidia GPUs can
hide the latency of un-cached main memory accesses [98] by using concurrently run-
ning instruction and memory pipelines. If the number of the load/store instructions
are too high, the full potential of the GPUs cannot be achieved [98]. In this section,
an optimization is proposed which improves the performance of GPGPU applica-
tions by rearranging memory-related instructions employing instruction scheduling
techniques. Therefore, the Pipeline Load Optimization requirement discussed in
Section 5.3 is redefined to handle memory-related instructions explicitly.

Some requirements for MOBLIS can also be applied to the newly proposed FALIS
and therefore, the following requirements should be handled in FALIS :

1. Pipeline Load Optimization: The placement of the memory-related instruction
in the code of a GPGPU application should be optimized. The optimization
objective is the load distribution between the instruction and memory pipeline
and for stepping up the throughput of the application.

2. Black Box Optimization: Due to the lack of control in terms of the actual ma-
chine code generation, the register allocation and some low level optimizations,
an optimization technique must take into account the concrete executable and
the corresponding influence on the performance and energy consumption.

3. Multi-objective Optimization: As energy consumption is an important objec-
tive, a multi-objective approach should be used.

4. Platform-aware Optimization: The actual warp scheduling of the GPGPU
application depends on the hardware configuration such as processor speed,
memory speed, number of processing cores etc. It is therefore mandatory to
optimize towards a concrete platform.

5. Avoiding Unfavourable Solutions: Analogous to MOBLIS, a possible perfor-
mance degradation and a possible increase of the energy consumption is not
acceptable and should be avoided in FALIS.

The optimization area which is considered for this optimization is Optimization
Area 2 (illustrated in Figure 5.1) which means that the machine code is optimized
with the help of an optimizing compiler. Analogous to MOBLIS, FALIS provides a
code optimization technique and will provide mapping optimization methods for a
single GPU platform as depicted in the overall design process in Figure 5.3.

60 Chapter 5. Multi-objective GPGPU HW/SW Codesign

Extracting
Mobile

Instructions
(Memory-
Related)

Calculating
Mobility of
Instructions
on created

EBBs

Create
Initial

Chromosome
Population

Multi-
objective
Genetic

Algorithm

Chooose
Design

Point from
Pareto Front

FALIS

Optimized
CUDA

Maschine
Code

Unoptimized
CUDA
Kernel

Figure 5.13: Feedback-based and memory-Aware gLobal Instruction Scheduling
(FALIS) Framework

5.4.2 FALIS - Materials and Methods

The FALIS framework is presented in this section. In contrast to MOBLIS repre-
sented in Section 5.3, only memory-related instructions are considered, and FALIS
is a global instruction scheduling approach. The requirements Black Box Opti-
mization, Platform-aware Optimization, Multi-objective Optimization and Avoiding
Unfavourable Solutions are targeted, analogous to MOBLIS, with multi-objective
algorithms utilizing profiling data from reference platforms.

The workflow of FALIS is presented in Figure 5.13. Analogous to MOBLIS, the
FALIS optimization framework starts by reading in GPGPU code in C for CUDA
and transforming it into a WHIRL intermediate representation (see Section 4.1.3.2).
There are no dependencies between the execution of kernels because each kernel runs
as a new application on a graphics card. Therefore, optimizations can be applied
separately to each kernel. The output of the FALIS framework is an optimized
machine code for a GPGPU kernel. The optimized machine code for each kernel is
then combined into one optimized GPGPU application.

FALIS applies global instruction scheduling in order to optimize the CUDA ker-
nels of a GPGPU application for a better utilization of the concurrently running
instruction and memory pipelines by rearranging memory-related instructions. They
are called Mob-Ins (Mobile Instructions). The optimization process of FALIS com-
prises the following steps (depicted in Figure 5.13): All memory-related instructions

5.4. Multi-objective Global Instruction Scheduling 61

are extracted at the WHIRL level (see Section 5.4.2.1). Afterwards, extended basic
blocks (see Definition 9) are created where an instruction can be scheduled to (see
Section 5.4.2.2) and a mobility value is calculated. Finally, the sequences of instruc-
tions are optimized towards the objectives energy consumption and runtime perfor-
mance by employing a genetic algorithm (SPEA2 or NSGA-II, see Section 5.4.2.3).
The last step is the choice of generated CUDA kernel machine code as the final
design. This can be e.g. a CUDA kernel optimized for energy consumption or run-
time performance. This can also be a CUDA kernel which is optimized for both
objectives.

5.4.2.1 Extracting Mobile Instructions

Mobile instructions for FALIS can comprise all load and store operations for the dif-
ferent memories (const, global, local, shared) and memory-related instructions such
as (barrier) synchronisation statements. The reason why the latter is also considered
will be described in the following. The atomic programming element of a Nvidia
GPGPU application is a thread. A thread runs on a single Streaming Processor
of a graphics card. A set of threads, called a block, is allocated on one Stream-
ing Multiprocessor. At block level, there is no memory consistency and no fixed
sequence on executing threads. Nevertheless, threads of a block can be forced to a
consistent view on the main or shared memory and a certain execution point in the
thread’s code by using barrier synchronisation statements. Barrier synchronisation
statements have to be added to the thread at source code level by the program-
mer. In Section 5.3.3 it was revealed that the performance can be decreased by such
statements due to the requirement of adding additional instructions at machine code
level, ensuring proper semantics of the GPGPU application. The evaluation results
in Section 5.3.3 showed that it is not always mandatory to add these instructions
if other existing instructions can substitute them (depicted in Figure 5.8(b)). The
substitution can possibly save cycles, resulting in performance increase and energy
consumption decrease. Thus, the approach presented in MOLIS is designed to also
treat synchronisation statements in addition to memory instructions. For all mo-
bile instructions, the optimal position in the code should be determined. In the
scope of FALIS, the position of each extracted mobile instruction is a variable. The
variability is explained in the following section.

5.4.2.2 Calculating Mobility of Instructions on Extended Basic Blocks

The purpose of FALIS is to move mobile instructions in such way that they ac-
cess the GPU’s memory system in a more efficient way. Especially when placed in
the code far away from each other, they cannot interfere with each other. This is,
in particular, important when the limited bandwidth of the graphics card’s main
memory should be utilized in an efficient way [68]. The authors revealed that many
concurrent memory accesses can decrease the performance. Figure 5.14 shows dif-
ferent methods for instruction scheduling by illustrating the different structure of

62 Chapter 5. Multi-objective GPGPU HW/SW Codesign

BB1

BB2BB3

BB4

EBB 1

EBB 2EBB 3

EBB 4

(a) Local Scheduler

BB1

BB2BB3

BB4

EBB 1

EBB 2

(b) Treegion Scheduler

BB1

BB2BB3

BB4

EBB 1

EBB 2EBB 3

(c) Branch Head Partitioning

BB1

BB2BB3

BB4

EBB 1

EBB 2

(d) Trace Scheduler

Figure 5.14: Coverage of Different Instruction Scheduling Methods

the extended basic blocks (see Definition 9). Therefore, exemplary CFGs (Control
Flow Graphs) with four basic blocks per sub-figure are depicted. In Figures 5.14(a)
- 5.14(c), different EBBLs (Extended Basics Block Label) mean that an instruction
cannot be moved from one basic block to another, whereas basic blocks with the
same EBBL mean that instructions can possibly be exchange between them. In
Figure 5.14(a) one can see local instruction scheduling. It can only schedule an
instruction inside one basic block as denoted by the different EBBL of the basic
blocks. Therefore, methods considering several basic blocks for the scheduling of in-
structions are required. An example for a state-of-the-art technique is TREEGION
scheduling [12]. It can schedule instructions to adjacent basic blocks. TREEGION
scheduling uses compensation code which may adversely affect the performance
because code which is executed predicated is slower than normally executed code
on the GPU [65]. Therefore, a technique called branch-head-partitioning was in-
troduced in [59] which enables a global scheduler to schedule along traces (e.g.
extended basic blocks) without the use of compensation code but with the possi-
bility to schedule an instruction far away from the original basic block as depicted

5.4. Multi-objective Global Instruction Scheduling 63

BB1 BB2 BB3 BB4

ASAP ALAP

ASAP ALAP

Mob Ins1

Mob Ins2

Figure 5.15: Mobility of Mobile Instructions (Mob-Ins)

in Figure 5.14(c). Branch-head-partitioning is related to Trace scheduling [52] (de-
picted in Figure 5.14(d)) from the CFG partitioning point of view but adds some
restrictions/features to the partitioning of the CFG (sse Definition 6):

• A trace can be interrupted, e.g. by a divergent control flow.

• The basic blocks inside a divergent control flow are combined to sub traces.

• No compensation code is allowed, due to a possible negative effect on the
runtime behaviour [65].

FALIS works on a combined control flow (see Definition 6) and data dependency
graph (see Definition 7). This type of graph is called program dependency graph
(see Definition 8) and is specified by D = 〈V,E〉. The set of all instructions in inter-
mediate representation of one kernel is V = {i1, .., in} and E ⊆ V × V are the data
dependencies or control flow dependencies between instructions. D should comprise
also the barrier synchronisation statements. In order to take the barrier synchro-
nisation instruction within global instruction scheduling into account, the original
graph D is used as a basis. In order to maintain the semantics of a kernel, for each
load/store instruction ix ∈ V preceding a barrier synchronisation instruction iy ∈ V
(x < y), a dependency edge is inserted between ix and iy. The same is done for a
barrier synchronisation instruction and all succeeding load/store instructions.

For calculating the mobility of a mobile instruction, firstly, ASAP scheduling (As
Soon As Possible) [141] is conducted with the help of the program dependency
graph D. This reveals the lower bound to where the memory instruction can be
relocated. In a second step a scheduling with scheduling policy ALAP (As Late As
Possible) [73] is performed to determine the upper bound for positions. Both, ASAP
and ALAP were originally used at the synthesis of hardware but also work on other
graphs like combined control flow and data dependency graph utilized for FALIS.
After each scheduling the position of the instructions are reverted to the original
position. The mobility interval for a mobile instruction is the interval between the
ASAP and the ALAP position. In Figure 5.15 an example is shown for Mob_Ins1

64 Chapter 5. Multi-objective GPGPU HW/SW Codesign

which can be scheduled in basic blocks BB1 and BB4. The shaded area for mo-
bile instructions in Figure 5.15 marks positions (basic blocks BB2 and BB3) where
Mob_Ins1 cannot be scheduled to.

The mobility intervals are employed by FALIS in order to optimize a program.
As it was revealed in MOBLIS, a GA is an appropriate optimization technique in
the field of instruction scheduling for GPGPU applications since it can cope with
effects of the warp scheduler of Nvidia graphics cards.

5.4.2.3 FALIS Genetic Algorithm Specification

The instruction scheduling is done by changing the position of mobile instructions
in the WHIRL representation. In the following, used terms in the scope of FALIS
are introduced:

• k: k is the number of WHIRL instructions in the code.

• n: Number of all mobile instructions in the WHIRL representation of a CUDA
kernel.

• M : The set of all mobile instructions is denoted by M = {Mob_Ins_i|1 ≤
i ≤ n}.

• Gene gi ∈ G = {gi|1 ≤ i ≤ n}: A gene gi represents the position of a mobile
instruction Mob_Insi in the WHIRL representation of a CUDA kernel.

• Individual d: In the compilation process, individual d is an instance of a
GPGPU kernel. Each individual d ∈ I comprises a gene sequence g1, ..., gn.
For each gi, a position is assigned to a mobile instruction. Each possible po-
sition is represented by a natural number in the interval [asap, alap], whereas
asap ∈ [1, ..,m], alap ∈ [1, .., k], asap ≤ alap.

It should be noticed that an individual can possibly comprise an invalid instruc-
tion schedule, since on the GA level no dependency tracking is performed. Handling
and sorting out of invalid solutions is presented in the following section. If two
mobile instructions, Mob_Ins_i and Mob_Ins_j, i < j are assigned to the same
position in the individual, Mob_Ins_i will be scheduled before Mob_Ins_j.

5.4.2.4 Optimization Workflow

In Figure 5.16, the FALIS individual evaluation flow is depicted. Analogous to
MOBLIS, for global instruction scheduling, the NVOpenCC from Nvidia (Open64 [80])
was enhanced. The code generation module of NVOpenCC was extended to read
in individuals created by FALIS . In contrast to MOBLIS , invalid chromosomes
can be created, which represent a GPGPU kernel which can have a semantics differ-
ent from the original version. Therefore, a chromosome validator was implemented
which checks if the created program has still the same semantics by evaluating the

5.4. Multi-objective Global Instruction Scheduling 65

NvOpenCC

Backend

Kernel Code Frontend ... Code
Generation

PTX Code PTX AS

Machine
Code

Profile
Kernel

Performance
& Energy
Values

FALIS
Individual
Evaluator

(4) Getting Performance
& Energy Values

(2)
Transferring
Individual

(3)
Individual
Validation

Result

(1)
Triggering
Kernel
Compiling

Mob Ins2
Position1

Mob Ins1
Position4

Mob Ins3
Position5

Figure 5.16: FALIS - Individual Evaluation Flow

program dependency graph D (see Section 5.4.2.2). If e.g. in the unoptimized ver-
sion of a GPGPU kernel an instruction ix depends on the result of instruction iy,
then in the optimized version of the kernel the sequence of these instructions must
not be changed, i.e. ix must be executed after iy. The performance and energy con-
sumption values are profiled and processed as described in Section 5.3.2.2.The fitness
values are calculated and utilized within SPEA2 and NSGA-II (see Section 4.2.2.2).

5.4.2.5 Evolution Operations

Analogous to MOBLIS (see Section 5.3.2.3), the crossover and the mutation oper-
ators for FALIS are single point operators. For all genes that are altered in the
mutation process, a second random process is done. With the probability of 0.5
the gene is altered in the interval [asap, alap], and with a probability of 0.5 the
gene is altered only in the interval [pos1, pos2], where pos1 = max(posalt − 1, asap),
pos2 = min(posalt + 1, alap) and posalt is the position gene of the parent chromo-
some. The crossover operation is done analogously to the MOBLIS.

5.4.3 Evaluation

In this section the evaluation of the optimization potential by applying FALIS is
presented. Firstly, the configuration and parameters for the evaluation are given
in Section 5.4.3.1. Results for a Nvidia 9500GT are presented in Section 5.4.3.2.

66 Chapter 5. Multi-objective GPGPU HW/SW Codesign

Benchmark Kernel Number of Mobile Instructions

Euler3D cuda_compute_flux 110
Matrix Multiplication matrixMul 42

SRAD srad_cuda_1 64
Separable Convolution convolutionRowsKernel 304
Separable Convolution convolutionColumnsKernel 304

Recursive Gaussian Filter d_recursiveGaussian_rgba 21
DCT8x8 CUDAkernelQuantizationShort 2

Table 5.3: Number of Mobile Instructions for Kernels optimized by FALIS

Afterwards, the results for several GAs are compared with each other. In Section
5.4.3.4 the results for a Nvidia 9500GT are compared to another GPU.

5.4.3.1 Parameters / Configuration / Optimization Runtime

The population size µ is the maximum of n/2 and 10 to ensure that the solution
space is sufficiently explored. The number of mobile instructions (n) for different
kernels is listed in Table 5.3. As can be seen in that table, the number of mobile
instructions per kernel is between 2 and 304. The algorithms last 30 generations
for Section 5.4.3.2 and 10 generations for the evaluations in other sections. The
probability for mutating genes of a chromosome was pm = 0.40 and the probability
for crossover was pc = 0.20 – according to the definitions in Section 4.2.1. Each
individual is evaluated 10 times and the median was selected as average energy
consumption and runtime result.

The results of the evaluation were obtained with the presented energy consump-
tion and performance testbed (see Chapter 3). The graphics cards used in the evalua-
tion comprise a 9500GT and a GTS250. The SPEA2 and NSGA-II implementations
from the JECO library [113] were used in FALIS analogously to MOBLIS.

The runtime of applying FALIS to a GPGPU kernel strongly depends on the
runtime of the GPGPU kernel on a particular platform itself, because for each
individual the benchmark is executed. Therefore, runtimes between several hours
and multiple days were observed.

5.4.3.2 Single Platform Results

Figures 5.17(a) - 5.17(d) show the energy consumption and runtime reductions – as
percentage of the unoptimized version – achieved by applying FALIS to different
benchmarks running on a Nvidia 9500GT. Each point inside the figures shows the
runtime and energy consumption for one individual. The Pareto front connects the
Pareto-optimal points with a line. As can be seen in these figures, runtime and
energy consumption can be decreased, due to the changed scheduling of memory-
related instructions. The maximal energy consumption reduction on the 9500GT
(depicted in Figure 5.17(a)) amounts to 10.23% and the maximal value for runtime

5.4. Multi-objective Global Instruction Scheduling 67

88 90 92 94 96 98 100

90

95

100

Proportional Energy Consumption (%)

P
ro
po

rt
io
na

lR
un

ti
m
e(
%
)

7 registers/thread
8 registers/thread
Pareto Front

(a) Kernel: convolutionRowsKernel

90 92 94 96 98 100 102

90

95

100

Proportional Energy Consumption (%)

P
ro
po

rt
io
na

lR
un

ti
m
e(
%
)

10 registers/thread
Pareto Front

(b) Kernel: srad_cuda_1

98.6 98.8 99 99.2 99.4 99.6 99.8 100
99.5

100

100.5

101

Proportional Energy Consumption (%)

P
ro
po

rt
io
na

lR
un

ti
m
e(
%
)

13 registers/thread
Pareto Front

(c) Kernel: matrixMul

95 96 97 98 99 100
95

96

97

98

99

100

Proportional Energy Consumption (%)

P
ro
po

rt
io
na

lR
un

ti
m
e(
%
)

39 registers/thread
Pareto Front

(d) Kernel: cuda_compute_flux

Figure 5.17: FALIS - Proportional Energy Consumption (EPd,Pl
ratio) and Proportional

Runtime (rPd,Pl
ratio) Reduction for all Evaluated Individuals

decrease is 13.02%. These values are achieved for kernel convolutionRowsKernel of
the benchmark Separable Convolution [97]. When optimizing the kernel convolu-
tionRowsKernel, the change in register utilization – 7 registers per thread changed
to 8 registers per thread – has a positive effect on the runtime and the energy con-
sumption. Another kernel which was accelerated significantly is srad_cuda_1 of
the benchmark SRAD [33]. Detailed evaluations of explored individuals are de-
picted Figure 5.17(b). A runtime decrease of 11.66% and an energy consumption
decrease of 8.59% can be achieved for kernel srad_cuda_1. As one can see from
Figure 5.17(b), there are two clusters. One cluster comprises individuals which have
an impact on the runtime and the energy consumption. The other cluster comprises
individuals which do not lead to a runtime and the energy consumption reduction.
Not all benchmarks which have been tested, can be optimized with the FALIS op-
timization process. An example where no optimization is achieved, is depicted in
Figure 5.17(c). In this figure, the kernel matrixMul from benchmark Matrix Mul-
tiplication is shown. As can be seen, the individuals created exhibit no runtime
decrease at all and an energy consumption decrease below 1%. The latter is below

68 Chapter 5. Multi-objective GPGPU HW/SW Codesign

convolution-
RowsKernel

CUDAkernel-
QuantizationShort

srad_cuda_1 convolution-
ColumnsKernel

d_recursive-
Gaussian_rgba

cuda_com-
pute_flux

0

2

4

6

8

10

12

14

Benchmark Name

R
el
at
iv
e
D
ec
re
as
e
(%

)

SPEA2 - Energy Consumption
SPEA2 - Runtime
NSGA-II - Energy Consumption
NSGA-II - Runtime

Figure 5.18: FALIS - Energy Consumption and Runtime Analysis for Different
Multi-Objective Algorithms

the accuracy of the energy consumption measurements. In Figure 5.17(d), the ker-
nel cuda_compute_flux of benchmark Euler3D is presented. Every created schedule
has a positive effect on the runtime (reduction: 3.3%) and the energy consumption
(reduction: 4.02%).

5.4.3.3 SPEA2 and NSGA-II Comparison Results

FALIS can make use of different multi-objective algorithms (SPEA2, NSGA-II). In
this section, an analysis aiming at showing which GA is more suitable for FALIS
is presented. The results for energy consumption and runtime decreases for op-
timizations applying SPEA2 or NSGA-II are presented in Figure 5.18 (in percent
on the Y axis). All values were measured on the 9500GT and only exemplary
kernels which were optimized are shown. In addition to the kernels optimized in
Figure 5.17, reductions of the following kernels are presented in Figure 5.18: kernel
d_recursiveGaussian_rgba of the benchmark Recursive Gaussian Filter, the kernel
convolutionRowsKernel of the benchmark Separable Convolution and kernel CUD-
AkernelQuantizationShort of the benchmark DCT8x8. For these kernels, runtime
reductions between 1.84% and 8.13% and energy consumption reductions between
2.91% and 7.18% were achieved. In total, there is no significant difference in the
runtime decrease between the SPEA2 and NSGA-II. The same can be concluded for
the energy consumption of the benchmarks.

5.4.3.4 Platform Variants Comparison Results

In order to show that the optimization is not limited to a specific platform vari-
ant, the performance of FALIS for two platforms is evaluated in this section. The

5.4. Multi-objective Global Instruction Scheduling 69

convolution-
RowsKernel

srad_cuda_1 matrixMult d_recursive-
Gaussian_rgba

cuda_com-
pute_flux

0

2

4

6

8

10

12

14

Benchmark Name

R
el
at
iv
e
D
ec
re
as
e
(%

)

9500GT - Energy Consumption
9500GT - Runtime
GTS250 - Energy Consumption
GTS250- Runtime

Figure 5.19: FALIS - Energy Consumption and Runtime Analysis for Different
Graphics Cards

first candidate is a Nvidia 9500GT comprising four streaming multiprocessors with a
memory bandwidth of 25.6GB/s (6.4GB/s per streaming multiprocessor). This card
was utilized in the former sections. The second test candidate is a Nvidia GTS 250
having 16 streaming multiprocessors and a memory bandwidth of 70.4GB/s. The
latter corresponds to a memory bandwidth of 4.4GB/s per streaming multiprocessor.
The energy consumption and runtime reduction values for different kernels are de-
picted in Figure 5.19. As can be seen in this figure, the achievable reductions are sim-
ilar for the different hardware platforms. For the kernels d_recursiveGaussian_rgba
and cuda_compute_flux, the performance is increased and the energy consumption
is decreased. Kernel matrixMul cannot be optimized for any platforms.

A different situation can be noticed from the kernel srad_cuda_1, as its energy
consumption decreases by 8.59% for the 9500GT and 3.19% for the 250GTS. The
runtime decreases by 11.66% for the 9500GT and 3.14% for the 250GTS. A simi-
lar situation can be noticed from kernel convolutionRowsKernel. The kernel has a
higher optimization gain on the GTS250.

This effect was further examined by optimizing the load and store instructions for
the different memory spaces (global, const, shared, param) separately. The energy
consumption reduction values for the different kernels and memory-spaces are de-
picted in Figure 5.21 (runtime reduction values in Figure 5.20). These figures depict
the energy consumption and runtime decrease for the different aforementioned mem-
ory spaces and the kernels convolutionRowsKernel, d_recursiveGaussian_rgba and
cuda_compute_flux and srad_cuda_1. For kernel convolutionRowsKernel, only
the combined optimization on all memory spaces has a positive effect on the en-
ergy consumption and the runtime. For the kernels d_recursiveGaussian_rgba and

70 Chapter 5. Multi-objective GPGPU HW/SW Codesign

convolution-
RowsKernel

srad_cuda_1 d_recursive-
Gaussian_rgba

cuda_com-
pute_flux

0

2

4

6

8

10

12

14

Benchmark Name

R
el
at
iv
e
R
un

ti
m
e
D
ec
re
as
e
(%

) ALL
GLOBAL
CONST
SHARED
PARAM

Figure 5.20: FALIS - Runtime Analysis of Different Memory Spaces

cuda_compute_flux the access to the global memory was the bottleneck. Kernel
srad_cuda_1 shows different optimization gains for both graphics cards 9500GT
and GTS250. It turned out, that the access to shared memory is the bottleneck of
the kernel which has a different effect on the runtime and energy consumption on
the different platforms.

5.4.4 Summary

Within the manually performed GPGPU application design process, little interest
was focussed on the placement of the memory-related instructions in the GPGPU
application. This was nearly impossible due to lack of efficient compiler support
and the lack of automatic performance analysis. In addition to that, the energy
consumption of a GPGPU application was never considered at compiler level before.

A promising technique which can alter the schedule of memory instructions inside
the application code is instruction scheduling. It is performed on a medium-level in-
termediate representation and can optimize the performance of an application. The
latter is accomplished by a better utilization of the graphics card’s pipelines. The
FALIS approach utilized global instruction scheduling of memory-related instruc-
tions to optimize a GPGPU application. This is especially important in the face
of the memory wall problem. With FALIS, reductions of up to 10.23% in energy
consumption and 13.02% in runtime can be achieved for real-world benchmarks on
different graphics cards..

An idea for future work is, amongst others, whether global instruction schedul-
ing of all types of instructions is even more beneficial or not. Due to the fact that
by only altering the positions of load/store instructions and the barrier synchroni-

5.5. Design Space Exploration for Embedded Image Processing
Systems 71

convolution-
RowsKernel

srad_cuda_1 d_recursive-
Gaussian_rgba

cuda_com-
pute_flux

0

2

4

6

8

10

Benchmark Name

R
el
at
iv
e
E
ne

rg
y
C
on

su
m
pt
io
n
D
ec
re
as
e
(%

)

ALL
GLOBAL
CONST
SHARED
PARAM

Figure 5.21: Energy Consumption Analysis of Different Memory Spaces

sation statements, it was not possible to construct an optimization as presented in
Figure 5.8 which substitutes the unused no-op instructions in the code. Since the
WHIRL and PTX intermediate representations lack these instructions, FALIS could
not imitate processes and optimizations of the actual code generation. A possible
solution for this is to implement the code generation for GPGPU machine code itself
and work on a low-level intermediate representation.

5.5 Design Space Exploration for Embedded Image Pro-
cessing Systems

The first DSE (Design Space Exploration) for GPGPU application code will be
introduced in this chapter. Firstly, in Section 5.5.1, an introduction and a presen-
tation of the use case application considered in the DSE is presented. Secondly, the
concept of the DSE is introduced in Section 5.5.2. The design space exploration is
accomplished for an image processing system to select a platform from a given set
of platforms with energy efficiency as a second objective in addition to real-time
requirements. In the scope of the overall design process, depicted in Figure 5.22, in
this section a mapping optimization method for a GPU platform family is provided.
The corresponding results for the DSE are given in Section 5.5.3. The section ends
with a summary in Section 5.5.4.

5.5.1 Introduction

Up to now, in Sections 5.3 and 5.4 only Optimization Area 2 (Figure 5.1) was
considered. In this section, a mapping optimization with a design space exploration

72 Chapter 5. Multi-objective GPGPU HW/SW Codesign

Multi-objective Hardware/Software
Codesign for GPGPU Applications

Service-Oriented and Resource-Aware
Middleware for Embedded Systems

E
ffi
ci
en
t

R
es
ou

rc
e

U
ti
liz
at
io
n

Code
Optimization

Platform
Variants

Single
Platform

Different
Platforms

Mapping
Optimization

Design of Network
Embedded Manycore Systems

Flexible
Middleware

Service Or-
chestration

Middleware Design

Accounting
& Control

Context
Awareness

Resource Management

Figure 5.22: Embedded Image Processing Systems - Overview on the Overall Design
Process

is considered. Variable parameters of the DSE are:

• Thread Set Partitioning: The first parameter in this design space exploration
is the partitioning of the set of threads which comprises Optimization Area 1
(see Figure 5.1). GPGPU application code allows an unlimited thread paral-
lelization grade at programming level, but due to restrictions for parallelism on
the real hardware platform, not all threads can run concurrently. Therefore,
the threads must be partitioned into groups. The partitioning of the work-
items set into work-groups in OpenCL C has a direct impact on the allocation
or mapping of the work-groups onto the GPU. This has in turn a major impact
on the energy consumption of the system. The partitioning into work-groups
has to be done individually for each kernel of the GPGPU application.

• Platform Selection: When talking about energy-efficiency and efficient map-
ping, an additional parameter is the execution platform itself. For example,
a too powerful platform could be selected for a GPGPU application, which
then consumes too much energy. Another case is that the selected platform
is efficient w.r.t. the consumption of energy but not powerful enough to meet
real-time deadlines. Because of these two considerations the platform decision
(Optimization Area 3) must be taken in account in the GPGPU application
design process. With this optimization area, the scalability of the algorithms
is an important factor. This is crucial because in case that a GPGPU appli-
cation is memory bounded, an increasing number of processing cores will not
increase the performance when reaching a certain threshold. Furthermore, the
performance can possibly not scale with the number of cores if there are too
many data dependencies inside the kernels making synchronization necessary.
If the performance does not scale with the number of cores, this has also an
effect on the energy consumption of the system because the performance to
energy ratio probably worsens. The theoretical background for speedup and

5.5. Design Space Exploration for Embedded Image Processing
Systems 73

Data Capture (30fps) Data Analysis

Image Sequence Containing
Several Images Time Series Pixel by Pixel

time

time

in
te
ns
it
y

Nano-objects

Virus

No VirusSuperlum
ines-

cent
D
iode CC

D
/C

M
O
SG

ol
d
L a

ye
r

Fluid

Figure 5.23: Processing Requirements of the PAMONO Biosensor (modified [149])

scalability is described by Amdahls Law [7] which can be used to estimate the
performance speedup that can be achieved by parallelizing an application and
running on a parallel processor. Amdahl separates the application in parts
(represented by application fraction f) which can be computed in parallel and
parts that must be computed sequentially (represented by application fraction
(1− f)) as depicted in Equation 5.3. The acceleration of the parallel fraction
is then expressed by f

n if the parallel part can be independently computed on
the n processors. The overall speedup sup can be calculated as follows:

sup =
1

(1− f) + f
n

. (5.3)

The process of designing a GPGPU accelerated system should involve a design space
exploration (described in Section 5.5.2) which optimizes the described parameters
of the system under resource constraints at design time. The constraints for the
design space exploration to be presented in this section are

• soft deadlines

• energy consumption.

To the best of the author’s knowledge the consideration of the energy consumption
and the platform decision has not been done before for a GPGPU application.

Use Case - Biomedical Scenario: The PAMONO biosensor described in Sec-
tion 2.1 provides an in-situ detection of nano-objects and a detection in realtime
which means that the result of a detection in progress can be visualized online while
inserting the specimen. The processing system (depicted in Figure 5.23) must cope
with a frame rate of the camera. In the scope of this section, a frame rate of 30 fps

74 Chapter 5. Multi-objective GPGPU HW/SW Codesign

(frames per second) is assumed.
The expected local availability of such biosensors at distributed sites can lead to
the situation that no wired power supply is available. Therefore, the final platform
should be a mobile and battery-driven hardware platform. Energy awareness should
be one of the objectives when designing such a GPGPU-accelerated system. The
major requirements for the design of such a virus detection system can be summa-
rized as follows:

1. Provide a precise virus detection rate.

2. The system should be capable of working in real-time.

3. Take energy-efficiency into account.

5.5.2 Materials and Methods

The design space exploration process is depicted in Figure 5.24. It should take
the two parameters (Thread Set Partitioning and Platform Selection) listed in Sec-
tion 5.5.1 into account. The DSE process starts with the specification and imple-
mentation of the GPGPU application. It is assumed that the application is a parallel
application and that it can be accelerated by executing it on a GPU. The output of
the design space exploration is an optimal mapping onto a GPU and the selection of
the most suitable platform. The design space exploration starts with the selection
of an execution platform, then the application is mapped onto the platform by the
GPGPU application design process presented in Section 5.1. The latter can also
include the code optimization techniques presented in Sections 5.3 and 5.4. The
output of the mapping onto the selected platform is evaluated with regard to per-
formance and energy consumption employing the testbed presented in Section 3.2.

Design Space Exploration Target: The energy consumption should be min-
imized under the restriction that the system is capable of coping with the input
data rate of the camera. Figure 5.25 illustrates a scheme of the periodically pro-
cessing of the image processing and analysis pipeline presented in Section 2.1. The
processing interval for one image (frame) lasts 33.3 ms, due to the camera speed.
A new frame is captured by the camera each 33.3 ms and must be processed by
the image processing and virus detection pipeline. The dashed curve represents the
power consumption of the graphics card while processing a frame. This comprises
transferring the data to and from the graphics card’s main memory, creation of the
threads for different kernels and the execution of the kernels.

As already described in Section 3.2, the testbed can provide the energy consump-
tion energy(Ph, Pl, t

P,Pl
start, t

Ph,Pl
end), where as Ph, h ∈ H is the program to be profiled,

Pl ∈ K the execution platform consuming power over time, tPh,Pl
start the profiling start

5.5. Design Space Exploration for Embedded Image Processing
Systems 75

Platform Selection

Mapping

Evaluation

Design Space Exploration

Optimal
Mapping

GPGPU
Application

Figure 5.24: Design Space Exploration Workflow for Embedded Image Processing
Systems

point in time and tPh,Pl
end the profiling end point in time. K is in this context the

set of available graphics cards. In this design space exploration, the partitioning of
threads is important and therefore, H is the set of available partitions. The energy
consumption EPh,Pl

dse for processing one frame is described as

EPh,Pl = energy(Ph, Pl, t
Ph,Pl
0 , tPh,Pl

SLOT), (5.4)

where Pl ∈ K and Ph ∈ H. The energy consumption EPh,Pl
T0,Trun

for the processing is:

EPh,Pl
T0,Trun

= energy(Ph, Pl, t
Ph,Pl
0 , tPh,Pl

run) (5.5)

and the energy consumption EPh,Pl
Trun,TSLOT

for the idle phase is

EPh,Pl
Trun,TSLOT

= energy(Ph, Pl, t
Ph,Pl
run , tPh,Pl

SLOT). (5.6)

The testbed provides the points in time for the following triggers for the Pl and Ph

(depicted in Figure 5.25):

• tPh,Pl
0 : Start time for the process interval and task processing.

• tPh,Pl
RUN : End time for task processing plus data transfers between the graphics
card and the host.

• tPh,Pl
IDLE : Start time for the idle phase.

• tPh,Pl
SLOT : End time for the process interval.

The solution set E is the set of all evaluated graphics card and partitioning config-
urations:

E = {EPh,Pl
dse |Pl ∈ KandPh ∈ H}. (5.7)

76 Chapter 5. Multi-objective GPGPU HW/SW Codesign

Frame x (33.3 ms)

Idle

tPh,Pl
0 tPh,Pl

RUNt
Ph,Pl
IDLE

tPh,Pl
SLOT

Frame x− 1 (33.3 ms) Frame x+ 1 (33.3 ms)

Processing

Communication

Figure 5.25: Energy Consumption for Frame Processing

The minimal energy consumption Emin is then:

∃Emin ∈ E,∀Eel ∈ E : Emin ≤ Eel. (5.8)

Emin has the requirement, that all processing must be completed before the arrival
of the next frame (tPh,Pl

run < tPh,Pl
slot , tPh,Pl

slot = 33.3ms). The energy consumption for
the host system is not considered. In addition to Emin also the runtime rmin is
provided.

5.5.3 Evaluation

In this section, the evaluation of the design space exploration is presented. Firstly,
the configuration and parameters for the evaluation are given. Then the results for
the different input data are presented, followed by the results for the scalability of
the GPGPU application and the results for the energy consumption on different
platforms.

5.5.3.1 Parameters and Configuration

The three-step image processing and analysis pipeline presented in Section 2.1 and
depicted in Figure 2.2 is mapped to 19 GPGPU kernels in software. Seven kernels
initialize the data structures and download the analysis results after completing one
run. The other kernels are executed for the processing of each frame and are there-
fore the input of the design space exploration. The optimal partitioning has to be
found for these 12 kernels.

In the context of this DSE, the ratio of program parts running sequentially on
the CPU is very small and therefore can be neglected, because the image processing
and virus detection pipeline is completely implemented as GPGPU application and
the CPU parts are only for uploading/downloading the image data and for manag-
ing the processing on the graphics card.

The different tested platforms are depicted in Table 3.1 (Nvidia ION, 9600GT,
GTS250), along with the most important performance factors. The last column of

5.5. Design Space Exploration for Embedded Image Processing
Systems 77

Work Group Size Wavelet Denoising Pattern Matching
X Y portrait landscape portrait landscape

(ms) (ms) (ms) (ms)

16 2 1.682 1.696 4.005 4.257
16 4 1.640 1.634 3.341 3.376
16 8 1.645 1.660 3.538 3.491
2 16 2.235 2.408 3.388 3.316
2 2 6.376 6.360 8.345 7.677
2 4 3.674 3.721 5.014 4.523
2 8 2.647 2.776 3.809 3.517
4 16 1.894 1.974 3.345 3.266
4 2 3.569 3.570 4.925 4.656
4 4 2.480 2.494 3.621 3.425
4 8 1.933 2.011 3.376 3.364
8 16 1.941 1.873 3.516 3.509
8 2 2.509 2.472 3.696 3.886
8 4 1.898 1.900 3.337 3.384
8 8 1.874 1.863 3.311 3.363

Table 5.4: Runtimes for Different Input Data Formats on 9600 GT

this table lists the idle power consumption of the platforms. The lower values rep-
resent the power consumption with power saving techniques of the graphics cards
whereas the higher value represents the power consumption without power saving
techniques.

5.5.3.2 Input Data Dependency

In this section, the influence of the input data format in the design space exploration
process is examined. Today’s GPGPU applications are often designed to provide
the best possible average performance for different input sizes. For example, video
decoding is optimized to work with different video resolutions. This is not subop-
timal if the system can be designed for a special purpose such as the considered
biosensor. It can be assumed that the size and the format of the input data will not
change after the deployment of the system. Therefore, the system can be designed
in such a way that the application is optimized to run in an optimal way for a fixed
input data format. Due to physical and optical reasons the input data format is
a rectangle with a size of e.g. 300 × 1000 or 1000 × 300 pixels. There are two
orientation formats of the input data: landscape and portrait. The choice of using
these formats is motivated by the assumption that the optimal partitioning for a
kernel will change significantly from a data input format to the other. Table 5.4
presents the runtimes for different work-group sizes for the two data formats. As can
be noticed from the values of Pattern Matching, greater work-group sizes are not
always advantageous. For example, the runtime for an image in the portrait format
is 3.311 ms for a work-group size of X = 8 and Y = 8, whereas the runtime for the
larger work-group size (X = 16, Y = 8) is 3.538 ms. For the same kernel it can be

78 Chapter 5. Multi-objective GPGPU HW/SW Codesign

16 → 64 Cores 16 → 128 Cores
Ideal 4 8
Min 0.79 0.92
Max 5.92 9.31
Avg 2.88 3.43

Table 5.5: Kernel Speedup with Increasing Number of Cores

seen that the shortest runtime for the portrait format is 3.266 ms (work-group size:
X = 8, Y = 16) respectively 3.311 ms (work-group size: X = 8, Y = 8) for the
landscape format. It can be therefore concluded, that a GPGPU application must
be optimized towards a certain input data set size.

5.5.3.3 Parallel Processing Scalability

As depicted in Table 5.5, for the ideal case (calculated with Amdahls Law (1−f) = 0)
the speedup is 4 when switching from 16 to 64 cores and 8 for switching from 16
to 128 cores. Furthermore, Table 5.5 shows that the performance of the pipeline
changes with number of cores, but that the ideal speedup can not be reached. For
example, the increase from 16 to 64 core achieves an average performance speedup
of 2.88 while a core increase from 16 to 128 has only a performance speedup of
3.43. For some kernels such as the Pattern Matching, these speedup factors can be
reached by moving from 16 to 64 cores and also by moving from 16 to 128 cores. On
the other hand, there are kernels with high data dependencies with no speedup at
all. The superlinear speedup for some kernels are due to the higher memory speed
and bandwidth of the 9600 GT and GTS 250. From Figure 5.26(a), it can be seen
that especially kernels that implement the aggregation and classification of pixels
to polygons have high data dependencies avoiding higher speedups. Figure 5.26(a)
shows the accumulated runtime over the different steps of the image processing and
analysis pipeline for the different graphics cards.

5.5.3.4 Energy/Runtime Considerations

As for the runtime, the energy consumption is now analyzed for different load par-
titions and for the scaling with different numbers of cores. Energy efficiency is
defined in this context as the minimal energy consumption over all configurations
which meet the real-time requirements. The power consumption over the time for
the image processing and analysis pipeline is depicted in Figure 5.26(b). As can be
seen in this figure, the ION graphics cards consumes less power (up to 15 W) in
respect to the other two graphics cards (up to 65 W), but also needs far more pro-
cessing time. The ION requires 60 ms for one frame with the optimal configuration
while consuming 0.7 J (see Table 5.6). This exceeds the real-time requirement of
33.3 ms but the energy consumption is minimal. The graphics cards 9600 GT and
250 GTS have runtimes of approximately 18 ms and 17 ms per frame. Considering

5.5. Design Space Exploration for Embedded Image Processing
Systems 79

Start Memcopy
(H2D)

Pre-
processing

Particle
Candidate
Detection

Pixel Ag-
gregation
and Clas-
sification

Memcopy
(D2H)

0

20

40

60

Processing Step

A
cc
um

ul
at
ed

R
un

ti
m
e
(m

s)

250 GTS - 128 Cores
9600 GT - 64 Cores
ION - 16 Cores

(a)

0 5 10 15 20 25 30 35 40 45 50 55
0

10

20

30

40

50

60

70

Time (ms)

P
ow

er
co
ns
um

pt
io
n
(W

)

250 GTS - 128 Cores
9600 GT - 64 Cores
ION - 16 Cores

(b)

Figure 5.26: (a) Accumulated Runtime for Optimal Work Group Size and (b) Power
Consumption for Optimal Work Group Size

the energy consumption EPh,Pl
T0,Trun

for the actual processing of a frame the 9600GT
needs only 0.95 J while the 250 GTS needs around 1.01 J. Since the GTS 250 has
the lowest idle power consumption EPh,Pl

Trun,TSLOT
(see Table 5.6), the GTS 250 is the

platform with the highest overall energy efficiency. Overall, it can be summarized
that the design space exploration showed that the load balancing and the scalabil-
ity of the application kernels have a direct impact on the energy efficiency of the
application and should be considered at design time.

5.5.4 Summary

In the face of green computing and the utilization of GPGPU capable chips in small
and mobile systems, it is mandatory to take the energy consumption as an objective
during the design process of a GPGPU based system into account. In this section,
a design space exploration was described which shows the design process towards
an energy aware GPGPU-based image processing and virus detection system. The
design space exploration exploited the parameters load balancing and the parallel
processing scalability for a GPGPU application and showed that these parameters
have a direct impact on the energy efficiency of the application and must be con-
sidered at design time. Furthermore, it was demonstrated that the minimization of
the energy consumption under the restriction that only a limited amount of time is
available for processing limits the design space for an energy efficient system config-
uration. Therefore, it can be concluded, that energy can be saved, due to a platform
selection in the face of deadlines.

The design space exploration did not cover the decision if the integration of a GPU
for accelerating is energy efficient at all. This is considered in the following Sec-
tion 5.6.

80 Chapter 5. Multi-objective GPGPU HW/SW Codesign

Graphics rmin Minimal Minimal Emin

Card EPh,Pl
T0,Trun

EPh,Pl
Trun,TSLOT

(ms) (J) (J) (J)
ION 59.98 0.7 - -

9600GT 18.16 0.95 0.39 1.34
250GTS 17.22 1.01 0.31 1.32

Table 5.6: Runtime and Energy Consumption for Optimal Work Group Size

5.6 Design Space Exploration for GPGPU-Accelerated
Embedded Systems

In this section the second design space exploration for GPGPU applications pre-
sented in this thesis is introduced. After a short introduction in Section 5.6.1, on
why the design space exploration is needed for an efficient GPGPU application
design, basic techniques are presented in Section 5.6.2. In the scope of the over-
all design process depicted in Figure 5.27, this section (see Section 5.6) provides
a mapping optimization for different platforms (GPU and CPU). The results for
the design space exploration of several benchmarks are provided in Section 5.6.3.
Section 5.6 ends with a summary in Section 5.6.4.

5.6.1 Introduction

Section 5.5 presented a design space exploration for the most efficient GPU variant
platform with the objectives energy consumption and meeting deadlines. When
talking about these objectives, it is not enough to take only the graphics card variant
into account, e.g. it can be possible that executing the application on a CPU can
be more efficient in comparison to a GPU execution. Especially when the graphics
card is only integrated in the platform design to accelerate a parallel application,
an analysis has to be carried out to determine if the system is still energy efficient
(Optimization Area 3). The following factors should be taken into account for the
system design:

1. Additional Idle Power Consumption: The graphics cards can be used as a
parallel application accelerator in almost the same manner as traditional ap-
plication accelerators like FPGAs. When the graphics card or chip is not
integral part of the design, an extra graphics card or chip contributes to a
higher power consumption.

2. Additional Communication: The availability of two main memories implies
extra communication to transfer data. This creates extra overhead for com-
munication and for the energy consumption.

3. Algorithm Design: It is only beneficial to use a graphics card for accelerating
applications if the application itself can be parallelized efficiently. According

5.6. Design Space Exploration for GPGPU-Accelerated Embedded
Systems 81

Multi-objective Hardware/Software
Codesign for GPGPU Applications

Service-Oriented and Resource-Aware
Middleware for Embedded Systems

E
ffi
ci
en
t

R
es
ou

rc
e

U
ti
liz
at
io
n

Code
Optimization

Platform
Variants

Single
Platform

Different
Platforms

Mapping
Optimization

Design of Network
Embedded Manycore Systems

Flexible
Middleware

Service Or-
chestration

Middleware Design

Accounting
& Control

Context
Awareness

Resource Management

Figure 5.27: CPU/GPU-DSE - Overview on the Overall Design Process

to Amdahl’s Law, the higher the ratio of parallel code in an application is, the
more the application can be speeded up by a parallel execution.

5.6.2 Materials and Methods

For a multi-platform (CPU and GPU) mapping optimization, one major decision
is whether integrating an additional graphics card for the acceleration counteracts
the objective to be energy efficient or not. Therefore, several system configurations
must be evaluated with respect to their energy consumption: Systems without the
graphics card for application acceleration and systems with an additional graphics
cards for application acceleration. In Figures 5.28(a) and 5.28(b), the most impor-
tant parameters for evaluation of the energy consumption are depicted.

For evaluating energy consumption and runtime, the profiling testbed presented
in Chapter 3 is utilized. As already described in that chapter, the testbed can pro-
vide the energy consumption energy(P, Pl, t

P,Pl
start, t

P,Pl
end), where P is the program to

be profiled, Pl the execution platform consuming power over time, tP,Pl
start the profil-

ing start point in time and tP,Pl
end the profiling end point in time. For this DSE, the

accelerated program running on the GPU is called Pl1 and the execution platform
comprising the GPU host system and the graphics card is called P1. The system
without a GPGPU-capable graphics card is called P2 and the corresponding pro-
gram Pl2. As can be seen from Figure 5.28(a) the testbed provides the points in
time for the following triggers for the Pl1 and P1:

• tP1,Pl1
0 : Start time for the process interval and task processing

• tP1,Pl1
RUN : End time for task processing plus processing between systems

• tP1,Pl1
IDLE : Start time for the idle phase

82 Chapter 5. Multi-objective GPGPU HW/SW Codesign

Processing Interval x

Idle

tP1,Pl1

0 tP1,Pl1

RUN tP1,Pl1

IDLE tP1,Pl1

SLOT

Processing
Communication

Power Con-
sumption:
System +

Graphics
Card (W)

(a) Energy Consumption for System with
Graphics Card

Processing Interval x

Idle

tP2,Pl2

0 tP2,Pl2

RUN tP2,Pl2

IDLE tP2,Pl2

SLOT

Processing

Power Con-
sumption:
System (W)

(b) Energy Consumption for System without
Graphics Card

Figure 5.28: Energy Measurements for the Different System Configurations

• tP1,Pl1
SLOT : End time for the process interval

and the following triggers for the Pl2 and P2:

• tP2,Pl2
0 : Start time for the process interval and task processing

• tP2,Pl2
RUN : End time for task processing

• tP2,Pl2
IDLE : Start time for the idle phase

• tP2,Pl2
SLOT : End time for the process interval.

It is assumed that

x = tP1,Pl1
SLOT − t

P1,Pl1
0 = tP2,Pl2

SLOT − t
P2,Pl2
0 . (5.9)

This means that both systems have the same deadline constraints. The energy
consumption values for both systems can then be retrieved from the testbed as
follows:

• EP1,Pl1
PROC = energy(P1, Pl1, t

P1,Pl1
0 , tP1,Pl1

RUN): Energy consumption for task pro-
cessing of the GPGPU program

• EP2,Pl2
PROC = energy(P2, Pl2, t

P2,Pl2
0 , tP2,Pl2

RUN): Energy consumption for task pro-
cessing of the CPU program

• EP1,Pl1
IDLE = energy(P1, Pl1, t

P1,Pl1
IDLE , t

P1,Pl1
SLOT): Energy consumption for idle phase

of the GPGPU program

• EP2,Pl2
IDLE = energy(P2, Pl2, t

P2,Pl2
IDLE , t

P2,Pl2
SLOT): Energy consumption for idle phase

of the CPU program.

5.6. Design Space Exploration for GPGPU-Accelerated Embedded
Systems 83

Component Configuration Idle Power
Consumption (W)

System Intel Atom 270 10
2GB-DDR2-Memory

Linux OS
Graphics Nvidia 8400 GS 4
Card 512MB-DDR-Memory

Table 5.7: System Configuration

In order to be energy efficient for a GPGPU system, one of the following inequalities
must be true:

EP1,Pl1
PROC + EP1,Pl1

IDLE < EP2,Pl2
PROC + EP2,Pl2

IDLE (5.10)

or

EP1,Pl1
PROC < EP2,Pl2

PROC . (5.11)

The values EP1,Pl1
IDLE and EP2,Pl2

IDLE are optional, if Equation 5.9 is not true and because
of the following considerations. In a first case, it can be assumed that the processing
is done in a periodic processing interval x and the timeframe is the same for the CPU
and the GPU application. Then, one can compare the energy consumption values
directly (Equation (5.10)). When the timeframe is not the same, a comparison is
difficult because energy consumption is measured over time. But for an aperiodic
processing task the Equation (5.11) can be utilized, when one would like to consider
the energy consumption for a specific task.

5.6.3 Evaluation

In this section, the evaluation of the several benchmarks towards their energy con-
sumption on different systems is presented. Firstly, the configuration and parame-
ters for the evaluation are given in Section 5.6.3.1 and secondly, the measurements
will be presented in Section 5.6.3.2.

5.6.3.1 Parameters and Configuration

The GPGPU and CPU versions of four different benchmarks (see Section 2.4) have
been tested in this evaluation. The system configuration was chosen as depicted
in Table 5.7. The implementations of the benchmarks are optimized versions for
the different platforms (CPU and GPU). Due to the lack of an embedded platform
hosting the graphics card, the power consumption (Idle: 10 W; Load: 16 W) of the
system presented in Table 5.7 was added to the graphics card’s measurement, to
approximate the power consumption of an embedded platform hosting a GPGPU-
capable graphics card.

84 Chapter 5. Multi-objective GPGPU HW/SW Codesign

0 10 20 30 40 50 60

10

15

20

25

Runtime (s)

P
ow

er
C
on

su
m
pt
io
n
(W

)

GPU execution
CPU execution

(a) Fast Fourier Transform

0 20 40 60 80 100 120

10

15

20

25

Runtime (s)

P
ow

er
C
on

su
m
pt
io
n
(W

)

GPU execution
CPU execution

(b) Range-Doppler-Algorithm

0 5 10 15 20 25

10

15

20

25

Runtime (s)

P
ow

er
C
on

su
m
pt
io
n
(W

)

GPU execution
CPU execution

(c) Matrix Multiplication

0 20 40 60 80 100 120

10

15

20

25

Runtime (s)

P
ow

er
C
on

su
m
pt
io
n
(W

)
GPU execution
CPU execution

(d) Air Pollution Simulation

Figure 5.29: Power Consumption for CPU and GPGPU Versions

5.6.3.2 Results

The power consumption results for all four benchmarks are depicted in Figures 5.29(a)-
5.29(d). The dashed lines in theses figures represent the power consumption for the
GPGPU application and the black line the power consumption for running the CPU
version of the benchmark. As can be noticed from these figures, executing the ap-
plication on a GPUs is faster than executing the application on a CPU, but has
a higher power consumption. As can been seen from Figures 5.29(a) -5.29(d), the
maximal power consumption for the GPU execution is much higher than for the
CPU execution, e.g. for the Range-Doppler-Algorithm the power consumption is up
to 27 W. The CPU implementation has a power consumption of up to 16 W.

The light grey areas in these figures represent the energy consumption values EP1,Pl1
PROC

(GPGPU variant) which are listed in Table 5.8 for each benchmark. The dark
grey areas represent the energy consumption values EP2,Pl2

PROC (CPU variant) for each
benchmark which are also listed in the aforementioned table. The idle power con-
sumption of the system is assumed to be fixed depending on the measured energy

5.6. Design Space Exploration for GPGPU-Accelerated Embedded
Systems 85

Benchmark CPU GPU Speed
Runtime Runtime up EP2,Pl2

PROC EP1,Pl1
PROC Ered

(s) (s) CPU → GPU (J) (J) (%)
Matrix Mult. 22.46 13.66 1.6 344 209 39

Air Simulation 117.32 0.89 132 1394 20 99

FFT 50.64 0.74 68 655 16 98

Range-Doppler 129.43 4.67 28 1833 108 94

Table 5.8: Runtime and Energy Consumption for Different System Configurations

consumption values presented in Table 5.7. The speedup factor (CPU → GPU) for
this benchmark is 28 meaning the possibility to parallelize this benchmark is high.
The same applies for the benchmarks Fast Fourier Transform and Air Pollution
Simulation which can be speeded up by a factor of 68 and 132, respectively. The
only benchmark where the runtime reduction is not significant, is the Matrix Multi-
plication. Only a speedup by a factor of 1.6 can be achieved. The reason for this is
that the data dependencies within the benchmark prevent high parallelization and
a higher speedup.

The decision if a system should be equipped with an additional graphics card as
an application accelerator can only be made with the considerations made in Sec-
tion 5.6.2. When idle phases are not considered, the energy reduction Ered can be
calculated by

Ered =
EP1,Pl1

PROC

EP2,Pl2
PROC

∗ 100. (5.12)

For the benchmark Matrix Multiplication, Ered is 39% and for the benchmark Air
Pollution Simulation up to 99%. When idle phases are considered, the processing
interval x must be the same for CPU and the GPU execution. For the benchmark
Range-Doppler-Algorithm, the integration of an extra GPU for application acceler-
ation makes only sense as long as: 108J + EP1,Pl1

IDLE < 1833J + EP2,Pl2
IDLE , i.e. that the

energy consumption reduction due to application acceleration must not be compen-
sated by a long idle phase. In the idle phase energy can be saved by applying e.g.
DVFS (Dynamic Voltage and Frequency Scaling) techniques. Tests have shown that
changing the frequency and voltage level of a Nvidia GTS250 tooks about 160ms.
This circumstance makes the DVFS technique unsuitable for applications with a
short idle phase, such as the PAMONO sensor.

5.6.4 Summary

A design space exploration for the most efficient execution platform (CPU,GPU)
for parallel applications with the objective energy consumption was presented. It
was shown that integrating an additional graphics card for GPGPU can accelerate

86 Chapter 5. Multi-objective GPGPU HW/SW Codesign

a parallel application and furthermore, that this does not necessarily counteracted
the objective to be energy efficient. Several considerations were made how energy
efficiency can be evaluated for application acceleration with GPUs and it has been
shown that under certain circumstances, an energy reduction of 99% can be achieved
even if the power consumption is much higher.

5.7 Conclusion

One of the major disadvantage of today’s GPGPU programming is that it is dom-
inated by manually performing code optimizations. The mapping optimization of
computation kernels to graphics card cores is also done manually in order to achieve
the optimal acceleration of an application. This is time-consuming and need not
reveal the best possible acceleration.

In this chapter, the classical GPGPU application design process was analyzed and
three optimization areas have been identified:

• Optimization Area 1 - Mapping: The manually chosen mapping to the pro-
cessing cores should be substituted by an automatic approach.

• Optimization Area 2 - Code Generation: The code generation can be optimized
towards pipeline load optimization and automatic mapping support.

• Optimization Area 3 - Platform: Only the most suitable platform should be
used in the end, e.g. in terms of energy efficiency.

Based on these optimization areas, a Multi-objective Hardware/Software-Codesign
for GPGPU Applications was proposed which includes profiling-based optimizations
of the code and the mapping and comprises multi-objective optimization towards
runtime efficiency and energy consumption efficiency. In the scope of this process,
two code optimization techniques have been proposed and two design space explo-
rations have been conducted.

The two code optimization techniques presented in this section are both based on
instruction scheduling. The first approach, called MOBLIS, assigns scheduling poli-
cies to single basic blocks in the PTX representation of a kernel. It was possible
to decrease the runtime by up to 14% and the energy consumption up to 15%.
The evaluation was conducted on different hardware platforms. The second code
optimization approach called FALIS is also based on instruction scheduling but is
able to schedule instructions globally in a GPGPU kernel. In contrast to MOB-
LIS, it only focusses on memory-related instructions in the face of the memory wall.
With FALIS, reductions of up to 10% in energy consumption and 13% in runtime

5.7. Conclusion 87

could be achieved for real-world benchmarks. The novelties of the presented code
optimizations can be summarized as follows:

• Adaptive instruction scheduling mechanisms have been developed which tune
a GPGPU application towards a specific platform.

• Energy consumption and performance as optimization objectives for GPGPU
applications inside a GPGPU code compiler have been taken into account.

The two mapping optimization techniques presented in this section, conducted de-
sign space explorations towards energy efficiency. The first DSE targets the deci-
sion, which platform is the most energy efficient for a GPGPU application under the
constraint of deadlines. The second design space exploration targets the decision
whether an integration of a GPGPU-capable graphics card for parallel application
acceleration is beneficial to the energy consumption or not. The novelties of the
presented mapping optimizations can be summarized as follows:

• It was shown that taking energy consumption and performance as optimization
objectives for GPGPU applications within a design space exploration into
account, is worthwhile for an efficient system design.

• The selection of the most energy-efficient execution platform for GPGPU ap-
plications was evaluated in two design space explorations.

Overall, it can be summarized that the energy consumption is an important target
for optimization in the GPGPU application design process and should not be ne-
glected. It is particularly important to develop special code and mapping optimiza-
tions targeted towards energy consumption in the face of more and more battery-
driven mobile systems and with respect to green computing. From the GPGPU
applications point of view – such as the PAMONO image processing and analysis ap-
plication – the following can be concluded: The Multi-objective Hardware/Software-
Codesign for GPGPU Applications is important to chose the most energy-efficient
platform and to optimize the GPGPU application code as good as possible.

Chapter 6

Embedded System Middleware:
Basics

In Chapter 5, methodologies related to Multi-objective Hardware/Software Codesign
for GPGPU Applications were introduced. This chapter is the first one, which is
related to Service-Oriented and Resource-Aware Middleware for Embedded Systems
and in it basic technologies and paradigms in the context of service-oriented archi-
tectures will be provided. They are the bases for the methods to be presented in
Chapter 7.

Contents
6.1 Service-Oriented Architectures 89
6.2 Projects and Specifications based on SOA 90

6.2.1 OSGi . 90
6.2.2 Device Profile for Web Services 91
6.2.3 Classical Web Service Development Process 94
6.2.4 Web Service Business Process Execution Language 95

This chapter includes an introduction to SOA (Service-Oriented Architecture).
Therefore, in Section 6.1, basic terminology with respect to SOA will be described.
In Section 6.2, basic technologies such as web services and derived technologies will
be presented.

6.1 Service-Oriented Architectures

The basic principle of SOA is the utilization of term service to denote the access to
a certain functionality with a predefined interface. With regard to object orienta-
tion, this allows a higher level of abstraction because functionality is not bound to
a certain object [86].

The typical workflow for SOA – called SOA triangle – is depicted in Figure 6.1(a).
A service provider shares some functionality, which is published to a service broker
or in a broadcast fashion into a network. The service consumer searches for some
functionality at the service broker or in the network. It retrieves the address/lo-
cation where it can find the requested functionality. Then the service consumer

90 Chapter 6. Embedded System Middleware: Basics

(1
) P

ub
lis
h
Se
rv
ic
e (2)

Search
Service

(3)
G
et
Service

A
ddress

(4) Get Service Description

(5) Use Service

Service
Broker

Service
Provider

Service
Consumer

(a)

Standards

Security

Simplicity

Service-Oriented
Architecture

D
is

tr
ib

ut
ed

L
o o

se
ly

C
ou

pl
ed

R
eg

is
tr

y

P
ro

ce
ss

O
ri

en
te

d

(b)

Figure 6.1: (a) SOA Triangle (modified [86]) and (b) SOA Temple (modified [86])

requests a service description and the description of the service interface from the
service provider. Finally, the service consumer uses the functionality provided by
the service provider.

The principles of SOA are summarized by the so-called SOA-Temple (see Figure
6.1(b)). The first principle of SOA is that functionality can be distributed, so it
is not bounded to a place nor object. The second principle is that a service is
only loosely coupled, meaning that there is only a connection between the service
provider and the service consumer when requested. The third principle of SOA is
that, due to the loosely coupled behaviour and the distribution of services, the ser-
vice address/location must be available in some kind of registry. This can be done
in a centralized way or in a distributed fashion. The last principle of SOA is that it
is process-oriented. The three basements of SOA are the utilization of standards, a
secure access of the service functionality and simplicity. [86]

6.2 Projects and Specifications based on SOA

Service-oriented architectures can be adopted to a wide range of different scenarios.
Therefore, in this section several projects/concepts based on SOA will be described.
At first, a software component framework called OSGi will be presented in Section
6.2.1, followed by Section 6.2.2, in which, an embedded web service framework is
outlined. In Section 6.2.4, a service composition language standard will be described.

6.2.1 OSGi

OSGi [127] provides a platform for bundling software components and service-based
interaction. It was originally not designed for distributed service-oriented architec-
tures but towards an efficient local software management. The structure of OSGi
follows a layered approach as depicted in Figure 6.2. The central concept of OSGi is

6.2. Projects and Specifications based on SOA 91

Bundles

Hardware/OS Layer

Execution Enviroment

Life Cycle

Service

Module

Figure 6.2: OSGi Layers [127]

that of a bundle which is a software container including executables, a description
of the included functionality and descriptions of the dependencies to other bun-
dles. The management of these bundles is done by the OSGi framework along with
the management of the dependencies of the services. Services provide the actual
functionality of a bundle. A local service registry exists. OSGi supports a ser-
vice life-cycle management by providing functionalities such as installing, starting,
stopping and uninstalling. The module layer defines interfaces and access rules for
services and bundles. The execution framework layer is responsible for executing
bundles on a pre-defined execution environment, e.g. some bundles can only run on
a certain platform because only for this platform native libraries are available.

A reference implementation of the OSGi framework in Java exists. Nowadays, the
usage of OSGi becomes more and more interesting for the embedded and cyber-
physical systems world [108].

6.2.2 Device Profile for Web Services

The most utilized instance of service-oriented architectures are WS (Web Services)
[86]. Basic technologies of WS are standard internet protocols such as TCP [106],
UDP [105] and HTTP [51]. In addition, web service communication is based on
XML [28] which is the standard for structuring information. The standard commu-
nication is done via the SOAP protocol [27] which utilizes XML. A WS interface is
described by a description language WSDL [37]. A standard registry protocol for
web services is UDDI [13], but it is not necessarily needed when creating a SOA
with web services.

DPWS (Device Profile for Web Services) [31] is a set of web service specifications
tailored towards the use in field of embedded and cyber-physical systems. An exem-
plary protocol stack of DPWS is illustrated in Figure 6.3(a). In contrast to original
web services, DPWS services are bound to a particular DPWS device where DPWS
services are running on (depicted in Figure 6.3(b)). The DPWS device itself is called
hosting service providing meta-data about the hosted services. These hosted services
implement the application functionality. As can be seen in Figure 6.3(b), DPWS

92 Chapter 6. Embedded System Middleware: Basics

Application Specific Protocols

WS-MetadataExchange
WS-Transfer

WS-EventingWS-Discovery

WS-Security, WS-Policy, WS-Adressing

SOAP-over-UDP, SOAP, WSDL, XML

UDP
TCP

HTTP

IPc4/IPv6/IPMulticast

(a)

Client

Device
(Hosting Service)

Hosted
Service

Hosted
Service

(b)

Figure 6.3: (a) DPWS Stack [156] and (b) Interaction between Clients and Devices
(modified [31])

follows a client/server approach. The client searches for certain DPWS devices like
printers in the network. On a particular discovered printer, several services are lo-
cated like “printing a document” or “providing the level of the printers’ ink”. The
client can then choose one of the services and invoke the functionality it wants.

6.2.2.1 Basic Features

In this section two basic features of web services are described: SOAP [27] and
WSDL [37]. SOAP protocol is the standard communication protocol and WSDL is
the description language for describing a service interface.

SOAP: A basic internet protocol which is utilized for web services is SOAP. It
is used for providing a communication protocol to exchange information based on
XML. An XML message can be transferred over arbitrary underlying network pro-
tocols. The atomic entity of this protocol is a SOAP message as listed in Listing 6.1.
A SOAP message includes a SOAP envelope, which comprises a SOAP header with
information for and about the receiver of the message and information about the
sender. The SOAP body includes the information to be transmitted itself.

<SOAP−ENV:Envelope . .>
<SOAP−ENV:Header>
</SOAP−ENV:Header>
<SOAP−ENV:Body>
</SOAP−ENV:Body>

</SOAP−ENV:Envelope>

Listing 6.1: Structure of the SOAP Envelope

WSDL: WSDL (Web Service Description Language) is the basic technology for
describing a web service interface. The UML schema of a WSDL file is shown in
Figure 6.4. A WSDL comprises six different kinds of elements: types, message,

6.2. Projects and Specifications based on SOA 93

Figure 6.4: WSDL Scheme (modified [39])

portType, binding, port and service. types define the data types for the messages.
The different parts of an abstract message are defined with the element message. An
abstract operation with incoming and outgoing messages is specified with portType.
The concrete assignment of protocols to a particular portType is done with a binding
– especially for the defined operations and messages. The port defines an address of
a binding and a service element aggregates several ports.

6.2.2.2 Protocols

The specification and protocol stack of DPWS [156] is depicted in Figure 6.3(a).
Its specialities include the replacement of the service registry mechanism with an
ad-hoc search protocol and the introduction of a publish/subscribe protocol. The
most important specifications are as follows:

• WS-Discovery [88]: Advertise devices and services in the network and receive
publications from other devices joining the network. It is implemented with
the help of the SOAP-over-UDP protocol and utilizes multicast to publish and
listen on discovery messages.

• WS-Addressing [26]: WS-Addressing specifies an addressing scheme for web
services containing additional information for the SOAP header such as a
unique identifier for a web service.

94 Chapter 6. Embedded System Middleware: Basics

Requirements Analysis Design Implementation

Testing Deployment Runtime &
Maintenance

Figure 6.5: Web Service Life Cycle Phases (modified [64, 77])

• WS-MetadataExchange [41]: Web services specification for WSDL data and
other metadata transfer is stated in the WS-MetadataExchange specification.
Other metadata, except WSDL can comprise the device description or other
service related metadata.

• WS-Eventing [25]: In the WS-Eventing specification a publish/subscribe pro-
tocol for web services is introduced. This is highly important in order to
employ DPWS in the automation sector where sensors and actuators are com-
municating with each other. With respect to polling-based communication
scheme, publish/subscribe has the advantage of utilizing communication band-
width only when communication is needed at all.

• WS-Security [92]: A security protocol for web services in the DPWS context
is specified in WS-Security. WS-Security is especially important when com-
munication is done over a public wide area network link.

6.2.3 Classical Web Service Development Process

The WS (Web Service) implementation methodology for service-oriented architec-
tures follows a multi-phases approach employing an agile software development work
flow [64]. The overall web service implementation methodology workflow is depicted
in Figure 6.5. The workflow starts with recording the user and business require-
ments. These requirements comprise the actual needs of the user, but also the
demands for non-functional and functional requirements to the overall infrastruc-
ture. The second phase is the analysis of the requirements, meaning that functional
components and non-functional requirements for these components are specified in
formal way. The third phase of the web service development process is the design
phase, where the design of the interfaces by specifying e.g. the data types is done.
In addition to that, the interaction between the different web services and clients
is layouted. The services are implemented along with the WSDL (Web Services
Description Language) descriptions in the implementation phase. This phase in-
cludes porting and wrapping of already available software components to the cur-

6.2. Projects and Specifications based on SOA 95

rent application. In phase five, the functionality of single services and non-functional
requirements to a single service are tested. The deployment phase comprises ser-
vice deployment and the configuration to the actual platform. Furthermore, post-
deployment tests are conducted and the registration to a web service registry takes
place. The last phase is the runtime and maintenance phase. In this phase, the
system can e.g. be redefined to extra requirements which arise after deployment.
Also errors can be fixed or new features can be installed. [64]

6.2.4 Web Service Business Process Execution Language

Sequential invocations of several web services and handling their response can be
implemented by an application designer manually. Service orchestration languages
try to ease the automatic composition of different web services. WS-BPEL (Web
Services Business Process Execution Language) [8] is a description language for busi-
ness processes which imports the functionalities of a set of other web services and
exports their functionality as a new service. One objective of WS-BPEL is a formal
description for the exchange of messages between the different participating services.

A WS-BPEL description file contains an activity. This activity specifies business
processes which interact with its participating web services. An executable business
process can be e.g. hosted in a WS-BPEL engine or can be statically compiled.
Besides this main activity a WS-BPEL description file can contain a set of partici-
pating web services (<partnerLinks>), variables to store internal states or to bind
messages to them, handlers for events/faults or a correlation set for identifying the
instance of an addressed web service. Important concepts of an activity comprise
e.g. the creation of a new web service (<receive> and <reply>). The processing of
the messages can be sequential (<sequence>) and parallel (<flow>). Dependencies
between different web services are modelled as links (<links>) consisting of targets
(<targets>), sources (<source>) and the corresponding variables which are bound
to the messages of the web services. An WS-BPEL activity can include standard
structures from programming languages such as if-then-else, while and for.

Chapter 7

Service-Oriented and
Resource-Aware Middleware for

Embedded Systems

The scope of this chapter targets the Service-Oriented and Resource-Aware Mid-
dleware for Embedded Systems. In it, a distributed application design process with
the help of SOA will be described and methods to optimize it for utilization in the
embedded and cyber-physical system domain will be presented. In Chapter 6 the
fundamentals for efficient middleware design to be presented in this chapter were
provided. Additionally, the energy consumption and performance testbed presented
in Chapter 3 is utilized by the methods in this chapter for profiling the resource
utilization. Furthermore, the principles of web services and DPWS are the basic
techniques enhanced by the methods to be introduced. This chapter is then fol-
lowed by the conclusion chapter of this thesis.

Contents
7.1 Introduction . 98

7.1.1 Optimization Potential in Classical Web Service Development
Process . 98

7.1.2 Flexible Middleware Techniques and Resource Awareness . . 99
7.2 Embedded System Middleware Architecture 99

7.2.1 Introduction . 99
7.2.2 Related Work . 101
7.2.3 MORE - Materials and Methods 103
7.2.4 Use Case Evaluation . 105
7.2.5 Summary . 107

7.3 Lightweight Service Orchestration 108
7.3.1 Introduction . 108
7.3.2 Related Work . 110
7.3.3 Service Chaining - Materials and Methods 111
7.3.4 Evaluation . 113
7.3.5 Summary . 115

7.4 Resource Management . 115
7.4.1 Introduction . 115

98 Chapter 7. Middleware for Embedded Systems

7.4.2 Related Work . 117

7.4.3 Resource Management - Materials and Methods 118

7.4.4 Evaluation . 122

7.4.5 Summary . 126

7.5 Conclusion . 127

7.1 Introduction

In the automation domain, e.g. in the automotive sector and in the home automation
sector, SANETs (Sensor/Actuator NETworks) are reality [107] and trends towards
the use of SOA (Service-Oriented Architectures) have been started [42]. The shift
towards SOA was necessary due to the increased complexity of system software and
the need to re-use of software components in the face of shorter and shorter time to
market cycles.

As described in Section 1.1, the SOCRADES roadmap [124] summarizes several
challenges for the utilization of service-oriented architectures, such as high-level
communication libraries, service orchestration mechanisms and context-aware ser-
vices. These challenges will be addressed in the chapter by providing an efficient web
service based middleware. At first, the optimization potential in the classical web
service development process is evaluated (see Section 7.1.1) and then the different
novelties which will be presented in the chapter are sketched (see Section 7.1.2).

7.1.1 Optimization Potential in Classical Web Service Develop-
ment Process

From the field of embedded and cyber-physical systems several requirements arise
when using SOA and web services [124]. The major points of refinement to the
classical web service development process presented in Section 6.2.3 comprise the
following phases: design, deployment and runtime. In the design phase, it is manda-
tory to take into account the execution platform and environment of a service. For
example it has to be designed in which environment/platform a service should run,
e.g. not all features of classical web services are available. The deployment phase
should be redefined to work with ad-hoc deployment of services which means the
services are encapsulated in a component bundle and a services is made publicly
available in an ad-hoc environment without the use of a central registry. The run-
time phase is the last refinement point. This phase must support context awareness
of services and the platform in order to cope with the highly dynamic environment
in sensor/actuator networks.

7.2. Embedded System Middleware Architecture 99

Multi-objective Hardware/Software
Codesign for GPGPU Applications

Service-Oriented and Resource-Aware
Middleware for Embedded Systems

E
ffi
ci
en
t

R
es
ou

rc
e

U
ti
liz
at
io
n

Code
Optimization

Platform
Variants

Single
Platform

Different
Platforms

Mapping
Optimization

Design of Network
Embedded Manycore Systems

Flexible
Middleware

Service Or-
chestration

Middleware Design

Accounting
& Control

Context
Awareness

Resource Management

Figure 7.1: MORE - Overview on the Overall Design Process

7.1.2 Flexible Middleware Techniques and Resource Awareness

Based on the considerations done in the former section of this chapter and in Sec-
tion 1.1, several new approaches for creating sensor/actuator networks with het-
erogeneous devices will be introduced. In Sections 7.2 and 7.3, a highly flexible
communication middleware for embedded and cyber-physical systems is described
which includes a novel design and deployment process for web services. In addition
to that, a new service orchestration technique will be presented. In Section 7.4
techniques for an efficient and context-aware resource management are introduced
which enable single platforms in a web service environment to adapt the resource
utilization to a more efficient configuration.

7.2 Embedded System Middleware Architecture

In this chapter, the fundamental concepts of MORE (Network-centric Middleware
for GrOup communication and Resource Sharing across Heterogeneous Embedded
Systems) will be described. In the scope of the Design of Network Embedded Many-
Core Systems, it provides a flexible middleware design (illustrated in Figure 7.1).
Firstly, the overall concept of MORE will be introduced in Section 7.2.1 and then,
in Section 7.2.2 related work will be introduced. Afterwards, in Section 7.2.3 the
architecture of MORE will be provided. Two use case scenarios for MORE will be
evaluated in Section 7.2.4, followed by the summary of this chapter. MORE provides
the basic methods for the techniques which will be presented in Sections 7.3 and 7.4.

7.2.1 Introduction

MORE was designed in the scope of the MORE project [4, 5, 75, 133, 87, 116, 53,
153] and is based on a combined utilization of two different paradigms (as depicted
in Figure 7.2) [4]: Service-Oriented Architectures and a Multi-Layer Software De-

100 Chapter 7. Middleware for Embedded Systems

Hardware Layer

Operating System Layer

Application Layer

MORE Middleware Layer
Core

Management
Service (CMS)

Service A

Application

Added-Value-
Service

Figure 7.2: MORE Concept (modified [4, 153])

sign Approach. While the former is mandatory to achieve a high flexibility and the
integration of heterogeneous devices, the latter is demanded to achieve high effi-
ciency in terms of the runtime environment, hardware-dependent feature usage and
the utilization of resources. The MORE layers are divided into Application Layer,
Middleware Layer, Operation System Layer and Hardware Layer. MORE Services
and application are represented as eclipses.

Derived from the challenges of the SOCRADS roadmap [124], the following im-
portant requirements should be handled in MORE [4]:

• Capability Advertisements: Each device in an application scenario should
provide its hardware capabilities to other devices in the network. This is im-
portant in order to decide, whether certain computationally expensive services
can be located on a node or not.

• Publish/Subscribe: A polling-based communication approach is not efficient
to network types considered inMORE. Especially, when energy and bandwidth
are scarce, unneeded communication should be avoided in terms of efficiency.

• Connector Concept: MORE should provide a unified interface for different
types of connectors. This is mandatory when being used in combined local
area and wide area networks. Connectors in the MORE context are illustrated
as the six tiny rectangles at the edge of services depicted as ellipses (see Figure
7.2). The three rectangles of the left side denote incoming connectors and the
right side are outgoing connectors.

• Runtime (Re-)configurability: Application scenarios and user requirements
can change over time. In order to cope with these changes, MORE should
provide mechanisms which allow to adapt to a new situation or context.

Furthermore, MORE should provide a middleware that allows interaction between
heterogeneous embedded and cyber-physical systems. MORE follows a three-tier

7.2. Embedded System Middleware Architecture 101

L1 net
L2 net
Service Host
L1 Node
L2 Node
L3 Node

Figure 7.3: MORE - Network Structure (modified [4, 153])

approach by distinguishing between different types of hardware classes and network
connection types [4, 153]. An overview on the MORE network and system structure
is given in Figure 7.3. As can be seen in this figure, the following nodes classes exist:

• L1 Nodes: L1 nodes are server level devices comprising full-blown MORE
service engines and possibly web service registries such as UDDI. The nodes
in this class comprise wide area communication links (denoted as L1 net).

• L2 Nodes: Embedded systems or personal computer devices which also com-
prise full-blown MORE service engines are in this class. They include often
several link connections such as wide area communication links (e.g. UMTS
or GSM) but also local area network communication links (e.g. IEEE 802.11
(WiFi) or IEEE 802.15 (ZigBee)). Because of the capability to bridge between
these different network areas, they are also called MORE Gateway.

• L3 Nodes: L3 nodes are typical cyber-physical systems. They only include
local communication links and they are mostly directly connected to a L2
node. L3 nodes only comprise a subset of the MORE functionalities and
software stacks. L2 and L3 nodes are included in L2 nets as illustrated in
Figure 7.3.

There can also be devices in a MORE application scenario which host no MORE
Services. As MORE is based on web service technology, classical WS and external
middleware components based on WS, can also be included.

7.2.2 Related Work

Several middleware architectures for embedded and cyber-physical systems exist.
An excerpt of current middleware architectures based on SOA will be presented in
this section will. They will be explained in addition to the state-of-the-art technolo-
gies presented in Chapter 6.

102 Chapter 7. Middleware for Embedded Systems

MORE
Service Bundle

MORE Device
(Core)

Service
Logic Events

Execution Eventing Discovery

OSGI Framework

MORE Middleware

Figure 7.4: MORE Architecture [116]

PLASTIC [9, 115] is a project targeted towards an efficient communication mid-
dleware for Beyond3G networks. It is based on a two layered approach. On the
lower layer, PLASTIC comprises a communication middleware, employing a web
service based communication and a P2P routing mechanism. On the upper layer,
PLASTIC provides several generic services such as service discovery, context aware-
ness management and security services. However, PLASTIC is not targeted towards
sensor/actuator networks like MORE. In comparison to MORE, PLASTIC has a fo-
cus on high-level context awareness and security. The focus of MORE is towards
group communication and resource management.

The Amigo [142] project introduces the semantic web to networked home envi-
ronments. As PLASTIC, it comprises security and context awareness but from the
perspective of semantic web services. Amigo allows to seamlessly integrate local
and remote services with the help of a component framework. Several reference
implementations with OSGi and Microsoft .Net exist. Another basic technology of
Amigo is the utilizations of ontologies to create services and service compositions
automatically based on semantic information.

Several projects target the integration of OSGi and DPWS for a combined frame-
work. Two of them are described in [50] and [22, 23]. In [22], the ANSO project
is described which developed the DPWS Discovery Base Driver [23]. The DPWS
Discovery Base Driver enables an OSGi framework to interact with remote DPWS
services and extends OSGi with a registry including remote services. A similar tech-
nique was proposed in [50]. By utilizing these registry extensions it is possible to
use remote and local services in a transparent way, meaning that the service con-
sumer interacts with remote services in the way as for local services. In contrast to
these projects, MORE uses OSGi only for bundling software components and for
the on-the-fly service deployment.

7.2. Embedded System Middleware Architecture 103

7.2.3 MORE - Materials and Methods

The basic component of MORE is the MORE Core. This MORE Core is running –
with some exceptions – on all devices in an application scenario realized withMORE.
Those devices are called MORE Devices. The services specified in MORE (short:
MORE Service) can be accessed via a unified interface which hides different con-
nector types. Connector types comprise bindings for internal (local) communication
as well as SOAP and µSOA [153] bindings for external (remote) communication.
The MORE design workflow distinguishes two types of services, application-related
services, which have to be written or ported to a particular application and added-
value-services [4, 5, 75, 133, 87, 116, 53, 153] which offer common functionality like
data, group, and resource management services. These added-value-services can be
selected for certain applications and may be loaded to a MORE Device on demand.
This is especially important to provide a middleware with a small footprint. The
added-value-services can be distinguished in different groups:

• Communication Services: Efficient communication is mandatory in mobile and
networked environments. Therefore, different communication services can be
provided, e.g. message prioritisation services, routing services etc.

• Group Services: Group communication is one of the major aspects in MORE.
Features of these services include group management and sending/receiving
messages to groups in a multicast fashion. For group services a policy-based
approach was developed [54].

• Security Services: Security services should provide different mechanisms for
secure message communication.

• Data Services: Central or distributed data stores are provided by services in
this domain.

• Resource Management Services: Not only the services themselves must be
efficient but also the execution on the different platforms. The adaptation of
the platform to a service and the adaptation of the service to a platform is the
domain of the resource management.

The architecture of MORE is depicted in Figures 7.4 and 7.5. The MORE Core
is the fundamental component of the MORE stack. Without it no other MORE
Service can run, be deployed or communicate. The underlying software structure
framework is OSGi which starts the MORE core at nodes’ startup. Each MORE
Service is encapsulated by one OSGi bundle (as depicted in Figure 7.4). When start-
ing a MORE Services bundle in the OSGi framework, it automatically registers to
the MORE Core and is being made ready for external and internal communication.

The communication protocols used inMORE are based on DPWS specifications [31].

104 Chapter 7. Middleware for Embedded Systems

MORE
Service Bundle

MORE Device
(Core)

Primary
Interface

Discovery
Interface

Events

Service Logic

Execution Services

• Addressing

• Soap Engine

Eventing Services

• Subscription
Management

Discovery Services

• Publish Metadata

• Cache

Figure 7.5: DPWS [70] in MORE (modified [116])

The interaction between the MORE Core and the MORE Services is shown in Fig-
ure 7.5 in detail. According to the DPWS specification two types of services exist:
Hosting services and hosted services. Hosting service are the basic services run-
ning on a device. In MORE, these hosting services are part of the MORE Core
and of the MORE Core bundle (as depicted in Figures 7.4 and 7.5). The other
type services are the hosted services. In MORE, these services are the application
services or the added-value-services. The MORE Core utilizes WS-Discovery for
publishing/receiving devices and services in/from the network. Additionally, the
MORE Core provides the access to the metadata and WSDL definitions of other
hosted services located on remote devices. The eventing and notification services
(WS-Eventing) comprise a publish/subscribe protocol, while the execution services
offer the functionality for service invocation.

7.2.3.1 Service Development and Deployment

All MORE Services are based on the MORE Service development process (as de-
picted in Figure 7.6). Developing a MORE Service starts by defining its WSDL de-
scription which includes information about available functionality, data types used
as parameters and return values. The application designer can focus on the service
functionality itself, as stub and skeleton classes are generated from WSDL descrip-
tions. MORE Service bundles are installed by deploying them to a local directory –
available on each MORE Device – where they are automatically detected and made
available to the MORE Core. Service updates are done in this way also. As soon as
MORE services are registered to the MORE Core, they are able to be discovered, to

7.2. Embedded System Middleware Architecture 105

Interface
Design

Logic Imple-
mentation

Bundle
Export

Remote
Management

MORE Device

Service
Bundle

MORE Device

MORE Device

Service

Service

Hello/Bye

Hello/Bye

load

D
e
v
e
lo
p
m
e
n
t

D
e
p
lo
y
m
e
n
t

MORE Service

Figure 7.6: MORE Service Development and Deployment Cycle (modified [134])

exchange metadata, and to be invoked locally or remotely. This approach simplifies
the process of service management on embedded devices.

7.2.4 Use Case Evaluation

In this section, two use case scenarios will be shown which can be solved by the multi-
tiered network approach of MORE. Firstly, in Section 7.2.4.1, a scientific use case
will be presented and then a use case scenario from intra logistics will be outlined
in Section 7.2.4.2. The use cases themselves were already described in Section 2. In
this section, a realization of these use cases with the help of MORE is explained.

7.2.4.1 Scientific Sensor Network Scenario

The original idea ofMORE was to support scientific application scenarios employing
sensor networks. An example application scenario was outlined with MORE [57]
which will be presented in the following – according to the description in [116]. The
use case scenario was entitled with the term Mitigation Management. It is described
as follows: A number of sensor nodes are distributed at remote locations in the forest.
The sensors of the sensor nodes include temperature, moisture and gas sensors. In
former times, the data from these sensors were transferred manually to scientists to
evaluate this data. The new architecture of this scenario with MORE is depicted
in Figure 7.7. As can be seen in this figure, a central data server exists having
L1 node characteristics. The data on this central data server is provided to end
user devices such as smart phones and personal computers by one or more MORE
Services, either by providing raw data or processed data. The second purpose of the

106 Chapter 7. Middleware for Embedded Systems

Mitigation Network
Network

Central Database
& End User

MORE
Gateways

SensorsEnd User
Device

Central Database

End User Device
e.g. Smartphone

Temperature
Sensor

Moisture
Sensor

Figure 7.7: Network Structure within the Mitigation Management Scenario (modi-
fied [63])

data server is to act as a data sink for the sensor data. Therefore, the data server
subscribes to the MORE Gateways which are located at remote sites. They have the
hardware characteristics of L2 nodes. Each of them comprises one or more sensor
nodes and a wide area communication link, e.g. UMTS or GSM. MORE Gateways
publish in a certain interval the sensor data to the central database. An add-on
feature was to provide MORE Gateways with extra logic, such as the possibility to
react to extreme sensor data directly. For example, a MORE Gateway can create a
communication group in case of high temperature and low moisture values to inform
forest departments or fire brigades about a high risk of forest fires.

7.2.4.2 Intra-Logistics Scenario

Traditional conveyor belt systems comprise central control mechanisms such as PLCs
(Programmable Logic Controllers). They administrate a large variety of sensors and
actuators. In this section, an exemplary SANET for a conveyor belt system from
the field of automated facility logistics systems is the considered use case as de-
scribed in Section 2.2. This SANET controls a conveyor belt system (depicted in
Figure 7.8) comprising different sensor nodes and actuator nodes, directly connected
with MORE. This is fundamentally different, but more efficient, compared to tra-
ditional systems where there is only a central controlling instance. The routing of
the bins or parcels in that conveyor belt system is done by identifying a QR code
[44] on the parcel by a camera system and by requiring routes for that QR code
from a central database. The switches of the conveyor belt systems are controlled
by the camera systems. The camera systems are called VSU (Visual System Units).
The main task of VSUs is to observe the conveyor belt system for bins or parcels
and to route them according to centrally stored routing information. In addition
to that each VSU subscribes to the outputs of predecessor VSU to look forward to

7.2. Embedded System Middleware Architecture 107

Conveyour System
Network

RFIDDatabase

Visual System
Unit

Cameras
& Switches

RFID
Reader

Switch SwitchCamera Camera

VSU1 VSU2 RFID
Sensor

RFID Database

VSU

Figure 7.8: Network Structure within the Conveyor System

bins routed in its direction.

The considered conveyor system as depicted in Figure 7.8 is a typical hierarchi-
cally structured SANET. At the topmost level, large-sized computer systems are
used which run e.g. the RFID/QR code central database. They have L1 node char-
acteristics, i.e. they are equipped with full featured web services and web service
orchestration engines. At this level no resource constraints aside from economical
or environment protection reasons exist. At a lower level (depicted in Figure 7.8 at
left-hand side) components of the sensor network such as VSU are used to aggregate
and forward information. They are connected among each other, to the controlled
switch and to the central RFID database. These systems are equipped with stan-
dardized local-area communication interfaces to allow a communication with the
sensor/actuator from outside. They have L2 node characteristics, i.e. the resources
of these systems are constrained in processing and memory capabilities and they
often have energy constraints. In order to cope with these constraints, software run-
ning on these systems have to be developed by keeping them in mind. For example,
not all features of topmost level systems can be deployed. Systems of the lowest
level are highly resource constrained. These systems are the sensor/actuator nodes
like the switches with minimal processing power and only limited communication
capabilities. These systems have L3 node characteristics.

7.2.5 Summary

In this section a publish/subscribe based middleware was introduced which was
aimed at the provision of an efficient and flexible service-oriented architecture ap-
proach for heterogeneous (embedded) systems. It is targeted towards the use of
service-oriented architectures in highly dynamic application scenarios with hardware
platforms reaching from full-blown servers, personal computers down to embedded
and cyber-physical systems. MORE is able to provide efficient machine-to-machine
and machine-to-human facilities and ease the development and deployment of dis-
tributed applications. For the latter,MORE provides techniques such as over-the-air
deployment and updates.

108 Chapter 7. Middleware for Embedded Systems

Multi-objective Hardware/Software
Codesign for GPGPU Applications

Service-Oriented and Resource-Aware
Middleware for Embedded Systems

E
ffi
ci
en
t

R
es
ou

rc
e

U
ti
liz
at
io
n

Code
Optimization

Platform
Variants

Single
Platform

Different
Platforms

Mapping
Optimization

Design of Network
Embedded Manycore Systems

Flexible
Middleware

Service Or-
chestration

Middleware Design

Accounting
& Control

Context
Awareness

Resource Management

Figure 7.9: MSC - Overview on the Overall Design Process

In the following sections, the MORE design is extended by methods for efficient
service composition (see Section 7.3) and resource management (see Section 7.4).

7.3 Lightweight Service Orchestration

In this chapter, a service orchestration method for MORE – called MSC (MORE
Service Chaining) will be introduced. Following the introduction in Section 7.3.1,
in Section 7.3.2 an overview on the state-of-the-art and related work for service
orchestration will be given. The proposed MSC mechanism will be described in
Section 7.3.3 and in Section 7.3.4 results on resource consumption and on perfor-
mance indicators, such as runtime are highlighted. Finally, the chapter is concluded
(see Section 7.3.5) and directions for possible future work are given. In the scope of
the overall design process, depicted in Figure 7.9, in this chapter a service orches-
tration mechanism for a flexible service-oriented middleware is provided.

7.3.1 Introduction

Sequential invocations of several web services and handling their response can be
implemented manually by an application designer. Service orchestration languages
try to ease this by providing methods to an automatic composition of already avail-
able web services. MSC will provide methods to compose MORE Services into large
services called service chains.

The concept of service orchestration with MSC is shown in Figure 7.10(b). A
sequential invocation of MORE Services on a remote node is not efficient, especially
when communication to that node is performed on a link with high latency and low
bandwidth. An example of a sequential invocation of MORE Services is illustrated
in Figure 7.10(b). In this figure, firstly, Service A is invoked from remote and then

7.3. Lightweight Service Orchestration 109

MORE Middleware Layer

(1) (2)(3) (4)

Service A Service B

(a)
F u

n
ct
io
n
al
it
y
an

d

D
at
a
F
lo
w

MORE Middleware Layer

(1)

(2) (3)

(4)

(5)

Service A

Service
Chain
Proxy

Service B

(b)

Figure 7.10: (a) Sequential MORE Service Invocation and (b) MSC Concept

Service B. In Figure 7.10(b), a service chain proxy is depicted which invokes the
participants of a service chain (Service A and B) and is responsible for conducting
the external communication. The functionality and data flow for a service chain
invocation is annotated by indexes (1)-(5). As can be seen there, the external com-
munication is done by the service chain proxy. The invocation of the other services,
is accomplished by the service chain proxy.

In order to fit into the architecture of MORE, the following important requirements
should be handled in MSC :

• Seamless Integration: The idea of MSC is to combine functionality which
is used in a certain way repeatedly, in a new service. Due to the DPWS-
based approach in MORE, it is mandatory that MSC should provide this
new service as every other atomic service which also includes concepts such as
service discovery and WSDL provision.

• Maximal Flexibility and Dynamicity: As MORE Services can be deployed at
runtime on a MORE Device, the same functionality should be available for
service chains. In addition to that service chains should support dynamic
discovery of the participants, the invocation of local and remote services and,
MSC should be not based on a statically created service orchestration, as this
would be to inflexible.

• Low Resource Utilization: The target towards employing MSC on embed-
ded systems makes it mandatory to provide a solution with a small memory
footprint.

110 Chapter 7. Middleware for Embedded Systems

7.3.2 Related Work

Service orchestration provides efficient ways for re-using existing services and for
composing a set of them to a new overall service functionality. In this section,
a short overview on standards in this area is provided and existing approaches
for service orchestration are described. Especially service orchestration techniques
tailored towards the embedded and cyber-physical system domain are outlined.

WS-BPEL Extension for DPWS: In WS-BPEL several ways exist for utilizing
participating services. One possibility is to provide an a priori known service ad-
dress, e.g. a hotel room reservation system being reachable through a static address
on a server. In the embedded and cyber-physical system domain, a central registra-
tion mechanism is not always available and therefore, services have to be actively
discovered in the network. DPWS specifies WS-Discovery to locate devices and their
services in a local area network. In [18, 19] the authors extended WS-BPEL with sev-
eral DPWS-related activities in the namespace http://www.ws4d.org/bpeldiscovery.
Therefore, the authors designed a special WS-BPEL engine that supports WS-
Discovery, WS-MetadataExchange and WS-Transfer. The extensions include the
following features: asynchronous and synchronous discovery of devices and services,
validation of discovered services and fault/compensation handling.

<ws4d:discoverDev
scopes="QName− l i s t "? types="QName− l i s t "? devRef="EPR− l i s t "

/>

<ws4d:d i scoverSvc
scopes="URI− l i s t "? types="QName− l i s t "? devRef="EPR− l i s t "?
devAds="QName− l i s t "? checkRef="EPRlist "?
svcRef="EPR− l i s t " partnerLink="QName"?

/>

<ws4d :va l idateSvc
svcRef="EPR" partnerLink="QName"

/>

Listing 7.1: WS-BPEL Extension Activities for Synchronous Discovery [18, 19]

In Listing 7.1 the extensions made to WS-BPEL in order to use synchronous DPWS
service discovery are depicted. The discovery process for DPWS services comprises
two phases as described in Section 6.2.2. In the first phase, all DPWS devices with
a certain scope and type are discovered and their addresses are returned. In the
second phase, the hosted services are discovered. The first action in Listing 7.1
describes the discovery of devices which returns a list of devices. The action can be
constrained to certain scopes and types. The service discovery activity which is the
second activity in Listing 7.1 searches for certain services and also validates if the
discovered services are compatible to a WSDL or have certain attributes. In order
to validate available services, an additional validation service activity was specified.

7.3. Lightweight Service Orchestration 111

Application Development
& Deployment

Service Orchestration

Service Chaining

Service
Development
& Deployment

WS-BPEL
Domain

Service
Chaining
Domain

Tier 1

Tier 2

Tier 3

Figure 7.11: MSC - Application Areas

The authors of [18, 19] implemented a WS-BPEL engine that generates Java byte
code from the WS-BPEL process and the WSDL descriptions. The compiled WS-
BPEL process can then be executed on a DPWS-enabled device. However, this
approach is not sufficient for ad-hoc networks, were high flexibility is needed.

Sliver: Sliver [62] is a project which aims at the provision of WS-BPEL to
pervasive computing. Therefore, lightweight implementations towards the usage in
mobile environments have been provided. In contrast to MORE, Sliver was not
designed to cope with limited resources besides memory. In addition to that it is
not that flexible, e.g. due to the lack of an ad-hoc services discovery mechanism or
runtime update/deployment of services.

7.3.3 Service Chaining - Materials and Methods

The creation of a service chain and the integration of MSC in MORE will be de-
scribed in this section. MSC is typically applied to MORE Gateways (see Figure
7.11), where they can be utilized for flexible service orchestration without the uti-
lization of complicated WS-BPEL engines. The typical MSC application scenario
is the following: A MORE Gateway is connected to some L3 sensor nodes via a
local area network. Each L3 sensor node provides a MORE Service that appends its
sensor values to a sequence of sensor values. This aggregated data is then available
via a MORE Service representing the service chain. The flexibility of the MSC can
be used e.g. for easily integrating new sensor nodes.

Configuration and Construction: MSC starts with designing interface de-
scription. In order to compose MORE Services, it is essential that the structure
of the messages and the types inside the different message parts of the consecutive
MORE Service operations are compatible with each other. The description of a
service chain is an XML schema (see example in Listing 7.2) – called SCDF (Service
Chain Description File) – which comprises the namespace, the identity of the service

112 Chapter 7. Middleware for Embedded Systems

MORE Device (Core)

Execution

Eventing

Discovery

OSGI Framework

Service Chainning
SDCF
Parsing

WSDL
Creation

XML
(De-)Serialize

(De-)
Registration

MORE Middleware

Figure 7.12: MSC in the MORE Architecture

chain and the execution sequence of the different service chain participants. The
WSDL of the service chain is created on-the-fly when starting the service chain.
The participants of a service chain can be local on the same MORE Device or re-
mote on other MORE Devices in the network. This is indicated by the <local>
element. When a certain service address should be utilized, the unique identifier of
the MORE Service must be provided with the <UID> tag. Otherwise, an arbitrary
MORE Service with a certain scope can be discovered with WS-Discovery and a
random one is selected.

<tns :Se rv i c eCha inObjec t xmlns : tns=" Serv iceCha in ing ">
<Se r v i c eCha i n I d en t i f i e r>ServiceChainA</ Se r v i c eCha i n I d en t i f i e r>
<NameSpace>ht tp : //www. i s t −more . org /SC</NameSpace>
<Operation>GM</Operation>
<DependentServices>
<DependentService S e r v i c e I d e n t i f i e r=" ht tp : //www. i s t −more . org /LS">
<Serv iceOperat ion>GL</ Serv i ceOperat ion>
<NameSpace>ht tp : //www. i s t −more . org /LS</NameSpace>
<l o c a l>yes</ l o c a l>

</DependentService>
<DependentService S e r v i c e I d e n t i f i e r=" ht tp : //www. i s t −more . org /MS">
<Serv iceOperat ion>GML</ Serv i ceOperat ion>
<NameSpace>ht tp : //www. i s t −more . org /MS</NameSpace>

</DependentService>
</DependentServices>
</ tns :Se rv i c eCha inObjec t>

Listing 7.2: Service Chain Configuration File Example

Architectural Integration in MORE : The MSC module is directly integrated
in the MORE Core as depicted in Figure 7.12. The module is capable of using all
MORE Core services such as discovery or communication with other MORE Ser-
vices. The life cycle of a service chain comprises, analogous to the MORE Service
life cycle, four steps: service chain construction, service chain deployment, service

7.3. Lightweight Service Orchestration 113

Testing Node Node under Test

Test
Application

Location
Service

Measurement
Service

Invocation 1

Invocation 2

Location (lon,lat)

Measurement (value)In
vo

ca
ti

on
R

un
ti

m
e

Link with Delay

(a)

Testing Node Node under Test

Test
Application

Location
Service

Measurement
Service

Service
Chain Proxy

Provide
Location

Provide
Measurement

Invocation

Measurement
(value)

Location
(lon,lat)

Location
(lon,lat)

Measurement
(value)

In
vo

ca
ti

on
R

un
ti

m
e

Link with Delay

(b)

Figure 7.13: (a) Direct Remote Invocation of two Services and (b) Remote Invoca-
tion of a Service Chain. Both over a Link with Delay.

chain utilization and service chain un-deployment. Before creating the MORE Ser-
vice, the MSC module parses the SCDF, discovers participating (remote) MORE
Services, checks the availability of the participating MORE Services, registers the
MORE Services of the service chain to the MORE Core and finally creates the
WSDL of the service chain on-the-fly. If a member of a service chain fails or is not
available, the service chain will return an error message.

As described in the former section, MSC is capable of creating a service chain
from MORE Services available on the same MORE Device or are available on other
MORE Devices. The invocation process for participating MORE Services inside
the MSC module consists of three phases. In the first phase, the incoming message
parts are parsed and transformed to a format which can be processed by the service.
Secondly, the participating MORE Service is invoked. The response of a service is
transformed and sent back to the invoker of the service chain or to the succeeding
participating MORE Services.

7.3.4 Evaluation

The evaluation is split into two parts. First of all, some resource considerations
are made (see Section 7.3.4.1), followed by a runtime efficiency evaluation for an
example scenario is given in Section 7.3.4.2.

7.3.4.1 Resource Considerations

MSC is based on the DWPS4J implementation [117] and it requires an external
parser (Apache Crimson) for marshalling between the different data types of the
participanting MORE Services. The total ROM footprint for MSC is 335 KB. With
regard to commercial WS-BPEL engines having a size of at least 20 MB [19] in
addition to the Java environment, this footprint is far smaller.

114 Chapter 7. Middleware for Embedded Systems

Module Size (KB)

Service Chaining Module 134
Apache Crimson 201

Total 335

(a)

5 10 20 40 80 160 320
0

200

400

600

Round Trip Delay (ms)

R
un

ti
m
e
(m

s)

Sequential Invocations (SCEN A)
Service Chaining (SCEN B)

(b)

Figure 7.14: MSC Evaluation Results: (a) Memory Footprint MSC Module and (b)
Invocation Times for Evaluation Scenarios

7.3.4.2 Use Case Evaluation

In this section, it will be evaluated if MSC on a L2 node is beneficial in terms of
runtime. Therefore, two test scenarios are compared to each other which emulate
the influence of the link delay of long-range wireless connections. Per link direction
an additional delay was added to all outgoing packets with the help of the traffic
control of Linux [3] in order to emulate long-range wireless connections. The scenar-
ios were created as depicted in Figures 7.13(a) and 7.13(b). In Figure 7.13(a), both
services on a DPWS device are sequentially invoked. In Invocation 1 the location
of the node is examined with the Location Service and in a second invocation the
update-to-date sensor values are requested. In Figure 7.13(b) the same functionality
is provided but the testing application requests the service chain proxy to acquire
measurement data with position information.

The results for the evaluation are shown in Figure 7.14(b). SCEN A comprises
the scenario depicted in Figure 7.13(a) and SCEN B the one illustrated in Fig-
ure 7.13(b). Both, the Node under Test and the Testing Node were executed in a
separate virtual machine with traffic control equipped Linux. For each scenario, 300
service invocations were conducted. The aggregated link delay was chosen between
0 ms and 320 ms. As can be seen in Figure 7.14(b), SCEN A outperforms SCEN
B only when the link delay is below 10 ms. When the link delay is higher the
invocation of the service chain brings higher performance.

7.4. Resource Management 115

Multi-objective Hardware/Software
Codesign for GPGPU Applications

Service-Oriented and Resource-Aware
Middleware for Embedded Systems

E
ffi
ci
en
t

R
es
ou

rc
e

U
ti
liz
at
io
n

Code
Optimization

Platform
Variants

Single
Platform

Different
Platforms

Mapping
Optimization

Design of Network
Embedded Manycore Systems

Flexible
Middleware

Service Or-
chestration

Middleware Design

Accounting
& Control

Context
Awareness

Resource Management

Figure 7.15: Resource Management - Overview on the Overall Design Process

7.3.5 Summary

In this section, a service orchestration approach – called MSC (MORE Service
Chaining) – based onMORE and tailored towards embedded gateway nodes (MORE
Gateways) in hierarchical networks was presented. The MSC approach targets
gateway nodes in 3-tier network topologies. The MORE Service representing the
service chain is created on the MORE Gateway at runtime and allows L2 and L1
nodes to access the service chain as normal MORE Services. In an evaluation, it
was shown that in networks with large latencies the processing overhead for MSC is
acceptable and that MSC can provide a flexible service orchestration mechanism.

7.4 Resource Management

The resource management facilities implemented in MORE are described in this
chapter. After an introduction to the research areas resource management and non-
functional requirement awareness in Section 7.4.1, in Section 7.4.2, state-of-the-art
technologies and related work to these areas will be presented. In the scope of the
overall design process, depicted in Figure 7.15, in this chapter novel functionalities
for the resource accounting/control and two resource management mechanisms, NO-
FURSI (NOn-Functional Requirements aware Service Invocation) and - NOFURAS
(NOn-FUnctional Requirements Aware Subscription) will be introduced. These re-
source management mechanisms provide context awareness for MORE Services and
MORE Devices. The chapter ends up by presenting results and summarizing the
section.

7.4.1 Introduction

According to the authors of [103], “non-functional requirements are ... referred to as
constraints, softgoals, and the quality attributes of a system”. This non-functional

116 Chapter 7. Middleware for Embedded Systems

information should be modelled in a middleware architecture to handle resource uti-
lization efficiently. As stated in [55], software design comprises three non-functional
core concepts. First of all, there are non-functional attributes which comprise cer-
tain classes of attributes such as time efficiency. The second non-functional concept
is that of a non-functional behaviour which is the assignment of a non-functional
attribute to a software component. The last term in this context is a non-functional
requirement which is the actual assignment of a concrete value to a non-functional
behaviour. The handling of such non-functional information is the domain of the
MORE Resource Management which is designed for providing context awareness for
MORE Devices in terms of resource utilization.

The following resources should be considered in MORE Resource Management [4]:

• Processing Resources: In MORE, multi-task environments with priority based
scheduler at operating system level will be considered. Hence, the processing
capability of a service can be controlled e.g. by priority assignment, time
allocation techniques [5] or adaptive sampling.

• Energy Consumption: The energy consumption is one of the most critical non-
functional attribute for mobile devices. Therefore, it must be considered in
resource management for middleware applications comprising mobile devices.

• Bandwidth: Especially in remotely deployed sensor networks, the bandwidth is
a critical issue. High bandwidth and long distance communication are inducing
a high energy consumption. Therefore, it can be beneficial in terms of energy
consumption to process or compress data in-situ on the sensor nodes.

In order to handle resources efficiently, information from the middleware layer should
be taken into account [124], e.g. information about processing demands. The design
of the resource management should comprises the following requirements:

1. Modular Resource Management : Due to diverse hardware platforms it is manda-
tory that resource management can load different configurations and provide
different hardware platform aware plug-ins.

2. Tight Integration: An efficient resource management approach must be tightly
coupled to different services of the middleware layer, in particular with the
MORE Core. Especially the execution services and the eventing services must
interact with the resource management.

3. Multi-Layered Approach: Not all features of the resource management can
be employed in the middleware layer as they directly target the execution
platform. Therefore, there is a need to implement resource management func-
tionality on operating system and hardware level.

7.4. Resource Management 117

7.4.2 Related Work

Several research fields build the basis for efficient resource utilization and resource
management. At first, related work dealing with energy consumption in SANETs
will be presented, followed by the description of adaptive sampling and resource
management techniques for sensor/actuator networks.

In [120], the authors presented an approach to reduce the amount of data over
time which is transferred in a wireless sensor network. The authors mainly focussed
on efficient data packet routing in a network and on the aggregation of data inside
a network to reduce energy consumption. The authors of [91] described routing and
topology building methods for a wireless sensor/actuator network. Their method
models the end-to-end delay and the energy consumption as a hard constraints
which must be met. In addition to that, they restrict the topology of the network,
in such a way that there are only connections between one sensor and one actuator.
Saving energy was accomplished in the aforementioned works mostly by efficient
routing which is not the objective of the resource management functionalities to be
presented in this chapter.

The amount of work already accomplished in the field of resource management
is enormous and therefore, only an excerpt from common literature can be pro-
vided. One resource management method to be described in this chapter adapts
the triggering frequency of the sensor nodes in the network which can be seen as
a type of Adaptive Sampling. In this research area, several approaches exist such
as the work presented in [2]. Within that work, the authors proposed an adaptive
sampling method that enables the deployer of a wireless sensor network to conserve
energy by exploiting the fact that sometimes the energy consumption for processing
is higher than for communication. The proposed method reduced the number of
processing events by estimating the optimal frequency in which the sensor nodes
must be triggered and thereby decrease the amount of processing on sensor node
respectively the energy consumption.

Work in the field of resource management and adaptive applications was de-
scribed in [5]. In [5], the authors created a time sharing protocol which allows to
assign a fixed percentage of processing time to a task in a Linux operating system.
This work was extended to cooperate with MORE, by allowing a MORE Service
to occupy certain processing resources. In [40], the authors presented a framework
for creating networks with different QoS levels. In that work a remote procedure
call which can adapt to a QoS change was introduced. Important QoS values such
as the utilization of network link are monitored. In [16], several techniques are
introduced which can be used to reduce the energy consumption of embedded sys-
tems by dynamic power management. The so called policy optimization problem –
outlined in [16] – is especially interesting for resource management functionalities
to be presented in this chapter. The policy optimization problem describes – in

118 Chapter 7. Middleware for Embedded Systems

a theoretical way – how to optimize a system with dynamic power management
techniques. Another project targeted towards resource management in the field
of embedded and cyber-physical system middleware is BETSY [111, 118]. In the
BETSY project, formal models were developed which allow to build applications
with different QoS levels. These models can then be utilized to adapt a system
to environmental changes. For example, in a mobile streaming application, several
video versions with different encoding qualities can be available. In the case that
the bandwidth of an available wireless link decreases, the resource management can
decide to switch to another version of the video which uses less bandwidth. The QoS
will also be considered in the resource management functionalities to be presented in
this chapter but from the sampling perspective. A holistic resource management ap-
proach was developed by the GRACE project [144]. The objective of the GRACE
project was to provide multi-layer resource management for mobile devices. The
operating system scheduler, the network links and the CPU are monitored for that
purpose. On the controlling side, a per application controller and a global controller
exist. The global controller is responsible for optimizing the system utilization while
considering constraints for the processing resources and available network link band-
width. The per application controller is responsible for optimizing the execution of
a single application. Further resource management works and the challenges to an
efficient embedded system design can be found in ARTIST Design roadmap [24].

7.4.3 Resource Management - Materials and Methods

In this section different methods for MORE Resource Management are introduced.
At first, in Section 7.4.3.1, accounting and control methods are presented (see Sec-
tion 7.4.3.1), followed by a description of two resource management functions used
in MORE (see Section 7.4.3.2 and 7.4.3.3).

7.4.3.1 Resource Accounting and Control

The basic features of the MORE Resource Management are the control of resource
accesses and the accounting of resources utilization. This is partly done at middle-
ware level and operating system level and demands for a tight integration of these
two levels. MORE resource management is the connecting element between the
middleware level and operating system level. It provides the possibility to install
so-called resource units at the operating system level as depicted in Figure 7.16.
Examples for such resource units are a DVFS unit which enables the resource man-
agement to control the voltage and frequency of the CPU or memory, a CPS unit [5]
which can be used to allocate a certain amount of processing time to services and a
Processing Interval Unit which tracks for the publish-subscribe mechanism ofMORE
the interval between event notifications and runtime of single service invocations.

7.4. Resource Management 119

Operating
System
Layer

MORE Middleware Layer

Core
Management
Service (CMS)

Resource
Man. Service

Obverse &
Control Unit

Figure 7.16: Resource Management - Accounting and Control

7.4.3.2 Non-Functional Requirements Aware Service Invocation (NO-
FURSI)

In traditional web service environments, standards such as WS-Policy [10] exist
which allow a service consumer to request from a service provider a description on
non-functional attributes such as security or quality. Projects like PLASTIC [9]
use similar approaches to provide a resource optimized version of services based on
so-called SLS (Service Level Specifications) and context information. However, in
the field of embedded systems, a deeper access is needed, e.g. by controlling the
scheduling policy or the processing power of a CPU. The resource units presented
in the last section control the processing of a CPU and will be used in the context
of the NOFURSI (Non-Functional Requirements aware Service Invocation) imple-
mented in MORE.

The NOFURSI approach is designed as depicted in Figure 7.17. The non-functional
attributes can be e.g. specified in a WSDL file analogue to the proposed specification
of performance qualifiers for web services in [39]. A service consumer (Requesting
Service) wants to invoke a service with the maximal available processing power of
the service provider’s (Providing Service) hardware platform. The single steps for
NOFURSI are labelled with a natural number from (1) to (6). Firstly, the ser-
vice provider requests the WSDL file containing available levels of a non-functional
attribute: processing power. Secondly, this WSDL file is sent to the service con-
sumer. Thirdly, the service consumer sends a service invocation message including
a non-functional requirement towards a specific processing power level. The service
provider then requests the resource at the resource management, the service is exe-
cuted and the resource is released. In the last step the service consumer can retrieve
the information that it has requested.

In the following, the functionality of the DVFS-Unit - already mentioned in Sec-
tion 7.4.3.1 - will be explained in more detail. DVFS (Dynamic Voltage and
Frequency Scaling) techniques estimate the most suitable frequency and voltage

120 Chapter 7. Middleware for Embedded Systems

(2) Retrieve WSDL with SLS

(6) Get Service Data

(1) Get WSDL with SLS

(3) Invoke Service with SLS

(4) Request Resource
(5) Release Resourece

Control Units

Requesting
Service

Providing
Service

RMS
Service

Figure 7.17: Resource Management - NOFURSI

configuration to reduce the dynamic power consumption. This can be e.g. done by
a simple regulation rule: If the processor load is high, use a high processor frequency.
If the processor load is low, use a low processor frequency. A dominant factor of
the dynamic CMOS power consumption is the transient power consumption which
describes the power consumption of transistor state changes. The transient power
consumption P in watt (W) for CMOS circuits is defined as [32, 126]:

P = N · cf · f ·V 2
dd, (7.1)

where N is the switching activity of the transistors, cf is the load capacity in ampere-
seconds per volt (As

V), f the operating frequency in Hertz (Hz) and Vdd the supply
voltage in volt (V). Parameters which can be scaled by the DVFS-Unit of the
resource management are the frequency and the supply power. By decreasing them
the power consumption will also decrease. As runtime will not increase with the
same factor the power consumption will decrease, this will have a positive effect
on the energy consumption [84]. The DVFS-Unit can be requested to change the
frequency and voltage mode.

7.4.3.3 Non-Functional Requirements Aware Subscription (NOFURAS)

The capability to adapt the service provider’s behavior to non-functional require-
ments and its integration in the eventing services of MORE will be presented in
this section. The new functionality is summarized by the term: NOFURAS (NOn-
FUnctional Requirements Aware Subscription).

A tight integration with the MORE Core and the operating system enables the
resource management service (see Figure 7.17) to handle the non-functional infor-
mation added to the subscription of a service as depicted in Figure 7.18 (described

7.4. Resource Management 121

Service
Provider
(sp1)

Service
Consumer 1

(sc1)

Service
Consumer 2

(sc2)

(1)Pro
vide Values

(QoS q1)

(2)Provide Values (QoS q2)

(4) Va
lues (Q

oS q2)

(3)Event
(4) Value (QoS q2)

q1 < q2

Figure 7.18: Resource Management - NOFURAS

later). This specification of the requirements of the subscriber enables the resource
management to adapt the behaviour of the system towards this SLA (Service Level
Agreement). NOFURAS is designed to track resources such as the average runtime
of a service. The non-functional attributes can e.g. be specified in the WSDL de-
scription analogously to the proposed specification of performance qualifiers for web
services in [39]. An example subscription message with non-functional requirements
to the update interval of the service consumer is depicted in Listing 7.3. As one
can see in that listing, the non-functional information is added to the header of the
subscription message. The integration was accomplished in a way that these mes-
sages could also be interpreted by DPWS devices which do not need non-functional
requirements. A new namespace nonfunc was created in which the non-functional re-
quirements can be specified. The non-functional requirements are listed in a XML se-
quence called nonfunc:Parameters which includes one or more non-functional items.
Each item has a name, a value and a unit as one can derive from Listing 7.3. The
requirement which is listed in Listing 7.3 shows lower (490 ms) and upper bounds
(510 ms) for the sampling interval of a service provider.

<SOAP−ENV:Envelope . . . xmlns:nonfunc=" . . . ">
<SOAP−ENV:Header>

. . .
<nonfunc:Parameters>
<nonfunc : i tem>
<nonfunc:Name>noti fy_int_low</nonfunc:Name>
<nonfunc:Value>490</nonfunc:Value>
<nonfunc:Unit>ms</nonfunc:Unit>

</ nonfunc : i tem>
<nonfunc : i tem>
<nonfunc:Name>noti fy_int_high</nonfunc:Name>
<nonfunc:Value>510</nonfunc:Value>
<nonfunc:Unit>ms</nonfunc:Unit>

</ nonfunc : i tem>
</nonfunc:Parameters>

</SOAP−ENV:Header>
. . .

</SOAP−ENV:Envelope>

Listing 7.3: Integration of Non-Functional Requirements in Subscription Messages

122 Chapter 7. Middleware for Embedded Systems

0 5 10 15 20 25 30

2

2.5

3

3.5

4

Time (s)

P
ow

er
C
on

su
m
pt
io
n
(W

)

Normal Service Operation
RMS-supported Service Operation

Figure 7.19: NOFURSI - Power Consumption for DVFS-Unit on a gumstix

The adaptation of the behavior of the service to SLA is controlled by NOFURAS. In
particular, the resource management service handles all accesses of a service to the
underlying operation system and libraries and controls the execution of the service.
The control functionality can include features such as the (average and worst case)
runtime of a service, the quality of the result of a service or service failures. This is
needed in order to regulate the processing of a service towards a conformance to the
specified non-functional requirements. An example of how an SLA or QoS Decision
can be used with NOFURAS is depicted in Figure 7.18. For example, there could
be service consumers sc1 and sc2 which are interested in a certain service provider
sp1 providing an image analysis with certain frame rates with respective QoS of
q1 < q2. With NOFURAS, sc1 and sc2 can now inform sp1 with which particular
QoS the results of sp1 are required (e.g. sc1 needs q1 and sc2 needs q2). For the QoS,
several policies could be applied, e.g. provide a service with a QoS that satisfies all
requirements. If the latter is applied, NOFURAS on sp1 can choose q2 in order to
satisfy the non-functional requirements of sc1 and sc2.

7.4.4 Evaluation

In this evaluation section results and use cases will be provided for both resource
management mechanisms: NOFURAS and NOFURSI. For NOFURSI , the general
applicability will be evaluated in Section 7.4.4.1 and for NOFURAS the intra-logistic
use case will be evaluated for the resource utilization in Section 7.4.4.2.

7.4.4.1 NOFURSI

In this section, the functionality of NOFURSI is evaluated. The DVFS-Unit allows
the switching of the voltage and frequency of the main processor. The measure-
ments were conducted on a gumstix verdex pro X6LP with a Marvell PXA270 main

7.4. Resource Management 123

processor. The gumstix was attached to a netpro-vx expansion board. In addition
to that, the gumstix was connected via Ethernet to a standard PC which hosts the
service consumer.

As test services a measurement service and a location service were used which were
triggered periodically. Two configurations have been tested. In the first configu-
ration (Label: Normal Service Operation) the services were invoked without using
NOFURSI and the gumstix was running at full speed (600Mhz). In the second con-
figuration (Label: RMS-supported Service Operation), the normal operation speed
of the gumstix was 200 MHz and for service invocation the service requests a higher
speed of 600Mhz. As can be seen from Figure 7.19, the scenarios work as they
should. The power consumption was decreased for the scenario RMS-supported Ser-
vice Operation. In order to calculate the energy consumption for the invocation of
the services, a five seconds interval was chosen which includes exactly one invoca-
tion for both configurations. The energy consumption for the first configuration was
11.18 J and for the second configuration it was 11.11 J, i.e. the energy saving was
around 1%. The effect which leads to this small savings is also shown in Figure 7.19.
As can be seen in that figure, the change of the voltage and frequency level needs
additional time and therefore additional energy. As one can see there is a drift in
the two curves which is there due to the change of the voltage and frequency.

7.4.4.2 NOFURAS

This section provides the basic requirements to evaluate the functionality and effi-
ciency of the proposed resource management in a logistics system architecture and
the corresponding results. The evaluation was done to show how resources such as
energy can be conserved by providing non-functional requirements to the subscrip-
tion process.

Use Case - Intra Logistics Scenarios: As an exemplary system a SANET
which controls a conveyor belt system is considered (see Sections 2.2 and 7.2.4.2).

In that particular SANET light-barriers and RFID-readers at the switches are re-
placed by low-cost cameras and an in-situ marker detection system (as depicted in
Figure 7.8). The employed marker technology is called QR code [44]. The image
processing as part of the marker detection system was accelerated by a parallel pro-
cessing hardware based on OpenCL [61]. The topology of the SANET is as follows
(depicted in Figure 2.3): The sensor nodes (camera systems) can control one or
more switches and the belt is in front of them. The actuator nodes of the SANET
are the switches which subscribe to the sensor nodes. All sensor nodes and actu-
ator nodes are equipped withMORE and the new resource management NOFURAS.

One of the most critical parameters in terms of energy consumption of a service

124 Chapter 7. Middleware for Embedded Systems

0 0.5 1 1.5 2 2.5 3
3

4

5

6

7

8

Time (s)

P
ow

er
C
on

su
m
pt
io
n
(W

)

250ms

(a)

0 0.5 1 1.5 2 2.5 3
3

4

5

6

7

8

Time (s)

P
ow

er
C
on

su
m
pt
io
n
(W

)

500ms

(b)

0 0.5 1 1.5 2 2.5 3
3

4

5

6

7

8

Time (s)

P
ow

er
C
on

su
m
pt
io
n
(W

)

1000ms

(c)

Figure 7.20: Power Consumption for Different Subscription Intervals: (a) 250ms,
(b) 500ms, (c) 1000ms

provider is the interval in which events take place/have to be processed and how of-
ten a service consumer needs that information. If, for instance, the information (QR
code) which is provided to the service consumer is not updated in subsequent events,
this information need not be transferred again. In terms of the conveyor belt, this
could be a parcel which is still on the same trail towards a switch. The switch as a
service consumer is only interested in the parcel’s data if it represents new informa-
tion and therefore, non-functional requirements with the necessary update interval
are added to the sensor node’s subscription. The sensor node can then adapt to this
requirement. With the update interval, the minimal and maximal time interval in
which a sensor node has to provide data if events occur is described. NOFURAS
can actively restrain the events which are published by a sensor node. If more than
one actuator node subscribes to a sensor node, the minimal update interval is chosen.

The following tests were conducted: The energy consumption and the process-
ing time were measured for two image sizes: 320× 240 pixels and 640× 480 pixels.
After these initial tests, several update intervals were tested in order to determine
the update interval with optimal energy consumption for the considered conveyor
belt system. The update intervals of the sensor nodes are 250±10 ms, 500±10
ms and 1000±10 ms. They are added as lower and upper bounds for the update
interval to the subscription messages as depicted in Listing 7.3. The maximal speed
of the considered conveyor belt system is approximately 1 m/s. Due to this and
the architecture of the system, the largest possible update interval is 1000±10 ms,
otherwise not all parcels can be identified properly. This is the standard speed of
conveyor belt systems. The baseline system configuration is a publish/subscribe
MORE environment without any restriction in terms of the sampling frequency
of detected QR codes. Every detection is therefore transmitted. The evaluation
was conducted with the energy consumption and performance testbed presented in
Chapter 3. The device under test was a ZMS-8 from Ziilabs.

For evaluating the aforementioned energy consumption and runtime, the testbed

7.4. Resource Management 125

One Detection No Detection

Image Size rPa,Pl
frame EP,Pl

frame rPa,Pl
frame EPa,Pl

frame

(Pixels) (ms) (J) (ms) (J)
320× 240 88 0.377 36 0.152
640× 480 291 1.271 132 0.574

Table 7.1: Energy Consumption for Analysing a Frame

provides the energy consumption

EPa,Pl
frame = energy(P, Pl, t

P,Pl
start, t

P,Pl
end), (7.2)

where Pa is the QR code detection pipeline (shown in Figure 2.4), Pl the execution
platform (ZMS-8 from Ziilabs) consuming power over time, tPa,Pl

start and tPa,Pl
end denoted

the start and the end of processing one frame. They are all delivered by the testbed.
The runtime of a program Pa on a platform Pl is therefore

rPa,Pl
frame = runtime(Pa, Pl) = tPa,Pl

end − t
Pa,Pl
start . (7.3)

tPa,Pl
interstart and t

Pa,Pl
interend denoted the start and the end of the processing on Pl for 1

second. The corresponding energy consumption EPa,Pl
inter is

EPa,Pl
inter = energy(Pa, Pl, t

Pa,Pl
interstart, t

Pa,Pl
interend) (7.4)

and the runtime rPa,Pl
inter :

rPa,Pl
inter = runtime(Pa, Pl) = 1s. (7.5)

Results: The results in Figure 7.20 show the power consumption over time for
different update intervals on a sensor node and thereby, indicate that theses nodes
can adapt to the desired update intervals. While waiting for the next image, the
power consumption ranges from 3.5 W up to 4.5 W. During image processing, up
to 6.75 W are consumed by the sensor node. In this figure, only processing intervals
are shown where a QR code was fully decoded. Therefore, the execution times for
images with incomplete QR code detection are shorter. On the other hand, image
processing methods and most of the detection-related algorithms are executed, re-
gardless of the presence of a QR code in the image.

Table 7.1 shows the results for energy consumption and the processing time for
different image sizes. When an QR code is detected in an image, analysis required
88ms for a 320 × 240 pixels image and 291ms for 640 × 480 pixels image (energy
consumption: 0.377 J, respectively 1.271 J). The lower bound for image processing
(no QR code in an image) within the marker detection process for a 320×240 pixels
image amounts to 36 ms and to 132 ms for a 640× 480 pixels image. The minimal

126 Chapter 7. Middleware for Embedded Systems

Image Size Interval Minimal Maximal
(Pixels) (±10 ms) Einter (J) Einter (J)
320× 240 Without 196 212
320× 240 250 188 202
320× 240 500 185 191
320× 240 1000 183 187
640× 480 Without 211 225
640× 480 250 - -
640× 480 500 194 218
640× 480 1000 187 200

Table 7.2: Energy Consumption per Minute for Certain Intervals

energy consumption for these lower processing bounds amounts to 0.152 J, respec-
tively 0.574 J.

The energy consumption results for the sensors nodes and the different update in-
tervals are depicted in Table 7.2. The energy consumption values are measured
for a one minute time frame. Minimal energy is consumed when no QR code was
processed in the specified interval and maximal energy is consumed in the specified
interval when for each processed image a QR code was recognized. When no update
interval was specified in a subscription message then minimal energy consumption
for an image of size 320×240 pixels is 196 J and 211 J for an image of size 640×480

pixels. The maximal energy consumption for the same scenario is 212 J(320× 240)
respectively 225 J (640 × 480). These energy consumption values also characterize
the system without NOFURAS and therefore, they are used as the baseline for
the evaluation. For an image size of 640 × 480 pixels and an update interval of
250±10ms, an evaluation is not possible since the average runtime of QR detection
(291ms) exceeds this interval. For the largest update interval (1000±10 ms), the
minimal energy consumption for an image of size 320× 240 pixels is 183 J and 187
J for an image of size 640 × 480 pixels. The maximal energy consumption for the
same scenario (1000±10 ms) is 187 J (320 × 240) respectively 200 J (640 × 480).
This means that, in total, 12% (187 J/212 J) energy is saved in a system working
with images of size 320× 240 pixels and an update interval of 1000±10 ms, in com-
parison to a system without NOFURAS. For 640× 480 pixels sized images, there is
a reduction of the energy consumption of up to 8% (200 J/225 J). Overall, it can
be summarized that by extending the update interval of the sensor nodes energy
consumption can be reduced.

7.4.5 Summary

This section described an enhancement ofMORE by the utilization of non-functional
requirements for enabling a more efficient usage of resources in a sensor/actuator

7.5. Conclusion 127

network. Therefore, the two resource management approaches NOFURAS and NO-
FURSI were designed to control and track the behaviour of running services. NO-
FURAS is able to evaluate the non-functional requirements encapsulated in the
subscriptions messages. The subscription process of the MORE was extended to
specify non-functional requirements by the service consumer and to interpret them
on the service provider side. NOFURSI is able to control the resource utilization of
service invocation.
NOFURAS was then tested on an automated facility logistics system. The sen-
sor/actuator network in this system under concern was provided with NOFURAS
and it was tested towards it capability to save energy under the specification of
a certain event notification interval. NOFURSI was evaluated with test scenarios
showing the applicability of NOFURSI in MORE.

7.5 Conclusion

The use of SOA (Service-Oriented Architectures) and web services becomes more
and more standard in the field of embedded and cyber-physical system software
but the lack of certain features such as an efficient resource management reduces
the applicability. In this chapter, therefore several approaches to the refinement of
SOA-based system software were proposed, designed and evaluated.

Firstly, an efficient middleware approach, called MORE (Network-centric Middle-
ware for GrOup communication and Resource Sharing across Heterogeneous Embed-
ded Systems) was presented which supports an application designer in several steps
of the web service development process. Especially, for the phases design, deploy-
ment and maintenances, new techniques were provided. For the latter two phases,
a flexible deployment and maintenance approach was introduced in MORE and for
the design phase a set of application-independent services, called added value ser-
vices were provided. This approach enables MORE to integrate services on-the-fly
in an ad-hoc network. Due to the use of DPWS as a base technology, it is pos-
sible to integrate MORE in standard web service environments. Additionally in
this chapter a lightweight service orchestration mechanism – called MSC (MORE
Service Chaining) – was presented, which enables application designers to compose
MORE Services to a single service. It was shown that MSC suits well for systems
at remote locations which have high communication latencies.

The SOCRADES technology roadmap [124] states that energy consumption must be
a major optimization goal for systems using service-oriented architectures. There-
fore, in this chapter, functionalities for resource accounting/control and two resource
management mechanisms, NOFURSI (Non-Functional Requirements aware Service
Invocation) and - NOFURAS (NOn-FUnctional Requirements Aware Subscription)
have been presented. NOFURAS provides an application designer with the pos-

128 Chapter 7. Middleware for Embedded Systems

sibility to create sensor/actuator networks with MORE adding context-awareness
to the subscription process. The other resource management service, NOFURSI,
extends MORE with the capability to require and control the utilization of multiple
resources at service execution. As an exemplary resource, the processing power of
the CPU was considered and evaluated by applying DVFS-techniques.

Overall, it can be summarized that optimizing the energy consumption is an im-
portant objective for the design with service-oriented architectures, especially when
using complex middleware libraries in the embedded system world, where mobile
systems are omni-present.

Chapter 8

Conclusion and Future Work

This chapter is the conclusion chapter of this thesis and in it directions for future
works are given.

Contents
8.1 Summary . 129

8.2 Future Work . 131

Two major research areas towards pervasive computing devices exist: Embed-
ded and Cyber-Physical Systems and Communication Technologies. In both areas
resources can be scarce. Particularly processing resources and energy consumption
should be considered while designing systems. Therefore, this thesis proposed meth-
ods and conducted evaluations towards an efficient resource utilization at runtime
and methods taking into account resources at design time. The summary of the
work accomplished in this thesis will be given in Section 8.1 and possible future
work will be described in Section 8.2.

8.1 Summary

A special class of networked embedded systems are Networked Embedded Many-Core
Systems which have been considered in this thesis. These systems are designed to be
included in smart sensor/actuator networks jointly performing a control task. The
aforementioned systems often have high computational requirements, e.g. for per-
forming real-time image processing, and therefore should include many-core chips.
The design and development process for this class of devices demands for dedi-
cated methodologies towards an efficient resource usage, especially the combined
optimization of energy consumption and runtime performance. For the research
areas, a resource-aware design process was proposed. For the Embedded and Cyber-
Physical Systems part, a Multi-objective Hardware/Software-Codesign for GPGPU
Applications was developed and evaluated. In the scope of Communication Tech-
nologies, a Service-Oriented and Resource-Aware Middleware for Embedded Systems
was proposed and also evaluated.

Multi-objective Hardware/Software-Codesign for GPGPU Applications:
The major disadvantage of today’s GPGPU programming is the dominance of

130 Chapter 8. Conclusion and Future Work

manually performed code optimizations, as well as manual mapping optimizations.
For both optimization types, advanced design methods have been proposed which
include profiling-based optimizations of code and mappings. Additionally, they com-
prise multi-objective optimization techniques towards runtime and energy consump-
tion efficiency.

The two code optimization techniques (MOBLIS and FALIS) are based on instruc-
tion scheduling in an optimizing compiler. The MOBLIS (Multi-OBjective Local
Instruction Scheduling) approach assigns scheduling policies to single basic blocks
in the PTX representation of a kernel. It was possible to decrease runtime and en-
ergy consumption. FALIS (Feedback-based and memory-Aware gLobal Instruction
Scheduling) is based on global instruction scheduling with a focus on memory-related
instructions. With FALIS reductions in energy consumption and in runtime can be
observed. Both code optimization techniques are based on the use of profiling for
runtime and energy consumption inside an optimizing compiler, which has not been
done before in the scope of GPGPU application design. Additionally, the use of
multi-objective genetic algorithms in combination with the optimizing compiler is a
novelty in the GPGPU application design process.

The two mapping optimization techniques conducted design space explorations to-
wards energy efficiency. The first DSE targets the decision, which platform is most
suitable for a GPGPU application under the constraint of deadlines. The second
DSE was targeted towards the decision, whether or not an integration of a GPGPU-
capable graphics card for parallel application acceleration is beneficial to energy
consumption. Both mapping optimizations are based on the use of profiling for
runtime and energy consumption. In combination with selecting the most suitable
graphics card for a GPGPU application, the conducted evaluations show novel re-
sults and directions towards a resource-aware GPGPU application design process.

Service-Oriented and Resource-Aware Middleware for Embedded Sys-
tems: Service-Oriented Architectures are used in a wide range of embedded
and cyber-physical system environments. The vast variety of hardware platforms,
communication links and application areas in these environments make an efficient
use of SOA challenging. Especially the development of flexible configuration and
deployment mechanisms, of efficient orchestration mechanisms and of elaborated
context-awareness techniques are research targets.

With MORE (Network-centric Middleware for GrOup communication and Resource
Sharing across Heterogeneous Embedded Systems), a service-oriented middleware
for the embedded and cyber-physical system domain was developed. MORE pro-
vides a flexible configuration and deployment mechanism and enables integrating
services on-the-fly in an ad-hoc network. Due to the use of web services as base
technology, it is possible to integrate MORE in standard web service environments.

8.2. Future Work 131

Additionally, a lightweight service orchestration mechanism called MSC (MORE
Service Chaining) was developed, which enables application designers to compose
several MORE Services into a single MORE Service.

In order to handle context-awareness and efficient resource utilization, two resource
management mechanisms (NOFURSI and NOFURAS) have been developed for
MORE. NOFURSI (Non-Functional Requirements aware Service Invocation) ex-
tends MORE with the capability to request resources at runtime and control their
utilization at service execution. NOFURAS (NOn-FUnctional Requirements Aware
Subscription) provides an application designer with the possibility to create context-
aware sensor/actuator networks with MORE . This was achieved by extending the
subscription process of MORE by the capability of adding non-functional require-
ments. Both resource management service techniques are based on the use of pro-
filing for runtime and energy consumption on reference platforms.

8.2 Future Work

The methods and evaluations presented in this thesis cover a wide range of aspects
in the design process of Networked Embedded Many-Core Systems and improved this
design process in several points. The elaborated design process offers opportunities
at several points which can be improved in the future.

Multi-objective Hardware/Software-Codesign for GPGPU Applications:
Considering the optimization gain achieved by the code (see Sections 5.3 and 5.4)

and mapping optimizations (see Sections 5.5 and 5.6) presented in this thesis, an
even higher optimization can be assumed by taking into to account differently par-
allelized versions of the same algorithm. Automatic parallelizers such as Loopo [60]
or Pluto [20] are heavily based on variable parameters which can influence the per-
formance of a GPGPU application. These parameters should be optimized in a
structured way by design space exploration techniques, in addition to the methods
and evaluations presented in this thesis.

The code and mapping optimization techniques presented in this thesis targeted
data parallelism only, i.e. only instances of one kernel run concurrently on a GPU.
Recent GPUs are capable of executing different kernels concurrently. Therefore, in
future work it should be explored, how task parallelism capabilities can be used to
boost the performance of GPGPU applications, e.g. by executing kernels with many
data accesses concurrently to kernels with few data accesses.

The mapping optimizations presented in this thesis assume that the quality of the
result is not influenced by the optimizations. Especially in the fields of data mining,
image processing and image analysis, the quality of the results often depends on the

132 Chapter 8. Conclusion and Future Work

runtime of the algorithms. In future work, it should be evaluated how a trade-off
between quality and performance can by efficiently integrated in the design process
for Networked Embedded Many-Core Systems.

Service-Oriented and Resource-Aware Middleware for Embedded Sys-
tems: The middleware concept (MORE) presented in this thesis (see Section
7.2), provides the possibility to tailor the software stack for a larger number of dif-
ferent devices. However, this configuration process is still performed manually for
each type of device. In future work it can be evaluated, how ontologies can be used
to efficiently describe the features of the software stack and of the hardware devices.
This can then be used to automatically tune the middleware software stack towards
a specific device.

The resource management functions presented in this thesis (see Section 7.4) op-
timize single resources. A more holistic approach is optimizing several resources
concurrently. This can be utilized to achieve an even higher optimization gain.
Therefore, the one-level Resource Unit approach, should be extended to a multi-
level approach where there are Resource Units which utilize other Resource Units.
This approach can then be used to optimize several resources.

Appendix A

Appendix

A.1 Definitions

Definition 5 (Basic Block)
A basic block bi is a certain structure of code. It comprises a sequence of instructions
with exactly one entry point and exactly one exit point. V = {i1, .., ik} denotes a
set of instructions. k is the number of instructions in a basic block. For all two
arbitrary instructions ix ∈ V and iy ∈ V (1 ≤ x ≤ k, 1 ≤ x ≤ k, x 6= y), x < y

means that ix is before iy in the sequence of instructions. n is the number of all
basic blocks in a program and B = {bi|1 ≤ i ≤ n} is the set of all basic blocks. An
instruction is assigned to exactly one basic block bi [90].

Definition 6 (Control Flow Graph)
A control flow graph is a graph D = 〈V,E〉 where the set of nodes V comprises all
basic blocks {b1, .., bn} and n is the number of all basic blocks in a program. The
edge set V ⊆ E × E represents the control flow dependencies between basic blocks
[90].

Definition 7 (Data Dependency Graph)
A data dependency graph is a graph D = 〈V,E〉, where V = {i1, .., im} denotes a
set of instructions. m is the number of instructions. The edges E ⊆ V × V denote
the data dependencies (RAW (Read After Write), WAR (Write After Read), WAW
(Write After Write)) between instructions [90].

Definition 8 (Program Dependency Graph)
A program dependency graph D = 〈V,E〉 comprises data dependencies and control
flow dependencies for all instructions of a program. The set of all instructions of
one program is V = {i1, .., in} and E ⊆ V × V are the data dependencies or control
flow dependencies between instructions [90].

Definition 9 (Extended Basic Block)
An EBB (Extended Basic Blocks) is a subset of all basic blocks N ⊆ B and they
this set of basic blocks is ordered according to the control flow D. N has exactly one
entry point but multiple exit points. EBBs are the atomic scheduling domain for a
global instruction scheduler [90], which means that instructions can only be moved
– constrained by dependencies in the program dependency graph – inside a single
EBB.

134 Appendix A. Appendix

A.2 Mathematical Symbols & Style Sheet

Units

Physical units and digital information units are denoted in this thesis by the follow-
ing unit symbols:

• Second: s

• Millisecond: ms

• Watt: W

• Joule: J

• Volt: V

• Ampere: A

• Byte: B.

In addition to that, standard unit prefixes are allowed.

Scalars & Vectors

Scalar values are written by Latin letters (a,b) or abbreviations (pos,asap). Vectors
are marked by writing them boldface (a,b). Scalars having the same characteristic
are extended by an index (ai,aj) or identifier (aid1). Time stamps tido1id1 , energy
consumption values Eido1

id1 and runtime values rido1id1 are denoted by a special format,
because they can include further identifiers. In addition to that physical values such
as P or R are denoted in capital letters.

Functions

Scalar functions are characterized by Latin letters f or also by abbreviations (max,
min) having index (fa,fb) or identifier (fid,fed). Vector functions are marked bold-
face (fa,fb).

Accentuations

Proper names such as benchmarks and self created terms such as introduced methods
are identified in italics.

List of Tables

3.1 Performance Specification of Devices under Test 24

4.1 Mapping Memory Concepts between OpenCL and CUDA 28

5.1 Number of Basic Blocks for Kernels optimized by MOBLIS 52
5.2 MOBLIS - Performance Counter for Two Example Individuals 57
5.3 Number of Mobile Instructions for Kernels optimized by FALIS . . . 66
5.4 Runtimes for Different Input Data Formats on 9600 GT 77
5.5 Kernel Speedup with Increasing Number of Cores 78
5.6 Runtime and Energy Consumption for Optimal Work Group Size . . 80
5.7 System Configuration . 83
5.8 Runtime and Energy Consumption for Different System Configurations 85

7.1 Energy Consumption for Analysing a Frame 125
7.2 Energy Consumption per Minute for Certain Intervals 126

List of Figures

1.1 Enabling Research Areas for Pervasive Computing 2
1.2 Overview on the Overall Design Process 5
1.3 Structure of the Thesis . 8

2.1 PAMONO Biosensor Experimental Setup & Data Analysis 12
2.2 PAMONO GPGPU Image Processing and Analysis Pipeline 13
2.3 Concept of the Intra-logistics Scenario 14
2.4 Processing Concept of Intra-logistics Scenario 15
2.5 Concept of the Mitigation Management Scenario 16

3.1 Comparison Energy and Power Efficiency 20
3.2 Energy Consumption and Performance Testbed 22
3.3 Source Code Annotated Profiling . 23

4.1 Parallel Application Partitioning and OpenCL Example 26
4.2 CUDA Thread and OpenCL WorkItem Hierarchy 27
4.3 CUDA C and OpenCL C Memory Hierarchy 29
4.4 Overview on GPGPU Application Mapping and Execution Process . 30
4.5 CUDA Compilation Toolchain . 31
4.6 Genetic Algorithms - Individual Structure 32
4.7 Genetic Algorithms - Evolution Operations 33
4.8 Pareto Ranks and Design Space with Pareto Front 35

5.1 Parameters in GPGPU Application Mapping and Execution Process 40
5.2 Introduction - Overview on the Overall Design Process 42
5.3 MOBLIS - Overview on the Overall Design Process 46
5.4 MOBLIS Framework . 48
5.5 Example for Register Usage Reduction 49
5.6 MOBLIS -Individual Evaluation Flow 50
5.7 MOBLIS - Energy Consumption and Runtime Analysis 53
5.8 Instruction Sequences for Kernel bisectKernelLarge_MultIntervals . . 54
5.9 MOBLIS - Analysis of Different MOGAs 55
5.10 MOBLIS - Analysis for Different Graphics Cards 56
5.11 MOBLIS - Increased Parallel Register Utilization Analysis 57
5.12 FALIS - Overview on the Overall Design Process 58
5.13 FALIS Framework . 60
5.14 Coverage of Different Instruction Scheduling Methods 62
5.15 Mobility of Mobile Instructions . 63
5.16 FALIS - Individual Evaluation Flow 65
5.17 FALIS - Energy Consumption and Runtime Analysis 67

138 List of Figures

5.18 FALIS - Analysis for Different MOGAs 68
5.19 FALIS - Analysis for Different Graphics Cards 69
5.20 FALIS - Runtime Analysis of Different Memory Spaces 70
5.21 FALIS - Energy Consumption Analysis of Different Memory Spaces . 71
5.22 Embedded Image Processing Systems - Overview on the Overall De-

sign Process . 72
5.23 Processing Requirements of the PAMONO Biosensor 73
5.24 Embedded Image Processing Systems - DSE Workflow 75
5.25 Energy Consumption for Frame Processing 76
5.26 Analysis for an Increasing Number of GPU Cores 79
5.27 CPU/GPU-DSE - Overview on the Overall Design Process 81
5.28 Energy Measurements for the Different System Configurations 82
5.29 Power Consumption for CPU and GPGPU Versions 84

6.1 SOA Triangle and SOA Temple . 90
6.2 OSGi Layers . 91
6.3 DPWS Stack and Interaction between Clients and Devices 92
6.4 WSDL Scheme . 93
6.5 Web Service Life Cycle Phases . 94

7.1 MORE - Overview on the Overall Design Process 99
7.2 MORE Concept . 100
7.3 MORE - Network Structure . 101
7.4 MORE Architecture . 102
7.5 DPWS in MORE . 104
7.6 MORE Service Development and Deployment Cycle 105
7.7 Network Structure within the Mitigation Management Scenario . . . 106
7.8 Network Structure within the Conveyor System 107
7.9 MSC - Overview on the Overall Design Process 108
7.10 Sequential MORE Services and MSC Concept 109
7.11 MSC - Application Areas . 111
7.12 MSC in the MORE Architecture . 112
7.13 Evaluation Scenarios for MSC . 113
7.14 MSC Evaluation Results . 114
7.15 Resource Management - Overview on the Overall Design Process . . 115
7.16 Resource Management - Accounting and Control 119
7.17 Resource Management - NOFURSI 120
7.18 Resource Management - NOFURAS 121
7.19 NOFURSI - Power Consumption for DVFS-Unit on a gumstix . . . 122
7.20 NOFURAS - Power Consumption for Different Subscription Intervals 124

List of Listings

6.1 Structure of the SOAP Envelope . 92
7.1 WS-BPEL Extension Activities for Synchronous Discovery 110
7.2 Service Chain Configuration File Example 112
7.3 Integration of Non-Functional Requirements in Subscription Messages 121

Bibliography

[1] Advanced Micro Devices. AMD Embedded G-Series Platform. http://
www.amd.com/us/Documents/49282_G-Series_platform_brief.pdf, 2012.
[Cited on pages 3 and 5]

[2] Alippi, C., Anastasi, G., Galperti, C., Mancini, F., and Roveri, M.
Adaptive Sampling for Energy Conservation in Wireless Sensor Networks for
Snow Monitoring Applications. In Proceedings of the Internatonal Conference
on Mobile Adhoc and Sensor Systems (MASS) (2007), IEEE, pp. 1–6. [Cited
on page 117]

[3] Almesberger, W. Linux Network Traffic Control - Implementa-
tion Overview. http://www.almesberger.net/cv/papers/tcio8.pdf, 1999.
[Cited on page 114]

[4] Alonso, A., Berjon, D., Conan, V., Foley, C., Hagen, M., Lavaux,
D., Lévay, A., Marwedel, P., Michaelis, S., Schäfer, V., Schmut-
zler, J., Schneider, C., Timm, C., and Wietfeld, C. Deliverable D 2.1
- Architecture and Services. http://www.ist-more.org/images/stories/
d2.1_architectureandservices.pdf, 2007. MORE Consortium. [Cited on
pages 9, 10, 99, 100, 101, 103, and 116]

[5] Alonso, A., Salazar, E., and L´opez, J. Resource Management for
Enhancing Predictability in Systems with Limited Processing Capabilities. In
Proceedings of the Conference on Emerging Technologies and Factory Automa-
tion (ETFA) (2010), IEEE, pp. 1–7. [Cited on pages 10, 99, 103, 116, 117,
and 118]

[6] Altera Corporation. Implementing FPGA Design with the OpenCL
Standard. http://www.altera.com/literature/wp/wp-01173-opencl.pdf,
2011. [Cited on page 26]

[7] Amdahl, G. Validity of the Single Processor Approach to Achieving Large
Scale Computing Capabilities. In Proceedings of the Spring Joint Computer
Conference (1967), AFIPS, pp. 483–485. [Cited on page 73]

[8] Arkin, A., Askary, S., Barreto, C., Bloch, B., Curbera, F.,
Ford, M., Goland, Y., Guízar, A., Kartha, N., et al. Web Ser-
vices Business Process Execution Language Version (WS-BPEL). http:
//docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf, 2007. OASIS Stan-
dard. [Cited on page 95]

[9] Autili, M., Di Benedetto, P., and Inverardi, P. Context-Aware
Adaptive Services: The PLASTIC Approach. In Fundamental Approaches to

http://www.amd.com/us/Documents/49282_G-Series_platform_brief.pdf
http://www.amd.com/us/Documents/49282_G-Series_platform_brief.pdf
http://www.almesberger.net/cv/papers/tcio8.pdf
http://www.ist-more.org/images/stories/d2.1_architectureandservices.pdf
http://www.ist-more.org/images/stories/d2.1_architectureandservices.pdf
http://www.altera.com/literature/wp/wp-01173-opencl.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

142 Bibliography

Software Engineering (2009), Lecture Notes in Computer Science, Springer,
pp. 124–139. [Cited on pages 4, 102, and 119]

[10] Bajaj, S., Box, D., Chappell, D., Curbera, F., et al. Web Services
Policy (WS-Policy). http://www.w3.org/TR/ws-policy/, 2006. W3c Stan-
dard. [Cited on page 119]

[11] Bakhkhat, S., Böde, F., and Brucke, M. Eingebettete Systeme -
Ein strategisches Wachstumgsfeld für Deutschland. http://www.bitkom.org/
files/documents/EingebetteteSysteme_web.pdf, 2012. BITKOM Technol-
ogy Roadmap. [Cited on page 2]

[12] Banerjia, S., Havanki, W. A., and Conte, T. M. Treegion Scheduling
for Highly Parallel Processors. In Proceedings of the European Conference on
Parallel Processing (Euro-Par) (1997), IEEE, pp. 1074–1078. [Cited on page
62]

[13] Bellwood, T., Capell, S., et al. Universal Description Discovery & In-
tegration (UDDI). http://uddi.org/pubs/uddi_v3.htm, 2004. OASIS Stan-
dard. [Cited on page 91]

[14] Belussi, L., and Hirata, N. Fast QR Code Detection in Arbitrarily Ac-
quired Images. In Proceedings of the Conference on Graphics, Patterns and
Images (SIBGRAPI) (2011), IEEE, pp. 281–288. [Cited on pages 14 and 15]

[15] Benini, L., Lombardi, M., Milano, M., and Ruggiero, M. A Constraint
Programming Approach for Allocation and Scheduling on the CELL Broad-
band Engine. In Proceedings of the International Conference on Principles
and Practice of Constraint Programming (CP) (2008), Springer, pp. 21–35.
[Cited on page 45]

[16] Benini, L., and Micheli, G. D. Dynamic Power Management - Design
Techniques and CAD Tools. Kluwer, 1998. [Cited on page 117]

[17] Blum, C., and Merkle, D., Eds. Swarm Intelligence: Introduction and
Applications. Natural Computing Series. Springer, 2008. [Cited on page 32]

[18] Bohn, H., Bobek, A., and Golatowski, F. WS-BPEL Process Compiler
for Resource-Constrained Embedded Systems. In Proceedings of the Inter-
national Conference on Advanced Information Networking and Applications
(AINAW) (2008), IEEE, pp. 1387–1392. [Cited on pages 110 and 111]

[19] Bohn, H., Golatowski, F., and Timmermann, D. Dynamic Device and
Service Discovery Extensions for WS-BPEL. In Proceedings of International
Conference on Service Systems and Service Management (2008), IEEE, pp. 1–
6. [Cited on pages 110, 111, and 113]

http://www.w3.org/TR/ws-policy/
http://www.bitkom.org/files/documents/EingebetteteSysteme_web.pdf
http://www.bitkom.org/files/documents/EingebetteteSysteme_web.pdf
http://uddi.org/pubs/uddi_v3.htm

Bibliography 143

[20] Bondhugula, U., Baskaran, M., Krishnamoorthy, S., Ramanujam,
J., Rountev, A., and Sadayappan, P. Automatic Transformations for
Communication-Minimized Parallelization and Locality Optimization in the
Polyhedral Model. In Proceedings of the Joint European Conferences on The-
ory and Practice of Software (ETAPS) and International conference on Com-
piler Construction (CC) (2008), Lecture Notes in Computer Science, Springer,
pp. 132–146. [Cited on pages 42 and 131]

[21] Bosschere, K., Luk, W., Martorell, X., Navarro, N., O’Boyle,
M., Pnevmatikatos, D., Ramirez, A., Sainrat, P., Seznec, A., Sten-
ström, P., and Temam, O. High-Performance Embedded Architecture and
Compilation Roadmap. In Transactions on High-Performance Embedded Ar-
chitectures and Compilers, Lecture Notes in Computer Science. Springer, 2007,
pp. 5–29. [Cited on pages 3, 19, 38, 42, and 58]

[22] Bottaro, A. RFP 86 - DPWS Discovery Base Driver.
http://andre.bottaro.pagesperso-orange.fr/papers/
rfp-86-DPWSDiscoveryBaseDriver.pdf, 2007. OSGi Alliance Standard.
[Cited on page 102]

[23] Bottaro, A., Simon, E., Seyvoz, S., and Gerodolle, A. Dynamic
Web Services on a Home Service Platform. In Proceedings of the International
Conference on Advanced Information Networking and Applications (AINA)
(2008), IEEE, pp. 378–385. [Cited on page 102]

[24] Bouyssounouse, B., and Sifakis, J. Embedded Systems Design: The
ARTIST Roadmap for Research and Development. Lecture Notes in Com-
puter Science. Springer, 2005. [Cited on pages 3, 4, 19, and 118]

[25] Box, D., Cabrera, L. F., Critchley, C., et al. Web Services Event-
ing (WS-Eventing). http://www.w3.org/Submission/WS-Eventing/, 2006.
W3C Standard. [Cited on page 94]

[26] Box, D., Christensen, E., Curbera, F., et al. Web Services Addressing
(WS-Addressing). http://www.w3.org/Submission/ws-addressing/, 2004.
W3C Standard. [Cited on page 93]

[27] Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N.,
Nielsen, H. F., Thatte, S., and Winer, D. Simple Object Access Pro-
tocol (SOAP). http://www.w3.org/TR/soap/, 2000. W3C Standard. [Cited
on pages 91 and 92]

[28] Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., and
Yergeau, F. Extensible Markup Language (XML). http://www.w3.org/
TR/2008/REC-xml-20081126/, 2008. W3C Standard. [Cited on page 91]

http://andre.bottaro.pagesperso-orange.fr/papers/rfp-86-DPWSDiscoveryBaseDriver.pdf
http://andre.bottaro.pagesperso-orange.fr/papers/rfp-86-DPWSDiscoveryBaseDriver.pdf
http://www.w3.org/Submission/WS-Eventing/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2008/REC-xml-20081126/

144 Bibliography

[29] Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Hous-
ton, M., and Hanrahan, P. Brook for GPUs: Stream Computing
on Graphics Hardware. In Proceedings of the International Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH) (2004), IEEE,
pp. 777–786. [Cited on page 26]

[30] Bui, P., and Brockman, J. Performance Analysis of Accelerated Image
Registration using GPGPU. In Proceedings of the Workshop on General Pur-
pose Processing on Graphics Processing Units (GPGPU) (2009), ACM, pp. 38–
45. [Cited on page 44]

[31] Chan, S., Conti, D., Kaler, C., Kuehnel, T., Regnier, A., Roe,
B., Sather, D., Schlimmer, J., Sekine, H., Thelin, J., et al. Device
Profile for Web Services (DPWS). http://schemas.xmlsoap.org/ws/2006/
02/devprof/, February 2006. OASIS Standard. [Cited on pages 91, 92,
and 103]

[32] Chandrakasan, A., Sheng, S., and Brodersen, R. Low-Power CMOS
Digital Design. IEEE Journal of Solid-State Circuits (1992), 473–484. [Cited
on pages 21 and 120]

[33] Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W., Lee,
S.-H., and Skadron, K. Rodinia: A Benchmark Suite for Heterogeneous
Computing. In Proceedings of the International Symposium on Workload Char-
acterization (IISWC) (2009), IEEE, pp. 44–54. [Cited on pages 17, 52, and 67]

[34] Chen, D., Wang, L., Wang, S., Xiong, M., von Laszewski, G., and
Li, X. Enabling Energy-Efficient Analysis of Massive Neural Signals Using
GPGPU. In Proceedings of the International Conference on Cyber, Physical
and Social Computing (CPSCom) (2010), IEEE/ACM, pp. 147 –154. [Cited
on page 44]

[35] Chen, T., Raghavan, R., and Dale, J. Cell Broadband Engine Architec-
ture and Its First Implementation. IBM Journal of Research and Development
(2005), 559–572. [Cited on page 45]

[36] Cho, S., and Melhem, R. Corollaries to Amdahl’s Law for Energy. IEEE
Computer Architecture Letters (2008), 25–28. [Cited on page 44]

[37] Christensen, E., Curbera, F., Meredith, G., and Weerawarana, S.
Web Services Description Language (WSDL). http://www.w3.org/TR/wsdl,
2001. W3C Standard. [Cited on pages 91 and 92]

[38] Culler, D. E., Singh, J. P., and Gupta, A. Parallel Computer Architec-
ture - A Hardware/Software Approach. Morgan Kaufmann, 1999. [Cited on
page 27]

http://schemas.xmlsoap.org/ws/2006/02/devprof/
http://schemas.xmlsoap.org/ws/2006/02/devprof/
http://www.w3.org/TR/wsdl

Bibliography 145

[39] D’Ambrogio, A. A WSDL Extension for Performance-Enabled Description
of Web Services. In Proceedings of the International Conference on Com-
puter and Information Sciences (ISCIS), Lecture Notes in Computer Science.
Springer, 2005, pp. 371–381. [Cited on pages 93, 119, and 121]

[40] Davies, N., Friday, A., Blair, G. S., and Cheverst, K. Distributed
Systems Support for Adaptive Mobile Applications. Mobile Network Applica-
tions (1996), 399–408. [Cited on page 117]

[41] Davis, D., Malhotra, A., Warr, K., and Chou, W. Web Ser-
vices Metadata Exchange (WS-MetadataExchange). http://www.w3.org/TR/
2009/WD-ws-metadata-exchange-20090317/, 200. W3C Standard. [Cited
on page 94]

[42] de Souza, L. M. S., Spiess, P., Guinard, D., Köhler, M.,
Karnouskos, S., and Savio, D. SOCRADES: A Web Service Based Shop
Floor Integration Infrastructure. In Proceedings of the International Confer-
ence on The Internet of Things (IOT) (2008), C. Floerkemeier, M. Langhein-
rich, E. Fleisch, F. Mattern, and S. E. Sarma, Eds., vol. 4952 of Lecture Notes
in Computer Science, IEEE, pp. 50–67. [Cited on page 98]

[43] Deb, K., Agrawal, S., Pratap, A., and Meyarivan, T. A Fast Elitist
Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization:
NSGA-II. In Proceedings of the International Conference on Parallel Problem
Solving From Nature (PPSN) (2000), Lecture Notes in Computer Science,
Springer, pp. 849–858. [Cited on pages 35 and 36]

[44] Denso Wave Incorporated. QR Code. http://www.denso-wave.com/
qrcode/index-e.html, 2010. [Cited on pages 14, 15, 106, and 123]

[45] Diamos, G. F., Kerr, A. R., Yalamanchili, S., and Clark, N. Ocelot:
A Dynamic Optimization Framework for Bulk-Synchronous Applications in
Heterogeneous Systems. In Proceedings of the International Conference on
Parallel Architectures and Compilation Techniques (PACT) (2010), ACM,
pp. 353–364. [Cited on page 45]

[46] Domínguez, R., and Kaeli, D. R. Improving the Open64 Backend for
GPUs. NVIDIA GPU Technology Conference - http://www.roddomi.com/
pubs/NVIDIASummitPoster.pdf, 2009. [Cited on pages 44 and 50]

[47] Dorigo, M., and Di Caro, G. The Ant Colony Optimization Meta-
Heuristic. In New Ideas in Optimization. McGraw-Hill, 1999, pp. 11–32. [Cited
on page 32]

[48] Erickson, D., Mandal, S., Yang, A., and Cordovez, B. Nanobiosen-
sors: Optofluidic, Electrical and Mechanical Approaches to Biomolecular De-

http://www.w3.org/TR/2009/WD-ws-metadata-exchange-20090317/
http://www.w3.org/TR/2009/WD-ws-metadata-exchange-20090317/
http://www.denso-wave.com/qrcode/index-e.html
http://www.denso-wave.com/qrcode/index-e.html
http://www.roddomi.com/pubs/NVIDIASummitPoster.pdf
http://www.roddomi.com/pubs/NVIDIASummitPoster.pdf

146 Bibliography

tection at the Nanoscale. Journal of Microfluidics and Nanofluidics (2008),
33–52. [Cited on page 11]

[49] Falk, H., and Marwedel, P. Source Code Optimization Techniques for
Data Flow Dominated Embedded Software. Kluwer Academic Publishers, 2004.
[Cited on page 33]

[50] Fiehe, C., Litvina, A., Luck, I., Dohndorf, O., Kattwinkel, J.,
Stewing, F.-J., Kruger, J., and Krumm, H. Location-Transparent Inte-
gration of Distributed OSGi Frameworks and Web Services. In Proceedings of
the International Conference on Advanced Information Networking and Ap-
plications Workshops (WAINA) (2009), IEEE, pp. 464–469. [Cited on page
102]

[51] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L.,
Leach, P., and Berners-Lee, T. RFC 2616 - Hypertext Transfer Protocol
(HTTP), 1999. [Cited on page 91]

[52] Fisher, J. Trace Scheduling: A Technique for Global Microcode Compaction.
IEEE Transactions on Computers (1981), 478 –490. [Cited on page 63]

[53] Foley, C., Balasubramaniam, S., Botvich, D., Donnell, W.,
Schmutzler, J., Michaelis, S., and Stair, T. Distributed Pervasive Ser-
vices using Group Service communication supporting Body Area Networks.
In Third International Conference on Body Area Network (Tempe, Arizona,
USA., 2008). [Cited on pages 10, 99, and 103]

[54] Foley, C., Power, G., Griffin, L., Chen, C., Donnelly, N., and
de Leastar, E. Service Group Management Facilitated by DSL Driven Poli-
cies in Embedded Middleware. In Proceedings of the Symposium on Computers
and Communications (ISCC) (2010), IEEE, pp. 483–488. [Cited on page 103]

[55] Franch, X., and Botella, P. Putting Non-Functional Requirements into
Software Architecture. In Proceedings of the International Workshop on Soft-
ware Specification and Design (IWSSD) (1998), IEEE, pp. 60–67. [Cited on
page 116]

[56] Frigo, M., and Johnson, S. G. The Design and Implementation of
FFTW3. IEEE Special Issue on "Program Generation, Optimization, and
Platform Adaptation" 93, 2 (2005), 216–231. [Cited on page 17]

[57] Fürst, C., Lorz, C., and Makeschin, F. Challenges for Monitoring and
the Use of Monitoring Data for Landscape Management from Point of View
of the End-User. Forests in a Changing Environment. Results of 20 years ICP
Forests Monitoring (2007), 54–59. [Cited on pages 16 and 105]

Bibliography 147

[58] Georgia Tech Research. Vector Signal Image Processing Library. http:
//www.vsipl.org/software/, 2010. [Cited on page 17]

[59] Görlich, M. Untersuchung und Verbesserung der Speicherzugriffsverteilung
in GPGPU-Programmen unter Nutzung von lokalen Schedulingmethoden.
Master’s thesis, Embedded System Group, Faculty of Computer Science, TU
Dortmund, 2011. [Cited on pages 47, 53, and 62]

[60] Griebl, M., and Lengauer, C. The Loop Parallelizer LooPo. In Proceed-
ings of the Workshop on Compilers for Parallel Computers (1996), Austrian
Center for Parallel Computation, pp. 311–320. [Cited on pages 42 and 131]

[61] Group, K. OpenCL Specification. http://www.khronos.org/opencl/, Juli
2010. Khronos Standard. [Cited on pages 29, 43, and 123]

[62] Hackmann, G., Gill, C., and Roman, G.-C. Extending BPEL for Inter-
operable Pervasive Computing. In Proceedings of the International Conference
on Pervasive Services (2007), IEEE, pp. 204–213. [Cited on pages 4 and 111]

[63] Hagen, M., Waligora, S., and othe. Deliverable D 2.1 -User Require-
ments Analysis. http://www.ist-more.org/images/stories/d1.1_user_
req_analysis_v1_0_prodv.pdf, 2006. MORE Consortium. [Cited on pages
16 and 106]

[64] Haines, M., et al. Web Service Implementation Methodology. http://
www.oasis-open.org/committees/documents.php?wg_abbrev=fwsi/, 2005.
OASIS Standard. [Cited on pages 94 and 95]

[65] Han, T. D., and Abdelrahman, T. S. Reducing Branch Divergence in
GPU Programs. In Proceedings of the Workshop on General Purpose Process-
ing on Graphics Processing Units (GPGPU) (2011), ACM, pp. 1–8. [Cited
on pages 62 and 63]

[66] Hansmann, U., Stober, T., Merk, L., and Nicklous, M. Pervasive
Computing. Springer, 2003. [Cited on page 1]

[67] Hennessy, J. L., and Patterson, D. A. Computer Architecture - A Quan-
titative Approach. Morgan Kaufmann, 2012. [Cited on page 28]

[68] Hong, S., and Kim, H. An Analytical Model for a GPU Architecture with
Memory-level and Thread-Level Parallelism Awareness. In Proceedings of the
Annual International Symposium on Computer Architecture (ISCA) (2009),
ACM/IEEE, pp. 152–163. [Cited on pages 46, 59, and 61]

[69] Intel Coporation. Introduction to Intel R© OpenCL
Tools. http://software.intel.com/en-us/articles/
introduction-to-intel-opencl-tools/, 2011. [Cited on page 26]

http://www.vsipl.org/software/
http://www.vsipl.org/software/
http://www.khronos.org/opencl/
http://www.ist-more.org/images/stories/d1.1_user_req_analysis_v1_0_prodv.pdf
http://www.ist-more.org/images/stories/d1.1_user_req_analysis_v1_0_prodv.pdf
http://www.oasis-open.org/committees/documents.php?wg_abbrev=fwsi/
http://www.oasis-open.org/committees/documents.php?wg_abbrev=fwsi/
http://software.intel.com/en-us/articles/introduction-to-intel-opencl-tools/
http://software.intel.com/en-us/articles/introduction-to-intel-opencl-tools/

148 Bibliography

[70] Jammes, F., Mensch, A., and Smit, H. Service-Oriented Device Com-
munications Using the Devices Profile for Web services. In Proceedings of
the International Conference on Advanced Information Networking and Ap-
plications Workshops (AINAW) (2007), IEE, pp. 947–955. [Cited on page
104]

[71] Keinert, J., Streubühr, M., Schlichter, T., Falk, J., Gladigau,
J., Haubelt, C., Teich, J., and Meredith, M. SystemCoDesigner: An
Automatic ESL Synthesis Approach by Design Space Exploration and Be-
havioral Synthesis for Streaming Applications. ACM Transactions on Design
Automation of Electronic Systems (TODAES) (2009), 1–23. [Cited on page
45]

[72] Kerns, D. R., and Eggers, S. J. Balanced Scheduling: Instruction
Scheduling when Memory Latency is Uncertain. In Proceedings of the Confer-
ence on Programming Language Design and Implementation (PLDI) (2004),
ACM/SIGPLAN, pp. 515–527. [Cited on page 44]

[73] Kung, S. Y., Kailath, T., and Whitehouse, H. J. VLSI and Modern
Signal Processing. Prentice Hall, 1984. [Cited on page 63]

[74] Laumanns, M., Zitzler, E., and Thiele, L. A Unified Model for
Multi-objective Evolutionary Algorithms with Elitism. In Proceedings of the
Congress on Evolutionary Computation (2000), IEEE, pp. 46–53. [Cited on
page 25]

[75] Lavaux, D., Schmutzler, J., Timm, C., and Michaelis, S. MORE
Middleware and Services - User Guide. Tech. rep., EU Project MORE, 2009.
[Cited on pages 10, 99, and 103]

[76] Lee, E. A. Computing Foundations and Practice for Cyber-Physical Systems:
A Preliminary Report. Tech. rep., EECS Department, University of California,
Berkeley, 2007. [Cited on page 1]

[77] Lee, S. P., Chan, L. P., and Lee, E. W. Web Service Implementation
Methodology for SOA Application. In Proceedings of the International Confer-
ence on Industrial Informatics (IINDIN) (2006), IEEE, pp. 335–340. [Cited
on page 94]

[78] Leupers, R. Instruction Scheduling for Clustered VLIW DSPs. In Proceed-
ings of the International Conference on Parallel Architecture and Compilation
Techniques (PACT) (2000), IEEE, pp. 291–300. [Cited on page 44]

[79] Libuschewski, P., Weichert, F., and Timm, C. Parameteroptimierte
und GPGPU-basierte Detektion viraler Strukturen innerhalb Plasmonen-
unterstützter Mikroskopiedaten. In Proccedings of the Workshop Bildverar-

Bibliography 149

beitung für die Medizin (BVM) (2012), Lectures Notes on Computer Science,
Springer, pp. 237–242. [Cited on page 9]

[80] Liu, S.-M. Open64 Release 4.0: High Performance Compiler for Itanium
and x86 Linux. In Proceedings of the Conference on Programming Language
Design and Implementation (PLDI) (2007), ACM/SIGPLAN. [Cited on pages
50 and 64]

[81] Luke, S. Essentials of Metaheuristics. Lulu, 2009. [Cited on pages 32, 33,
and 49]

[82] Ma, X., Dong, M., Zhong, L., and Deng, Z. Statistical Power Con-
sumption Analysis and Modeling for GPU-based Computing. In Proceedings
of the Workshop on Power Aware Computing and Systems (HotPower) (2009),
ACM. [Cited on pages 21 and 43]

[83] Machanick, P. Approaches to Addressing the Memory Wall. Tech.
rep., School of IT and Electrical Engineering, University of Queensland,
2002. http://www.itee.uq.edu.au/~philip/Publications/Techreports/
2002/Reports/memory-wall-survey.pdf. [Cited on page 58]

[84] Marwedel, P. Embedded System Design: Embedded Systems Foundations
of Cyber-Physical Systems. Springer, 2011. [Cited on pages 1, 2, 20, 35, 41,
and 120]

[85] Marwedel, P., and Engel, M. Plea for a Holistic Analysis of the Rela-
tionship between Information Technology and Carbon-Dioxide Emissions. In
Proceedings of the Workshop on Energy-Aware Systems and Methods (GI-ITG)
(2010). [Cited on page 19]

[86] Melzer, I. Service-orientierte Architekturen mit Web Services - Konzepte,
Standards, Praxis. Spektrum Akademischer Verlag, 2007. [Cited on pages 89,
90, and 91]

[87] Michaelis, S., Wolff, A., Schmutzler, J., and Timm, C. MORE
- Architecture and Services, Public Deliverable 2.1. Tech. rep., EU Project
MORE, Dortmund, Germany, 2007. [Cited on pages 10, 99, and 103]

[88] Modi, V., and Kemp, D. Web Services Dynamic Discovery
(WS-Discovery). http://docs.oasis-open.org/ws-dd/discovery/1.1/
wsdd-discovery-1.1-spec.html, 2009. OASIS Standard. [Cited on page
93]

[89] Molnar, F., Szakaly, T., Meszaros, R., and Lagzi, I. Air Pollution
Modelling using a Graphics Processing Unit with CUDA. Computer Physics
Communications (2010), 105 –112. [Cited on page 17]

http://www.itee.uq.edu.au/~philip/Publications/Techreports/2002/Reports/memory-wall-survey.pdf
http://www.itee.uq.edu.au/~philip/Publications/Techreports/2002/Reports/memory-wall-survey.pdf
http://docs.oasis-open.org/ws-dd/discovery/1.1/wsdd-discovery-1.1-spec.html
http://docs.oasis-open.org/ws-dd/discovery/1.1/wsdd-discovery-1.1-spec.html

150 Bibliography

[90] Muchnick, S. S. Advanced Compiler Design Implementation. Morgan Kauf-
mann, 1997. [Cited on pages 6, 31, and 133]

[91] Munir, M. F., and Filali, F. Maximizing Network-Lifetime in Large Scale
Heterogeneous Wireless Sensor-Actuator Networks: A Near-Optimal Solution.
In Proceedings of the Workshop on Performance Evaluation of Wireless Ad
Hoc, Sensor, and Ubiquitous Networks (PE-WASUN) (2007), ACM, pp. 62–
69. [Cited on page 117]

[92] Nadalin, A., Kaler, C., Monzillo, R., and Hallam-Baker, P.
WS-Security Core Specification. http://www.oasis-open.org/committees/
download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf, 2009.
OASIS Standard. [Cited on page 94]

[93] Nere, A., and Lipasti, M. Cortical Architectures on a GPGPU. In Pro-
ceedings of the Workshop on General-Purpose Computation on Graphics Pro-
cessing Units (GPGPU) (2010), ACM. [Cited on page 44]

[94] Nikolov, H., Thompson, M., Stefanov, T., Pimentel, A., Polstra,
S., Bose, R., Zissulescu, C., and Deprettere, E. Daedalus: Toward
Composable Multimedia MP-SoC Design. In Proceedings of the Annual Design
Automation Conference (DAC) (2008), ACM, pp. 574–579. [Cited on page
45]

[95] Nugteren, C. Improving CUDA’s Compiler through the Visualization of
Decoded GPU Binaries. Master’s thesis, Electronic Systems Group, Faculty
of Electrical Engineering, Eindhoven University of Technology, 2009. [Cited
on page 44]

[96] Nvidia Corporation. NVIDIA and Audi Marry Silicon Valley Tech-
nology with German Engineering. http://www.nvidia.com/object/io_
1262839759949.html, 2010. [Cited on pages 26, 29, and 30]

[97] Nvidia Corporation. CUDA Architecture - Introduction & Overview.
http://developer.download.nvidia.com/compute/cuda/docs/CUDA_
Architecture_Overview.pdf, 2012. [Cited on pages 17, 30, 38, 52, 53,
and 67]

[98] Nvidia Corporation. CUDA Programming Guide. http:
//developer.download.nvidia.com/compute/DevZone/docs/html/C/
doc/CUDA_C_Programming_Guide.pdf, 2012. [Cited on pages 29, 47, and 59]

[99] Nvidia Corporation. CUDA Toolkit. http://developer.nvidia.com/
cuda-downloads, 2012. [Cited on page 17]

[100] Nvidia Corporation. NVIDIA GeForce. http://www.nvidia.de/object/
geforce_family_de.html, 2012. [Cited on page 24]

http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.nvidia.com/object/io_1262839759949.html
http://www.nvidia.com/object/io_1262839759949.html
http://developer.download.nvidia.com/compute/cuda/docs/CUDA_Architecture_Overview.pdf
http://developer.download.nvidia.com/compute/cuda/docs/CUDA_Architecture_Overview.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.nvidia.com/cuda-downloads
http://developer.nvidia.com/cuda-downloads
http://www.nvidia.de/object/geforce_family_de.html
http://www.nvidia.de/object/geforce_family_de.html

Bibliography 151

[101] Nvidia Corporation. The CUDA Compiler Driver NVCC.
http://developer.download.nvidia.com/compute/DevZone/docs/html/
C/doc/nvcc.pdf, 2012. [Cited on pages 30 and 31]

[102] Ohbuchi, E., Hanaizumi, H., and Hock, L. Barcode Readers using the
Camera Device in Mobile Phones. In Proceedings of the International Confer-
ence on Cyberworlds (2004), IEEE, pp. 260–265. [Cited on pages 14 and 15]

[103] Pavlovski, C. J., and Zou, J. Non-Functional Requirements in Business
Process Modeling. In Proceedings of the Asia-Pacific Conference on Concep-
tual Modelling (APCCM) (2008), Australian Computer Society, pp. 103–112.
[Cited on page 115]

[104] Phivakumar, P., and Jouppi, N. P. CACTI 3.0: An Integrated Cache
Timing, Power, and Area Model. Tech. rep., HP Labs, 2001. http://www.
hpl.hp.com/techreports/Compaq-DEC/WRL-2001-2.pdf. [Cited on page 21]

[105] Postel, J. RFC 768 - User Datagram Protocol (UDP), 1980. [Cited on page
91]

[106] Postel, J. RFC 793 - Transmission Control Protocol (TCP), 1981. [Cited
on page 91]

[107] PROFIBUS Nutzerorganisation e.V. Interbus. http://www.
interbusclub.com/, 2012. [Cited on page 98]

[108] Prosyst Software GmbH. mBS Telematics - OSGi for Automotive Sector,
2012. [Cited on page 91]

[109] Pulli, K. OpenCL in Handheld Devices. In Proceedings of Annual Hot Chips
Conference (2009), IEEE. [Cited on page 43]

[110] Ren, D., and Suda, R. Power Efficient Large Matrices Multiplication by
Load Scheduling on Multi-core and GPU Platform with CUDA. Proceedings of
the IEEE International Conference on Computational Science and Engineering
(2009), 424–429. [Cited on page 44]

[111] Restrepo-Zea, A., Seneclauze, M., Decotignie, J.-D., Oliver, R. S.,
Fohler, G., Steffens, L., Geilen, M., Chinta, A., Weffers-Albu,
A., Koulamas, C., et al. Deliverable D7 - Model Composition and End-
to-end Prediction. http://www.hitech-projects.com/euprojects/betsy/
deliverables/betsy_deliverable_d7_final_v3.0.pdf, 2007. BETSY
Consortium. [Cited on page 118]

[112] Retail Banking Research. Global ATM Market and Forecasts to 2016.
http://www.rbrlondon.com/reports/G2016_Brochure.pdf, 2012. [Cited
on page 19]

http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/nvcc.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/nvcc.pdf
http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-2001-2.pdf
http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-2001-2.pdf
http://www.interbusclub.com/
http://www.interbusclub.com/
http://www.hitech-projects.com/euprojects/betsy/deliverables/betsy_deliverable_d7_final_v3.0.pdf
http://www.hitech-projects.com/euprojects/betsy/deliverables/betsy_deliverable_d7_final_v3.0.pdf
http://www.rbrlondon.com/reports/G2016_Brochure.pdf

152 Bibliography

[113] Risco-Martín, J. Java Evolutionary COmputation Library (JECO).
https://sourceforge.net/projects/jeco, 2010. [Cited on pages 52 and 66]

[114] Rofouei, M., Stathopoulos, T., Ryffel, S., Kaiser, W., and Sar-
rafzadeh, M. Energy-Aware High Performance Computing with Graphic
Processing Units. In Proceedings of the Workshop on Power Aware Comput-
ing and Systems (HotPower) (2008), IEEE. [Cited on page 44]

[115] Rong, L., Fredj, M., Issarny, V., and Georgantas, N. Mobility man-
agement in B3G networks: a middleware-based approach. In Proceedings of
the International Workshop on Engineering of Software Services for Pervasive
Environments (ESSPE) (2007), ACM, pp. 41–45. [Cited on page 102]

[116] Schmutzler, J., Bieker, U., and Wietfeld, C. Network-centric Middle-
ware supporting dynamic Web Service Deployment on heterogeneous Embed-
ded Systems. In Proceedings of the International Conference on Concurrent
Enterprising (2008), ICE. [Cited on pages 10, 99, 102, 103, 104, and 105]

[117] Schneider Electric. DPWS4J Toolkit. https://forge.soa4d.org/
projects/dpws4j/, 2011. [Cited on page 113]

[118] Seneclauze, M., Decotignie, J.-D., van der Stok, P., de Groot, H.,
van Hartskamp, M., van Doren, G., van Heesch, D., Perez, C. O.,
Joosten, M., Blanch, C., et al. The BETSY Project on Timeliness
and Energy Aspects of Video Streaming. In Proceedings of the International
Workshop on Wireless Ad-hoc Networks (IWWAN) (June 2005). [Cited on
page 118]

[119] Shalf, J., Bashor, J., Patterson, D., Asanovic, K., Yelick, K.,
Keutzer, K., and Mattson, T. The MANYCORE Revolution: Will HPC
LEAD or FOLLOW? SciDAC Review (2009), 40–49. [Cited on page 3]

[120] Sharaf, A., Beaver, J., Labrinidis, A., and Chrysanthis, K. Bal-
ancing Energy Efficiency and Quality of Aggregate Data in Sensor Networks.
VLDB Journal (2004), 384–403. [Cited on page 117]

[121] Siedhoff, D., Weichert, F., Libuschewski, P., and Timm, C. Detec-
tion and Classification of Nano-Objects in Biosensor Data. In Proceedings of
the International Workshop on Microscopic Image Analysis with Applications
in Biology (MIAAB) (2011). [Cited on page 9]

[122] Simunic, T., Benini, L., and De Micheli, G. Cycle-Accurate Simulation
of Energy Consumption in Embedded Systems. In Proceedings of the Annual
Design Automation Conference (DAC) (1999), ACM, pp. 867–872. [Cited on
page 21]

https://forge.soa4d.org/projects/dpws4j/
https://forge.soa4d.org/projects/dpws4j/

Bibliography 153

[123] Steinke, S., Knauer, M., Wehmeyer, L., and Marwedel, P. An
Accurate and Fine Grain Instruction-Level Energy Model Supporting Soft-
ware Optimizations. In Proceedings of the International Workshop on Power
And Timing Modeling, Optimization and Simulation (PAMOS) (2001), Lec-
ture Notes in Computer Science, Springer. [Cited on page 21]

[124] Taisch, M., Colombo, A. W., Karnouskos, S., and Cannata, A.
SOCRADES Technology Roadmap, 2008. SOCRADES Consortium. [Cited
on pages 3, 4, 98, 100, 116, and 127]

[125] Texas Advanced Computing Center. GotoBLAS2. http://www.tacc.
utexas.edu/tacc-projects/gotoblas2, 2010. [Cited on page 17]

[126] Texas Instruments. CMOS Power Consumption and Cpd Calculation,
1997. www.ti.com/lit/an/scaa035b/scaa035b.pdf. [Cited on pages 21
and 120]

[127] The OSGi Alliance. OSGi Service Platform Core Specification. http:
//www.osgi.org/Specifications, 2007. [Cited on pages 90 and 91]

[128] Thiele, L. Design Space Exploration of Embedded Systems. Artist Network
of Excellence on Embedded System Design - Spring School Embedded System
in Xi’an, 2006. [Cited on page 41]

[129] Timm, C., Gelenberg, A., Marwedel, P., and Weichert, F. Energy
Considerations within the Integration of General Purpose GPUs in Embedded
Systems. In Proceedings of the Annual International Conference on Advances
in Distributed and Parallel Computing (ADPC) (2010), GSTF. [Cited on
page 9]

[130] Timm, C., Gelenberg, A., Weichert, F., and Marwedel, P. Reducing
the Energy Consumption of Embedded Systems by Integrating General Pur-
pose GPUs. Tech. Rep. 829, Embedded System Group, Faculty of Computer
Science, TU Dortmund, 2010. [Cited on page 9]

[131] Timm, C., Görlich, M., Weichert, F., Marwedel, P., and Müller,
H. Feedback-Based Global Instruction Scheduling for GPGPU Applications.
In Proceedings of the ICCSA Workshop on Advances in High Performance
Algorithms and Applications (AHPAA) (2012), Lecture Notes on Computer
Science, Springer. [Cited on page 9]

[132] Timm, C., Libuschewski, P., Siedhoff, D., Weichert, F., Müller, H.,
and Marwedel, P. Improving Nanoobject Detection in Optical Biosensor
Data. In Proceedings of the International Symposium on Bio- and Medical
Information and Cybernetics (BMIC) (2011), pp. 236–240. [Cited on page 9]

http://www.tacc.utexas.edu/tacc-projects/gotoblas2
http://www.tacc.utexas.edu/tacc-projects/gotoblas2
www.ti.com/lit/an/scaa035b/scaa035b.pdf
http://www.osgi.org/Specifications
http://www.osgi.org/Specifications

154 Bibliography

[133] Timm, C., Michaelis, S., Marwedel, P., Schmutzler, J., Seger, J.,
Wietfeld, C., and Wolff, A. Deliverable D 2.3 - Performance and System
Model, 2007. [Cited on pages 9, 10, 99, and 103]

[134] Timm, C., Schmutzler, J., Marwedel, P., and Wietfeld, C. Dynamic
Web Service Orchestration applied to the Device Profile for Web Services in Hi-
erarchical Networks. In Proceedings of the International ICST Conference on
COMmunication System softWAre and middlewaRE (COMSWARE) (2009),
ACM, pp. 1–6. [Cited on pages 9, 10, and 105]

[135] Timm, C., Weichert, F., Fiedler, D., Prasse, C., Müller, H., ten
Hompel, M., and Marwedel, P. Decentralized Control of a Material Flow
System enabled by an Embedded Computer Vision System. In Proceedings of
IEEE ICC Workshop on Embedding the Real World into the Future Internet
(RWFI) (2011), IEE, pp. 1–5. [Cited on pages 9 and 13]

[136] Timm, C., Weichert, F., Marwedel, P., and Müller, H. Design Space
Exploration Towards a Realtime and Energy-Aware GPGPU-based Analysis of
Biosensor Data. In Special Issue "International Conference on Energy-Aware
High Performance Computing (ENA-HPC)", Computer Science - Research
and Development. Springer, 2011, pp. 1–9. [Cited on page 9]

[137] Timm, C., Weichert, F., Marwedel, P., and Müller, H. Multi-
Objective Local Instruction Scheduling for GPGPU Applications. In Proceed-
ings of the International Conference on Parallel and Distributed Computing
Systems (PDCS) (2011), IASTED/ACTA Press. [Cited on page 9]

[138] Timm, C., Weichert, F., Prasse, C., Müller, H., ten Hompel, M.,
and Marwedel, P. Efficient Resource Management in Sensor/Actuator
Networks based on Non-Functional Requirement Specifications. In Proceedings
of the International Network Conference (INC) (2012), Centre for Security,
Communications and Network Research, Plymouth University. [Cited on
page 9]

[139] Tiwari, V., Malik, S., and Wolfe, A. Power Analysis of Embedded
Software: A First Step towards Software Power Minimization. In Proceedings
of the International Conference on Computer-Aided Design (ICCAD) (1994),
IEEE/ACM, pp. 384–390. [Cited on page 21]

[140] Toshiba. TC90413XBG Single-chip SoC for ATSC LCD TV. http://www.
toshiba.com/taec/components/docs/ProdBrief/07K04__TC90413XBG.pdf,
2007. [Cited on page 26]

[141] Tseng, C.-J., and Siewiorek, D. Automated Synthesis of Data Paths in
Digital Systems. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (1986), 379–395. [Cited on page 63]

http://www.toshiba.com/taec/components/docs/ProdBrief/07K04__TC90413XBG.pdf
http://www.toshiba.com/taec/components/docs/ProdBrief/07K04__TC90413XBG.pdf

Bibliography 155

[142] Valliiee, M., Ramparany, F., and Vercouter, L. Flexible Composition
of Smart Device Services. In Proceeding of the International Conference on
Pervasive Systems and Computing (PSC) (2005), CSREA Press, pp. 27–30.
[Cited on pages 4 and 102]

[143] Valluri, M., and John, L. Is Compiling for Performance == Compiling for
Power? In Proceedings of the Workshop on Interaction between Compilers and
Computer Architectures (INTERACT) (2001), Kluwer Academic Publishers,
pp. 101–117. [Cited on page 44]

[144] Vardhan, V., Sachs, D., Yuan, W., III, A. F. H., Adve, S., Jones, D.,
Kravets, R., and Nahrstedt, K. GRACE-2: Integrating Fine-Grained
Application Adaptations with Global Adaptation for Saving Energy. Interna-
tional Journal of Embedded Systems (IJES) (2005). [Cited on page 118]

[145] Voorneveld, M. Characterization of Pareto Dominance. Operations Re-
search Letters (2003), 7–11. [Cited on page 34]

[146] Wang, Z., and Hu, X. S. Energy-Aware Variable Partitioning and Instruc-
tion Scheduling for Multibank Memory Architectures. ACM Transactions on
Design Automation of Electronic Systems (April 2005), 369–388. [Cited on
page 44]

[147] Weichert, F., Fiedler, D., Hegenberg, J., Müller, H., Prasse, C.,
Roidl, M., and ten Hompel, M. Marker-Based Tracking in Support of
RFID Controlled Material Flow Systems. Journal of Logistics Research (2010),
13–21. [Cited on page 13]

[148] Weichert, F., Gaspar, M., Timm, C., Zybin, A., Gurevich, E., En-
gel, M., Müller, H., and Marwedel, P. Signal Analysis and Classifica-
tion for Plasmon Assisted Microscopy of Nanoobjects. Tech. Rep. 830, Graph-
ical Systems Group and Embedded System Group and , Faculty of Computer
Science, TU Dortmund, 2010. [Cited on page 9]

[149] Weichert, F., Gaspar, M., Timm, C., Zybin, A., Gurevich, E., En-
gel, M., Müller, H., and Marwedel, P. Signal Analysis and Classifi-
cation for Surface Plasmon Assisted Microscopy of Nanoobjects. Sensors and
Actuators B: Chemical (2010), 281–290. [Cited on pages 9, 11, 12, 13, 14,
and 73]

[150] Weichert, F., Gaspar, M., Zybin, A., Gurevich, E., Görtz, A.,
Timm, C., Müller, H., and P., M. Plasmonen-unterstützte Mikroskopie
zur Detektion von Viren. In Proceedings of the Workshop Bildverarbeitung
für die Medizin (BVM) (2010), Lecture Notes on Computer Science, Springer,
pp. 76–80. [Cited on page 9]

156 Bibliography

[151] Weichert, F., Timm, C., Gaspar, M., Zybin, A., Gurevich, E. L.,
Müller, H., and Marwedel, P. GPGPU-basierte Echtzeitdetektion von
Nanoobjekten mittels Plasmonen-unterstützter Mikroskopie. In Proceedings of
the Workshop Bildverarbeitung für die Medizin (BVM) (2011), Lecture Notes
on Computer Science, Springer, pp. 39–43. [Cited on pages 9 and 13]

[152] Weiser, M. The Computer for the 21st Century. In Human-Computer
Interaction. Morgan Kaufmann, 1995, pp. 933–940. [Cited on page 1]

[153] Wolff, A., Michaelis, S., Schmutzler, J., and Wietfeld, C.
Network-Centric Middleware for Service Oriented Architectures across Het-
erogeneous Embedded Systems. In Proceedings of the International Enterprise
Distributed Object Computing Conference (EDOC) (2007), IEEE, pp. 105–108.
[Cited on pages 10, 99, 100, 101, and 103]

[154] Woo, D., and Lee, H.-H. Extending Amdahl’s Law for Energy-Efficient
Computing in the Many-Core Era. Computer (2008), 24–31. [Cited on pages
3 and 44]

[155] Yi, W., Tang, Y., Wang, G., and Fang, X. A Case Study of SWIM:
Optimization of Memory Intensive Application on GPGPU. In Proceedings of
the International Symposium on Parallel Architectures, Algorithms and Pro-
gramming (PAAP) (2010), IEEE, pp. 123–129. [Cited on page 44]

[156] Zeeb, E., Bobek, A., Bohn, H., Prüter, S., Pohl, A., and Krumm,
H. WS4D: SOA-Toolkits making Embedded Systems ready for Web Services.
In Proceedings on the International Workshop on Open Source Software and
Productlines (SPLC-OSSPL) (2007). [Cited on pages 92 and 93]

[157] ZiiLABS. ZMS-08: Media Rich Applications Processor. http://www.
ziilabs.com/downloads/PB_ZiiLABS_ZMS-08.pdf, 2011. [Cited on pages
3, 5, 41, and 43]

[158] Zitzler, E., Giannakoglou, K., Tsahalis, D., Periaux, J., Papailiou,
K., Fogarty, T., Ler, E. Z., Laumanns, M., and Thiele, L. SPEA2:
Improving the Strength Pareto Evolutionary Algorithm For Multiobjective
Optimization. In Proceedings of the International Conference on Evolutionary
and Deterministic Methods for Design, Optimization and Control with Appli-
cations to Industrial and Societal Problems (EUROGEN) (2001), International
Center for Numerical Methods in Engineering, pp. 95–100. [Cited on pages
36, 45, and 49]

[159] Zybin, A., Kuritsyn, Y., Gurevich, E., Temchura, V., Überla, K.,
and Niemax, K. Real-time Detection of Single Immobilized Nanoparticles
by Surface Plasmon Resonance Imaging. Plasmonics (2010), 31–35. [Cited
on page 11]

http://www.ziilabs.com/downloads/PB_ZiiLABS_ZMS-08.pdf
http://www.ziilabs.com/downloads/PB_ZiiLABS_ZMS-08.pdf

Resource-Efficient Processing and Communication in
Sensor/Actuator Environments

Abstract: The future of computer systems will not be dominated by personal
computer like hardware platforms but by embedded and cyber-physical systems as-
sisting humans in a hidden but omnipresent manner. These pervasive computing
devices can, for example, be utilized in the home automation sector to create sen-
sor/actuator networks supporting the inhabitants of a house in everyday life.

The efficient usage of resources is an important topic at design time and opera-
tion time of mobile embedded and cyber-physical systems. Therefore, this thesis
presents methods which allow an efficient use of energy and processing resources in
sensor/actuator networks. These networks comprise different nodes cooperating for
a “smart” joint control function. Sensor/actuator nodes are typical cyber-physical
systems comprising sensors/actuators and processing and communication compo-
nents. Processing components of today’s sensor nodes can comprise many-core chips.

This thesis introduces new methods for optimizing the code and the application
mapping of the aforementioned systems and presents novel results with regard to
design space explorations for energy-efficient and embedded many-core systems. The
considered many-core systems are graphics processing units. The application code
for these graphics processing units is optimized for a particular platform variant
with the objectives of minimal energy consumption and/or of minimal runtime.
These two objectives are targeted with the utilization of multi-objective optimiza-
tion techniques. The mapping optimizations are realized by means of multi-objective
design space explorations. Furthermore, this thesis introduces new techniques and
functions for a resource-efficient middleware design employing service-oriented ar-
chitectures. Therefore, a service-oriented architecture based middleware framework
is presented which comprises a lightweight service orchestration. In addition to that,
a flexible resource management mechanism will be introduced. This resource man-
agement adapts resource utilization and services to an environmental context and
provides methods to reduce the energy consumption of sensor nodes.

Keywords: Design Space Exploration, Multi-objective Optimization, Optimizing
Compiler, Service-Oriented Architectures, Device Profile for Web Services, Resource
Management, Context-Awareness, Energy-Efficiency

	Introduction
	Motivation
	Design Challenges for Networked Embedded Many-Core Systems
	Contribution of this Work
	Organization of the Thesis
	Author's Contribution to this Dissertation

	Sensor/Actuator Environments & Applications
	Biomedical Scenario
	Intra-Logistics Scenario
	Scientific Sensor Network Scenario
	Application Benchmarks

	Energy Consumption and Performance Testbed
	Introduction
	Testbed
	Architecture
	Source Code Annotation
	Exemplary Hardware Platform Test Configuration

	Optimizations for GPGPU Applications: Basics
	Programming GPGPU-based Many-Core Systems
	Programming Concepts
	Hardware Structure and Runtime Concept
	GPGPU Application Mapping
	General
	Compilation

	Genetic Algorithms
	Specification
	Elitism-based Multi-objective Genetic Algorithms
	Pareto Optimization
	Examples

	Multi-objective Hardware/Software Codesign for GPGPU Applications
	Introduction
	Optimization Potential in Classical GPGPU Application Design Process
	Hardware/Software Codesign for GPGPU Applications

	Related Work
	Energy-Aware and Embedded High Performance Computing
	Compiler Optimizations
	System-level Design Space Exploration

	Multi-objective Local Instruction Scheduling
	Introduction
	MOBLIS - Materials and Methods
	Genetic Algorithm Specification
	Optimization Workflow
	Evolution Operation

	Evaluation
	Parameters / Configuration / Optimization Runtime
	Single Platform Results
	SPEA2 and NSGA-II Comparison Results
	Platform Variants Comparison Results
	Parallel Register Utilization

	Summary

	Multi-objective Global Instruction Scheduling
	Introduction
	FALIS - Materials and Methods
	Extracting Mobile Instructions
	Calculating Mobility of Instructions on Extended Basic Blocks
	FALIS Genetic Algorithm Specification
	Optimization Workflow
	Evolution Operations

	Evaluation
	Parameters / Configuration / Optimization Runtime
	Single Platform Results
	SPEA2 and NSGA-II Comparison Results
	Platform Variants Comparison Results

	Summary

	Design Space Exploration for Embedded Image Processing Systems
	Introduction
	Materials and Methods
	Evaluation
	Parameters and Configuration
	Input Data Dependency
	Parallel Processing Scalability
	Energy/Runtime Considerations

	Summary

	Design Space Exploration for GPGPU-Accelerated Embedded Systems
	Introduction
	Materials and Methods
	Evaluation
	Parameters and Configuration
	Results

	Summary

	Conclusion

	Embedded System Middleware: Basics
	Service-Oriented Architectures
	Projects and Specifications based on SOA
	OSGi
	Device Profile for Web Services
	Basic Features
	Protocols

	Classical Web Service Development Process
	Web Service Business Process Execution Language

	Service-Oriented and Resource-Aware Middleware for Embedded Systems
	Introduction
	Optimization Potential in Classical Web Service Development Process
	Flexible Middleware Techniques and Resource Awareness

	Embedded System Middleware Architecture
	Introduction
	Related Work
	MORE - Materials and Methods
	Service Development and Deployment

	Use Case Evaluation
	Scientific Sensor Network Scenario
	Intra-Logistics Scenario

	Summary

	Lightweight Service Orchestration
	Introduction
	Related Work
	Service Chaining - Materials and Methods
	Evaluation
	Resource Considerations
	Use Case Evaluation

	Summary

	Resource Management
	Introduction
	Related Work
	Resource Management - Materials and Methods
	Resource Accounting and Control
	Non-Functional Requirements Aware Service Invocation (NOFURSI)
	Non-Functional Requirements Aware Subscription (NOFURAS)

	Evaluation
	NOFURSI
	NOFURAS

	Summary

	Conclusion

	Conclusion and Future Work
	Summary
	Future Work

	Appendix
	Definitions
	Mathematical Symbols & Style Sheet

	List of Tables
	List of Figures
	List of Listings
	Bibliography

