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The First G-APD Cherenkov Telescope (FACT) is an Imaging Air Cherenkov Telescope located
on the Canary Island of La Palma. It is the first of its kind which uses Geiger-mode Avalanche
Photo Diodes (G-APDs) as photosensors to detect the Cherenkov radiation emitted from sec-
ondary particles in a high-energy gamma-ray air shower. A new analysis chain has been devel-
oped using modern data mining methods and unfolding techniques to obtain the energy spectrum
of an observed source. This analysis chain has been applied to data of the Crab Nebula, the so
called "standard candle" in Cherenkov astronomy. Here, the individual steps are described and
results of this application are reported providing the energy spectrum and light curve.
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1. Introduction

FACT (First G-APD Cherenkov Telescope) [5] is the first Imaging Air Cherenkov Telescope
which uses Geiger-mode Avalanche Photo Diodes (G-APDs) as photo sensors. It is located at the
Observatorio del Roque de los Muchachos on the Canary Island of La Palma (Spain) and since
October 2011 it observes very high energy gamma-ray sources in the Northern hemisphere by
detecting air showers produced in the atmosphere by very high energy gamma-rays.

FACT is installed on the mount of the former HEGRA CT3 telescope and is equipped with
30 refurbished hexagonal mirrors of the HEGRA CT1 telescope which add up to a total reflective
surface of 9.51 m2. The camera consists of 1440 pixels yielding a total field-of-view of 4.5◦

and each of these pixels consists of a solid light concentrator and a Silicium Photomultiplier
(SiPM) hosting 3600 G-APDs (Hamamatsu MPPC S10362-33-50C). The novel SiPM photo sensors
are mechanically and electronically robust, are capable of single photon counting, have a low
operational voltage, a high photon detection efficiency and cheap production costs. These promising
properties make them particularly suitable for applications in the ground-based Cherenkov gamma-
ray astronomy. More details concerning the performance of this novel technique are given in [6].

The analysis chain starts with the preprocessing of the raw data. For this task, the data analysis
tool FACT-Tools [9] has been developed. It performs the calibration of raw data, an extraction of the
registered Cherenkov photon pulses, a cleaning process, and calculates several parameters describing
the measured image of the air shower. FACT-Tools is embedded in the streams framework [7] which
has been developed in cooperation with the department of computer science at the TU Dortmund.
The image parameters calculated by FACT-Tools are used to perform an energy estimation of the
primary particle and a suppression of background showers induced by charged cosmic rays and
showers induced by gamma-rays coming from another direction as the source. In principle, both
steps could be conducted within the data mining framework RapidMiner [11] (as well developed
at the TU Dortmund), but so far the RapidMiner is only used for the background suppression.
The RapidMiner framework supports not only the application of a large variety of multivariate
methods for classification tasks, but also the necessary validation of a given model. Subsequently,
the resulting data set is unfolded using the software TRUEE [12] to obtain the differential energy
spectrum of the observed source. Figure 1 shows an overview of the described analysis chain.

Figure 1: Schematic flow diagram of the FACT analysis chain.

The Crab Nebula, a nearby pulsar wind nebula, is the brightest source in high energy gamma-
rays with no detected variability so far. Therefore it serves as the "standard candle" in very high
energy gamma-ray astronomy to evaluate and compare the performance of instruments. The different
steps of the analysis chain will be presented and the Crab Nebula energy spectrum measured by
FACT will be shown for the first time.
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2. Data Sample

In order to evaluate the performance of the FACT telescope and its corresponding analysis
chain, data of the Crab Nebula taken between October 2013 and February 2014 is used. By a
dedicated data selection, the final sample contains only data taken during good conditions, meaning
a zenith angle below 30◦, good weather, no moon light and a stable trigger rate. This data have
been taken in the so-called wobble mode, i.e. the telescope points at the source (ON) with a specific
offset, which allows to estimate the background (OFF) under the same conditions at the same time.

Dedicated Monte Carlo simulations (MCs) are necessary for the analysis of these data. They
are generated using the software CORSIKA [10] to model the air shower and the software ceres
provided within the MARS - CheObs ed. package [8] to model the telescope’s response. The MC set
includes 12 million air showers induced by gamma-rays in an energy regime between 200 GeV and
50 TeV and about 780 million air showers induced by protons in an energy range between 100 GeV
and 200 TeV. Both energy spectra follow a power law with an index of -2.7.

3. Preprocessing and Parameterization

The first steps of the analysis chain are the preprocessing and parameterization of the raw data.
Therefore, the data analysis tool FACT-Tools is used, which calibrates the raw data, extracts the
number of Cherenkov photons and identifies the image of the measured air shower by applying an
image cleaning algorithm. Subsequently, the image is parameterized and the calculated parameters
are applicable in the following steps of the analysis chain. More details about FACT-Tools can be
found in [9].

Figure 2 shows the distribution of two exemplary parameters calculated by FACT-Tools for
the proton MCs and the measured data of the Crab Nebula. Note, that no background suppression
has been applied yet to this Crab Nebula data and contains mostly protons due to the much larger
fraction (ratio ∼ 1:1000) of proton showers compared to showers induced by gamma-rays and other
background showers. This justifies a comparison between proton MCs and measured Crab Nebula
data. The comparison shows an agreement in the general shape of the distribution. However, the
rates in the MCs are slightly higher than in measured data.
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Figure 2: Comparison of parameter distributions normalized to observation time, using the example
of the total light content of the shower (left) and the third moment along the major axis of the shower
ellipse (right). While the general shape of the distributions is reproduced by the MCs, the rates in
the MCs are slightly higher than in measured data.
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4. Energy Estimation

Since it is not possible to measure the energy of the incoming particle directly, it is necessary to
estimate it based on the measured image parameters which feature a correlation to the sought-after
energy of different extent. For this energy estimation a random forest regression is performed with
the open source machine learning library scikit-learn [13] resulting in a new parameter called
reconstructed energy (Erec). The correlation between the simulated energy (EMC) and this new
parameter Erec is displayed in Figure 3. It shows a clear correlation but an unambiguous conclusion
from the reconstructed to the true energy is not possible.

The performance of the energy estimator is evaluated by calculating the bias and resolution
caused by the telescope and the analysis. Hence, a gaussian function is fitted to the distribution of
(Erec −EMC)/EMC for individual energy bins. The mean and the standard deviation of this function
estimates the bias and the resolution. The results are visualized in Figure 3.
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Figure 3: Left: Correlation between true energy (EMC) and reconstructed energy (Erec) by evaluating
gamma MCs. Right: Energy resolution and bias obtained by evaluating gamma MCs.

As the random forest regressor is trained with gamma MCs, the variance of the confidence of
the ensemble of decision trees for proton MCs is much larger than for gamma MCs. This can be seen
in Figure 4. Therefore, the variance of the energy estimator is well suited during the background
suppression.
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Figure 4: Variance of Erec of each particular tree in the random forest regression for proton and
gamma MCs, normalized to the number of events. This parameter is well suited during the
background suppression.
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5. Background Suppression

In order to suppress the dominant background showers induced by charged cosmic rays or
gamma-rays not coming from the direction of the source, a random forest classification is performed
within the RapidMiner. Therefore a random forest with 100 trees, 45 total features and 7 features
per node is trained with 50000 signal and 50000 background events.

After the classification model has been built, it is applied to the measured data and to disjoint
MCs and a confidence is calculated for each event describing the probability of an event to belong
to the positive (here: signal) class. In order to obtain data sets for the following analysis steps, a
cut in this confidence has to be applied. The choice of values for this cut depends on the particular
purpose of the data set to be generated. They are evaluated by calculating quality parameters on
an independent MC test sample, validated by a 10 fold bootstrap validation. By way of example,
Figure 5 shows the gamma and proton efficiency for different confidence cuts. To evaluate the values
for the cuts, the Fβ score [14] is used:

Fβ = (1+β
2) · precision · efficiency

(β 2 ·precision)+ efficiency
(5.1)

The Fβ score measures the quality of the classification with respect to the importance of the
precision compared to the efficiency by attaching a factor β . This factor can be tuned according
to the particular intended use, e.g. a source detection has different requirements to the data set as
the determination of an energy spectrum. Especially in the case of highly unbalanced data, where
the minority class is more important, the Fβ score is well-suited. For the source detection β = 1

20
and for the determination of the energy spectrum β = 1

6 are chosen. The confidence cut is chosen
according to the maximum of Fβ score.
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Figure 5: Left: Gamma and proton efficiency for different confidence cuts. Right: F 1
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and F1
6

score
evaluated with a 10-fold validation on an independent MC set. According to the maximum of the
distributions, the confidence cuts for the source detection and for the unfolding are chosen. The
chosen Fβ scores for the particular confidence cuts are marked in red.
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6. Source Detection

As stated in the previous section, the
source detection requires specific cuts
to obtain the best suitable data set for
this purpose. A confidence cut of 0.96
is chosen to perform the detection of
the Crab Nebula. The application of the
random forest model on the Crab Nebula
data yields to a clear signal of the source.
Figure 6 shows the distribution of θ 2

for ON and OFF data. The source is
detected with a significance of 43.54 σ

in 87.6 hours.
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Figure 6: θ 2-Plot for Crab Nebula data with a confidence
cut of 0.96. Note, that θ 2 is used in the classification
model as well, resulting in a non-flat OFF distribution.

7. Energy Spectrum

As shown in section 4, an unambiguous conclusion from the reconstructed to the true energy is
not possible, whereas an unfolding procedure has to be conducted. The software TRUEE provides a
well tested algorithm with the capability to use up to three image parameters during the unfolding
fit. This fit is based on a regularized likelihood fit and unphysical fluctuations can be suppressed
by the application of a Tikhonov regularization. Furthermore, it provides different modes for the
validation of e.g. the chosen settings and several quality checks of the unfolding. A more detailed
description of TRUEE, its implementation and capabilities are presented in [12].

The unfolding step requires slightly dif-
ferent cuts on the confidence (0.9) as
for the source detection. By choosing
the reconstructed energy, the light con-
centration in the shower image and the
zenith angle for the unfolding fit, an
energy spectrum of the Crab Nebula
has been obtained and is shown in Fig-
ure 7. The slightly higher flux could be
explained due to the higher rates seen
in MCs (compare section 3). However,
the energy spectrum of the Crab Neb-
ula obtained with the FACT telescope
is consistent with previous measure-
ments of this source performed with
other IACTs.

Figure 7: Unfolded energy spectrum of the Crab Neb-
ula obtained with FACT compared to results from other
telescopes: HEGRA [2], MAGIC [3], H.E.S.S. [1] and
VERITAS [4]. The vertical error bars indicate only sta-
tistical uncertainties. The slightly higher flux could be
explained due to the higher rates seen in MCs.
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One of the quality checks of the unfolding
is the comparison of the distribution of an
image paramter not used during the unfold-
ing fit between the measured data and the
MC simulation reweighted with the unfold-
ing result. The result of this comparison
is shown in Figure 8 using the example of
the parameter Length. The agreement of
both distributions indicates a proper perfor-
mance of the unfolding.

Figure 8: Distributions of the image parameter Length
for measured data and MC simulations reweighted
with the unfolding result. The agreement of the distri-
butions indicates a proper unfolding.

By means of the unfolded energy spectrum, an integrated flux has been calculated as a function
of time (Figure 9). The daily flux points are consistent within the uncertainties with an expected
constant flux. The average integrated flux is consistent with measurements of other IACTs, taking
into account the uncertainties of this measurement as well as the ones of the other experiments. The
slightly higher flux could be due to the higher rates seen in MCs (compare section 3).

Figure 9: Lightcurve of the Crab Nebula between September 2013 and February 2014 measured
with FACT and compared to other experiments as in Figure 7. The slightly higher flux could be due
to the higher rates seen in MCs. The daily flux points are consistent with a constant flux.

8. Conclusions

In this work the analysis chain of the FACT telescope including modern data mining methods
and unfolding techniques has been described and the results of its application on Crab Nebula data
have been presented. The source has been detected with a significance of about 44 σ in 87.6 h and
the lightcurve as well as the energy spectrum between 250 GeV and 16 TeV are consistent with
measurements of other experiments. The validation of all analysis steps has been important to
achieve these results.
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