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Abstract. The development and evaluation of new data mining meth-
ods for ubiquitous environments and systems requires real data that were
collected from real users. In this work, we present an open smartphone
utilization and mobility dataset that was generated with several devices
and participants during a 4-month study. A particularity of this dataset
is the inclusion of low-level operating system data. Additionally to the
description of the data, we also describe the process of collection and the
privacy measures we applied. To demonstrate the utility of the data, we
performed two example analyses, which are also presented in this paper.

1 Introduction

Today’s mobile phones are able to produce a vast amount of valuable data. Pro-
duced by several physical and logical sensors, the data provides knowledge about
the owner as well as his environment. Several studies have shown that smart-
phones can be used as an effective tool to gain insights into patterns of human
behavior and interaction that were not available before. Notable examples are
the datasets of the MIT Human Dynamics Lab like the Reality Mining dataset
[I] or the Lausanne Data Collection Campaign [2]. The latter was however only
available for participants of the 2012 Nokia data challenge. [3]

While smartphones are certainly an excellent tool for research, it is not less
important to consider how data collection campaigns can help to improve these
devices and the respective infrastructure. Previous research has shown that in-
sights into utilization and mobility patterns of mobile devices are indeed of value
for that purpose. This concerns the mobile network infrastructure [4] as well as
the user experience with respect to the devices. A limiting factor to user ex-
perience is certainly the lifetime of a smartphone’s battery. Much research has
been conducted towards the use of user-specific mobility and utilization pat-
terns to increase the energy-efficiency of mobile devices, like the reduction of
GPS utilization via location prediction [3] or accelerated file prefetching. [6]

Research on these problems requires real data collected on real devices and
from real users. While high-level data like location and phone call logs might



be sufficient for some of the problems, others also need data concerning the
device, not only its owner. Device AnalyzaEl is an Android application collecting
data from thousands of devices all over the world in order to get insights into
utilization patterns, with the explicit goal to provide crucial information for
the improvement of future smartphones. To guarantee complete anonymity all
privacy-critical identifiers (e.g., cell tower IDs or MAC-addresses) are hashed
with individual salts. This makes the dataset unavailable for the analysis of
social interaction. Also, it is not clear when the data will be available.

Our proposed dataset shares commonalities with all three mentioned exam-
ples, but features all of the following: 1.) It contains operating system level
data, 2.) not all identifiers are hashed with individual salts, and 3.) it is openly
available at http://stb876.tu-dortmund.de/mobidata.

The remainder of this paper is structured as follows: In Section [2 we will
shortly describe how we collected the data and ensured the privacy of our par-
ticipants, while Section [3] describes the resulting dataset. In Section [4] we present
two exemplary analyses performed on these data. Section [5] concludes the paper.

2 The Collection Process

We started with 11 participants, who all were members of our collaborative
research center. During our summer school in 2012, we additonally collected
data from 11 attendees. For this purpose we used MobiDAC, our flexible infras-
tructure for data collection on Android-based smartphones. MobiDAC allows
experimenters to use the participating devices like programmable sensor nodes.
Operators write sensing modules that perform the actual data acquisition on
the device. These modules may be uploaded to respective devices and remotely
started or stopped. When a module is running, it is collecting, possibly prepro-
cessing and saving data locally on the device. Data is sent back to the experi-
menter when certain conditions are met, like an established Wi-Fi connection.
Currently, a modified version of the Scripting Layer for Android (SL4AE is used
to execute the sensing modules.

2.1 Modus Operandi

We used both the Android-API as well as Linux’ virtual file systems (VFS)
“/proc” and “/sys” as data sources. When the device was awake, most of the
data was collected high-frequently (temporal resolution of two seconds) or via
callbacks from Android. To reduce the amount of data that had to be transmitted
from the device, we only recorded changes to data values. Every 60 seconds, we
took a snapshot of all data from the virtual file systems and started sensor
sampling for two seconds with the highest possible frequencies. A Bluetooth
scan was started every five minutes. Every two hours, the periodically sampled

! Device Analyzer website: http: //deviceanalyzer.cl.cam.ac.uk/
2 SL4A can be found at: [http://code.google.com/p/android-scripting
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data was recorded completely (not only changes). As opposed to Symbian-based
phones, which were used for some of the data collection campaigns mentioned
in the introduction, Android phones try to suspend whenever possible. This
happens, when the screen is off and no application is keeping the device awake
by means of a wake lock. During the suspended state, no data can be collected
at all. Thus, we explicitly wake the device from its sleep every 60 seconds and
perform a full acquisition of all data values with the respective intervals.

2.2 Privacy Preservation

Since this version of our dataset is truly open and available to anyone, we were
obliged to be especially careful in the process of ensuring privacy. We treated
data in the following ways:

— Everything that uniquely identifies a participant is globally consistently re-
placed with a random value. This is also true for all identifiers from interac-
tion with other entities (e.g., MAC-addresses and SSIDs) as well as for the
names of installed and running application packages and processes.

— Mobile network cell information was replaced by locally consistent random
values for each participant. This means that the mapping of cell identification
(CID) and location area code (LAC) is different for every participant.

3 The Data

We collected data from various hardware and software subsystems, namely com-
munication (Wi-Fi, Bluetooth and mobile), sensors, power supply, the Linux
kernel and Android’s application framework. This section coarsely describes the
contents of the dataset resulting after the privacy-preserving measures.

3.1 Contents

The data may be categorized into high-level user context, external sensing, and
system internals.

High-Level User Context is utilization data that contains direct hints to the
participant’s current activity and context. This includes the state of the
display (on/off, brightness) and the phone (idle, ringing, or off the hook).
Also the currently running packages belong to this category. Settings can
also indirectly tell about the participant’s context. For example, turning the
phone to silent mode, when it was set to play a ringtone before, is a hint that
the situation changed to one that prohibits phone noise, like a meeting or
a cinema. Besides audio settings, also the communication settings, whether
Bluetooth or Wi-Fi is enabled, or whether the device is in airplane mode,
belong to this category.



Sensing data is obtained from various physical sensors as well as positioning
and communication hardware. The physical sensors measured acceleration,
magnetic field strength, orientation and light intensity. When the participant
allowed it, also information about current altitude and speed were obtained
from the GPS hardware. Also, communication devices can be used to sense
the presence or even the signal strength of (potential) peers. Whereas Wi-Fi
and baseband processors deliver information about stationary communica-
tion peers (access points and cell towers) and are thus feasible for positioning,
Bluetooth delivers information about mobile communication peers.

System Internal data mainly describes the overall usage of the system’s re-
sources like the CPU, the battery, the main memory and the network in-
terfaces. The use of Android wakelocks also belongs to this category. Since
wakelocks are used to prevent the device from suspending, (application) bugs
regarding their handling can severely increase energy consumption.

3.2 Structure

For every device, our dataset contains a stream of events. Every event is com-
posed of a timestamp, an attribute name, and the new value for this attribute.
Table [2] shows an excerpt of such a stream. For entity types with multiple in-
stances, like Wi-Fi access points, attribute names contain a unique identifier for
this resource (e.g., the BSSID for Wi-Fi). The appearance and disappearance
of such entities is denoted with “1” or “0” respectively. For example, at time
1346837529394, package “gBRth” is started, whereas at 1346837579524, the ac-
cess point “PSQdw” has gotten out of reach. The complete dataset consists of
250 million of these events. Figure[llillustrates their distribution regarding event
type and participant. Table [0 contains all attributes in condensed form. A de-
tailed and exhaustive description can be found at the dataset’s website.
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Fig. 1. Left: Period of participation for every participant. Right: Total number of events
for every event type (log scale).



Table 1. Condensed names of collected attributes including the data Category (High-
Level, Sensing, or Internal), the sampling Interval, and the data Source (Android API
or Linux VFS). The sampling interval is either given in seconds or as the fact that we
received the data as callback event (E) whenever it changed. Values in square brackets
are placeholders for actual identifiers. An asterisk means that the according value (or
identifier if in the bracket) was replaced for privacy.

Attributes | Cat. | Int. | Src.
airplanemode, phonestate H 2,E A
battery:{health, level, plugged, status, technology, temperature, voltage} | E A
bluetooth:{, connected:[mac_address*], device:[mac_address*]:{, name*, class, H,S A
bondstate, prev_bondstate}}
cpuload:{1min, 5min} | 2,60 |V
location:{gps, network}:{time, speed, altitude, accuracy} S 60 A
media:{maxvolume, volume} H 2 A
memory:{Buffers, Cached, Dirty, MemFree, MemTotal, Writeback} | 60 \%
net:[device]:{, {r, t}x {bytes, packets, dropped, errors}, ...} 1 60 \%
network:{roaming, cell:{cid*, lac*}, operatorid*} S A
notifications:vibrate, ringer:{maxvolume, silent, vibrate, volume} H A
packages:{launchable:[package*], running:[package*]} H 60 A
processes:[pid]:{, cmdline:{*, parameters*}, state, tcomm¥*, {u, s, cu, cs}time, 1 60 \%
priority, nice, num_ threads, start_time, vsize}
screen:{brightness, on, timeout} H 2 A
self:{skip, start}
sensors:{time, azimuth, light, pitch, roll, time, {x,y,z}force, {x,y,z}Mag} S 120 | A
signal strenghts:{gsm _signal strength, cdma dbm, evdo dbm} S E A
sim:{state, operatorid*, serial*, subscriberid*} | 300 | A
wakelocks:[name]:{active_since, {expire, wake, } count, last_change, {max, sleep, | I 2 \%
total} time}
wifi:{, connection:{bssid*, hidden _ssid*, ip_address*, link_speed, network _id, rssi, | H,S | 60 A
ssid*, supplicant _state}, scan:[bssid*]:{, capabilities, frequency, level, ssid*}}
Table 2. Example data for one device.
Timestamp Attribute Value Timestamp |Attribute Value
1346837529316 | network:cell:cid O8aal 1346837529469 [cpu:load:5min 3.49
1346837529346 | wifi True 1346837529512 | network:operatorid obTLz
1346837529366 | wifi:connection:ssid |WfQ4k 1346837529633 | net:wlan0:tx  bytes 31342252
1346837529394 | wifi:scan:PSQdw:ssid | ZvAet 1346837530254 | packages:running:gBRth |1
1346837529428 |ringer:vibrate True 1346837530317 |sim:serial FUxuY
1346837529451 |screen:on False 1346837530351 | phone:state idle
1346837529454 screen:brightness 100 1346837534507 | bluetooth:devices:ZOchS|1
1346837529468 | battery:level 39 1346837579524 |wifi:scan:PSQdw 0




4 Exemplary Analysis

Many different kinds of analysis can be imagined on the dataset presented here.
Among them semantic place prediction [7], network cell prediction [4], trans-
portation mode detection [§], frequent subsequence mining as well as the gen-
erative modeling of user or hardware behavior [9], [I0]. Due to the streamin
nature of our dataset, the streams abstraction [IT] was used for preprocessinﬁ
In the following, we will explain how the data can be incorporated in a network
cell prediction task [4] as well as for smartphones power modeling [9].

Network Cell Prediction. Every mobile network connection has a unique
network cell identifier. A-priori knowledge about cells that a user will visit in near
future can deliver an indicator about upcoming changes in network routing and
load. The network operator can automatically and pro-actively react to these
changes, for example, by reserving capacity in the predicted cell. For a given
set of Information I; at time ¢, the network cell prediction task is to predict
the next network cell that the corresponding user will visit. Forward feature
selection shows, that the most important source of information is knowledge
about the last k cells. For each user, one task specific dataset is generated.
Therefore, the sequence of visited cells is extracted for each user and a sliding
window of 10 minutes width is applied to this sequence. If the cell identifier
changed multiple times within a single 10 minute window, the most frequent
CID is selected. Each k consecutive windows are then concatenated to form a
data row (cellp, cell_q,cell o, cell_3), with label celly and attributes cell_; to
cell_3. Here, two windows are considered as consecutive if their time stamps do
not differ more than 10 minutes. Applying a simple Naive Bayes Classifier for
this problem yields only ~ 30% accuracy on the just described data. To enhance
the performance for this task, cells that are only visited once can be removed
from the dataset and more sophisticated methods like Support Vector Machines
or Markov Random Fields can be applied [4].

Energy Modeling. Researchers have proposed a number of power models
for ubiquitous systems [9], [I0], [12]. Usually, power models are derived manually
by using a power meter attached to one specific system instance. As a result of
the model derivation process, the generated power model is at best accurate
for one type of embedded system and at worst accurate only for the specific
ubiquitous system instance for which it was built. It would require great effort
and time to manually generate power models for the wide range of phones now
available.

We now show how a simple linear regression power model can be estimated
with our dataset, whereby we follow the approach that was presented by Zhang
et al. [9]. The event stream is converted to a set of consecutive windows as de-
scribed above. Since the energy consumption should be predicted, we consider
the change of battery level as label, i.e. y = batLevel; — batLevel; ;. The follow-
ing measurements are considered as features: mobile network and Wi-Fi signal

3 The stream container and processors that have been written to preprocess the data
for both tasks are available online at: http://sth876.tu-dortmund.de/mobistream.
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Fig. 2. Energy consumption of a smartphone as measured by the change in battery
level over time. Left: measured consumption. Right: predicted energy consumption.

strength, Wi-Fi speed, number of outgoing/incoming Wi-Fi and mobile network
packets in the last window, display brightness, GPS usage and CPU utilization.
Figure 2 shows the measured energy consumption for one user over time on the
left, and the corresponding prediction on the right. The 10-fold cross validated
root mean squared error of the estimated linear model is 0.604 with a deviation
of £0.02 and the absolute error is 0.525 (£0.013).

Using such prediction models as a building block within a larger learning
task can help to estimate the energy consumption of certain decisions since it
can be used to assign costs to mobile network, display, CPU, Wi-Fi and GPS
usage.

5 Conclusion

We presented our open smartphone utilization dataset collected within our col-
laborative research center and during its summer school and presented some
analysis to show its utility. We believe that open datasets greatly help to eval-
uate and improve analysis methods like these. It is interesting to see that, the
further down the software-hardware stack a data source resides, the more data
is generated and the more data is actually needed to obtain meaningful results.
We see this as an indication towards the need for data collection frameworks
that allow for flexible preprocessing and data aggregation.
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