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Abstract—Efficient routing is one of the key challenges of
wireless networking for unmanned aerial vehicles (UAVs) due
to dynamically changing channel and network topology charac-
teristics. Various well known mobile-ad-hoc routing protocols,
such as AODV, OLSR and B.A.T.M.A.N. have been proposed to
allow for proactive and reactive routing decisions. In this paper,
we present a novel approach which leverages application layer
knowledge derived from mobility control algorithms guiding
the behavior of UAVs to fulfill a dedicated task. Thereby a
prediction of future trajectories of the UAVs can be integrated
with the routing protocol to avoid unexpected route breaks
and packet loss. The proposed extension of the B.A.T.M.A.N.
routing protocol by a mobility prediction component – called
B.A.T.Mobile – has shown to be very effective to realize this
concept. The results of in-depth simulation studies show that the
proposed protocol reaches a distinct higher availability compared
to the established approaches and shows robust behavior even in
challenging channel conditions.

I. INTRODUCTION

Mobile robotic networks are an important subset of mobile
ad-hoc networks (MANETs) and form a class for a wide range
of different network types. Applications range from dynamic
traffic management in the field of vehicular ad-hoc networks
(VANETs) to maintaining robust swarm communication for
Unmanned Aerial Vehicles (UAVs) exploring hazardous areas.
The provision of reliable end-to-end communication in this
kind of networks is a challenging topic due to the high
relative mobility. Established routing protocols can barely
cope with the frequently changing network and fail to adopt
to the new channel and topology conditions. This issue is
widely known and has been onesidedly addressed from two
different perspectives: a mobility-centric view and a routing-
centric view. In this paper, we combine these approaches
to enhance the overall routing performance and the stabil-
ity of communication paths in low altitude UAV networks.
Application layer mobility control data is used to predict
future node positions. This information is then used to enable
a forward-looking routing approach to optimize the packet
forwarding process. We analyze the system behaviour with
multiple mobility algorithms (see Fig. 1), which are described
in Section IV-A. Our simulation setup has been published as an
Open Source framework and is described in [1]. The remainder
of this paper is structured as follows: after discussing the

related work, we present the system model of our solution
approch, which contains the novel prediction method and our
proposed routing protocol as subchapters. In the next section
we describe the used mobility algorithms, the traffic model
and our simulation environment. Finally, detailed results of
multiple simulation evaluations are presented, which compare
our proposal to existing approaches. The results show the high
efficiency of our proposed methods and prove their suitability
for highly dynamic mobile robotic networks.

II. RELATED WORK

Challenges of wireless communications with UAVs are
discussed in [2]. The high mobility is one important challenge
for these networks. Recent approaches try to solve the issue
by optimizing the mobile behavior but neglect the influence
on the routing. A classification about different methods of
using mobility information to enhance the routing process is
given in [3]. A common approach is the estimation of link
expiration times in order to forward packets via the neighbor
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with the highest link-availability [4]. Most approaches assume
constant movement vectors, which cannot be fulfilled for real-
world UAV exploration tasks. The usage of movement traces
in order to predict future trajectories is evaluated in [5] in the
field of VANETs. The authors of [6] use mobility prediction
with a geographic routing protocol to avoid routing voids.
Knowledge about planned trajectories is used by the Trajectory
Aware Geographical (TAG) routing protocol in [7] in order
to avoid link-breaks in Cognitive Radio Ad Hoc Networks
(CRAHNs). The authors are able to decrease the end-to-
end delay significantly. The authors of [8] present Mobility
and Load aware OLSR (ML-OLSR) as an extension to the
well-known Optimized Link State Routing (OLSR) protocol
and uses information about the nodes movement direction to
optimize the multipoint relay selection. The results show an
improved packet delivery ratio (PDR). An overview about bio-
inspired routing protocols is given in [9] and the ’Mobility
aware-Termite’ algorithm is presented, which uses the node’s
position history to improve the path availability in combina-
tion with pheromone-based routing. It is able to outperform
established reactive protocols in terms of throughput and delay.
However the node-distances are estimated from the received
signal strength, which will cause frequent positioning errors
in real-world channel conditions. The discussed approaches
indicate the scientific interest and the relevance of the topic.
Existing methods are often based on position histories and
movement directions but do not interact with the mobility
control layer in order to optimze the prediction accuracy.

III. CROSS-LAYER SOLUTION APPROACH

Our proposed system model is illustrated in Fig. 2. The
UAV control software implements the mobility algorithms and
acts as a database for the agent’s current mobility information,
which is used by our proposed multifactoral prediction method
to determine the future agent trajectory. For the routing process
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Fig. 2. Cross-layer solution approach: utilizing predicted mobility informa-
tion for the routing decisions

the basic Better Approach To Mobile Adhoc Networking
(B.A.T.M.A.N.) [10] routing protocol is used to handle the
exchange of routing messages between the agents because of
its stigmergic approach, which provides a sophisticated way
of distributing path quality information through the network.
The forwarding decision is performed by our novel forward-
looking metric and utilizes the results of the mobility pre-
diction process in order to optimize the neighbor selection,
leading to an improved packet delivery ratio. In the following
subchapters we will give a detailled description of the novel
mobility prediction algorithm and present B.A.T.Mobile as an
extension to the B.A.T.M.A.N. protocol.

A. Leveraging mobility control knowledge for node trajectory
prediction

The stepwise prediction process uses different kinds of
mobility information and is illustrated for an example agent in
Fig. 3. A new position estimate is calculated for each next step
until the final iteration Np is reached. Within each iteration i,
the prediction method with the assumed highest precision is
selected from all available methods to perform the calculation
for the next position estimation step. Since the prediction
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Fig. 3. Application of the predicion method for an example agent

process is iterative, previously predicted position values can
also be used by the extrapolation process. Fig. 4 summarizes
the prediction algorithm as a flow chart. The steering vector ~σi
represents the vector to the desired vehicle position ~Pi+1 in the
next update step i+ 1 and is calculated by the vehicle control
software. Since it is a weighted superposition of individual
steerings taking into account exploration, collision avoidance
and swarm coherence, it cannot be predicted itself and is only
available in the first step of the prediction process. For the
prediction of the next step, ~σi needs to be scaled from the
update interval ∆tu of the mobility algorithm to the actual
time difference ti+1 − ti (see Eq. 1) .

~P
′
i+1 = ~Pi + (ti+1 − ti)

~σi
∆tu

(1)



Individual vehicle waypoints act as orientation points and in-
dicate the current movement direction of the agent. Depending
on the mobility algorithm the frequency of waypoint changes
is variable. Eq. 2 is used to determine the next position on the
line-of-sight to the current waypoint ~W with a defined velocity
v.
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Fig. 4. Flow Chart for the iterative prediction process for B.A.T.Mobile:
in each iteration the estimation of the next position is determined by the
prediction method with the highest available precision

~P
′′
i+1 = ~Pi +

~W − ~Pi

|| ~W − ~Pi||
· (ti+1 − ti) · v (2)

The distance of the predicted position to the current waypoint
is contineously determined to check if the agent is inside the
waypoint range rw and can be considered ”reached”. A change
of the current waypoint is performed after a waypoint has been
reached and further waypoints are available. If no waypoints
are remaining, this prediction method can no longer be used.
As a fallback solution, the extrapolation prediction method
is used, if no other information is available. It calculates the
average movement vector from the last Ne positions as shown
in Eq. 3.

~P
′′′
i+1 = ~Pi +

ti+1 − ti
Ne − 1

Ne−2∑

j=0

~Pi−j − ~Pi−j−1
ti−j − ti−j−1

(3)

B. Predictive routing with B.A.T.Mobile

The main task of the routing process is the choice of
a forwarder node from the available neighbors for a given
destination. Most established protocols only maintain a single
path for each destination in their routing tables, limiting the

capabilities for proactive avoidance of path losses in highly
dynamic networks. Moreover the usage of simple decision
metrics (e.g. hop count) leads to a high frequency of route
switches. To overcome these issues, every node N uses a
Neighbor Ranking (Fig. 5) for each destination D, which
contains all neighbor nodes of N and a score as an indicator
about their suitability to be the next hop on the path D.
The routing decision is simplified to selecting the neighbor
with highest score from the ranking. We use B.A.T.M.A.N.
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Fig. 5. Score-based maintenance of multiple routing paths using neighbor
rankings in an example network. Node A calculates the neighbor scores for
the destination C from the received messages.

as the basic routing protocol to forward the required mobility
information with its Originator Messages (OGMs). All mes-
sages are extended with the current forwarder position ~P , the
predicted forwarder position ~P ′ and the current path score
S. If a node generates a broadcast message, it initializes S
with the maximum value 1 and sets both position values to
its own positions. On reception of a routing packet, the new
path score S′ is calculated by multiplicating the received path
score S with the link score SL to the forwarder node as shown
in Eq. 4. This method implicitely punishes paths with high
hopcounts. S′ and the position values of the receiver node
are then used to update the routing message and forward it
according to the rules of the basic protocol.

S′ = S · SL (4)

For the link score SL the calculation is based on the distance
d to the forwarder node, which is set in relation to a maximum
distance dmax. The latter is obtained with a defined channel
model for a desired minimal received signal strength Pe,min.
Depending on the potential dynamics of the network topology
in the considered scenario, the parameter α is used to control
the tradeoff between the influence of absolute distances and
relative mobility on the total score.

SL = min

[
1−

(
d

dmax

)α
, 1−

(
d′

dmax

)α]
+ ptrend (5)

The relative agent mobility is taken into account by Eq. 6,
which correlates the predicted development of the distance
to the forwarder with the maximal possible distance using the
vehicle’s step width dstep. The resulting value range is defined
by the parameter ptrend,max.

ptrend =

{
0 : NP = 0

d′−d
2·dstep·NP

· ptrend,max : else (6)

Since routing packets are usually sent with best-effort delivery,
packet losses occur and may cause false routing decisions.



B.A.T.Mobile addresses this issue with the introduction of the
Neighbor Score Buffer B (see Fig. 6). New path scores are
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Fig. 6. Compensation of lost routing packets through score buffering

only used to update the current score candidate SC . The timer
tu controls the update phase, which sets the value of SC to
the score of the best received path to the destination. After
the timeout occurence SC is shifted to the neighbor score
buffer and is then reset to zero. The resulting neighbor score
is calculated as the mean of the buffer and assigned to the
forwarder node in the neighbor ranking.

IV. SIMULATION-BASED SYSTEM MODEL

In this section, the simulation-based system model that is
used for the performance evaluation is presented. It consists of
the description of the mobility algorithms, the actual routing
simulation with scenario definition and the data traffic model.

A. Mobility algorithms

We use the Random walk mobility model in order to deter-
mine a lower bound for the benefit through using the prediction
method. In each iteration the movement vector is determined
randomly. For the general performance evaluation of our
proposed methods, we use a Controlled Waypoint algorithm,
which uses a trajectory of multiple random positions. The
random positioning causes frequent changes of the network
topology, leading to challenging situations for the routing
protocols. In contrast to the well-known Random Waypoint
algorithm, future waypoints are known from the beginning
and can therefore be utilized by the prediction method. Im-
plications for real-life UAV applications are derived from an-
alyzing the routing behaviour using two different exploration
algorithms. Cluster Area Exploration (CAE) [11] performs a
swarm-based exploration by selecting random waypoints for
the swarm centroid. The algorithm is used in combination with
Communication Aware Potential Fields (CAPF) [12], which
maintains the swarm coherence and builds up a chain structure
to the base station at runtime. The Distributed Dispersion
Detection (DDD) [13] algorithm is used for plume detection
and is able to maintain the swarm coherence on its own. For
the exploration task, the swarm uses a mesh structure with
high relative agent mobility.

B. Traffic model

Our reference scenario is defined by a swarm of autonomous
agents exploring a mission area. One of the agents is randomly
selected to continously stream User Datagram Protocol (UDP)
video data to the base station, which is centered inside the
territory. Telemetry information is periodically broadcasted by
all agents in order to keep the swarm coherence and collision
avoidance steerings updated with recent data.

C. Routing simulation with OMNeT++/INETMANET

We use the discrete event-based simulation environment
OMNeT++ [14] and its INETMANET framework for the
evaluation of the routing protocols. For the integration of
application layer mobility data, INETMANET has been en-
hanced with a dedicated location service, which makes those
information available for network layer routing protocols.
Additionally a new base module ”GeoAssistedRoutingBase”
has been added in order to provide score-based routing tables
and our novel path score metric to further protocols. The
simulation parameters for the reference scenario are defined in
Tab. I. Deviations from the default assignment are explicitely
marked where they are required.

TABLE I
SIMULATION PARAMETERS FOR THE REFERENCE SCENARIO IN

OMNET++/INETMANET
Simulation parameter Value
Mission area 500m x 500m x 250m
Number of agents 10
Mobility model Controlled Waypoint
Velocity v 50 km/h
Channel model Friis, Nakagami (γ = 2.75)
Videostream bitrate 2 Mbit/s
Telemetry broadcast interval 250 ms
Telemetry packet size 1000 Byte
OGM broadcast interval (B.A.T.M.A.N.) 0.5 s
HELLO interval (OLSR) 0.5 s
Topology Control (TC) interval (OLSR) 1 s
Medium Access Control (MAC) layer IEEE802.11g
Transport layer protocol UDP
UDP Maximum Transmission Unit (MTU) 1460 Byte
Transmission power 100 mW
Carrier frequency 2.4 GHz
Receiver sensitivity -83 dBm
Simulation time per run 300 s
Number of simulation runs 50
GNSS positioning error 0, [0,120] m
Neighbor Score Buffer size 8
Mobility update interval ∆tu 250 ms
Extrapolation data size Ne 5
Prediction width Np 15, [0, 30]
Grade of relative mobility α 7
Maximum path trend ptrend,max 0.1

V. RESULTS

In this section we present the results achieved with our
proposed protocol extension. We consider the PDR of the
video stream to the base station as our main key performance
indicator.

A. Comparison with established routing protocols
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We compare the results of B.A.T.Mobile with B.A.T.M.A.N.
and the established routing protocols OLSR [15] and Ad-hoc
On-demand Distance Vector (AODV) [16] for different mobil-
ity algorithms. General characteristics of the routing behaviour
can be identified analyzing the time behaviour, which is ex-
emplarily shown in Fig. 7. Using the proposed routing metric,
B.A.T.Mobile avoids packet losses and and is able to maintain
high PDR-values for longer time intervals compared to its
competitors. On rare occasions the forward-looking approach
leads to situations, where the current PDR is temporarily below
the value of the established protocols. Each routing decision
is a trade-off between the current and the predicted network
state, therefore it is sometimes required to spare current PDR
peaks in order to avoid drops in the near future. Fig. 8 shows
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Fig. 8. Comparison of the routing protocols for Controlled Waypoint mobility
in two channel models

the statistical results for a scenario with Controlled Waypoint
mobility in two application scenarios. We use a Friis channel
model for rural scenarios and a Nakagami channel model
(m = 2) for urban applications. B.A.T.Mobile outperforms
the established protocols significantly, while B.A.T.M.A.N.
shows the lowest PDR in both scenarios. AODV achieves the
highest PDR value for the established protocols and is fitting
for mobile applications with low packet loss probabilities due
to its reactive nature. Packet losses are more probable in urban
scenarios, causing lower PDR values for all protocols. AODV
suffers heavily from the loss of route request (RREQ) and
route reply (RREP) packets, which results in a high PDR
decrease. The impact of the channel conditions on the overall
routing performance is much lower for B.A.T.Mobile than for
its competitors. The path score is contained in all routing
messages and acts an indicator for the quality of the whole
path to the message originator. The effect of packet losses is
furthermore reduced by the neighbor score buffer. Fig. 9 shows
the resulting PDR values of B.A.T.Mobile and B.A.T.M.A.N.
for different mobility algorithms. As expected, the Random
Walk routing performance cannot be significantly improved
using predictive methods, although the score buffering slightly
increases the PDR. For the Swarm exploration algorithm the

general PDR is relatively low due to the chain structure, which
contains many single point of failure links. The best routing
performance is achieved with the plume exploration algorithm.
B.A.T.Mobile highly benefits from the inherent path choice
possibilities of the dynamical mesh structure and is able to
enhance the mean PDR value above 90%.
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Fig. 9. Performance of B.A.T.Mobile in relation to B.A.T.M.A.N. in different
controlled mobility scenarios (Rural)

B. Parameterization

In order to evaluate the influence of individual mobility
information on the total routing performance, we compare
multiple parameter configurations. Fig. 10 shows the resulting
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PDR values for the different configurations depending on the
GNSS positioning accuracy. Generally we can identify three
effects:

1) If the positioning error range is very low, all configura-
tions achieve nearly equally high PDR values.



2) Individual waypoints act as static orientation points and
reduce the influence of positioning errors on the overall
routing performance. Further mobility information only
bring minor benefits.

3) The extrapolation prediction method fails, if the posi-
tioning error is higher than a threshold. Enhancements
can be achieved by integrating the steering vector.

The prediction width is one of the key parameters for
the performance of the routing decisions. It is depending on
the intensity of the dynamic of the network topology and
influenced by the mobility pattern of the agents. Fig. 11 shows
the selection of the optimal prediction width for multiple
movement speed parameterizations. The possible benefit of
using predictive methods is proportional to the velocity. For
lower speeds the general PDR is high, thus limiting the
possible space for further improvements. For higher speed
values the PDR can be highly increased by the prediction
but the dependency to an optimal parameter choice is also
intensified.

Velocity     [km/h]

Fig. 11. Choice of the prediction width depending on the vehicle’s velocity

VI. CONCLUSION

In this paper, we presented B.A.T.Mobile as a novel cross-
layer approach to avoid losses of communication paths in
highly dynamic robotic networks. The proposed protocol uses
a novel prediction algorithm in order to optimize the selection
of forwarder nodes by taking the relative agent mobility into
account. We compared our proposal with multiple established
routing protocols and demonstrated its superiority in different
mobility scenarios. The results of the simulation proved the
ability of B.A.T.Mobile to provide reliable communication
even under challenging environmental conditions. Furthermore
we showed that the utilization of application layer mobility
information can significantly enhance the overall routing per-
formance. In the future, we will investigate the suitability of
B.A.T.Mobile to be used in the field of VANETs applications.
Additionally, we want to evaluate the usage of our prediction

method and the path score routing metric with more routing
protocols.
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