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Machine Learning on Embedded
Systems

Sebastian Buschjäger
Artificial Intelligence Group, Chair 8
Technical University Dortmund

sebastian.buschjaeger@tu-dortmund.de

With increasing volumes in data and more sophisticated machine learning
algorithms, the demand for fast and energy efficient computation systems
is also growing. To meet this demand, two approaches are possible: First,
machine learning algorithms can be tailored specifically for the hardware at
hand. Second, instead of changing the algorithm we can change the hardware
to suit the machine learning algorithms better. This report briefly discusses
my last years’ work which focused largely on the first approach and quickly
outlines some ideas for future research.

1 Introduction

To make machine learning universally applicable, we need to bring its algorithms to small
and embedded devices including both - the training and the application of models. From
a computer architectural point of view, we may optimize these two aspects separately.
In model application we rapidly apply an already trained model for predictions and thus
focus on the optimization of inference. In model training however, we would like to train
models on small devices directly, so that these devices dynamically adjust their prediction
rules for new data.
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2 Machine learning for Embedded Devices

In the previous year we looked at filtering of sensor data by using Random Forests for data
driven filtering rules. Our goal is to apply a given Random Forest model continuously on
a small devices, to pre-filter sensor measurements before transmitting them to a central
server. Random Forests are among the most widely used Machine Learning models and
offer compelling theoretical properties. A Random Forest consist of M Decision Trees,
which are trained on different subsets of features and/or different subsets of the data.
A majority vote is used to combine the individual predictions into a single one. Integral
to the implementation of Random Forests is the implementation of each single tree. A
tree consist of a series of binary decisions of the form ‘xi < t’, where i is a specific
feature of the input ~x ∈ Rd and t ∈ R is a threshold. Depending on the outcome of that
decision, we move forward and look at the left or right child of that node. We repeat
this recursively until we hit a leaf-node, which then contains the final prediction.

In [3] we discussed four different ways on how to implement Decision Trees, taking data
cache, instruction cache and vectorization units into account. This year, we built onto
that work by considering the caching behaviour of modern CPUs more explicitly. In
cooperation with the embedded systems groups (chair 12) we derived two algorithms
which optimize the memory layout of Decision Trees with respect to the instruction and
data cache in [2]. In an extensive set of experiments, we were able to show that our
method improves the evaluation speed of Decision Trees by a factor of 2− 6 compared
to a reference implementation and by a factor around 1500 compared to sklearn in the
real-time setting. Moreover, the set of experiments showed that the optimal memory
layout is dependent on the CPU architecture and the specific CPU model. Thus, we
implemented a code-generator which generates optimized code for a given architecture
and specific CPU parameters, such as cache size1.

3 Machine learning on Embedded Devices

Going from model application to model training, I stayed in the realm of embedded
systems and ensemble methods. In their most general form, ensemble methods produce
a predictive model f (x) by combining several base models in a weighted, linear fashion

f (x) =

T∑
i=1

λihi(x)

where hi ∈ H is a set of base learners and λi ∈ R are the weights of each base model.
For example, a Random Forest model uses Decision Trees as base learners which are

1Our software is available at https://bitbucket.org/sbuschjaeger/arch-forest/src
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trained on different subsets of features and/or the data, where each tree is weighted
equally with λi = 1/T . At first it seems counter-intuitive to use ensemble methods on
small devices, because T instead of one model needs to be trained. However, the general
analysis of ensemble methods allow for any set of base learners H. When considering
small devices, we can restrict ourselves specifically to a set of base learners with e.g. only
integer parameters or fixed memory requirements. This way, we can use a rather weak,
but efficiently trainable set of base learners and transform it into a strong learner using
ensemble techniques. This gives us two parameters which can be used to fine-tune our
ensemble to the specific device at hand, namely the set of weak learners and the size of
the ensemble.

In order to bring ensemble methods to small devices, I noticed two major challenges: First,
there is a lack of software tools and implementations which can actually run on small
devices. To the best of my knowledge, all major software tools such as RapidMiner, Weka
or XGBoost focus on Desktop PCs / Servers (RapidMiner, Weka) or GPU acceleration
(XGBoost). A notable exception in this context is Microsoft’s EdgeML2, which offers
specialized versions of K-NN and Decision Trees for embedded systems. However, training
of these models is still performed on a larger PC, but only its application is meant to be
done on a small system. Second, there exists a vast landscape of different embedded
devices and architectures, which often require to fine-tune the implementation to the
specifics of each system. To cope with these challenges, I decided to implement my
own software library called ensembles3 which specifically targets embedded systems. To
this date (December 2018), this library contains multiple base-learners, namely Decision
Stump, Decision Trees, Linear Regression and Gaussian Processes, as well as Boosting
and Bagging. Most methods are available as a (classic) batch learning algorithm for
reference and an online version which can run on an embedded device. I installed an
automatic pipeline, to test and cross-compile the library for Intel x86, ARMv6 and ARMv7
CPUs. The next step is to include more esoteric CPU architectures into this set, such
as the ESP82664 and to include automatic measuring of the power consumption.

4 Future research

In contrast to the mostly practical work in the second half of 2018, I also investigated
the theoretical foundations of ensemble methods. More specifically, I looked at the
coordinate descent view of boosting, in which we view each base learner h ∈ H as a
coordinate of f . Subsequently, the computation of the respective weights λ can be
seen as a coordinate descent algorithm. This view allows for greater freedom in the
design of boosting algorithm, especially in the context of limited memory and limited

2https://github.com/Microsoft/EdgeML
3https://bitbucket.org/sbuschjaeger/ensembles/src
4https://de.wikipedia.org/wiki/NodeMCU
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computational resources. More specifically, I want to use this view to analyse stochastic
boosting algorithms [1, 6] which only consider a fraction of the training data, as well as
distributed boosting algorithms [4, 5, 7] which train multiple base learner in parallel. A
paper on this subject in currently in progress. Interestingly, the coordinate descent view
of boosting also encapsulates Decision Trees. In other words, DT induction algorithms
such as ID3 or C4.5 can also be viewed as boosting algorithms, which may enable new
generalization bounds for DTs.

As a second research direction, I want to extend my research in the area of model appli-
cation on small devices. In the context of Random Forests, we are currently investigating
the possibility to reduce their memory requirements by removing duplicate sub-trees from
a forest. This problem can be either viewed as a hard matching problem, where two sub-
trees are the same if they use the same combination of features and thresholds, or as a
fuzzy matching problem, in which two sub-trees are equal if they have the same prediction
on the same input.
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Optimized Bug Reports for easy
Detection of Locking Bugs using

LockDoc

Alexander Lochmann
Arbeitsgruppe Eingebettete Systemsoftware

Technische Universität Dortmund
alexander.lochmann@tu-dortmund.de

LockDoc [3, 4] is a trace-based approach to automatically derive locking
rules for data types in operating systems. One outcome of LockDoc are re-
ports of potential bugs – one for each observed data type. Applying LockDoc
on Linux revealed that those reports could be long and not easy to assess [3,4].
This report presents a new method of compressing the reports, and giving
the developer a better overview over the data.

1 Introduction

LockDoc [3, 4] generates reports of potential bugs, the so-called counterexamples, as
HTML websites. These makes them easily exchangable with developers while using
modern web techniques to present those counterexamples. The reports generated by
LockDoc fullfill three tasks: a) Group the results by data type, element, and access
type, i.e. r or w, b) display the winning locking hypothesis, c) present the stack traces
that lead to the memory access, and d) list the locks actually held. Task c) and d)
are the main objectives since they allow an easy assessment by the developer. The
first two tasks are accomplished by the heading shown in Figure 1. It clearly separates
the counterexamples as well as presenting the winning hypothesis. The tasks c) and d)
are not well covert: The first column in Figure 1 shows the stack trace leading to the
memory accesses. Whereas, columns three and four show how often which set of locks
that were actually held. That table might become confusing for the reader if there are
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Figure 1: An example of a Bug Report for writing inode.i_blocks. Column Stacktrace
shows the code location where a suspicious memory access ocurred. Columns
three and four show how often which set of locks were actually held.

a large number of stack traces, or a large number of lock sets. In that case, the reader
has to navigate back and forth to compare the results with each other, and to look up
the winning hypothesis again. Moreover, this way of presenting the counterexamples
lacks the relations between the different stack traces. The stack traces can be almost
identical except for the last element, for example. Thus, I present two more concise ways
of presenting counterexamples in the following sections Section 2 and Section 3. Section
4 explains a way of combining both ideas to further improve the presentation.

2 Tree-based Visualization

The tree-based visualization combines both the location of a bug and the locks actually
held in one figure. The Treant JavaScript library is used to draw the trees [1]. A tree
gives a developer an easy and quick overview of the counterexamples for one particular
element of a data type, and where they occurred. It furthermore displays the relations
between the counterexamples.

As can be seen in the example in Figure 2b each path from the root to a leaf repre-
sents one stack trace. Each node correponds to one element of the trace, i.e. a code
location. A leaf represents the code location, i.e. file and line, where suspicious memroy
accesses happenend. A leaf also contains a set of counterexamples. This includes the
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(a) An example for a graph-based visualization
of counterexamples. The potential bugs are
listed on top grouped by the code location.
This includes the locks actually held. The
graph below depicts union of stack traces.

(b) An example of a tree-based visualization of
counterexamples. Each path from the root
to a leaf represents a stack trace. The coun-
terexamples are list in the leafs including the
locks actually held.

Figure 2: Examples of different kind of visualizations used to present counterexamples.

aforementioned set of lock combinations of actually held locks as well as the number of
occurrences. However, a tree might become consfusing if a) many disjunct stack traces
exist and/or b) many deep stack traces exist. In that case, the tree tends to expand both
vertically and horizontally. This makes it hard for a developer to assess the counterex-
amples. He or she has to scroll to reach the leafs. The growth is due to the fact that
the tree-based visualization may contain leafs with redundant code locations. The natur
of trees favor the existence of redundant leafs: Paths may branch but are not allowed to
be merged again. Hence, if two stack traces have the same prefix and the same suffix
but differ in between they are presented as two paths branching after the prefix.

To sum it up, the tree-based presentation allows for an easy assessment of the coun-
terexamples, and the relations among them. However, a growing number of unique stack
traces makes this approach impractical since the tress rapidly grow in size.

3 Graph-based Visualization

The graph-based presentation in contrast uses a graph to depict the stack traces as
shown in Figure 2a. The grah is plotted using Cytoscape JS1, a JavaScript version of
the graph library Cytoscape [2]. A graph, by definition, allows to join paths again which
elides redundant nodes. This makes the visualization more compact when the amount
of stack traces increases. In contrast to the tree view, it is not guaranteed that all
leafs of the graph are arranged at the bottom. The list of counterexamples might be
drawn somewhere in the graph. To overcome that issue, the lists of counterexamples are

1Cytoscape.js, http://js.cytoscape.org/ (Accessed January 8th, 2019)
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therefore placed above the call graph shown Figure 2a. The counterexamples are grouped
by the code location, i.e. function and line, that peformed the suspicious access. This way
the developer gets a quick overview of the variety of the counterexamples without scrolling
to the bottom. However, the visualization lacks the relations between counterexamples
and stack traces.

4 Visualization in Practice

Both ways of presenting counterexamples have their advantages and disadvantages. None
is favorable over the other. Therefore, a combined approach is used: LockDoc chooses
one visualization per tupel of (data type element, {r,w}). If the amount of leafs in the
tree-based visualization exceeds a threshold, the graph-based one is choosen. Experi-
ments showed that trees with 8 or more leafs are better presented as graphs.
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The Spectrum of Eigenvalues in
Machine Learning Models

Lukas Pfahler
Artificial Intelligence Group, LS 8

TU Dortmund University
lukas.pfahler@tu-dortmund.de

1 Introduction

The underlying theme of my research into machine learning methods seems to revolve
around eigenvalues. The behavior of machine learning models is often governed by the
spectrum of eigenvalues or singular values of its parameter matrices or its underlying
training data matrices. This offers possibilities for bounding the generalization abilities
of these models [2], introducing regularization [7] or new learning approaches [6]. In
the following we will see work in the field of kernel methods, where the focus is on the
eigenvalues of the kernel matrix, as well as work on modern neural networks, where we
inspect the – possibly very large – weight matrices.

2 Kernel Learning

Kernel methods are a popular choice for classification problems, but when solving large-
scale learning tasks they quickly become infeasible. The essential component of any
kernel method is the kernel matrix. Algorithmically, the biggest challenge is the quadratic
complexity of computing and storing the kernel matrix. If the eigenvalues of the kernel
matrix decay fast, it is feasible to compute an accurate low-rank approximation of the
matrix. The Nyström method that approximates the kernel matrix using only a smaller
sample of the kernel matrix has been proposed. We sample a constant number of rows
of the full kernel matrix and use these rows to build a low-rank approximation. Other
techniques to speed up kernel learning include stochastic first order optimization and
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conditioning. We have introduced Nyström-SGD [6], a learning algorithm that trains
kernel classifiers by minimizing a convex loss function with conditioned stochastic gradient
descent while exploiting the low-rank structure of a Nyström kernel approximation. Our
experiments suggest that the Nyström-SGD enables us to rapidly train high-accuracy
classifiers for large-scale classification tasks.

For this algorithm, it is essential to compute the exact eigenvalues of the Nyström-
approximation. Only this allows us to converge to the empirical risk minimizer in a
numerically-stable manner. The special structure of the Nyström kernel matrix allows us
to compute the eigenvalues faster than the usual O(n3).

3 Inspecting Singular Values in Large Neural Networks

The behavior of deep networks is governed by their weight matrices W and activation
functions σ, as each layer computes a new representation h(x) = σ(Wh′(x)). We are
interested in the singular values of the linear operators W . Instead of considering the
singular values of W , we can equivalently analyze the eigenvalues of WW T . Theoretical
results show the importance of the singular values for generalization abilities [2], as the
state-of-the-art bounds are functions of Schatten-norms, which in turn are functions of
the singular values.

We want to visually inspect the eigenvalue distribution of the operators by creating his-
tograms. Computing eigenvalues exactly is a costly operation, particularly because the
dimension of hidden layers in state-of-the art convolutional neural networks often exceeds
100,000. Fortunately, when we are interested in a histogram, we only need to know the
number of eigenvalues that fall into the bins of the histogram. We derive a method that
does not need to compute all the eigenvalues exactly. It is based on two techniques:
For estimating a small number of the largest eigenvalues exactly, we use ARPACK, a
truncated eigenvalue decomposition method that does not require the matrix explicitly,
but accesses it only via matrix-vector products [4]. For estimating the remaining his-
togram, we use a method based on matrix Chebyshev approximations and Hutchinson’s
trace estimator [5]. It also only accesses the matrix via matrix-vector products. Ideally
we would like to use the cheaper stochastic estimator for all bins, but additive errors are
much worse for the histogram bins with very few eigenvalues. Hence we settle for a com-
promise where we compute a few bins exactly, exploiting the rapid decay of eigenvalue
counts.

The highest-dimensional linear operators in deep networks used in production environ-
ments are likely convolution layers. These layers transform feature maps with number
of raw-features in the input- and output feature often exceeding 100k. This is feasi-
ble because the convolution operator is not implemented as matrix-vector multiplication
with dense weight matrices, but specialized and highly-optimized convolution routines are
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Figure 1: Histogram of a 3x3 convolution linear convolution layer that maps from 8,112
features to 32,448 features after 90 epochs of imagenet training.

used. We can use these same routines when we estimate the eigenvalues of the linear
maps of network layers, as we only access the matrix via matrix vector products.

Figure 1 shows preliminary results, where the eigenvalues of a convolution layer in a
deep network were analyzed. The green part of the plot shows the eigenvalues that
have been computed exactly with the linear algebra library, whereas the blue part shows
the eigenvalue counts that have been approximated using the stochastic estimator. The
results are based our own unpublished python library that can analyze the linear operators
in any network implemented in pyTorch. The eigenvalues seem to follow a log-normal
distribution and their counts decay rapidly. However, the matrix has full rank.

4 Future Research

In the future I want to expand the analysis of eigenvalues in deep networks based on
stochastic estimators into two directions: regularization and covariance structure.

In order to apply stochastic estimators for regularization in models that are trained
using stochastic gradient descent, it is essential the the estimators are unbiased and
differentiable and that the gradients are unbiased as well. There are extensions to the
approach we use for the histograms that provide just that [1, 3]. This allows us to test
regularizers of the form R(A) =

∑
i f (λi(A)) where f is a real-valued function applied to

each eigenvalue λi(A) of A. Overall the computational efficiency of stochastic regularizers
should exceed the performance of comparable regularizers that require computing singular
value decompositions at each optimization step. However they do not allow more general
forms of regularizers, e.g. R(A) =

∑
i fi(λi(A)).
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The generalization performance of linear models can be characterized by the decay of
eigenvalues of the covariance of the data. If there is exponential decay, then it is
possible to obtain generalization bounds that show a fast rate of convergence O(1/n) in
contrast to the usual O(

√
1/n). It is unclear if a similar result can be shown for deep

networks. As a first step I want to analyze the covariance structure within a deep network
and visualize the eigenvalues of the covariance matrices of intermediate representations.
Computing the full covariance matrices is infeasible, but computing unbiased estimators
is possible. These unbiased estimators can be used to compute an unbiased estimate of
the spectrum [1].

Ultimately a combination of the two direction is plausible: regularize such that the co-
variance structure in intermediate layers follows nice decay laws.
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The Fréchet distance is a popular distance measure for curves, but the

computation complexity to determine the similarity between two given curves

poses considerable computational challenges in practice. We studied distor-

tion of the probabilistic embedding that results from projecting the curves to

a randomly chosen line, both from theoretical and experimental view, on a

set of realistic input curves.

Introduction

The Fréchet distance is a distance measure for curves which naturally lends itself to

fundamental computational tasks, such as clustering, nearest-neighbor searching, and

spherical range searching in the corresponding metric space. However, their inherent

complexity poses considerable computational challenges in practice. Indeed, spherical

range searching under the Fréchet distance was recently the topic of the yearly ACM

SIGSPATIAL GISCUP competition [6], highlighting the relevance and the di�culty of

designing e�cient data structures for this problem. At the same time, Afshani and

Driemel show lower bounds on the space-query-tradeo� in the pointer model [1] that

demonstrate that this problem is even harder than simplex-range searching.

The computational complexity of computing a single Fréchet distance between two given

curves is a well-studied topic. It is believed that it takes time that is quadratic in the

length of the curves and this running time can be achieved by applying dynamic program-

ming. In the literature the case of 1-dimensional curves under the continuous Fréchet

distance stands out, as there are no lower bounds known on computing the continuous
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Fréchet distance between 1-dimensional curves. It has been observed that the problem

has a special structure in this case. Clustering under the Fréchet distance can be done

e�ciently for 1-dimensional curves [5], but seems to be harder for curves in the plane

or higher dimensions. Bringmann and Künnemann use projections to lines to speed up

their approximation algorithm for the Fréchet distance [2]. It may be assumed that the

problem for the 1-dimensional curves is signi�cantly easier, but in the general case, there

are no algorithms known which are faster for 1-dimensional curves than for curves in

higher dimensions. In practice, it is very common to separate the coordinates of trajec-

tories to simplify computational tasks. It seems that in practice the inherent character

of a trajectory is often largely preserved when restricted to one of the coordinates of the

ambient space. Mathematically, this amounts to projecting the trajectory to a line.

Theoretical bound

Given two polygonal curves P and Q with t vertices each from R
d , where d 2 f2; 3; 4; 5g.

Consider sampling a unit vector u in respective Rd uniformly at random, and let P 0 and

Q0 be the projections of the two curves to the line supporting u. We observed that

Fréchet distance always decreases when the curves are projected to a line, and showed

that if the curves P and Q are k-packed for constant k , then, with constant probability,

the discrete Fréchet distance between the curves P and Q degrades by at most a linear

factor in t. This ratio we call distortion c = dF (P
0; Q0) =dF (P;Q). Note that under this

de�nition it is c 2 [0; 1]. The main claim on upper bound is stated by Theorem 1.1 We

also present a matching lower bound on c [4]. A curve is called k-packed for a value

c > 0 if the length of the intersection of the curve with any ball of any radius r is a most

kr , and was proved useful as a realistic input assumption [3] . Our study concentrates

onto the discrete Fréchet distance, but we expect that our techniques can be extended

to the case of the continuous Fréchet distance.

Theorem 1. Given k � 2, for any two polygonal k-packed curves P and Q from R
d ,

where d 2 f2; 3; 4; 5g, and for any  2 (0; 1) it holds that

Pr [c � 1=(k 0 � t)] � ; (1)

where the constant k 0 is (12k + 16)= for d 2 f2; 3g, and (1 + 2=�) � (12k + 16)= for

d 2 f4; 5g.

Experimental bound

One can see the result of [4] as a negative result, since we hoped that the Fréchet

distance would be more robust under such projections. We performed the preliminary

1Note that the notion upper bound relates to the bound on 1=c , used due to technical reasons.
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experiments on the dataset of [6]. Their dataset D contains 20199 realistic polygonal

curves from R
2, with complexities between 9 and 767. We have repeated the following

procedure for 504 pairs of curves of D selected uniformly at random. For each pair of

curves (or their subcurves) the projection line was sampled r = 1000 times. We observed

the obtained distribution of the distortion c of the discrete Fréchet distance.

i) We calculated the distortion c = dF (P
0; Q0) =dF (P;Q) for the whole curves.

ii) We observed the pre�x curves P` = fp1; : : : ; p`g and Q` = fq1; : : : ; q`g of P and Q

respectively, with complexity ` equal 10, or to the multiples of 50. The distortion

c = dF (P
0

` ; Q
0

`) =dF (P`; Q`) is calculated.

iii) For every pre�x length ` we chose at random subcurves of P and Q of complexity `,

de�ned by ` consecutive vertices of P and Q respectively. Let these curves be P`;r

and Q`;r . We calculated the distortion c = dF

(
P 0

`;r ; Q
0

`;r

)
=dF (P`;r ; Q`;r).

This yielded 4286 pairs of (sub)curves. For these curves and their subcurves, the cu-

mulative probability distributions of c were calculated, over the set of results of 1000

sampled runs. The Fréchet distance of the observed curves is not necessarily dominated

by one pair of vertices, and varies upon which parts of the curves are observed. For all

pairs of subcurves of P and Q and their respective projections P 0 and Q0 we may assume

that for any  2 (0; 1) it is

Pr [c � ] � : (2)

Indeed, when the cumulative probability distribution of the distortion c is observed over

all tested pairs of curves, the mean and the standard deviation of the distortions obtained

by our experiments for a given threshold  2 f0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:9g,

suggest that for the realistic input curves P and Q the assumption of Equation (2) holds

with high probability. The outlying maxima occur for the curves whose shape is similar to

the curves from the proof of our lower bounds (see [4]), and thus strongly conditioned.

The cumulative probability distribution of the distortion c (Figure 1, left) suggests that

for realistic input curves we can expect that Pr [c � ] � . This holds independently

of the complexity t of the input curves, as illustrated by Figure 1 (right) for the given

threshold  = 0:5. This implies that with probability of at least 0:5 we expect that the

discrete Fréchet distance will be reduced at most by a factor 2 when projected to a line

chosen uniformly at random, independently of the input complexity. These results stand

in stark contrast with our lower bounds. They indicate that highly distorted projections

happen very rarely in practice, and only for strongly conditioned input curves.

Furthermore, it seems that the distortion of the discrete Fréchet distance is bounded by

a constant (with high probability), and that it does not depend on the complexity t of

the input curves, as suggested by Figure 1.
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Figure 1: The cumulative probability distribution of the distortion (left). Given c � 0:5,

the cumulative probability of distortion is shown as a function of the complexity

t of the curves, for t 2 f10; 50; 100; 150; 200; 250; 300; 350; 400g (right). The

means � of the values denoted by red circles. The intervals [� � �; � + �]

denoted by black dots, where � is the standard deviation. The minima and

maxima denoted by blue triangles.
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Feature selection is a key part of the analysis of high-dimensional data.
In domains like bioinformatics, the models are not only used for prediction
but they are also used for drawing biological conclusions which makes the
interpretability and reliability of the models crucial.

For feature selection on high-dimensional datasets, filter methods play an
important role, since they can be combined with any machine learning model
and they can heavily reduce run time of machine learning algorithms. We have
reviewed how different filter methods for feature selection work and compared
their performance with respect to both run time and predictive accuracy. We
conclude that there is no group of filter methods that always outperforms
all other methods, but we make recommendations on filter methods, which
perform well on many of the datasets. Also, we find groups of filters that are
similar with respect to the order in which they rank the features.

In our current research, we work on selecting the correct subset of features
for high-dimensional datasets with highly correlated features. We employ
L0-regularized regression and consider an adjusted stability measure during
hyperparameter tuning.

1 Benchmark for Filter Methods for Feature Selection in
High-Dimensional Data

Many methods for feature selection exist, but it is unclear which of these methods perform
best. In our analyses we focused on the comparison of filter methods for feature selection.
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We analyzed 22 filter methods that are available in the R package mlr [1] based on 16
high-dimensional datasets from various domains.

To find out which of the filter methods are similar with respect to the order in which they
rank the features, we computed rank correlations, see Figure 1. We observed, that for
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Figure 1: Rank correlations between the selection order of all pairs of filter methods on
all datasets, averaged by the arithmetic mean. The filter methods are ordered
by average linkage hierarchical clustering using the mean rank correlation as
similarity measure.

some datasets, especially the datasets containing gene expression data with large number
of features, there were three groups of similar filter methods and many filter methods
which were not very similar to any other method. For the other datasets, most filter
methods were very similar. The filters that were similar to each other mostly came from
the same toolboxes. Also, we investigated the scaling behavior of the filter methods,
identifying groups of filters which behave similarly with respect to run time.

Next, we analyzed the predictive accuracy of the features selected by the filter meth-
ods and the run time needed for feature selection and for building a good predictive
model based on the selected features. We found out that there is no subset of filter
methods which performs better than the rest of the filter methods on all datasets. In-
stead, the best filter methods, strongly differed between the datasets. Nevertheless,
on average all filter methods performed better than not filtering at all. Also, the
filter methods ranger.permutation, ranger.impurity, FSelectorRcpp.symuncert, limma,
and praznik.JMIM performed well in many data situations and therefore seem advis-
able, see Figure 2. The filters FSelectorRcpp.symuncert, limma, and praznik.JMIM
can be seen as representatives of the three groups of similar filter methods. Filters
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Figure 2: Relative mean misclassification rate and relative logarithmic median run time
of the filter methods with optimal configurations aggregated over all datasets.
The median of both performance measures (relative mean misclassification rate
and relative logarithmic median run time) across all datasets is displayed by a
symbol. The upper and lower quartile are located at the respective ends of the
horizontal and vertical lines.

ranger.impurity, FSelectorRcpp.symuncert, and limma achieved very low run times. For
filter ranger.permutation we observed comparably high run times but also very high pre-
dictive accuracy. So, if only limited computational resources are available for finding a
suitable filter method, we recommend trying ranger.permutation, ranger.impurity, FSe-
lectorRcpp.symuncert, limma, and praznik.JMIM. However, whenever possible one should
try to find the best filter method for a given dataset. This can be done by considering it
as a tuning parameter. This work is submitted but not yet published.

2 Selecting the Correct Subset of Features by
Considering an Adjusted Stability Measure

In our current research, we take into account the fact that for high-dimensional datasets
(e.g. microarray data) there often are highly correlated features. In [2], we proposed
performing the hyperparamter tuning of a machine learning method (which includes fea-
ture selection in the model fitting process) with respect to both predictive accuracy and
feature selection stability. For datasets with many highly correlated features, the stability
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measures which are commonly used seem unsuitable: They rate it as unstable if instead
of one feature, another feature - which is almost identical to the first feature but has a
different name - is chosen. For the context of gene lists, adjusted stability measures exist
which take into account feature similarities [4]. We generalize one of these measures so
that it is applicable in the context of feature selection.

Because we want to perform feature selection on datasets with highly correlated features,
we should use a feature selection method which does not select all highly correlated fea-
tures of a relevant feature. We choose to employ L0-regularized logistic regression which
possesses this property unlike most of the other classification methods with embedded
feature selection. There is one hyperparameter that needs to be tuned.

We compare the approaches (1) tuning w.r.t. predictive accuracy, (2) tuning w.r.t. pre-
dictive accuracy and an unadjusted stability measure, (3) tuning w.r.t. predictive accuracy
and an adjusted stability measure, and (4) stability selection [3] with parameters tuned
w.r.t. predictive accuracy, based on both simulated and real data. On simulated data,
we conclude, that using an adjusted stability measure helps with selecting the correct
features (the features that have been used for generating the values of the target vari-
able). In contrast to the approaches (1) and (2), fewer redundant features are selected.
Compared to stability selection, fewer relevant features are forgotten. On real datasets,
we can only evaluate the predictive performance and the sparsity of the models. We
observe that the models fitted with our proposed approach are of comparable predictive
quality as the models of the established approaches and for many datasets, they are more
sparse. This work is still in progress but the preliminary results are promising.
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Optimization of parametrized algorithms with a long runtime is a chal-
lenging task. The goal is to find a parameter configuration that leads to an
optimal performance of the algorithm, whereas the performance is measured
by an arbitrary criterion. Therefore we need to evaluate the algorithm on a
set of parameter configurations. As the runtime of each algorithm evaluation
is very long the total number of algorithm evaluations that can be calcu-
lated within an acceptable time bound is limited. The optimization algorithm
has to use the the limited budget as efficiently as possible. Model-based
optimization (MBO) is a popular technique for such expensive black-box op-
timization. By fitting a regression model on the set of already evaluated
parameter configurations it is possible to obtain a prediction of the perfor-
mance for new parameter configurations. This so called surrogate is used
to guide the optimization to promising areas in an iterative fashion. An infill
criterion determines the next parameter configurations to be evaluated on the
expensive black-box. The result is then used to improve the surrogate. Using
this technique we aim to solve two problems: 1. Evaluate multiple parameter
configurations in parallel if the infrastructure is available and handle hetero-
geneous runtimes to avoid idling using our RAMBO-Framework. 2. Apply
MBO to optimize a black-box over time and handle concept drifts, where the
relation of the parameter configurations and the performance changes over
time. Applications reach from hyperparameter tuning for machine learning
methods to automatic pipeline optimization.
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1 MBO on Parallel Infrastructures

Ordinary MBO is sequential by design. In each iteration a single parameter configuration
is proposed and evaluated. The need to evaluate more configurations within the same
time and the growth of parallel computer infrastructure have driven the development of
MBO methods that propose multiple parameter configurations [4, 5] in each iteration to
be evaluated in parallel. However, they neglect the fact that the runtime of the black-box
often depends on the parameter configuration. If the parallel MBO method is configured
to propose k parameter configurations for k available workers in each iteration, then
each worker evaluates a single configuration. This can lead to idling if evaluation times
differ. In those cases, the workers will wait after they completed a evaluation until new
proposals are generated. However, these proposals are only generated after all evaluations
are finished. Idling is a problem, because it means that time is wasted on idling workers.
This time could be used to evaluate other parameter configurations. This strictly iterative
procedure is called synchronous parallelization.

We tackle this problem by introducing another regression model that predicts the run-
time of a parameter configuration based on the runtime measured on previous algorithm
evaluations, similarly to the performance prediction of the surrogate model. This allows
us to obtain runtime predictions for the proposed parameter configurations, and conse-
quently calculate expected idling. Our proposed method prevents idle times by proposing
more then k parameter configurations and using knapsack scheduling to select the best
subset. This method is described in detail in Kotthaus et al. [6]. There, we also compare
our proposed method to asynchronous approaches. In the asynchronous approach, each
worker runs independently, and a new proposal is generated on the bases of all completed
evaluations and the pending evaluations [3] as soon as the evaluation is finished. Hence
idling does not occur anymore. However the computational overhead is increased, be-
cause outcomes of pending evaluations have to be estimated and each worker has to
construct its own surrogate.

2 MBO on Functions with Concept Drift

Typically for Model-based optimization, the objective function is assumed to be constant
over time. However, time-varying functions are found in many domains and issue a new
challenge for the MBO framework. We developed two novel adaptations of the model-
based optimization framework to handle such concept drifts. The first adaptation uses
a time window on the evaluations that the surrogate is trained on; the second includes
the time directly as an additional covariate in the surrogate model. We compare our
adaptations to ordinary MBO on scenarios with no, gradual and sudden concept drifts,
as shown in Figure 1.
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Figure 1: Left: Functions us and ms with sudden concept drift at t = 20. Right: Func-
tions ug and mg with gradual concept drift.

First results (Figure 2) show that in presence of a concept drift, the novel approaches
using a time window (tw5, tw10) and including the time as covariate in the surrogate
(tac) yield clearly better results than the uncorrected optimizers. If no concept drift is
present, the adaptations seem to only decrease the performance slightly.
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Multi-modal functions with same drifts. A smaller window (tw5) leads to a
faster adaption (us , ms) but also increases uncertainty (u0, m0).

3 Further Research

I participate actively in the development of the R-Package mlr [1], it’s successor mlr31

and mlrMBO [2] amongst others. The latter is the foundation of the RAMBO Frame-

1https://github.com/mlr-org/mlr3
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work and the MBO-CD algorithms. We developed the OpenML TuneBench Server 2. It
uses a database of a vast amount of pre-evaluated hyperparameter configurations for
a combination of machine learning methods and datasets [7]. This allows us to create
a benchmark suite for parameter optimization that does not require the actual costly
evaluation of the machine-learning algorithms. As a result we are able to benchmark out
methods more efficiently on real world problems.
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Internet of Things applications, interconnecting our daily life, have received
a certain amount of interest. A huge number of potential technology solu-
tions are available, but a comprehensive networking solution based on one
technology seems unlikely. The development of 5G mobile networks with a
desired node density of 1,000,000 devices per square kilometer in the area
of massive Machine Type Communication (mMTC) faces a growing number
of unlicensed technologies enabling a simple, cost-effective network operation
independent of licensed operators. Specifically, this works aims to analyze the
suitability of LoRaWAN to contribute to given 5G requirements for specific
mMTC applications in large-scale deployments. The performance evaluation
illustrates that LoRaWAN is attractive due to high communication ranges up
to multiple kilometers, enabling a high coverage even with a small number
of cells. However, due to a simple channel access mechanism in combina-
tion with regulatory requirements defined for the 868MHz short-range device
(SRD) frequency band, this is accompanied by low data rates and high delays
of several seconds in large-scale scenarios. Nevertheless, LoRaWAN indicates
a high potential to contribute to 5G mMTC application areas, especially for
non-time-critical sensor applications.

1 Introduction
Internet of Things (IoT) applications have experienced significant attention and growth
related to large scale deployments, establishing smart object and sensor networks, cov-
ering use cases of industrial, commercial, public as well as private domains. The idea of

mailto:stefan.boecker@tu-dortmund.de
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new basic technologies for interconnecting urban infrastructure, building management,
private and industrial transportation, as well as energy supply is not only discussed in
research, but also increasingly implemented in real deployments. In particular, the fifth
mobile radio generation (5G) promises stable connectivity for a very high number of
devices located in small areas. The ITU-R defines related requirements for several In-
ternet of Things applications within the area of (massive Machine Type Communication
(mMTC) [1]). In particular technologies in licensed frequency bands, tailored to these
specific IoT requirements, e.g. LTE evolutions Narrowband-IoT (NB-IoT) or eMTC, but
also counterparts within unlicensed frequency bands, so-called Low Power Wide Area
Networks (LPWAN), are discussed as major technology solutions. In order to stress es-
pecially technologies from the unlicensed sector, this work focuses on scalability analysis
of LoRaWAN networks based on typical application activities and interference scenarios.

2 Approach and Implementation
As illustrated in Figure 1 the LoRaWAN performance evaluation is addressing 5G mMTC
requirement definitions, while at the same time mandatory regulatory restrictions to
guarantee a fair, harmonized operation in unlicensed frequency bands, are taken into
account.

Performance 
assessment of 

technology capabilities
(Range, Latency, Data 

Rate, etc.)

Scalability within the 
scope of various 

sensitivity analyses 

5G mMTC requirement definition (by ITU-R [1])

Scalability Evaluation and Network 
Planning Assessments

IoT Traffic Models 
(Smart City, Smart Grid)

Analytical 
Modeling SimulationValidation

Methodology

Regulation [4]: 
Technical requirements for harmonized operation

Network Models
(OSM-data with statistcal

distribution)

Channel Models
(enhanced for challenging

system environments [2], [3])

Ressource Capabilities
and Interference

Figure 1: Modeling approaches for LoRaWAN scalability analysis

The performance evaluation itself is performed by two independent modeling ap-
proaches. First, an analytical model based on current state-of-the-art [6] is evolved
to analyze the key performance indicators such as range, latency, data rate etc. Major
enhancements are detailed latency evaluations even for large-scale scenarios, which im-
prove scalability results by means of prediction of service qualities. In order to verify the
analytical model, this work utilizes a simulation model [5] covering LoRaWAN channel
access, which is enhanced by necessary functionalities to cover former introduced latency
and throughput results for large-scale deployments. The reliability of both models is veri-
fied within a cross-validation process, whereby both models enable sensitivity analysis for
traffic amount, duty cycle, as well as resource utilization. Necessary input is detailed in
specific traffic models focused on IoT applications: network models covering real world
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data and statistical distributions, a channel model fitted to urban LoRaWAN deployments
and challenging system environments, as well as a model that provides the opportunity
to consider specific resource and interference situations.

3 Performance and Scalability Evaluation
Our performance evaluation is performed for several activity levels, variations of con-
sidered payload size and channel configurations. Results for an exemplary parameter
constellation (maximum duty cycle of 1% with a considered payload size of 32 Byte) are
presented in Figure 2. The maximum throughput (uplink) is illustrated for each manda-
tory, orthogonal data rate class (DR0-5), resulting in the aggregated system throughput,
which is depicted with and without a capture effect.
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Figure 2: LoRaWAN Throughput utilizing maximum Duty Cycle
It can be seen that a maximum system throughput (uplink) of 3.25 kpbs is achieved

for about 950 nodes per network segment. In addition, correlating latencies for each data
rate class are illustrated. In order to derive a certain service quality, it is assumed that
the maximum latency is always given by the lowest data rate class (DR0). Thus, the
expected average latency can be determined with up to 320 seconds. Considering the
capture effect, the maximum system throughput is increased to 4.5 kpbs generated by
about 1500 nodes, while at the same time, the correlated latency remains stable.
Considering a fairly lower inter-arrival time (IAT) of 2 hours compared to Figure 2 and
an increased system capacity (5 channels each 125 kHz) the maximum scalability of
LoRaWAN networks in the 868 MHz can be increased to about 175.000 nodes per network
segment.

4 Conclusion and Further Research
In this work, a performance analysis approach in order to evaluate the suitability of Lo-
RaWAN networks to contribute to the given 5G mMTC requirement of about 1.000.000
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devices per square kilometer is presented. Scalability results verify that LoRaWAN is a
feasible technology solution that can contribute to the future 5G IoT area, whereby the
application field should be limited to non-time-critical sensor applications. Currently, the
LoRaWAN evaluation is limited to analytical methods cross-verified by means of simu-
lations. This can be enhanced by lab and field trials, in order to further validate and
strengthen already achieved evaluation results. In future work, the LoRaWAN evaluation
will be extended to LoRaWAN implementations at 2.4 GHz, which supports significantly
larger bandwidths and thus promises increased scalability.
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The vision of Industry 4.0 demands for distrubiuted, autonomous systems

to drive logistics and production facilities. A large set of these systems is

hard to maintain due to their energy demands, charging cycles and battery

decay. To suit the needs for battery-free Industry 4.0 appliances, inexpensive

energy harvesting approaches are required that adapt a node's performance

and energy consumption to its energy income. In an experimental setup, a

new method was evaluated to show an inexpensive approach in lab conditions.

1 Introduction

In-situ measurement for mobile devices often requires a voltage supply that is reliable to a

certain degree. This is necessary to generate a stable reference voltage for the measure-

ment and to drive components like analog-digital converter or measurement ampli�ers.

Although classical approaches yield good accuracies, both the energetic requirements and

the expanses of components may not be acceptable for harvesting-driven Industry-4.0 ap-

plications.

The approach used here takes advantage of simple components. To achieve this, a

software-driven solution was created that measures the transition time of a general pur-

pose IO pin of a microcontroller. It requires and abuses some internal circuitry of the

microcontroller (pull resistors and gate capacity) and a few, inexpensive external compo-

nents, namely a z-diode and a resistor.
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Figure 1: Basic setup of a node with photovoltaic cell (PVC) and in-situ measurement

deployment.

2 System Setup

Our example system, as shown in Figure 1, consists of a photovoltaic cell (PVC) to

harvest energy, and a capacitor that is able collect enough charge for a given hardware

task. The capacitor should be dimensioned with reserves (factor 2) to compensate for

inaccuracies and energy loss. The capacitor feeds a voltage regulator (VREG) to hold a

steady supply voltage for the microcontroller. The capacitor charge is estimated by the

following measures:

1. An input pin of the microcontroller is reset to 0 state by activating the internal pull

down resistor in software.

2. The capacitor voltage is reduced to a value close above the threshold voltage of

the IO pin by using an Z-diode.

3. The current is reduced to achieve a minimal charge transfer by using a resistor in

the high k
 range.

4. The time to achieve a low/high transition on the IO pin is measured by the micro-

controller. The charge state of the capacitor is derived from this value.

5. Depending on the charge state, a peripheral hardware workload is triggered. Inde-

pendent of this, the system idles for 10ms.

In practice, step 4 can be easily achieved in hardware by using a capture input of a

microcontroller that is able to trigger a timer capture and/or an interrupt on a high

�ank.

In our setup, a timer value was captured every 10ms, and the system decides to either

start a workload at this time or to idle. The decision is impacted by preceding decisions,

so that in integrating regulator loop is achieved: When low on voltage (decided by a

threshold value), a pause variable p is increased by a fraction R of the measured capture

time c . Otherwise, p will be decreased. After a cycle of subsequent su�cient voltage
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Figure 2: Experiment setup
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Figure 3: Good and bad tasks: (a) no adaptation (b) proposed solution

conditions, p will eventually decrease to zero. It can now be assumed that the capacitor

was charged long enough to achieve a complete hardware task.

3 Experiment

To establish an evaluation of this approach, a photovoltaic cell (PVC) emulation was

used to generate a well de�ned energy income. The whole setup is depicted in Figure 2.

The emulated PVC runs from zero output to maximum output linearly over 2 minutes,

resides for one minute at peak power production and then decreases to zero within the

next 2 minutes. During this time, the consumed energy was measured at the PVC and at

the peripheral hardware workload. The task of the system is to drive a periphery device

which is simulated by a resistor being switched on and o� by a transistor for 10ms. The

supply voltage of the workload was continuously observed. If it stays within a boundary

of 10% of the nominal supply voltage (3V), the task is considered as complete (marked

as good), otherwise as interrupted by a power-fail (marked as bad). Figure 3 shows



40

the results for two experiment runs. The left side shows a run with no measurement

deployment and a static schedule of starting the task at each available time slot. The

right side shows the proposed solution, showing a surplus of good tasks during the dusk

and dawn period of the daylight simulation, while the number of bad stays close to zero

during the whole experiment.

good bad e�ectivity e�ciency

adaptive 16375 62 0.693 0.905

static-100 11669 16635 0.493 0.879

static-50 10056 4407 0.425 0.644

Table 1: Task counters, e�ciency and accuracy.

As a metric for this approach, energy e�ciency is calculated by the ratio of consumed

energy at the PVC and the (known) total available energy at the PVC-emulator's output.

E�ciency here is a measure for good utilization of a PVC, which has to be loaded at

electrical conditions near its maximum power point (MPP) to be e�cient. The MPP has

to be tracked continuously, as it changes with light conditions. Usually, this is done by

external hardware, so called MPP-Trackers or MPPTs, which is not necessary here.

E�ciency does not re�ect the purpose for which energy was used, e.g. it could have been

wasted completely for measurement, while not supplying tasks with su�cient voltage.

Thus, a metric of e�ectivity is introduced, which is the ratio between the actual amount

of good tasks, and the theoretically possible good tasks, when no energy loss for the

microcontroller or energy measurement occurs.

Table 1 shows some of the results for three experiments. The adaptive solution as

proposed, a solution called static-100, which uses every time slot to start a task, and a

solution called static-50 using every second slot and idling during the rest of the time.

4 Discussion

The proposed approach has proven to be well able to adapt its energetic workload to

environmental harvesting conditions. It signi�cantly reduces the number of peripheral

hardware tasks that are interrupted due to low power conditions, while at the same time

raising the number of good tasks by 40%. A static solution can be created to mimic

these results in a single scenario, but cannot adapt to changes in harvesting conditions.

The adaptive solution also has shown to be capable of satisfying the maximum power

point conditions of a PVC harvester and shows an e�ciency, i.e. tracking accuracy, of

90%. It renders the implementation of expensive hardware MPPT circuits useless for

this kind of scenario. Finally, 70% of the available energy was used to run good tasks.

This is in the same order as other, more complex and expensive solutions in the �eld.
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The design of energy-aware devices for the Internet of Things (IoT), such
as sensor nodes in vehicles or mobile robotic systems, requires knowledge
about the power consumption of the communication system. In cellular net-
works like Long Term Evolution (LTE) or 5G uplink, the lion’s share of the
overall power consumption is caused by uplink transmissions and highly de-
pends on the required transmission power. However, on most of today’s
commercial User Equipment (UE), this information is not accessible at the
application layer. Moreover, even most of the established simulation frame-
works do not explicitly model the transmission power control mechanisms. In
this report, we summarize our findings in closing those gaps by applying ma-
chine learning on empirical data sets from drive tests in a public LTE network
and provide models which predict the transmission power of a mobile device.

1 Introduction
Due to the steadily increasing number of energy-constraint cellular IoT devices, energy-
aware design of systems, networks and applications becomes a more and more important
challenge as it directly affects the operation time in the field. A large fraction of the
available power resources are spent by the communication system, especially by uplink
transmissions and the involved transmission power [2], [4].

Although the exact value of the transmission power is well known to the device in
the instant of an ongoing transfer, it is not exposed to the application layer (e.g. by
an Application Programming Interface (API)) on most mobile handsets, as shown in
Fig. 1. This circumvents cross-layer energy-aware applications, which avoid high-power

mailto:robert.falkenberg@tu-dortmund.de
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Figure 1: Overview of hidden and available network indicators in LTE User Equipment
(UE) and the relationship to the transmission power and power consumption.

transmissions, e.g., by delaying or redirecting to a different link. Furthermore, channel-
aware transmission schemes, such as ML-CAT [7], can greatly benefit of knowledge about
the transmission power requirements in terms of an additional input value or as an output
value to evaluate the impact of the transmission scheme on the power consumption [8]. In
addition, even most established LTE simulators like SimuLTE [9] and LTE-Sim [6] do not
consider precise power consumption models but stick to very simple linear approximations
at system-level.

However, both, mobile handsets and simulators provide at least a minimum of infor-
mation about the strength and quality of the downlink signal, which in turn also affects
the power control mechanism in uplink direction (cf. next section). Knowledge about
velocity, amount of exchanged data and the actual data rate provide further conclusions
about the involved transmission power.

In this report, we present a machine learning-based approach to predict or estimate
the transmission power of LTE UE in system-level simulations and on Commercial Off-
the-Shelf (COTS) smartphones based on the limited set of available indicators in these
scenarios. The interested reader is kindly referred to [3] for a deeper insight into this
topic.

2 Approach and Setup
According to the LTE standard [1], the UE transmission power Ptx corresponds

Ptx = min (Pmax ,P0 + 10 log10(M) + � � PL+ �MCS + �) . (1)

This includes the estimated path loss PL, a pre-configured Fractional Path Loss Com-
pensation (FPC) factor �, and the requested minimum Signal to Interference and Noise
Ratio (SINR) P0 for signal reception at the base station. While PL correlates with the
most commonly available indicator Reference Signal Received Power (RSRP), � and P0
are operator-specific constants for specific environments, e.g. for rural or urban regions.
The number of allocated Resource Blocks (RBs) M and the Modulation and Coding
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Table 1: Captured Features and Association to Application-Specific Prediction Models
based on Full-Feature Set F, Practical Sets P1/P2, and Simulation Set S.

Parameter Model Indicated Influences(s)

Velocity F,P1,P2,S Distortions by fast fading
Upload size F,P1,P2,S Influence of TCP slow start
RSRP F,P1,P2,S Signal strength, distance
RSRQ, SINR F,P1,P2 Signal clarity, interference
Datarate F,P1 Signal strength, allocated RBs M
RSSI F Signal strength, distance
Frequency band F Environment [5]
Number of neighbor cells (in-
tra/inter freq.)

F Environment, cell density, interference

Cell bandwidth F Exhaustion of TX-power headroom

Scheme (MCS) specific offset �MCS directly influence the uplink data rate of the device.
The closed-loop component � reflects feedback information to fulfill the signal quality re-
quirements of the base station and should average to 0 for a well-configured cell. Finally,
the power is capped by the maximum transmission power Pmax of the device.

On this foundation, we performed field measurements in the LTE network of an op-
erator in Germany. Along a trajectory of 44 km between the two cities Dortmund and
Hamm, we instructed an embedded Vehicle-to-everything (V2X) platform to perform
periodic data uploads and to log 31 parameters (e.g. RSRP, Reference Signal Received
Quality (RSRQ), velocity, data rate, upload size) in intervals of 1 s [3]. In contrast to
COTS smartphones, the V2X platform also reports the instant transmission power of the
modem, which is used as a label in the subsequent machine learning process.

3 Machine Learning Results
Based on the 6172 samples collected during the campaign, we applied three methods of
machine learning to train prediction models.
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Figure 2: Prediction error of the transmission power.

This comprises Ridge Regres-
sion, Random Forest, and Deep
Learning, each including 10-fold
cross-validation. Besides a refer-
ence model on the full feature set
(F) on all parameters in Tab. 1,
we also trained the models on
feature subsets which fit practi-
cal applications on mobile hand-
sets (P1 and P2) and system-level
simulations (S).
The accuracy of the trained

models in terms of Root Mean
Square Error (RMSE) and Mean Absolute Error (MAE) are shown in Fig. 2. Error
bars are displaying the standard deviation computed over the cross-validation runs, which
are well below 0.4 dB and indicate a good model fit to unknown data. The best results
are achieved with Random Forest in the full-featured model F with an MAE of 3.166 dB.
However, even in the smallest feature subset S, the error raises only moderately by less
than 1 dB to 4.033 dB. The full analysis of this approach is documented in [3].
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4 Conclusion and Further Research
With the power of machine learning, we presented a method to predict and estimate
the transmission power of LTE UE with an error in the range of 3 dB to 4 dB. The
computation is based on the little subset of indicators available on COTS devices and
system-level simulators, thus enables in the next step an online application of the Context-
Aware Power Consumption Model (CoPoMo) [2].
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The vision of Smart Cities is to enable new use cases including a large

number of power restricted Internet of Things devices and challenging chan-

nel characteristics. The LTE based communication solutions NB-IoT and

eMTC are designed to meet these requirements by integrating new power

saving options such as extended Discontinuous Reception and Power Saving

Mode as well as the usage of large numbers of repetitions to extend the com-

munication range for coupling losses up to 164 dB. In our work we present a

performance analysis of both new technologies and compare data rates, power

consumption, latency and spectral e�ciency in challenging smart city envi-

ronments. The results show that, although both technologies use the same

power saving techniques as well as repetitions to extend their communcation

range, both technologies perform di�erent in the context of data size, data

rate and coupling loss. While eMTC comes with a 4% better battery lifetime

than NB-IoT when considering 144 dB coupling loss, NB-IoT battery lifetime

raises to 18% better performance in 164 dB coupling loss scenarios. The

overall analysis shows that in coverage areas with a coupling loss of 155 dB

or less, eMTC performs better, but requires much more bandwidth. Taking

the spectral e�ciency into account, NB-IoT is in all evaluated scenarios the

better choice and more suitable for future networks with massive number of

devices.

The Internet of Things enables many new applications such as Smart Waste Manage-

ment, Smart Environmental Sensing or Smart Metering. With sensors being placed in
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Figure 1: Coverage increase based on 800MHz Okumura Hata channel models for urban

environments and 15 dB additional basement penetration loss [3]

challenging propagation environments such as garages and basements, advanced com-

munication technologies introduce new coverage extension techniques to enable coupling

losses up to 164 dB by using mainly repetitions as shown in 1 [4].

Furthermore devices should be able to run over 10 years on a single battery without caus-

ing additional costs for maintenance by using extended Discontinuous Reception (eDRX)

and a new Power Saving Mode (PSM). While eDRX allows the devices to remain longer

in a power saving state between paging occasions, devices in PSM aren't monitoring

paging and become unreachable for Mobile Terminated (MT) services, but reduce their

power consumption to a bare minimum [2].

C
o
n

n
e

c
te

d

TA
U

Time

TAU: Tracking Area UpdateeDRX
(T3324)

PSM
(UE unreachable)

T3412Po
w

er

Paging Occasions

Figure 2: Power reduction in eMTC and NB-IoT by using extended Discontinuous Re-

ception (eDRX) and Power Saving Mode (PSM)

To evaluate the power consumption of NB-IoT and eMTC devices, a new state model is

introduced, consisting of �ve di�erent states:

� Connected : After establishing a Radio Resource Control (RRC) connection the

device transmits its uplink report.
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� Tail : After transmitting the uplink report the device keeps active for a time period

ttai l in case of possible downlink data. The tail time is de�ned by the network.

� eDRX : The device enters the eDRX mode. It goes in a power saving state and

only wakes up in short periods for listening on potential scheduled downlink data.

� PSM: After a time teDRX de�ned by T3324 the device enters a deep sleep similar

power saving mode where it is not reachable for the network. Because of the power

down, the device only consumes several microwatts of power. Although the device

chooses the length of T3324 by itself, the network limits the maximum time.

� TAU: To signal the network that the device is still alive, it needs to power up after a

time tTAU de�ned by T3412 to reconnect to the network for a tracking area update

and to listen to scheduled downlink data. Although the device chooses the length

of T3412, the network limits the maximum time.

This model allows us to compare and evaluate the data rate, power consumption and

latency of both technologies in an equal context. The results for 144 dB, 154 dB and

164 dB coupling losses are shown in �gure 3 [1].
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Figure 3: Comparison of NB-IoT and eMTC devices for 84 Bytes uplink data every 24

hours in di�erent coverage conditions

The results show that eMTC performs slightly better in 144 dB and 154 dB coupling

loss assumptions than NB-IoT. In the case of 144 dB coupling loss eMTC performs

better, providing more than a doubled data rate as well as 4% more battery lifetime

than NB-IoT. Additionally the latency of eMTC results in 0.2 s and thus being only half

of NB-IoT's latency. However, the extreme propagation conditions of 164 dB coupling

loss show a better performance of NB-IoT, which gets along with less repetitions and

can thus provide a higher data rate. When taking the spectral e�ciency into account,

NB-IoT clearly outnumbers eMTC by allocating much less bandwidth and is therefore

more suitable for future networks with massive numbers of devices.
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This analysis took new Cellular IoT solutions based on LTE into account. In further

research the analysis will be extended to license-free spectrum technologies such as Lo-

RaWAN to compare the performance of data rate, latency, battery lifetime and spectral

e�ciency of licensed spectrum technologies and license-free spectrum technoligies. In

addition the impact of an increasing number of devices on the battery lifetime, data

rate and latency will be evaluated to identify the performance of future highly scaled IoT

communication networks.
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Performance of nodes in a wireless sensor network and consequently the

overall network relies on balancing the current demand of the hardware and

available energy. This work shortly reviews the load of the PhyNode as an

embedded entity inside the research lab of PhyNetLab. Overall demand from

battery is analyzed for both idle and operational cycle of the PhyNode showing

a current de�cit in the overall system.

1 Introduction

With the rise of Internet of Things (IoT) and Industry 4.0 as its industrial dual, multiple

smart small devices are developed to collect data and act decentralized with communica-

tion as their core concept. Logistics is not an exception of this revolution with multiple

cyber-physical and embedded systems developed for this �eld [6]. PhyNetLab [2] is a

testbed developed for evaluation of di�erent concepts in the �eld of materials handling

and warehousing as two major pillars of the logistics branch. PhyNode is an entity for

mounting on transportation boxes used in this �eld. More than two hundred PhyNodes

with di�erent hardware con�gurations are available in the PhyNetLab. All models of

PhyNodes embody an ultra-low power processor, RF communication and some environ-

mental sensors. While availability of energy harvesting module and display is dependent

on the model.

Although PhyNetLab has been tested in few applications [2, 4], its optimal operation

requires trade-o� between service quality and available energy. This shows necessity of

power analysis of the PhyNode. Some evaluations such as [1] has been done for individual

sections of PhyNode. However, the overall power demand seen from the PhyNode's

battery has not been analyzed yet and will be the focus of this work.
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2 Power module

PhyNode's power module is made of multiple sections. An abstract overview of the com-

plete system including PhotoVoltaic (PV) energy harvesting section is shown in Fig. 1.

PV Harvester BQ25505 battery TPS65290

Figure 1: Schematic representation of PhyNode's power chain.

An indoor photovoltaic module from Solems with 7 cells is used in PhyNode which its

behavior and model can be found in [5]. To keep the harvester around its maximum

power point while matching its voltage with the battery, a BQ25505 IC is used. Not

only its internal boost converter do the DC-DC matching, but also it keeps the battery

within safe operational range. Detailed description of this IC in addition to its behavior

model is presented in [3].

PhyNode uses a Li-Polymer battery with a nominal capacity of 1250mAh, a typical 4:2V

over voltage limit and a cut-o� voltage of 3:0V. Its standard charge and discharge rates

are 0:2C. However, measurement at this rate (250mA) has shown a higher capacity

of 1283mAh. Although this can be considered a marginal capacity di�erence, it is

noticeable for ultra-low power applications such as PhyNode.

A TPS65290 Power Management IC (PMIC) from Texas Instruments provides di�erent

voltage levels from the battery output. In addition to a buck-boost converter, it includes

a LDO providing another voltage rail without a switching mechanism. This can be

helpful for devices requiring a short term current. While the switched based mechanism

requires some switching periods to provide a stable voltage, LDO can directly supply

such demand. However, LDOs are generally less e�cient due to excess power dissipation

through heat.

3 Power levels

Measurements in the PhyNetLab has shown that the both extreme cases of photovoltaic

generated current will be in the range of 30 µA to 140 µA. On the other hand, analysis of

demands from sub-modules of PhyNode shows that the highest current demand will be

during send procedure of the communication module. Considering operational conditions,

the highest communication current demand will be about 32mA. Moreover, processor

of the PhyNode requires 100 µA per MHz with a maximum of 16MHz; leading to the

highest demand of 1:6mA. Considering some overhead for other components, a 35mA

is a feasible peak demand.
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PMIC acts as an interface between PhyNode's battery and the rest of system. While

current demand seen from the battery side will be dependent to its voltage based on the

behavior of the PMIC. Therefore, before using the aforementioned limits as a base for

system design, real measurements has to be done directly at the output of the battery.

A measurement setup is prepared to replicate the battery with a Source Measurement

Unit (SMU). It measures the voltage and current demanded by PMIC while keeping the

voltage constant. These devices are connected using a 4-wire connection to enable a

non-destructive measurement. A scenario is programmed on a PhyNode which includes

all its possible operations; from pushing a button, sending and receiving and even updating

the display. Current demands for such operation is measured at di�erent voltage levels

starting from 4:2V with 0:1V reducing steps. Some examples of these curves for a

complete scenario are presented in Fig. 2.
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These measurements con�rm initial guess of 35mA as the highest current demanded.

Unfortunately, not only reduction of voltage level does not reduce the current demand

but also it has negative e�ect. This is actually a consequence of feeding some parts of

the PhyNode with the LDO which simply wastes the excess power. Furthermore, the idle

current demand is about 1mA and is independent from the battery voltage level.

It has been found that reduction of the voltage to the battery minimum is not possible.

When the voltage is lower than 3:54V, PhyNode cannot start all parts of the system

during its start check. This e�ect can also be seen in its current demand shown in Fig. 3.
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4 Conclusion

According to measurements, it can be summed up that the PhyNode is only opera-

tional in the range of 3:54V to 4:2V. Its idle current can be considered independent

from the voltage level and around 1mA while the maximum requested current is about

35mA. Considering maximum harvested current of 140 µA in the PhyNetLab environ-

mental condition this PhyNode version has a current de�cit and cannot be considered

as an energy-neutral device. Perhaps, software improvements which can reduce the idle

power, speci�cally in the RF module (as the main consumer) can improve this issue.

Anyhow, best idle shelf-time with the available driver version can be estimation to be

around 45 days. In case of operation, this time will be shorten according to the operation

pro�le which its estimation requires further modeling and analysis.
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The new era of space exploration drives self-assembly and collaborative
manoeuvres of space structures in micro-gravity. In this report application of
wireless sensor networks in such environments are explored. The concept of
TESSERAE is used as one of the target systems for applying low power, low
data-rate radio networking in outer space using ultra-low power devices. A
collective of wireless networking protocols for decentralized consensus, data
replication and networking are presented that can be used for TESSERAE’s
self-assembly and other space exploration missions. Preparation of the tech-
nical demonstration mission in collaboration with Space Exploration Initiative,
Media Lab, Massachusetts Institute of Technology is also detailed with the
design of hardware and software.

1 Introduction

Figure 1: TESSERAE complex assembly to the left with self-assembly of tiles on right.
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For space exploration to be scalable and sustainable with increasing human habitats in
orbit and on the surface of planets and other habitable celestial bodies. One of the efforts
to deploy space habitats was the International Space Station which started in 1998 and
it has grown continuously until 2016 to house diverse equipments and experiments with
crew. To increase this capability to deploy scalable space structures, it is necessary to
break form i.e., the typical cylindrical shape with a radius of the launch vehicle. For such
a feat, it is required to engineer self-assembly of structures that can create habitats in
space. TESSERAE [3] is one such concept which explores structural formations using
tessellated tiles as seen in the C60 Buckminsterfullerene shapes [4]. TESSERAE concept
render in Fig. 1 shows the complex structures and self-assembly of the tiles.

TESSERAE concept shows that it is possible to self-assemble tiles with a predetermined
trajectory during deployment. For controlling the nature of bonds between the tiles and
to manage the state of the tile across all tiles is necessary for control of the tiles. This
work adds on to the efforts of sensor nodes on TESSERAE for control [2] and proposes
a networking architecture called the decentralized brain [4] where data replication is
performed to replicate the states of a tile across all tiles.

2 Networking Requirements

For self-assembly in space, the networking application should provide ad hoc capabili-
ties.When a node is faulty or leaves the network it must be mitigated by self-healing
capabilities. For synchronous behaviour of systems to perform actions together and to
interact with each other in space, the requirements for the network should also consider a
reliable data dissemination method for network-wide agreement and global configuration
management in a decentralized manner. In the case of TESSERAE, swarm behaviour
is transient during assembly. Therefore, nodes require low latency data dissemination as
well as adaptive replication strategies during interaction to enable precise control of inter-
acting elements or guarantees in information propagation. In addition to the TESSERAE
self-assembly swarm, we note an applicability for this work to other space applications,
such as a space-fed phased array antenna swarm. Here, each element of the array is
free to roam within a certain area, while compensating for position error via selectively
delaying and amplifying signals to generate a coherent radio signal. The communication
architecture we are proposing would facilitate relative position tracking between swarm
elements The communication architecture should facilitate relative position tracking be-
tween swarm elements and the necessary variable-delay updating and resynchronisation
of timing between emitters to achieve coherently cooperating RF elements. This is in
contrast to a fixed-array antenna, where elements are held rigidly along a plane and can
use a standard delay based on fixed position along the antenna element line.
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2.1 Decentralized brain

In distributed computing, state machine replication or data structure replication is a
common method for implementing a fault-tolerant service by replicating servers and
coordinating client interactions with server replicas. The fundamental communication
primitive that is used in distributed computing to achieve consensus between processes is
atomic broadcast. An atomic broadcast is where all correct nodes in a network receive the
same set of messages in the same order. Atomic broadcasts are an important distributed
computing primitive for consensus which is achieved by Glossy, VHT, and LoWPAN to
uniquely integrate these into a robust, low-power, low data-rate distributed network for
a decentralized brain [4].

Figure 2: TESSERAE complex assembly to the left with self-assembly of tiles on right.

In figure 2.1, the states for a dual band, decentralized leader based data replication proto-
col for ultra-low power devices is shown. The data replication is a modular communication
primitive that provides easier state management between nodes.The time required per
update propagation tp can be estimated using the sum of individual timing requirements
in the networking architecture. As per the requirements of TESSERAE, required broad-
cast is 22 bytes sensor data transfer; here a reliable data-rate of 124 bytes per replication
round, excluding the physical layer header and the replication header, is available. The
data-rate is increased by decoupling the meta-data and serialization information for data
replication using the message type bit in the CMD field; this maximizes the data repli-
cation since the same data structure is persisted with consistency more frequently than
the changes to the information itself in collaborative control maneuvers. In large-scale,
low-power networks, the decentralized brain concept is achieved using data replication
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with variably participating nodes, controlled by the cluster differentiate setting in the
CMD field of the payload. A new brain is initialized using the lowpan network among
the nodes that need to perform control in precise manner, thus decreasing the number
of hops and also reducing the latency while propagating the states to the participating
nodes in <3 ms. Cluster differentiate setting is designed to handle up to 16 different
leaders where the nodes can choose to participate in data replication. The rate at which
data is replicated can be set up by the leader node, allowing for use dependent frequency
in data replication (i.e., the whole system is updated with its slow-changing state of
assembly less-frequently than the updates required for quick, precise control between the
interacting entities). This provides for a guarantee in communication, which is critical
for precise control, as well as modular communication such as point-to-point.

3 Future work

The concept of decentralized brain with hardware design and development of the sensor
nodes of TESSERAE were developed for a technical demonstration mission which will
be tested in micro-gravity. Future work will include large scale performance tests for
the concept of decentralized brain [4] along with the context broker relaying information
to the higher layers of the control system. These performed tests will be evaluated
in context with two space experiments one of which will be TESSERAE. A large scale
sensor floor implementation will be used for testing and defining a networking stack for
the decentralized brain with open source implementation such as Contiki-NG.
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Recent developments in wireless positioning based on IEEE 802.15.4a gained

broad attention for various applications. However, in most current research

many aspects required for low-power applications are not considered. There-

fore, this work aims on overcoming the limitations of most schemes, by fo-

cusing on the energy e�ciency of such systems. Although recent advances

in scalable wireless positioning topologies pave the way for improved energy

e�ciency, many of these approaches do not consider large channel utilization.

This work aims to provide guaranteed update rates, reliable error-mitigating

localization results and low-energy consumption.

1 Introduction

Wireless localization using ultra-wideband (UWB) communication technology enabled a

wide �eld of research in recent years. Previous work considered the use of this tech-

nology as a control feedback for autonomous robotic systems such as indoor-navigating

unmanned aerial vehicles (UAVs), see [1]. Further research evaluated the use for pre-

cision alignment of electric vehicles for wireless power transfer (WPT), see [2]. Based

on those developments an open-source solution for scalable time-di�erence of arrival

(TDOA) based localization emerged in previous work, see [3]. It could be shown, that

advanced applications are feasible using this approach, see [4]. Recent work extended

the usable range of the UAVs through monocular vision based simultaneous localization
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and mapping (SLAM) augmentation of the UWB system, see [5]. In other work, it could

be shown, that reliable localization results with the low-power methods developed in this

work are feasible, see [6]. Participation in the EvAAL'16 competition could validate the

practical feasibility, see [7].

Although accuracy and reliability are core aspects of wireless localization systems, this

works main focus lies within the resource e�ciency in providing quality of service (QoS)

guaranteed localization speci�c wireless channel access. In contrast to many existing

localization topologies that utilize two-way ranging (TWR) based message exchanges or

random access based uncoordinated TDOA, this work proposes to use centralized coor-

dination of the mobile units to achieve time-division multiple access (TDMA). However,

coordination requires the use of additional resources. Our goal is to quantify this over-

head and provide guidelines such that wireless localization system designers are enabled

to base their system design decisions on the given analysis.

2 Random vs. Coordinated Access for Low-Power

TDOA-based Ultra-Wideband Localization

In the experimental analysis in [8] it could be shown that random access packet-based

access in the IEEE 802.15.4a UWB PHY has special properties through the sparse burst-
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position modulation binary phase shift keying (BPM-BPSK) scheme. The PHY requires

tight time-synchronization for demodulation. Therefore, interfering access does not nec-

essarily cause destructive collisions. Depending on the channel con�guration, the overall

throughput Sp:r tdoa can be approximated as almost collision-free, see (1).

Sp:r tdoa � (1� e�G) (1)

The rate of successfully obtained positions Rp divided by the rate capacity of the channel

Rm de�ned by the duration TPPDU of the phyiscal protocol data unit (PPDU) leads to

the normalized localization throughput Sp. Hence, the load induced tra�c G is based as

the actual rate of frames on the channel Rf , see (2).

Rm = 1=TPPDU Sp = Rp=Rm G = Rf =Rm (2)

For the tra�c depended analysis the number of mobile nodes (tags) is considered to

be large Nu � 1. The energy overhead per successfully obtained position estimation

is depicted in Fig. 1. Here, it is clearly visible, that for random access, the energy

loss directly corresponds with the overall normalized system load G. For the scheduled

channel access, the re-association interval �ns , which de�nes how often the mobile unit

needs to listen to a central coordinator de�nes the energy overhead per position. Here,

the positioning frequency is the main factor that de�nes the ratio of successfully obtained

positions vs. the amount of re-association and synchronization overhead. It should be

noted, that based on the technical speci�cations of the currently most frequently used

transceiver chipsets, the reception is assumed to be twice as expensive as transmission.

It is clearly visible, that for low-frequency localization using coordinated access, high re-

association intervals are required for it to be more energy e�cient than random access.

The re-association interval is mainly in�uenced by the dynamics and quality of the mobile

clock sources. When, higher dynamics are required such as in the tracking of persons

or robots, coordinated access performs almost always better considering a typical overall

normalized load.

3 Conclusion and Further Research

In this work, the trade-o� between random and coordinated access in TDOA-based ultra-

wideband localization is analyzed. Analytical models for the energy overhead, based on

a set of system properties are given. Based on the models, general guidelines for system

design considerations could be derived. Future work will focus on providing a low-power

system integrated implementation of the algorithms for coordinated access.
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The largest common embeddable subtree problem asks for the largest pos-
sible tree embeddable into two input trees and generalizes the classical max-
imum common subtree problem. Several variants of the problem in labeled
and unlabeled rooted trees have been studied, e.g., for the comparison of evo-
lutionary trees. We consider a generalization, where the sought embedding
is maximal with regard to a weight function on pairs of labels. We support
rooted and unrooted trees with vertex and edge labels as well as distance
penalties for skipping vertices. This variant is important for many applica-
tions such as the comparison of chemical structures and evolutionary trees.
Our algorithm computes the solution from a series of bipartite matching in-
stances, which are solved efficiently by exploiting their structural relation and
imbalance. Our analysis shows that our approach improves or matches the
running time of the formally best algorithms for several problem variants. The
results were published at MFCS 2018 [4].

1 Largest Weight Common Subtree Embeddings

Various variants for comparing trees have been proposed and investigated [10]. Most
of them assume rooted trees, which may be ordered or unordered. Algorithms tailored
to the comparison of evolutionary trees typically assume only the leaves to be labeled,
while others support labels on all vertices or do not consider labels at all. The well-
known agreement subtree problem, for example, considers the case, where only the leaf
nodes are labeled, with no label appearing more than once per tree [7]. We discuss the
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T1 T T2

(a) Labeled MCS (green dashed lines) and
LaCSE (black dotted lines) between T and
Ti , i ∈ {1, 2}.

ω( , ) = 1
ω(|, |) = 3
ω(|, |) = −1
p = 0.3

T u1

u2

T ′v1

v2

v3

(b) The black embedding has weight 1.7, since
the vertex v2 is skipped and therefore the
penalty p is applied; the weight between the
edges is not added. The green embedding
has weight 5; 2 from the vertices, 3 from
the path (u1, u2) mapped to (v1, v2).

Figure 1: a) Although ’intuitively’ T is more similar to T1 than to T2, both MCSs have
size 3. However, the LaCSE between T and T1 has 6 mapped vertices. b) Two
weighted embeddings; one with a skipped vertex, the other where the edge
labels contribute to the weight.

approaches most relevant for our work. Gupta and Nishimura [5] investigated the largest
common embeddable subtree problem in unlabeled rooted trees. Their definition is based
on topological embedding (or homeomorphism) and allows to map edges of the common
subtree to vertex-disjoint paths in the input trees. The algorithm uses the classical idea to
decompose the problem into subproblems for smaller trees, which are solved via bipartite
matching. A solution for two rooted trees with at most n vertices is computed in time
O(n2.5 log n) using a dynamic programming approach. Many algorithms do not support
trees, where leaves and the inner vertices both have labels. A notable exception is the
approach by Kao et al. [6], where only vertices with the same label may be mapped
(LaCSE). This algorithm generalizes the approach by Gupta/Nishimura and improves
its running time to O(

√
dD log 2n

d
), where D denotes the number of vertex pairs with

the same label and d the maximum degree of all vertices. In our work we consider the
problem of finding a largest weight common subtree embedding (LaWeCSE) between
unrooted trees, where matching vertices are not required to have the same label, but
their degree of agreement is determined by a weight function. To prevent arbitrarily long
paths which are mapped to a common edge we study a linear distance penalty for paths
of length greater than 1. Note that, by choosing a high distance penalty, we solve the
maximum common subtree (MCS) problem as a special case.

We propose and analyze algorithms for finding largest weight common subtree embed-
dings. Our method requires to solve a series of bipartite matching instances as subprob-
lem, which dominates the total running time. We build on recent results by Ramshow
and Tarjan [8, 9] for unbalanced matchings. Let T and T ′ be labeled rooted trees with
k := |T | and l := |T ′| vertices, respectively, and ∆ := min{∆(T ),∆(T ′)} the smaller
degree of the two input trees. For real-valued weight functions we prove a time bound
of O(kl∆). For integral weights bounded by a constant C we prove a running time of
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O(kl
√

∆ log(min{k, l}C)). This is an improvement over the algorithm by Kao et al. [6]
if there are only few labels and the maximum degree of one tree is much smaller than
the maximum degree of the other. In addition, we support weights and a linear penalty
for skipped vertices. The weight W(ϕ) of a common subtree embedding ϕ is the sum
of the weights ω(u, ϕ(u)) of all vertices u mapped by ϕ plus the weights ωp(P,ϕ(P )) of
all mapped paths P . If both P and ϕ(P ) are single edges, ωp(P,ϕ(P )) is determined by
the two edges (e. g. their labels); otherwise ωp(P,ϕ(P )) = −ip, where i is the number
of inner vertices and p ≥ 0 is the distance penalty.

Moreover, the algorithm by Kao et al. [6] is designed for rooted trees only. A straight
forward approach to solve the problem for unrooted trees is to try out all pairs of possible
roots, which results in an additional O(kl) factor. However, our algorithm exploits the
fact that there are many similar matching instances using techniques related to [1, 3].
This includes computing additional matchings of cardinality two. For unrooted trees
and real-valued weight functions we prove the same O(kl∆) time bound as for rooted
trees. This leads to an improvement over the formally best algorithm for solving the
maximum common subtree problem, for which a time bound of O(kl (∆ + log d)) has
been proven [3]. Fig. 1 exemplifies LaCSE in comparison to MCS as well as embeddings
with skipped vertices. We proved the following results.

Theorem 1 Let T and T ′ be rooted vertex and/or edge labeled trees. Let ω be a weight
function, ∆ = min{∆(T ),∆(T ′)}, and p be a distance penalty.

• A LaWeCSE between T and T ′ can be computed in time O(|T | |T ′|∆} and space
O(|T | |T ′|).

• If the weights are integral and bounded by a constant C, a LaWeCSE can be
computed in time O(|T | |T ′|

√
∆ log(Cmin{|T |, |T ′|})).

Theorem 2 Let T and T ′ be (unrooted) vertex and/or edge labeled trees. Let ω be
a weight function, ∆ = min{∆(T ),∆(T ′)}, and p be a distance penalty. A LaWeCSEu

between T and T ′ can be computed in time O(|T | |T ′|∆) and space O(|T | |T ′|).

2 Future work

We integrated the technique to skip vertices into our software to compare outerplanar
graphs using the block and bridge preserving MCS [2]. First experimental results on
molecular graphs are promising (most molecular graphs are outerplaner), since sometimes
the difference between two molecules is just the length of a chain connecting isomorphic
parts of the molecular graphs. We plan to further investigate the practical usefulness.
We also want to include bioisosteres into the software as well as improve the running
time for non outerplanar graphs.
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Graph neural networks (GNNs) have been recently emerged as one of the
most successful approaches to tackle the challenging and highly active field
of representation learning on irregular domains like graphs and point clouds
for tasks such as classification or segmentation [1]. With the generaliza-
tion of the convolutional and pooling layers to these domains, GNNs are
able to (hierarchically) extract localized embeddings by passing, transform-
ing, and aggregating information, significantly advancing the state-of-the-art
on many challenging benchmark tasks [1,3]. Here, we introduced a novel B-
spline based convolutional operator to apply CNNs on irregularly structured
data and further demonstrated its applications in two follow-up works. We
also presented the PyTorch Geometric framework that allows for fast graph
representation learning by leveraging GPU capabilties, with many use cases
in research and production.

1 Spline-based Convolutional Operator

Our spline-based convolutional operator (SplineConv) [2] is a generalization of the tradi-
tional convolutional operator for irregularly structured data. Let G = (X,E) be a directed
graph represented by its node feature matrix X ∈ RN×M with N nodes and M features
each, and its (sparse) adjacency tensor EN×N×D with D-dimensional edge features. Let
N (i) further decode the neighborhood set of node i .

Our proposed convolutional operator aggregates node features in local neighborhoods
weighted by a trainable, continuous kernel function. The node features xi represent
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features on an irregular structure, whose relations are locally defined by its edge features
ei ,j . Therefore, when locally aggregating feature values in a node’s neighborhood, edge
features are used to determine how the features are aggregated and the content of the
node features define what is aggregated.

Therefore, convolution over neighboring features for a vertex i is defined by

(X ? g)i =
1

N (i)

M∑
m=1

∑
j∈N (i)

xj,m · gm(ei ,j) (1)

where g = (g1, . . . , gM) defines M continuous kernel functions, which weight the com-
ponents of xj based on the local relation ei ,j between vertex i and j .

A kernel function gm is parameterized by a fixed number of trainable parameters. For
computing gm(ei ,j), the kernel function relies on the product of B-spline basis functions of
a user-defined degree and can thus be evaluated very efficiently due to the local support
property of B-splines. Using this operator, we can construct a convolutional layer that
can be used in deep neural network architectures to train models on (embedded) graph
data.

2 Applications

We demonstrated possible applications of SplineCNN in two follow-up works.

Recognizing Cuneiform Signs. The cuneiform script constitutes one of the earliest
systems of writing and is realized by wedge-shaped marks on clay tablets. A tremen-
dous number of cuneiform tablets have already been discovered and are incrementally
digitalized and made available to automated processing.

As reading cuneiform script is still a manual task, we addressed the real-world application
of recognizing cuneiform signs using our spline-based convolutional operator [4]. Due
to limited available annotated real-world training data, we strengthened the performance
of our CNN by enriching the training set by augmented examples. By applying random
affine transformations like translation, scaling and rotation on the cuneiform’s graph
representation (cf. Figure 1), we could further improve our model performance from
87.37% to 93.53%.
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Figure 1: Cuneiform graph
representation.
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Figure 2: Locally rotating receptive fields based on
equivariant pose vectors.

Sparse group convolution. Our work on group equivariant capsule networks [5] intro-
duced a framework that brings guaranteed equivariance and invariance properties to the
capsule network idea [6]. Here, we presented a generic routing by agreement algorithm
defined on elements of a Lie group, e.g., SO(2), and proved that equivariance of output
pose vectors, as well as invariance of output activations hold under certain conditions.
We further showed that the obtained equivariant pose vectors can be further leveraged
to build convolutional neural network architectures that inherit those properties. Calcu-
lation of the convolutions can be performed by applying the inverse transformation to
the local input using the capsule’s pose vector (cf. Figure 2). By interpreting images
as grid-graphs, we used our spline-based convolution to operate on locally transformed
receptive fields.

3 Framework: PyTorch Geometric

We also introduced PyTorch Geometric1, a geometric deep learning framework [1] for
PyTorch, which consists of a variety of published methods for learning on irregularly
structured input data such as graphs or point clouds. PyTorch Geometric achieves high
data throughput by leveraging sparse GPU acceleration, by providing custom CUDA
kernels and by introducing efficient mini-batch handling for examples with potentially
different size.

Convolutional Operators. In practice, almost all convolutional operators on irregularly
strucutred data can be implemented by gathering and scattering of node features as
well as making use of broadcasting for element-wise kernel evaluation. Although working
on irregularly structured input, this scheme can be heavily accelerated by the GPU. We
already implemented over 10 convolutional operators often found in literature [3].

1GitHub repository: https://github.com/rusty1s/pytorch_geometric
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Mini-batch Handling. Our framework supports batches of multiple graph instances
(of potentially different size) by automatically creating a single (sparse) block-diagonal
adjacency matrix and concatenating feature matrices in the node dimension. In this
way, neighborhood aggregation methods can be applied normally, since no messages are
exchanged between disconnected subgraphs.

Datasets. We currently support over 70 graph and point cloud benchmark datasets2.
All provided datasets are automatically downloaded and processed into a consistent data
format. In addition, users can create their own datasets by following simple guidelines.

4 Future Work

GNNs hold the potential to be applied to a large number of different datasets and deep
learning problems. We plan to further develop new methods and transfer methods from
known traditional CNNs for irregularly structured data, e.g. pooling operators which,
conversely, have not yet received a great amount of attention.
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We report about our recent progress in relating graph kernels and graph
neural networks: In recent years, graph neural networks (GNNs) have emerged
as a powerful neural architecture to learn vector representations of nodes
and graphs in a supervised, end-to-end fashion. Up to now, GNNs have only
been evaluated empirically—showing promising results. The following work
investigates GNNs from a theoretical point of view and relates them to the
1-dimensional Weisfeiler-Leman graph isomorphism heuristic (1-WL). We show
that GNNs have the same expressiveness as the 1-WL in terms of distinguishing
non-isomorphic (sub-)graphs. Hence, both algorithms also have the same
shortcomings. Based on this, we propose a generalization of GNNs, so-called
k-dimensional GNNs (k-GNNs), which can take higher-order graph structures
at multiple scales into account. These higher-order structures play an essential
role in the characterization of social networks and molecule graphs. Our
experimental evaluation confirms our theoretical findings as well as confirms
that higher-order information is useful in the task of graph classification and
regression. This work has been accepted at the AAAI Conference 2019.

1 The Weisfeiler-Leman algorithm and GNNs

Graph-structured data is ubiquitous across application domains ranging from chemo-
and bioinformatics to image and social network analysis. To develop successful machine
learning models in these domains, we need techniques that can exploit the rich information
inherent in graph structure, as well as the feature information contained within a graph’s
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nodes and edges. In recent years, numerous approaches have been proposed for machine
learning graphs—most notably, approaches based on graph kernels [11] or, alternatively,
using graph neural network algorithms [5].

Kernel approaches typically fix a set of features in advance—e.g., indicator features over
subgraph structures or features of local node neighborhoods. For example, one of the
most successful kernel approaches, the Weisfeiler-Lehman subtree kernel [10], which is
based on the 1-dimensional Weisfeiler-Leman graph isomorphism heuristic [3, pp. 79 ff.],
generates node features through an iterative relabeling, or coloring, scheme: First, all
nodes are assigned a common initial color; the algorithm then iteratively recolors a node
by aggregating over the multiset of colors in its neighborhood, and the final feature
representation of a graph is the histogram of the resulting node colors. By iteratively
aggregating over local node neighborhoods in this way, the WL subtree kernel is able
to effectively summarize the neighborhood substructures present in a graph. However,
while powerful, the WL subtree kernel—like other kernel methods—is limited because this
feature construction scheme is fixed (i.e., it does not adapt to the given data distribution).
Moreover, this approach—like the majority of kernel methods—focuses only on the graph
structure and cannot interpret continuous node and edge labels, such as real-valued vectors
which play an important role in applications such as bio- and chemoinformatics.

Graph neural networks (GNNs) have emerged as a machine learning framework addressing
the above challenges. Standard GNNs can be viewed as a neural version of the 1-WL
algorithm, where colors are replaced by continuous feature vectors and neural networks
are used to aggregate over node neighborhoods [4, 7]. In effect, the GNN framework
can be viewed as implementing a continuous form of graph-based “message passing”,
where local neighborhood information is aggregated and passed on to the neighbors [2].
Let (G, l) be a labeled graph with an initial node coloring f (0) : V (G) → R1×d that is
consistent with l . This means that each node v is annotated with a feature f (0)(v) in
R1×d such that f (0)(u) = f (0)(v) if and only if l(u) = l(v). Alternatively, f (0)(v) can be an
arbitrary real-valued feature vector associated with v . Examples include continuous atomic
properties in chemoinformatic applications where nodes correspond to atoms, or vector
representations of text in social network applications. A GNN model consists of a stack
of neural network layers, where each layer aggregates local neighborhood information, i.e.,
features of neighbors, around each node and then passes this aggregated information on
to the next layer. A basic GNN model can be implemented as follows [5]. In each layer
t > 0, we compute a new feature

f (t)(v) = σ
(
f (t−1)(v) ·W (t)

1 +
∑
w∈N(v)

f (t−1)(w) ·W (t)
2

)
(1)

in R1×e for v , where W (t)
1 and W (t)

2 are parameter matrices from Rd×e , and σ denotes a
component-wise non-linear function, e.g., a sigmoid or a ReLU.1

1For clarity of presentation we omit biases.
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Both f W1aggr and f
W2
merge may be arbitrary differentiable, permutation-invariant functions (e.g.,

neural networks), and, by analogy to Equation 1, we denote their parameters as W1 and
W2, respectively. By deploying a trainable neural network to aggregate information in
local node neighborhoods, GNNs can be trained in an end-to-end fashion together with
the parameters of the classification or regression algorithm, possibly allowing for greater
adaptability and better generalization compared to the kernel counterpart of the classical
1-WL algorithm.

Up to now, the evaluation and analysis of GNNs has been largely empirical, showing
promising results compared to kernel approaches, see, e.g., [12]. However, it remains
unclear how GNNs are actually encoding graph structure information into their vector
representations, and whether there are theoretical advantages of GNNs compared to kernel
based approaches.

1.1 Present Work

We offer a theoretical exploration of the relationship between GNNs and kernels that
are based on the 1-WL algorithm. We show that GNNs cannot be more powerful than
the 1-WL in terms of distinguishing non-isomorphic (sub-)graphs, e.g., the properties of
subgraphs around each node. This result holds for a broad class of GNN architectures
and all possible choices of parameters for them. On the positive side, we show that
given the right parameter initialization GNNs have the same expressiveness as the 1-WL
algorithm, completing the equivalence. Since the power of the 1-WL has been completely
characterized, see, e.g., [1, 6], we can transfer these results to the case of GNNs, showing
that both approaches have the same shortcomings.

Going further, we leverage these theoretical relationships to propose a generalization
of GNNs, called k-GNNs, which are neural architectures based on the k-dimensional
WL algorithm (k-WL), which are strictly more powerful than GNNs. The key insight in
these higher-dimensional variants is that they perform message passing directly between
subgraph structures, rather than individual nodes. This higher-order form of message
passing can capture structural information that is not visible at the node-level.

Graph kernels based on the k-WL have been proposed in the past [8]. However, a key
advantage of implementing higher-order message passing in GNNs—which we demon-
strate here—is that we can design hierarchical variants of k-GNNs, which combine graph
representations learned at different granularities in an end-to-end trainable framework.
Concretely, in the presented hierarchical approach the initial messages in a k-GNN are
based on the output of lower-dimensional k ′-GNN (with k ′ < k), which allows the model
to effectively capture graph structures of varying granularity. Many real-world graphs
inherit a hierarchical structure—e.g., in a social network we must model both the ego-
networks around individual nodes, as well as the coarse-grained relationships between
entire communities, see, e.g., [9]—and our experimental results demonstrate that these
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hierarchical k-GNNs are able to consistently outperform traditional GNNs on a variety of
graph classification and regression tasks. Across twelve graph regression tasks from the
QM9 benchmark, we find that our hierarchical model reduces the mean absolute error by
54.45% on average. For graph classification, we find that our hierarchical models leads to
slight performance gains.
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The automated analysis of MCC-IMS raw measurements has become feasi-
ble due to the development of algorithms tailored for this special kind of data.
Some problems arise however with regard to broad applicability of these algo-
rithms, for example when data from different devices is used. We show that
two different devices can lead to different results and how the measurement
of a reference component mixture allows for improved peak detection.

Diagnosing diseases by analyzing breath gas has become a wide field of interest. Using
MCC-IMS for breath gas analysis offers several advantages to using other technologies.
In contrast to technologies like GC-MS, the breath composition can be analyzed on the
spot due to fast processing and comparatively small devices that can be transported or put
up in places with limited spacing, e.g. in an operation room. One drawback is however,
that automated evaluation is not established yet and that technical details complicate
the analysis. A raw measurement consists of signal intensity values in two dimensions,
the retention time and the inverse reduced mobility. Together, they form a heat map
where peak regions represent a certain compound in the measured air sample.

For the automated peak detection we use the algorithm combination that showed best
subsequent classification results in [1], called SGLTR-DBSCAN. In this combination,
SGLTR accomplishes the detection of single peaks in a raw measurement. Afterwards,
DBSCAN compares the peak positions from all available raw measurements and decides,
which peaks from several raw measurements are likely to be originating from the same
metabolite in the corresponding breath gas. This decision is based on how close the peak
positions from several measurements are and results in so-called consensus peaks. Single
peaks are either assigned to consensus peaks or discarded when there are not enough
single peaks close to it. If a raw measurement doesn’t have a single peak that can be
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Figure 1: Number of single peaks from both devices corresponding to the displayed con-
sensus peaks. Red dots show peaks appearing more often on device A, blue
dots peaks appearing more often on device B. White colors mark peaks with
approximately equal distributions. A: Automatic peak detection with SGLTR-
DBSCAN. B: Automatic peak detection with inserted peak alignment after the
SGLTR step.

assigned to a certain consensus peak, the value for the consensus peak regarding this
raw measurement is recorded as zero. Finally, the dataset with raw measurements as
observations and consensus peaks as features can be used for further analysis.

In order to assess differences between several devices, we use data from our study on
healthy subjects. The breath of 49 probands was measured twice, once on each of the
two devices A and B. For other purposes, every person drank a glass of orange juice
before the second measurement. Accompanying each breath gas analysis, the room air
was measured as well as a measurement that was undertaken during a cleaning flush.
This results in 294 measurements corresponding to the breath samples. Additionally,
cleaning was sometimes done in between study days, such that in total, 345 MCC-IMS
measurements were taken. Of those, 172 were obtained from device A, the remaining
173 from device B.

The positions of the consensus peaks as determined by the automatic algorithm are shown
in figure 1A. Since the automatic algorithm assigns the value zero for a raw measurement
when no peak was detected at this position the presence of metabolites in measurements
taken on the two devices can easily be evaluated by counting the number of raw measure-
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ments having a value unequal to zero. Since both devices measure approximately similar
conditions (observations were assigned to the devices by stratified randomization), the
number of raw measurements containing a certain metabolite should be approximately
equal. In figure 1A however, it can be seen that many peaks are found way more often
on one of the two devices. Sometimes peaks of opposite proportions lie close to each
other, suggesting that the same metabolic compound in the gas sample results in slightly
shifted single peak positions on the two devices. As a result, the peaks form two separate
clusters, i.e. consensus peaks in the clustering step.

To solve this problem, reference gas measurements (artificial gas probes with known
composition) for the two devices were compared. The two corresponding datasets con-
tained five matching components and their peak positions had already been determined
manually. The software VisualNow allows setting values for stretching the axes but they
have to be set manually or using exactly two "old" and two "new" peak positions for
determination of the stretching factors. It is impossible however, to conveniently use
more data for a more stable alignment in an automated fashion. For that reason, we
instead suggest to use all components that were measured on both devices. Their peak
positions can be aligned by applying a linear regression for each of the two dimensions
(retention time and inverse reduced mobility), regressing the positions from one device
on the positions from the other device, which thus serves as reference device.

Inserting this correction step in between the automatic single peak detection and the
consensus peak clustering, the single peaks are shifted to similar locations before they
are clustered. The results are shown in figure 1B. The resulting consensus peaks are
much more plausible with respect to the numbers of corresponding single peaks from
both devices. Especially in the area of inverse reduced mobilities between 0.60 and 0.65
many dots with rich colors (i.e. unequally distributed proportions on both devices) from
figure 1A turn into fewer dots with brighter shades (i.e. equally distributed proportions
on both devices) in figure 1B.

In addition to the peak position alignment we use data that has also been scaled with
respect to the device. From now on, only breath data is used whereas room air and
flush measurements are discarded (they were only used for stable peak detection). The
automatic algorithm denotes peak intensities in raw measurements as zero, when no
single peak was detected in the correspondent raw measurement at this position. Since
zeros occur quite often in the resulting datasets, common normalization to mean zero
and variance one separately for each device, results in counterintuitive results for the
values that are zero. Since the sample means and variances are generally different for
both devices, the zeros from both devices take different values after the normalization,
although in both cases the metabolite was not detected and thus should have the same
value after the standardization, too. Therefore, our scaling normalizes all non-zero values
to mean zero and variance one for each device but the zero-values are shifted equally by
subtracting the maximum of both sample means and dividing by the minimum sample
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variance (thus guaranteeing, that zero-values remain smaller after the scaling than other
values that were larger before).

The effects of both methods, peak position alignment and scaling, can also be observed
when testing univariately for differences between means, using the device as the grouping
variable. Since each person is measured once on each device, a paired test is used (here:
Wilcoxon test). Table 1 shows the number of univariately significant metabolites in
each scenario (with/without alignment and with/without scaling). In order to account
for multiple testing, adjusted p-values according to the method of Bonferroni-Holm are
reported (in parenthesis the numbers without p-value adjustment).

Table 1: Number of univariately significant metabolites for differences of mean for the
two devices. A paired Wilcoxon test was used. The quantities are shown for data
without peak position alignment as well as with peak position alignment each
with or without scaling with respect to the device. The numbers in parenthesis
concern unadjusted p-values whereas the others are based on adjusted p-values
using the method of Bonferroni-Holm.

# significant metabolites without scaling with scaling
adjusted unadjusted adjusted unadjusted

without alignment (p = 51) 24 (27) 11 (20)
with alignment (p = 46) 18 (23) 7 (14)

As can be seen in Table 1, the alignment step reduces the number of significant metabo-
lites from 24 to 18 for unscaled and from 11 to 7 for scaled data. This coincides with the
reduced number of found consensus peaks that decreases from 51 to 46 when the align-
ment is performed. Additionally, scaling the data with regard to the device, differences
are less frequently observed. This also shows that this scaling doesn’t remove all dif-
ferences between the devices since the procedure of treating zeros differently maintains
differences in the occurrence of a metabolite between the devices. These differences
could result from different materials that are built into the devices.
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Nowadays, the ongoing integration of machine learning models into every-
day life also demand the evaluation to be extremely fast and in real-time. The
implementation of the model application must take the characteristics of the
executing platform into account. Due to "memory wall" phenomenon, hier-
archical cache memories have been widely used in most modern architectures
to hide the memory latencies. For such embedded systems, the adoption
of cache memories becomes really critical. This report briefly go through
the idea how can we optimize the execution of Decision Trees through tree
framing approaches.

1 Introduction

Decision Trees (DT) form the basis of many ensemble methods, such as Random Forests
(RF) or Extremely Randomized Trees (ET). As one of the best black-box methods avail-
able offering high accuracy with only a few parameters to tune [3,4], RF are widely used
in various research domains, e.g., Physicist uses Random Forest to filter measurements
of monitoring the sky for gamma rays. For these methods to work best, trees should be
as large as possible.

In the last year lately, we started to investigate the data locality issues in most of the
implementation of DT. We observed that, the memory excess pattern of DT (even in
its basic unit), has no data locality at all. Especially on embedded systems, which are
used to perform real-time calculations, the available resource is usually limited. Such
a case, i.e., big trees but small caches, really challenges the data and the instruction
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cache of CPUs and thus demand a more careful memory layout. Particularly for runtime
considerations, it has been stated that caching behaviour determines the performance of
implemented algorithms even more than algorithmic differences [5]. This motivates us
to revisit the basis of computer architecture and the concept of cache design.

Finally, we come out several principled approaches and provide a comprehensive code
generator adapting to particular parameters of the computer’s memory and produce op-
timized code segments in [1]. In short, we consider a probabilistic view of DT model
execution in CPUs, and introduce a theoretically well-founded memory layout. Through-
out the evaluations, we can observe that our implementation offers a speed-up factor
from 2 to 4 on average without changing the prediction accuracy of the model.

2 Ideas and Results

Following the probabilistic view of DT execution in [2], we model each comparison at
node i as a Bernoulli experiment in which we will take the path towards the left child with
probability p(i → l(i)) and respectively for the right child with p(i → r(i)). It holds that
p(i → l(i)) = 1 − p(i → r(i)). Based on this probabilistic arguments, we can further
model the probability of each path during training by counting the number of samples at
each node i taking the left and right path. We further assume the quality of the learned
model to be satisfactory and do not change it. More details please refer to [2].

We specially focus on two typical implementations of DT: Native Tree (shown in 1),
which uses a loop to iterate over each node of a tree within a continuous data structure,
e.g., arranged by a one-dimensional array. and If-else Tree (shown in 2), which uses the
split values of a tree are all hard-coded as constant values into the instructions.
s t r u c t Node {

boo l i s L e a f ;
u n s i g n e d i n t p r e d i c t i o n ; // P r e d i c t e d Labe l
u n s i g n e d cha r f e a t u r e ; // Targeted f e a t u r e
f l o a t s p l i t ; // Th r e s ho l d
u n s i g n e d s h o r t l e f t C h i l d ;
u n s i g n e d s h o r t r i g h t C h i l d ;

} ;
Node t r e e [ ] = {{0 , 0 , 0 , 8 191 , 1 , 2} , {0 , 0 , 1 , 2 048 , 3 , 4} , . . ] }
boo l p r e d i c t ( s h o r t con s t x [ 3 ] ) {

u n s i g n e d i n t i = 0 ;
w h i l e ( ! t r e e [ i ] . i s L e a f ) {

i f ( x [ t r e e [ i ] . f ] <= t r e e [ i ] . s p l i t ) {
i = t r e e [ i ] . l e f t ;

} e l s e {
i = t r e e [ i ] . r i g h t ;

}
}
r e t u r n t r e e [ i ] . p r e d i c t i o n ;

}

Listing 1: Native tree structure in C++
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boo l p r e d i c t ( s h o r t con s t x [ 3 ] ) {
i f ( x [ 0 ] <= 8191){

i f ( x [ 1 ] <= 2048){
r e t u r n t r u e ;

} e l s e {
r e t u r n f a l s e ;

}
} e l s e {

i f ( x [ 2 ] <= 512){
r e t u r n t r u e ;

} e l s e {
r e t u r n f a l s e ;

}
}

}

Listing 2: Example for If-else structure in C++.

Although the if-else tree already unrolls the comparisons of a DT into conditional state-
ments without indirect memory accesses, cache misses may still occur. To reducing
compulsory cache misses, we propose to traverse all its paths and swap the children of
every node i when p(i → l(i)) ≥ p(i → r(i))). To reduce capacity and conflict cache
misses, we define a computation kernel containing those nodes which are used most of
time , and leverage goto to break the tie of branches.

For the native-tree, we propose to reduce the amount of memory each node needs as
much as we can to reduce compulsory cache misses, i.e., abandon the isLeaf and
prediction field of the native solution, but store the prediction of the left (right) child
directly in the respective fields left (right) if it is a leaf node. Furthermore, we propose
an approach to arrange the location of nodes stored in memory for creating the data
locality by using the probabilistic information.

To deploy extensive evaluations, we have performed 1800 different experiments by training
Decision Trees (DT), Random Forests (RF), and Extremely Randomized Trees (ET)on
12 different data-sets with varying tree-depths to generate the aforementioned imple-
mentations for different architectures, i.e., X86, PPC and ARM CPUs. The results on
X86 show that if-else trees should be adopted and the improvement can be up to 3 times
compared to the naive native tree. For ARM, we notice that there is no clear winner of
implementations for larger trees. Interestingly, the optimized native tree implementation
can even outperform the standard if-else tree due to the large size of D-Cache.

3 Outlook

When machine learning meet embedded systems, the efficiency of black-box methods
is required to be reconsidered under the assumption of limited resources regarding to
time and memory spaces. In this report, I briefly go through the idea how we advocate
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for optimizing the evaluation of learned models in the real-time setting in [1]. Since
tree ensembles in general and specifically Random Forests are among the most efficient
black-box methods available, we looked at the application of decision trees from an
computer-architectures point of view.

Our findings of this work show that implementing RF can be challenging and need to
be done carefully, since the hierarchical cache memories in the underlying computer
architectures can be really important especially for embedded systems. The propose
approaches only exploit some features regarding memory hierarchy. Implementations
that consider other architectural features like scratchpad, out-of-order execution, hyper-
threading, branch prediction, etc. may further improve the performance, which are con-
sidered as future work. Recently we start to investigate the usage of random forests
under the consideration of concept drifts. We notice that indeed the implementation of
well-known approaches is worth to be revisited and redesigned.
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In many use cases in the subproject B3, rare events and unusual behav-
iors, such as process failure or instability in machine engineering, are usually
represented with imbalanced data observations. In other words, one or more
classes, usually the ones that represent such events, are underrepresented in
the data set. This issue, known to the Data Mining community as the class
imbalance problem. However, class imbalance is known to induce a learn-
ing bias towards majority classes which implies a poor detection of minority
classes. Thus, we propose a new probabilistic ensemble method to handle
class imbalance explicitly at training time.

1 Introduction

Several machine learning approaches have been proposed over the past decades to handle
the class imbalance problem. Most of which are based on resampling techniques, cost
sensitive learning, and ensemble methods [1,2,4]. In this paper, we address the problem
of class imbalance via an ensemble method. Our method falls within resampling-based
ensembles, as before constructing the ensemble, it uses random sampling for designing
scenarios of class imbalance on unseen test data and for generating balanced training
sets to train single classifiers by optimizing a well-defined loss function for each sce-
nario. Our method combines(estimated) knowledge about the class imbalance in the
data distribution with random sampling to handle the class imbalance problem.
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2 A Mixture of Experts for Class Rebalancing

Usually, when we use random sampling for balancing the training set D, we evaluate
the quality of sampled instances and their ability in solving the classification problem on
an independent validation/calibration set DVal. Whenever we come to the deployment
part of the model, we have obviously a new unseen test set. Even based on the strong
assumption that data points are coming from the same distribution, the class imbalance
scenario (i.e. class imblance ratio IR: the ratio between the number of majority and
minority class samples) on this new set can be different from the one on the training set
and the calibration set, based on which the sampling procedure was optimized.

When comparing the possible class imbalance ratio of the test set to the one of the
training set, three possible scenarios are then present (i.e. either we have similar IR,
either higher or lower). To prepare our classifier for these situations, we construct three
new data sets D>Val,D≈Val,D<Val. In the first case, the class y = 1 (i.e. we assume its the
label of the majority class) is actually more likely than the data suggests, we should create
a subsample D>Val from DVal, such that P̃>(Y = 1) = P̃(Y = 1)+α, where P̃> is the class
distribution in D>Val and α is a positive probability offset —we refer to this process as
rebalancing. The third case is symmetrical: we have α < 0 and we shall subsample D<Val
from DVal. Finally, for the case (2), we subsample the set D≈Val via stratified proportionate
allocation—the class distribution will approximately match the class distribution in DVal
and α ≈ 0.

We subsample the validation set DVal to generate three specific sets D>Val,D≈Val,D<Val. For
each case µ ∈ {>,≈, <}, we learn a model mµ on the training data and use the data
in the validation set DµVal to refine the learning process. This procedure yields three
families of models, namely M>,M≈ and M<. Mµ may contain one or many models mµ

depending on the chosen optimization procedure e.g., repeating the subsampling process
multiple times or optimizing different quality metrics q. The resulting models will later
be combined to form an ensemble,which is prepared to handle different scenarios of class
discrepancy and different quality metrics q. the ensemble weights can be considred as
unobserved random variables and apply expectation-maximization to estimate them [3].
However, such techniques assume the existence of a context and require the classifier
accuracy to be Lipschitz continuous. In contrast, we propose to interpret µ ∈ {>,≈, <}
and q as random variables. Let m(x) = ŷ be the prediction of a single model, the
outcome of the ensemble is:

E[m(x)] =
∑

µ∈{>,≈,<} P(µ)
∑

q∈Q P(q | µ)
∑T

t=1 P(t | µ, q)m
µ
q,t(x)

where Q is a set of quality metrics, e.g., Q = {precision, recall}, and T is the number of
models that we have generated for each combination of µ and q—our experimental results
will show that small values of T suffice. The values of P(µ), P(q | µ), and P(t | µ, q)
control how the specific models mµ

q,t influence the final outcome. The probability P(µ)
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expresses our knowledge on how the class distribution in the training set differs from the
true one. The probabilities P(q | µ) can be interpreted as the importance of the quality
measure q for the actual prediction task. As such, the importance depends on D, Q,
or even on µ, and cannot be derived in general. Finally, P(t | µ, q) are the classical
(normalized) ensemble weights. Since each weak model depends on µ, q, and t, the
outcome may be interpreted as a mixture of mixtures of experts.

3 Class Imbalance and the Probability Offset

Let us now put some light on how to choose the probability offset α for the rebalancing
process. At a first glace, choosing the probability offset α might seem infeasible. How
should one even guess which α ∈ (0; 1) is appropriate? Surprisingly, it turns out that
class imbalance simplifies this problem! In fact, the stronger the class imbalance, the
tighter is the range for reasonable probability offsets. Let us formalize this result.

Lemma 1 (Probability of Probability Offsets) Let D be a data set with empirical class

distribution P̃(y). We denote the class ratio w.r.t. the minority class by r = min
{
P(Y=0)
P(Y=1) ,

P(Y=1)
P(Y=0)

}
.

There exists c, c ′ such that for all α > 0, the probability of the event

|P̃(Y = 0)− P(Y = 0)| ≥ α

is upper bounded by

exp

(
−

α2c

r + αc ′
+ ln 2

)
.

The lemma tells us that the probability that α is large decreases exponentially fast as
a function α, damped class imbalance which is measured by r . As an example, assume
that our data set contains N = 1000 samples and the classes are perfectly balanced,
i.e., P(Y = 1) = 1/2. In this case, the lemma asserts that the probability that P̃(Y = 0)
and P(Y = 0) deviate by at least 5% is upper bounded by 58.487%. Notice that the
randomization happens over all data sets—this means that for more than half of all data
sets, the estimated and true class frequency will deviate by more than 5%. Now, let
us consider class imbalance. We assume P(Y = 1) = 0.9, i.e., 10% of all data points
belong to the minority class. By applying Lemma 1 to this scenario while keeping all other
quantities fixed, we see that a deviation of more than 5% happens in at most 0.011285%
of all data sets. A deviation of at least 2.5% occurs for at most 14.615% of all data
sets. Thus, we see that large α values (say, > 5%) are very unlikely in the presence of
class imbalance. Our approach does not try to fix a specific flaw of imbalanced data sets.
Instead, we try to fix a flaw that is inherent in all classification tasks—however, fixing this
flaw on imbalanced data sets is much easier, due to the heavily limited range of possible
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probability offsets α. Our experiments on six data sets underpin these theoretical insights
and show that our framework outperform many State-of-the-Art methods in handling
imbalanced data sets.

4 Future Work

As a future work, we plan to test our framework on highly imbalanced data sets using
different accuracy measures. In addition, we plan to enhance the accuracy of our ensem-
ble by promoting diversity among its members. This will be achieved by trying to select
different base-line classifiers for each component of the ensemble in an informed manner
and to combine it together with the adequate random sampling strategy.
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Due to growing competitive pressure, the quality of products is becoming an
increasingly important success factor for manufacturing companies. In order
to be able to guarantee high quality, extensive inspections are indispensable
which are connected to high resource consumption. In this context, the
application of machine learning (ML) techniques for predicting quality-related
product features is becoming increasingly important. This technical report
describes the requirements for classical measurement and inspection processes
and how these must be transferred to predictive ML-models.

1 Introduction
Quality has become a key competitive factor for manufacturing companies. In order to
ensure high-quality products, extensive inspections are unevoidable. Due to the high re-
source consumption of those non-value-adding processes, the development of alternative
approaches is of great interest in research and industrial application. In the context of
increasing digitalization, the amount of data available in manufacturing processes has
grown rapidly in recent years. This enables data-driven approaches such as the applica-
tion of machine learning techniques in industry. One field of interest thereby is the field of
predictive quality where ML models are used to predict the expected final product quality
based on previously recorded process parameters. Initial studies have shown promising
results in various industries such that the gap between research and industry must now
be closed in order to integrate ML models into the daily toolbox of manufacturing com-
panies. In this context, the suitability of ML models as measuring equipment must be
proven in order to replace classical quality inspection processes in the mid-term future.
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2 Measuring system suitability
A basic prerequisite for measuring quality is a capable measuring system or measuring
equipment and a reliable measuring method that allows the quality characteristic to be
recorded correctly. Consequently, measuring equipment must meet certain requirements,
their suitability must be demonstrated and the capability of the measuring process must
be analysed.

2.1 Measuring equipment requirements
The variation of the measurement results (total variation) is on the one hand due to
the variation of the measurement process, which as an independent process is afflicted
with a certain scatter, and on the other hand on the variation of the measuring system.
The basic objective is to keep the measurement errors and deviations resulting from
the variation of the measurement system to a minimum. Just like the actual measured
values, the measurement deviations are influenced by a large number of factors and
can lead to incorrect conclusions when considering the overall variation. Consequently,
measuring equipment and systems have to meet certain requirements in order to provide
reliable measurement results: sufficient resolution, accuracy and precision, repetition and
comparison precision, stability, linearity [4, 5].

2.2 Measurement system analysis
The measuring system analysis serves the analysis of the capability of measuring equip-
ment and measuring systems. A new piece of inspection equipment is first subjected to
an incoming inspection in which the equipment is calibrated with a standard in the mea-
suring room [3]. The analysis of the equipment’s capability then takes place at the place
of use under the measurement conditions given there. Provided that the measured values
are normally distributed, various methods can be applied using standards or production
parts which are measured repeatedly [3]:

Method 1: Verification of the capability of the measuring equipment

Method 2: Proof of the capability of a measurement process with operator influence
(Gauge R&R Study)

Method 3: Proof of the ability of a measurement process without operator influence
(R&R Study)

Method 4: Verification of the measurement stability of a measurement process

Method 5: Proof of capability for inspection processes for attributive characteristics
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2.3 Process capability
In addition to the capability of the measuring system, process capability is also an im-
portant prerequisite for measuring the quality of a product. Process capability is thereby
the basic ability of a process to meet customer requirements. A distinction can be made
between 3 types of process capability [1–3]:

1. machine capability (Cm, Cmk)

2. short-term process capability (Cp, Cpk)

3. long-term process capability (Pp, Ppk)

The calculation of the indices is analogous for all 3 types and depends on the data used.
If the data is collected under ideal conditions, only the machine capability can be proven.
If, on the other hand, the data is collected under real production conditions, short-term
or long-term process capability can be demonstrated depending on the length of the
observation period.

3 Transfer on predictive ML-models
In order to replace classical measurement and testing processes with predictive ML-models
in the mid-term future, their equivalence must first be proven. For this purpose, the
requirements placed on classical measuring and inspection equipment must be transferred
to the models and their fulfilment must be proven.

3.1 General idea of predictive modeling
Predictive modeling is an approach that uses mathematical and computational methods
to predict an event or outcome based on historic data. A ML-model describes the
relationship between input variables and model output and allows to predict an outcome
at some future state or time based upon changes in the model input. In industrial
applications, these models enable the prediction of quality-related product characteristics
on the basis of previously recorded process parameters. This allows to relieve resource-
intensive inspection processes with constant reliability of high-quality products.

3.2 Model suitability for quality inspection
The requirements for classical measuring systems also apply for the quality observation
by means of predictive ML-models. However, the requirements cannot be transfered
directly but their purpose has to be understood and converted. The suitability of models
highly depends on the quality of the input data which therefore has to be specifically
investigated. Additionally, the underlying algorithm as well as the model structure and
parameters influence the applicability and must therefore be taken into account for every
individual application.
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The decision on which method of measurement system analysis to chose depends on the
mode of integration of the model. If the judgement on quality is purely model-based,
the operator influence can be neglected. Depending on the feature type of the label,
continuous or discrete, regression or classification models will be used and accordingly
the measurement system analysis method for attributive characteristics has to be applied
in the latter case.

The process capability analysis can be performed analogously to the classical application
whereas the time window of the recorded data determines the type of process capability.
While the machine capability represents the model application without any noise factors,
the short-term and long-term process capability include noise factors that may influence
the model performance negatively.

4 Research outlook
Further research is going to investigate the application of ML-based predictive models
as measurement equipment for quality inspection in automated manufacturing processes.
For this purpose, equivalent requirements and verification methods must be developed
in order to increase confidence in such test equipment. Furthermore, the inclusion of
mode-based inspection equipment leads to significant changes in inspection planning and
inspection equipment management. Especially the hybrid application of classical mea-
surement and inspection equipment and model-based inspection poses great challenges
that have to be addressed in further investigations.
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Production processes constantly change their state and characteristics, so

that recorded process and product data underlie concept drift. To deal with

concept drift several approaches exist in the literature. In this report we

present an overview on these approaches and identify need for further re-

search. In the third phase of the Collaborative Research Center 876 we want

to develop new methods that can detect concept drift and update the models

accordingly.

1 Introduction

Within the Collaborative Research Center 876 project B3 deals with the time-constrained

analysis of sensor data in production processes using machine learning techniques. In the

�rst two phases a quality prediction system could be developed allowing for an in process-

prediction of the product's quality features based on real-time data from the production

process. The advantage of this approach is, that features, which are di�cult to measure

online, can be monitored continuously. As a result, quality problems can be detected early

in the process directly after their emergence, so that actions can be taken immediately,

in order to improve process and product quality. Models, which allow for the prediction

of di�cult-to-measure variables by easy-to-measure variables in production processes are

called soft sensors or virtual sensors.
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In the �rst two phases of the project the models were trained o�ine on the basis of batch

data and retained stationary. However, when using soft sensors in real-world processes,

it is of the utmost importance to guarantee the long-term operability and quality of the

sensors. In this context, a particular challenge is the process dynamics, which leads to

process conditions and process states constantly changing over time. Causes for these

time-dependent changes are for instance tool wear, changes in input materials, products

with varying quality requirements and changing environmental conditions (e.g. tempera-

tures, humidity). In the machine learning literature such state changes are summarized

under the term concept drift.

In the third phase of the project our aim is to develop advanced incremental learning

methods that are able to adapt to the evolution of sensor data over time with online

e�cient memory length choice. In the soft sensor literature a variety of di�erent adaption

approaches to handle concept drift have been proposed. Thus, in the �rst step, we did

a literature search, in order to get an overview on existing approaches and identify gaps

for further research.

2 Existing approaches for model adaption

The most common approaches for model adaption in the literature are the moving window

approach, recursive adaption and just-in-time learning:

The moving window approach aims to update the model on the basis of a set of selected

data points. The set is selected to represent the current concept of the process as

precisely as possible. It is assumed that the most recent observations best re�ect the

current concept, so that they form the subset [3]. In the majority of the papers, a sliding

window is moved along the data, which includes the newest samples and simultaneously

removes the oldest samples from the dataset [7]. In this way, the model is continuously

updated based on the most recent data. The moving window approaches are either based

on an incremental model adaption, in which the model is updated for each newly recorded

sample, or on a blockwise adaption, where the model update is done for a batch of samples

together [3]. The adaption interval, i.e. the number of samples recently included in the

time window before the model is re-trained, is called the step size [5]. Using incremental

model adaption, the step size is one. A high step size leads to a lower update frequency of

the model and thus to a lower computational e�ort, but there is a danger that the model is

adapted too late, so that process conditions have already changed and predictions become

inprecise. A disadvantage of the moving window approach is, that it has di�culties in

adapting the model to abrupt process changes, since the model is always in�uenced by

older samples in the set of selected data points. This applies in particular to large time

windows and step sizes. Furthermore, the required storage capacity of moving window
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approaches can become a problem, especially in resource-constrained applications, since

all data of the time window must be kept in memory [6].

In contrast to the moving window approach described above, recursive adaption methods

do not update the model by completely re-training the model, but by recursively adapting

the existing model using the newly recorded samples [4], e.g. by updating the covari-

ance matrix. Most of the papers describe recursive formulations of principal component

analysis or partial least squares regression. However, there are also papers dealing with

a recursive support vector machine or a recursive neural network. Similar to the mov-

ing window approach, recursive adaption is disadvantageous in handling abrupt process

changes as the model is always in�uenced by older samples of the dataset.

The approach of just-in-time learning (JITL) is based on ideas from database technology

and local modelling [1]. The general idea of JITL is similar to the moving window approach

because the model is adapted by updating the training dataset. In contrast to the moving

window approach, the most recent samples are not used for modelling, but rather the

samples with the greatest similarity to the new samples [6]. The prerequisite for this is

the creation and maintenance of an extensive database in which all historical and new

samples are stored. As soon as a new sample arrives for which the label is to be predicted,

relevant samples from the database with a high similarity are determined and used for

modelling. The model is then used for predicting the label and is discarded subsequently.

So in JITL a new local model is trained online on demand, which is only valid for the

current sample. JITL approaches o�er the possibility to adequately model time-varying

and non-linear processes through the online training of local models. Both continuous

and abrupt process changes can be modelled appropriately [2]. A disadvantage, however,

is the high computational e�ort associated with the similarity search and the frequent

model training. In addition, the historical database must completely contain all possible

process states in order to be able to guarantee a high prediction quality of the local

models in the case of process changes.

3 Direction of research in the third phase

The literature review shows that a lot of work has been done in the context of adaptive

soft sensors. However, the existing approaches still have problems and disadvantages that

have to be overcome. In addition, most of the approaches described in the literature are

based on an automatic update of the soft sensor model. If the update frequency is

low, this may lead to a late reaction to process changes, so that the model is temporarily

invalid. On the other hand, a high update frequency or even a continuous model adaption

leads to a very high computational e�ort, which usually cannot be managed in real time.

In order to adapt the model only on demand, when a process change occurs, we want

to develop an approach that is able to detect process changes immediately, so that the
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model can be updated without time delay. We will focus on building models that are

able to detect changes, distinguish between noise and drifts and are adaptive to changes,

while remaining robust to noise.
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In the �fth generation of mobile communication, the demand for enhanced

mobile broadband services with strong throughput requirements substanti-

ates the utilization of new spectrum in the millimeter wave domain, where

high bandwidths are available. With these novel frequencies like 28 GHz,

highly directional antennas are expected to counteract the more delicate ra-

dio conditions. Phased arrays are particularly used to form a high gain pencil

beam. A precise alignment of transmitter and receiver is required to pro�t

from the essential antenna gains. This is supposed to be a challenging task

especially for network participants with a high mobility like Unmanned Aerial

Vehicles (UAVs). For this reason, an experimental evaluation of the pencil

beam alignment is carried out in a UAV context. Results show, that an align-

ment within a given error margin allows for a stable air�to�ground connection.

1 Motivation

Complementary machine�type application scenarios are to be addressed by the �fth gener-

ation of mobile communication (5G) beside the conventional human�centric ones. Espe-

cially the growth of so called enhanced Mobile Broadband (eMBB) services longs for new

spectrum resources to enable higher data rates. Though the millimeter wave (mmWave)

domain o�ers the required bandwidth, but the drawback of this higher frequencies comes

with the more challenging radio environment. Not only the increasing path loss, but also
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the reduction of the indoor penetration capability and the demand for line�of�sight (LOS)

constitute harsh conditions. In order to cope with this, high gain antennas are believed to

more than compensate the drop of the link budget. Particularly beamforming concepts

appear to be likely suited to grant high gains by maintaining a considerable �exibility.

Base Station with
Phased Array Antenna

Figure 1: The ground station

applies beamforming, whereas

the UAV needs to only coarsely

align by azimuthal rotation.

Considering eMBB use cases, the context of Unmanned

Aerial Vehicles (UAVs) may even put a new spin on ap-

plications like high�resolution video surveillance or ad�

hoc mobile network coverage. Since conventional mo-

bile networks are designed for a comprehensive ground

coverage, UAVs currently su�er from poor coverage at

altitudes. The disadvantageous e�ect of base stations'

downtilt is illustrated in [1]. In contrast to that, up-

coming mmWave base stations are expected to utilize

phased array antennas and as a consequence thereof to

achieve high beamforming or antenna gains. A precise

alignment of a penciled main lobe ("pencil beam") is

therewith viable towards any direction, so that an on

demand coverage for arbitrary network subscribers in-

cluding UAVs may be reached. Figure 1 depicts the

proposed beam steering capabilities of a ground station

and a UAV. While the ground station may be equipped with a phased array antenna to

adjust the beam's direction by beamforming, the UAV may merely use a lightweight horn

antenna which can be coarsely aligned mechanically due to its larger beam width.

2 Experimental Proof�of�Concept Evaluation

Figure 2: Indicated pencil beam

from ground station and horn

antenna on UAV in �ight

In our work [2], we focus on the beam alignment ca-

pabilities by experimentally evaluate the mmWave com-

munication link between a UAV in �ight and a ground

station. To this end, the mmWave ground station is

equipped with a 64 element phased array antenna, while

a horn antenna mounted on the UAV is tethered to the

mmWave R&D system. In Figure 2, the experimental

setup is shown. It should be noted that the horn an-

tenna has a larger half�power beam width of about 54�

compared to about 13
� of the phased array. Against

this background, measurement results have shown, that

a mechanical horn antenna alignment by azimuthal ro-

tation of the UAV is feasible and essential during �ight. In the course of this, the larger

beam width relaxes the required alignment precision of the UAV's antenna. Nevertheless
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visualization
and evaluation

emulated UAV trajectory by
rail system with horn antenna

Figure 3: Laboratory test environment with rail system on truss for highly reproducible

emulation of UAV trajectories.

a precise tracking of the pencil beam from the ground station towards the UAV needs

to be realized within a misalignment margin of j�j < 5
� and a high accuracy with low

angular noise is imperative (c.f. [2]).

3 The proposed 5G mmWave Antenna Tracking System

After the conceptual evaluation, a sophisticated laboratory testing and measurement

environment needs to be designed to allow for highly reproducible and well�de�ned mea-

surement procedures. For this reason, we decide to emulate the UAV's trajectory by a

rail system as depicted in Figure 3:

A tooth belt stepper motor enables arbitrary acceleration patterns within a rail length

of three meters, while a worm gear stepper motor synchronously ensures the proper

alignment of the mounted horn antenna by means of a prede�ned base station position.

Again, the horn antenna is tethered to the static mmWave system placed in the middle

below the rail to promote preferably short HF cabling. On the left, the base station is

deployed on a laboratory cart together with the phased array antenna. As a result of

this, the base station antenna's physical pose can be adjusted to satisfy the application

scenario to be investigated. On the right, a visualization and real�time evaluation entity

displays the currently applied directional radio pattern of the phased array antenna as well

as the pose of the emulated UAV, while the truss is implied as a reference (Figure 4).

Additionally, the statistics about the UAV's pose, the alignment precision and signal

quality indicators are given by collecting and process these information.
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Figure 4: Illustrative virtual twin of designed testing environmen

4 Conclusion and Further Research

The developed 5G mmWave antenna tracking evaluation system allows for connectivity

measurements through indoor �ight experiments as well as reproducible and controlled

UAV trajectory emulation by a self�constructed rail system mounted on a truss. Experi-

ments carried out prove, that a high performance communication link can be established

and maintained by means of precise antenna beam alignment.

In future work, the testbed is planned to be used to evaluate di�erent antenna tracking

algorithms. Further, the equipment is to be extended to perform handover scenarios with

the help of a second base station unit. While doing so, the beam alignment needs to be

organized to seamlessly provide network coverage between two adjacent mmWave base

stations.
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Resource-efficiency is important for many different applications. Especially
for a sensor network with limited energy, resources have to be used as efficient
as possible. The developed Soil Moisture Sensing system uses the radio
field as a sensor and provides a soil moisture estimation due to the radio
field itself. By using Long Range packet radio modules, originate from the
Internet of Things, a robust communication with a high receiver sensitivity
can be enabled. This leads to a resource-efficient application as Wireless
Underground Sensors. To ensure a minimal power consumption paired with a
maximum of used communication links, a so-called rotating gateway concept
was developed.

1 Design of the LoRa Based Soil Moisture Sensing
System

In the following, the basic operating principle of the LoRa based SoMoS system will
be described in detail. This is the first approach to enable a moisture sensing in an
outdoor environment. The main focus is to ensure a robust sensor field with a maximal
battery lifetime of the nodes, even with a low sensing resolution. Without any gateway
functionality, the nodes will be called passive nodes.

LoRa packet radio is chosen as a robust communication technology with a high receiver
sensitivity. LoRa provides high communication distances up to several kilometers in
free space and data rates between 0.3 kbit/s and 11 kbit/s [1]. Due to the spread
spectrum signal modulation technique, a signal reception even below the noise floor is
possible. To maximize the communication range of the radio module, the lowest possible
frequency band of 433 MHz is used. The radio module is mounted on an Adafruit Feather
32u4 development board. During active radio listening, the power consumption is about
40 mA, during transmission with +20 dBm about 120 mA and during full sleep about
0.3 mA. Due to legal requirements, the transmit power will be limited to +10 dBm
(10 mW). The resulting sensor is small in size and can easily be installed with minimum

mailto:florian.liedmann@tu-dortmund.de
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invasion. Equipped with a 3000 mAh battery, the sensor is independent of power supply.
To be resistant to soil, moisture and humidity, the sensor is placed in a waterproof
acrylic glass cylinder (Ø 0.1 m) [2]. In the developed sensor field, one of the SoMoS
nodes is configured as gateway to continuously listen to the communication channel and
measure the RSSI of node packets. The measurement reports will then be forwarded to
an embedded system with Wide Area Network (WAN) access to the monitoring system
for evaluation and visualization. This transmission will be done via an Universal Serial Bus
(USB) connection, which additionally avoids a runtime of only a few days of the SoMoS
gateway by continuously recharging its battery. In Fig. 1 (left), the state machine of the
SoMoS gateway is shown.

Sleep
(t sec)

Trans-
mit

Finish / t = 900 sec

Granted
Denied / 

t = rand(60,300) sec

Timeout / 
Channel request

5 packets
in 10 sec

Listen Busy

Finish / Send report

GrantedDenied

Channel 
Request received

Gateway Node

Figure 1: State machines of SoMoS gateway and passive node.

After receiving a channel request of a SoMoS node in Listen state, the node gets an
acknowledgment if the channel is not occupied. Then, the gateway changes to Busy
state and waits for a predefined amount of packets of the node. After a timeout, the
gateway sends a report with measured and received node parameters to a monitoring
system and returns to Listen state. In Fig. 1 (right), the state machine of the SoMoS
node is shown. To save battery, it enters a 15 minutes Full Sleep state after successful
transmission. After waking up, it requests channel access and transmits five packets in a
predefined period of time if access granted. If the channel is occupied by another node,
it calculates a random back-off time between 60 and 300 seconds, enters the Full Sleep
state for this time and requests channel access again afterwards. The expected lifetime
for both configurations is shown in Fig. 2.

Without recharging, the gateway lifetime would be 10 days only. Therefore, the gate-
way is connected to an embedded system via Universal Serial Bus (USB) to continuously
recharge the battery and pass the report messages. The expected passive node lifetime
is 397 days, which is quite enough for long-term evaluations and near to the maximum
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Figure 2: Expected battery lifetime of SoMoS gateway and passive node.

lifetime of 417 days, if the node would always remain in Sleep state without any packet
transmissions.

2 Resource-Efficient Concept for Soil Moisture Sensing
in the Field with Increased Resolution

The previous configuration of the SoMoS system with an USB powered gateway and
passive nodes in full sleep mode enables a maximal system runtime of more than one
year (see Fig. 2). But due to the star topology from nodes to gateway, the amount of
communication links for the soil moisture sensing is limited. Therefore, a concept for the
SoMoS system has been developed to maximize the amount of available communication
links, which leads to an increased resolution of soil moisture localization. The developed,
so-called rotating gateway approach increases the amount of 8 unidirectional communi-
cation links to 36 bidirectional communication links with 72 measurable RSSI values (see
Fig. 3).

SoMoS

node

SoMoS

gateway

Bidirectional communication link

Rotating gateway time

Token access time

Figure 3: Rotating gateway concept to increase soil moisture detection resolution in the
field [3].

The main challenge of this configuration is to minimize the clock drift caused by the
local oscillators of each node, which is constant within one system, but differs from the
other clock drifts. Especially during the full sleep mode, most components for a better
clock synchronization are switched off. For a target sleep time of 900 s, this drift results
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in a maximal observed time deviation of up to 70 s, in which the node wakes up too
early or too late. Due to the fact that all nodes have to be active, this would result in
an significantly decreased battery lifetime. Therefore, each node calibrates itself to the
time of the first token sent by the gateway. If a node misses the first token and wakes
up later, it will ignore the sleep request and remain awake waiting for the next token [3].

In this configuration with active nodes, the battery lifetime obviously is shorter than
before with passive nodes, but 360 days can still be expected (see Fig. ??).
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Figure 4: SoMoS battery consumption with maximized link amount.

3 Conclusion and Outlook
This contribution shows the feasibility of a multidimensional radio field based Soil Mois-
ture Sensing System with a resource-efficient concept for moisture sensing in the field
with increased resolution.

In future work, the results of the SoMoS system can be evaluated in machine-learning
based approaches to increase the efficiency of soil moisture detection.
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Exploiting cars as moving sensor nodes is an enabler for data-driven crowd-

sensing services in Intelligent Transportation Systems (ITSs). However, the

massive increases in cellular data transmissions lead to resource competition

among the di�erent cell users. Since straightforward (periodic) transmis-

sion approaches do not consider the network quality within the data transfer

process, the resource-e�ciency is low as transmissions are performed during

low network quality periods, which require retransmissions and long transmis-

sion durations. In this report, we summarize our work on opportunistic data

transfer that exploits machine learning-based data rate prediction to sched-

ule sensor data transmissions in a context-aware manner. The real-world

experiments show that the proposed approach is able to achieve massive in-

creases in the end-to-end data rate and additionally lowers the average power

consumption of the mobile device.

1 Solution Approach

The general approach of the proposed opportunistic transmission scheme is to exploit

connectivity hotspots, where reliable and resource-e�cient data transfer is expected and
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to avoid transmissions during connectivity valleys. For achieving this behavior, a proba-

bilistic process is applied that determines a transmission probability based on the predicted

data rate. Transmissions are delayed if the expected data rate is low and performed early

if the anticipated throughput is high.

Based on the Signal-to-interference-plus-noise Ratio (SINR)-based Channel-aware Trans-

mission (CAT) scheme, we propose a machine learning-based mechanism called Machine

Learning CAT (ML-CAT) [2]. For predicting the achievable data rate ~S(t), the M5 Re-

gression Tree (M5T) model is applied based on the downlink indicators Reference Signal

Received Power (RSRP), Reference Signal Received Quality (RSRQ), SINR, Channel

Quality Indicator (CQI), the vehicle's velocity and the payload size of the data packet.

The transmission probability p(t) is then computed as

p(t) =

(
~S(t)

Smax

)�
(1)

with respect to a reference maximum Smax and � being an exponent to control the

preference of high metric values.

With Machine Learning Predictive CAT (ML-pCAT) [3], the transmission scheme is

extended by a predictive component. Mobility prediction that exploits navigation system

knowledge is applied to forecast the future location ~P(t + �) for a de�ned prediction

horizon � . Crowdsensing-based connectivity maps are used as a priori information that

allow to derive channel quality estimations based on location information. The predicted

position is used to look up the network quality context ~C(t+�), which is then utilized to

predict the anticipated future data ~S(t + �) rate using M5T. ML-pCAT then computes

the transmission probability with respect to the current and the expected future data rate

as

p(t) =

(
~S(t)

Smax

)��z
(2)

with

z =

 max (j�S(t) � (1� S(t)) � �j ; 1) : �S(t) > 0

(max (j�S(t) � S(t) � �j ; 1))�1 : �S(t) � 0
(3)

and � being an additional parameter for controlling the impact of the prediction for the

overall transmission probabilty.

2 Real World Performance Evaluation

The performance of the proposed transmission scheme is evaluated in the public cellular

network on di�erent tracks (suburban and highway tra�c characteristics). For the data

transfer, an Android-based User Equipment (UE) is used, which executes the ML-CAT
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Figure 1: Results of the real-world evaluation campaign. ML-CAT and ML-pCAT sig-

ni�cantly outperform the straightforward approach as well as the SINR-based

CAT variants.

application and transmits the data of a virtual sensor application to a cloud-based mea-

surement server using the Long Term Evolution (LTE) network. For evaluating the

energy-e�ciency of the proposed approach, we apply the Context-aware Power Con-

sumption Model (CoPoMo) [1], which is extended by a machine learning-based mecha-

nism to derive the applied transmission power based on the measured passive downlink

indicators.

Fig. 1 shows the results for data rate and power consumption. The results of straightfor-

ward periodic data transmission and the SINR-based CAT groundwork are provided for

comparison. While the periodic approach does not consider the network quality at all,

the SINR-based variants of CAT are able to increase the average throughput by apply-

ing a channel-aware transmission scheduling scheme. However, it can be seen that the

proposed approach leads to massive increases in the achieved data rate. The predicted

throughput provides a better metric for the channel quality than just SINR measure-

ments as the integration of the payload size immanently considers the dependency of

transmission duration and channel coherence time. In addition, protocol-related e�ects

such as the slow start of Transmission Control Protocol (TCP) are also contained in the

prediction.

As a side-e�ect, also the power consumption of the mobile UE is reduced signi�cantly.

While one reason for this behavior is the reduced average transmission power due to the

exploitation of connectivity valleys, in addition the actual transmissions are performed
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faster due to the higher data rate. Therefore, the UE is able to return to the low power

IDLE state earlier.

3 Conclusion and Further Research

With ML-CAT, we have demonstrated the potentials of using machine learning-based

data rate prediction as a metric to perform vehicular sensor data transfer in a context-

aware manner. In contrast to existing network quality indicators, hidden interdependen-

cies between the application, the protocols and the channel quality are implicitly consid-

ered. In future work, we will investigate multi-connectivity approaches that exploit the

joint-usage of di�erent communication networks.
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This report sums up our recent research on applying the newly introduced

trip planing method [7] (following Combination)� as well as the "breakdown

minimization principle" [2] (following BMP) and "Wardrop's user Equilibrium"

[3] (following WE)� together with dynamic network options to avoid tra�c

congestions in inner city systems. To this end, we simulated multiple di�erent

situations, which can occur in a network, and tested their impacts on the

global travel time.

1 Introduction

Tra�c volume in inner cities is often at, or even above, the road capacity which results

in a lot of congestion and increased travel times. Since the space is cities is limited,

this problem can not be �xed by a static increase of capacity (e.g. additional lanes or

streets). This leaves two solutions, either the tra�c capacity has to be optimized in such

a way that it's better �tting to the tra�c volumes, or the tra�c volume has to decrease.

While the former can be attempted by dynamic tra�c options as proposed in [7], the

later can hopefully be solved by automated vehicle.
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2 Di�erent Dynamic Situations

To test the Impact of dynamic network options, a simulation of the Düsseldorfer inner

city has been created (see �g. 1(a)). In order to recreate the network in a realistic way,

tra�c �ow data from a video detection system, as well as from �oating car data is taken

(see �g. 1(b) ) and the tra�c volume is designed in accordance with the blue line.

(a) Marked area in the Duesseldorf inner

city. The blue marked streets and inter-

sections are streets used in the simula-

tion. The green marked streets act as

sources and the red marked streets are

sinks. The streets marked with a red x

have a road closed in a later simulation.

The intersections marked with a green cir-

cle have dynamic lanes that change in an

additional simulation based on the time of

the day to adjust to tra�c demand. (Map:

cOpenStreetMap contributors, CC BY-

SA)
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(b) Average cars per hour at di�erent times of the

day for a street with two lanes in Duesseldorf over

two month obtained from real-world detectors. The

Blue line marks the average tra�c �ow at the time.

In this network three di�erent simulations were done:

1. 100 normal days without changes done to the system were simulated.

1. 100 days, where a street was closed at 6.30 o'clock were simulated.

2. 100 days with a dynamic lane were simulated.
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Table 1: Average travel time �� and the standard error se for all four methods and the

three simulations.

Method �� normal se normal �� Dynamic se Dynamic �� Closing se Closing

WE 589.2 1.9 545.1 1.8 568.96 2

BMP 449.7 0.3 448.2 0.3 448.9 0.3

Combination 408.9 0.4 409.2 0.4 410 0.5

The dynamic lane leads into the city from 0-12 o'clock and out of the city from then on

till midnight. Because Düsseldorf is a big commuter city, more people drive into the city

to work than drive out of it. The dynamic lane should thus help by increasing the tra�c

capacity leading into the city in the morning and out of the city in the afternoon without

the need to build a additional lane. The results of the simulations can be seen in table

1. One can see, that neither closing a street nor using a lane as a dynamical lane has a

a signi�cant impact on the BMP and the Combination. The dynamic lane results in no

improvement because the additional tra�c �ow that passes the bottleneck can not be

supported by the following bottlenecks, so that the breakdown is only shifted in stead of

prevented. Surprisingly the simulations with a closed lane resulted in lower average travel

times than the normal simulation for WE. In the normal simulation the closed road is the

shores way for a lot of commuters to get into the city thus a lot of them choose this

road which results in large congestion and longer travel times. Since there are more than

one alternative roads which are only slightly longer, the vehicle distribute them on these

roads, which reduces the average congestion on the roads and thus the travel times.

This shows clearly that the average use of the complete tra�c capacity of cities is not

well used by commuters.

3 Realistic inner city tra�c

The results presented in the previous chapter were optained by applying a modi�ed version

of the break-light-Model [4]. In order to create even more realistic tra�c, currently a

inner city Simulation-Model based on the Pottmeier-Model [6] �which is a accident

free version of the Lee-Model [5]� is being created and tested. This model has two

important improvements to the former model. First it has a �xed maximal deceleration

of D = 2 which means vehicle have to react pro active on the surrounding tra�c to

prevent accidents. Second it introduces driver behaviour. Drivers can behave passive of

aggressive in tra�c, which means they can, if they judge the situation save, drive closer

to the vehicle in front than the minimal safety distance. Thorough this Agents have

to react stronger if the car in front of them dawdle which results in more realistic jam

pattern. This will also help to introduce and di�erentiate automated vehicle from human

driven once.
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4 Automated vehicle

As described in the previous chapter, in the following work, automated vehicle will be

introduced in the model and their impact on the tra�c �ow will be tested. Since auto-

mated vehicle always have to strictly follow the rules, it is to be expected, that they will

�rst reduce tra�c �ow in mixed tra�c. For example, they can't reduce their distance to

the vehicle in front below the safety distance which means than in synchronized �ow, the

average distance between vehicles increases and thus the maximum �ow decreases at the

same average speed than in pure human driven tra�c. In resent theory's [8] it is even

proposed that the gap between automated and human driven vehicles has to be further

increased, which would mean even lower tra�c volumes. Thus a analysis of mixed tra�c

�ow and how to �x the coming problems will be done.
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When it comes to clustering nonconvex shapes, two paradigms are used to
find the most suitable clustering: minimum cut and maximum density. The
most popular algorithms incorporating these paradigms are Spectral Cluster-
ing and DBSCAN. Both paradigms have their pros and cons. While minimum
cut clusterings are sensitive to noise, density-based clusterings have trouble
handling clusters with varying densities. In this paper, we propose SpectACl:
a method combining the advantages of both approaches, while solving the two
mentioned drawbacks. Our method is easy to implement, such as spectral
clustering, and theoretically founded to optimize a proposed density criterion
of clusterings. Through experiments on synthetic and real-world data, we
demonstrate that our approach provides robust and reliable clusterings.

Introduction Despite being one of the core tasks of data mining, and despite having
been around since the 1930s, the question of clustering has not yet been answered in a
manner that doesn’t come with innate disadvantages. The report that you are currently
reading will also not provide such an answer. Several advanced solutions to the clustering
problem have become quite famous, and justly so, for delivering insight in data where
the clusters do not offer themselves up easily. Spectral Clustering provides an answer
to the curse of dimensionality inherent in the clustering task formulation, by reducing
dimensionality through the spectrum of the similarity matrix of the data. DBSCAN is
a density-based clustering algorithm which has won the SIGKDD test of time award in
2014. Both Spectral Clustering and DBSCAN can find non-linearly separable clusters,
which trips up naive clustering approaches; these algorithms deliver good results. In this
paper, we propose a new clustering model which encompasses the strengths of both
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SC DBSCAN DBSCAN SpectACl

Figure 1: Performance of Spectral Clustering, DBSCAN (using minP ts = 25 and 26),
and SpectACl on two concentric circles. Best viewed in color.

Spectral Clustering and DBSCAN; the combination can overcome some of the innate
disadvantages of both individual methods.

For all their strengths, even the most advanced clustering methods nowadays still can
be tripped up by some pathological cases: datasets where the human observer imme-
diately sees what is going on, but which prove to remain tricky for all state-of-the-art
clustering algorithms. One such example is the dataset illustrated in Figure 1: we will
refer to it as the two circles dataset. As the leftmost plot in Figure 1 shows, Spectral
Clustering does not at all uncover the innate structure of the data. It is well-known that
Spectral Clustering is highly sensitive to noise; if two densely connected communities
are additionally connected to each other via a narrow bridge of only a few observations,
spectral clustering runs the risk of reporting these communities plus the bridge as a sin-
gle cluster, whereas two clusters plus a few noise observations (outliers) would be the
desired outcome. The middle plots in Figure 1 shows how DBSCAN (with minpts set
to 25 and 26, respectively) fails to realize that there are two clusters. This is hardly
surprising, since DBSCAN is known to struggle with several clusters of varying density,
and that is exactly what we are dealing with here: since both circles consist of the same
number of observations, the inner circle is substantially more dense than the outer circle.
The rightmost plot in Figure 1 displays the result of the new clustering method that we
introduce in [1], SpectACl (Spectral Averagely-dense Clustering): it accurately delivers
the clustering that represents the underlying phenomena in the dataset.

SpectACl combines the benefits of Spectral Clustering and DBSCAN, while alleviating
some of the innate disadvantages of each individual method. Our method finds clusters
having a large average density, where the appropriate density for each cluster is auto-
matically determined through the spectrum of the weighted adjacency matrix. Hence,
SpectACl does not suffer from sensitivity to the minPts parameter as DBSCAN does,
and unlike DBSCAN it can natively handle several clusters with varying densities. As
in the Spectral Clustering pipeline, the final step of SpectACl is an embedding postpro-
cessing step using k-means. However, unlike Spectral Clustering, we demonstrate the
fundamental soundness of applying k-means to the embedding step in SpectACl: from
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SpectACl’s objective function we derive an upper bound by means of the eigenvector de-
composition; we derive that the optimization of our upper bound is equal to k-means on
the eigenvectors. Our Python implementation, and the data generating and evaluation
script, are publicly available1.

Spectral Averagely-Dense Clustering We propose a cluster definition based on the
average density (i.e., node degree) in the subgraph induced by the cluster. Let W be the
adjacency matrix. Since we are interested in deviations of the nodes’ degree, we employ
the ε-neighborhood graph to determine W . We strive to solve the following problem,
maximizing the average cluster density :

max
Y ∈1m×r

tr(Y >WY (Y >Y )−1) =
∑
s

δ(Y·s ,W ), (1)

where 1m×r denotes the space of binary m× r matrices which represent a partition of the
data points, that is |Yj ·| = 1. The objective function returns the sum of average node
degrees δ(Y·s ,W ) in the subgraph induced by cluster s, i.e.:

δ(Y·s ,W ) =
Y >·s WY·s
‖Y·s‖2

=
1

|Y·s |
∑
j :Yjs=1

Wj ·Y·s . (2)

The Objective (1) is equivalent to minimum cut if the matrix W is normalized. We derive
a new relationship for the solution of Objective (1) and the spectrum of the adjacency
matrix. Thereby, we establish a connection with the application of k-means to the
spectral embedding. As a result, our method encompasses the same steps as Spectral
Clustering, and hence it can be efficiently computed even for large scale data.

The function δ from Eq. (2) is also known as the Rayleigh quotient. The values of
the Rayleigh quotient depend on spectral properties of the applied matrix. A simple
calculation shows that the eigenvectors V·1, . . . , V·d to the d-largest eigenvalues of W
span a space whose points have a minimum density δ(y ,W ) ≥ λd . Thus, the projection
of W onto the subspace spanned by the first eigenvectors reduces the dimensionality of
the space in which we have to search for optimal clusters.

This insight suggests a naive approach, where we approximate W in Objective (1) by
its truncated eigendecomposition. This results in a trace maximization problem which is
equivalent to k-means clustering on the data matrix U = V (r)

(
Λ(r)
)1/2

. Unfortunately,
this approach does not yield acceptable clusterings. The objective of k-means is noncon-
vex, having multiple local solutions. The number of local solutions increases with every
eigenvector which we include in the eigendecomposition fromW , due to the orthogonality
of eigenvectors. As a result, k-means returns clusterings whose objective function value

1https://sfb876.tu-dortmund.de/spectacl
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approximates the global minimum, but which reflect seemingly haphazard groupings of
the data points.

The eigenvectors of W are not only orthogonal, but also real-valued, having positive as
well as negative values. The first eigenvectors have a high value of the density function
δ, but the mixture of signs in its entries makes an interpretation as cluster indicators
difficult. Aiming for an interpretable embedding, we make the following observation.

Observation 1. Let W be a symmetric real-valued matrix, and let v be an eigenvector
to the eigenvalue λ. Let v = v+− v−, with v+, v− ∈ Rm+ be the decomposition of v into
its positive and negative parts. The nonnegative vector u = v+ + v− has a density

δ(u) ≥ |λ|.

We refer to the eigenvectors, whose entries are replaced with their absolute values,
i.e., uj = |vj | for 1 ≤ j ≤ m, as projected eigenvectors. The projected eigenvectors
have locally similar values and an interpretation as fuzzy cluster indicators. Furthermore,
projected eigenvectors are not orthogonal and provide multiple views on possible dense
and fuzzy clusters, which is beneficial in order to robustly identify the clustering structure.
We summarize the resulting method SpectACl (Spectral Averagely-dense Clustering) with
the following steps:

1. compute the adjacency matrix W ;

2. compute the truncated eigendecomposition
W ≈ V (d)Λ(d)V (d)>;

3. compute the projected embedding Ujk = |V (d)jk ||λk |1/2;

4. compute a k-means clustering, finding r clusters on the embedded data U.

The adjacency matrix W is here calculated by the ε-neighborhood graph. However, our
method is in principle applicable to any provided (weighted) adjacency matrix. We recall
that the average density objective is equivalent to the ratio cut objective if we normalize
the matrix W . We refer to this version as normalized SpectACl. In the normalized case,
we compute the adjacency matrix according to the k-nearest neighbor graph, which is
suggested for applications of Spectral Clustering. Through experiments on synthetic
and real-world data, we demonstrate that our approach provides robust and reliable
clusterings.
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Neuroblastoma (NB) is a common childhood cancers most often situated

in the adrenal glands, but can also develop in the neck, chest, abdomen,

or spine. Even if the tumor shows good response to an initial treatment,

di�cult to treat metastases and recurrent tumors are often developed. We

previously identi�ed several potential key genes involved in NB relapse by ana-

lyzing genome sequencing and expression data of paired primary and recurrent

NB. One of these genes is Protein Kinase C Iota (PRKCI) for which we ob-

served an increased expression of in recurrent NB compared to the paired

primary tumors. In order to validate these data in a biological system, we use

CRISPR / Cas9 technology to study the function of PRKCI in the NB cell

line SH-EP. We established CRISPR / Cas9 �mediated overexpression and

knockout of PRKCI and analyzed its role on proliferation, clonal outgrowth,

migratory capacity, invasiveness as well as on drug resistance. Here we show

that expression PRKCI is increased by overexpression of MYCN, a known

oncogene in NB. Further, we were able to show in 3D culture experiments

that PRKCI modulates invasion of tumor cells in the surrounding matrix and

thus may have an important function in relapse and metastasis formation.

Neuroblastoma is the most common extra cranial solid tumor in childhood and accounts

for 7 -10 % of all childhood cancers. As a tumor of the autonomic nervous system, NB

derives from neural crest tissue and thus usually arises in a paraspinal location in the

abdomen or chest [2]. Thanks to improved therapies, NB often initially responds very

well to the treatment. However, at relapse there is only very little to o�er for the patients

and hence relapses correlate with poor prognosis and fatal outcome. Previously, we used

whole-exome sequencing, mRNA expression pro�ling, array CGH and DNA methylation
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analyses to characterize 16 paired samples at diagnosis and relapse from individuals with

NB [4]. We observed that Protein Kinase C Iota (PRKCI) was signi�cantly higher ex-

pressed in recurrent NB compared to the corresponding primary tumors (Figure1a) [5].

Moreover, an elevated PRKCI expression correlates with NB relapse and poor survival

(Figure 1b).

Figure 1: PRKCI expression is increased in relapsing NBs and high PRKCI levels

can be achieved by overexpression of MYCN and correlated with unfavor-

able clinical outcome (R2: Genomics Analysis and Visualization Platform,

AMC Amsterdam). (a) PRKCI expression level in primary and relapse NBs

(data from [5]). (b) Kaplan curve of relapse-free survival for patients with

PRKCI low and high NBs (data from Valentijn et al., PNAS [6]). (c) Over-

expression of MYCN in the MYCN inducible NB cell line SK-N-AS results in

increased PRKCI RNA levels (data from Koppen et al., Int J Cancer [1]). (b)

Overexpression of MYCN in the MYCN inducible NB cell line SH-EP results in

increased PRKCI protein 72h after start of induction.

Data from Bandino et al. show that overexpression of the known oncogene MYCN

results in increased expression of PRKCI suggesting that the PRKCI gene might be a

downstream target of MYCN (Figure 1c)[1]. By use of the MYCN inducible NB cell line
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Figure 2: CRISPR / Cas9 based-approaches to knockout and overexpress PRKCI

in NB cells. (a) Schematic representation of double strand break generation

by Cas9 to create a gene knock out (KO). (b) Schematic representation of

CRISPR SAM [3], which requires incorporation of three activation domains,

VP64, P65 and HSF1, into the nuclease inactive Cas9 complex to activate

transcription. (c) Con�rmation of PRKCI KO and overexpression in SHEP

cells (KO: knockout, wt: wild type, eBB: empty backbone control, 60b: over-

expression) by real time PCR. (d) Western Blot analysis con�rming KO and

overexpression, respectively, of PRKCI in SHEP cells.

SH-EP, we were able to con�rm this observation on RNA (data not shown) and protein

level (Figure 1d).

We further used di�erent CRISPR / Cas9 based-approaches to knockout (KO) or over-

express PRKCI in SH-EP cells. While the KO was based on a double strand break

induced by wild-type Cas9 (Figure 2a)[4], the CRISPR/Cas9 Synergistic Activation Me-

diator (SAM) system was used to overexpress PRKCI (Figure 2b) [3]. Both, knockout

and overexpression were con�rmed by quantitative RT-PCR (Figure 2c) and Western

Blot analysis (Figure 2d).

Our results revealed that PRKCI knock out surprisingly increased proliferation compared

to parental cells (Figure 3a). Moreover, the migratory capacity was reduced for PRKCI

KO cells compared to the parental cells (Figure 3b). Based on this observation, we

further investigated the invasive capacity of the cells in an 3D-spheroid assay. As shown

in Figure 3c, knock out of PRKCI results in a decreased spheroid formation ability and

invasiveness, while overexpression of PRKCI increases the invasiveness of SH-EP cells.

Although PRKCI is found to be elevated in aggressive and recurrent NB tumors, both

CRISPR-mediated PRKCI knockout or overexpression resulted in formation of viable

subclones in SH-EP cells. While PRKCI knockout reduced migratory capacity, it surpris-

ingly increased proliferation. Further investigation of cell-cell adhesion and invasiveness

revealed that knockout of the prkci gene impaired cell aggregation and reduced the

invasiveness of SH-EP cells in our 3D model. Moreover, the invasiveness of PRKCI

overexpressing SH-EP cells is increased compared to the empty backbone control.

Thus, PRKCI plays an important role in cellular adhesion and the processes regulating

SH-EP cell spheroid growth. These �ndings may also apply to NB in general, but in vivo

experiments will be necessary to clarify the role of PRKCI in modulating NB aggressive-

ness.
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Figure 3: Proliferation, migratory capacity and invasiveness of SH-EP cells with up-

or downregulated PRKCI expression in comparison to the parental cells

and empty backbone control (wt, eBB). (a) 10000 cells/well were incubated

for 48h and metabolic activity was determined. (b) Cells at con�uency were

scratched and migration into the scratch was documented at 0h and 24h (eval-

uation by Tscratch software; Gebäck and Schulz, ETH Zürich) (c) 2000 cells

were seeded in plates with cell repellent surface and imaged after 48h. After

complete spheroid formation, spheroids were embedded in Matrigel and images

were taken four days later. Representative pictures are shown.
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Continuing from the development of an index data structure for metage-
nomic screening, which relies on the decomposition of the reference sequence
into segments of variable length, we analyzed the distribution of segment
lengths to better predict index sizes. We were able to identify a characteris-
tic distribution of segment length and find a recursive formula to model this
distribution.

Introduction and Problem Definition

A core question in metagenomics is the classification of potentially unknown organisms
in a biological sample. This can be achieved by DNA sequencing and a genomic reference
database.

Starting from the biological sample, for example a scoop of water taken from a pond,
a sequencing experiment is performed. This sample contains an unknown number of
individuals of different, mostly unknown, species. Since for most species no reference
genome is available, protein databases are used to classify the species present in the
sample. These databases contain proteins that are either associated with a specific
biological function, for example photosynthesis, or with a specific taxonomic unit. If a
read from the sample maps to a protein in the database, this provides evidence that a
species that is associated with the protein was present in the sample.

In the context of computer science, metagenomic screening is a text search problem.
Typically these analyses are performed using q-grams, i.e. overlapping substrings of length
q of the texts. For a small document R (a read), the most similar protein sequences
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RPi
|R| = 30, |Pi | = 10000

J ∗(R, Pi) = |R∩Pi |
|R∪Pi | ≤

30
10 000

Figure 1: If the size of the read R and the protein Pi differ, the maximal possible resem-
blance is limited.

have to be found in a large reference database P = {Pi }mi=1. To avoid the pairwise
comparison of R with all elements of P , the proteins can be index using MinHashing to
identify similar pairs in linear time.

However, using MinHashing to screen for similar pairs has the weakness that the sizes of
a read R and Pi may vary greatly. Typical databases, like the one used by TaxMapper
[1], contain proteins between 10 and 30 000 amino acids (AAs) in length, while one
Second Generation Sequencing (SGS) read contains DNA equivalent to about 30 AAs.
Consequently, using MinHashing to estimate the Jaccard Similarity of R and Pi might
result in low resemblance even if R is perfectly contained in Pi . This is illustrated in
Figure 1.

There are several options to solve this problem. For example Broder [2] proposed to
use modulo operations to estimate containment. More recently, Koslicki et al. [3] com-
bined MinHashing with a bloom filter for this purpose. Another established approach is
to mitigate the size differences in the first place, by breaking the reference sequences
into smaller segments. For example the read mapper VATRAM [4] splits the reference
sequence into overlapping windows (of static size).

Winnowed MinHashing

To mitigate the problems introduced by breaking the references into static sized windows,
we developed a variable length indexing approach, based on the winnowing technique [6].
By sliding a window of size w through all hash values the q-gram sequence of Pi and
observing the smallest hash value in the window, we obtain segments of the reference
which share the same minimizer. This is illustrated in Figure 2.

Consequently, the reference sequence can be partitioned into segments of 1 to w window
starting positions (corresponding to between w and 2w − 1 q-grams). Due to this
construction, there is no length l ≤ w subsequence of T , that has a minimizer that is
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Figure 2: Winnowed segmentation of a reference sequence. Vertical gray bars denote
hash values of q-grams. The dark blue hashes were selected as minimizer using
a sliding window of size w = 6. The horizontal gray bars denote q-grams
dominated by the minimizers. The horizontal purple bars show segments of
window start positions that share the same minimizer.

not also the minimizer of a segment. This reduces the size difference problem stated
above to a factor of ≤ |R|

2w
. However, the exact factor depends on the length of the

segments.

Segment Length Distribution

To judge how well the technique described above mitigates the size difference problem,
the distribution of segment lengths needs to be known. We empirically computed the
length profiles for the protein database used by TaxMapper, as well as on random DNA
sequences. Both did show the characteristic shape illustrated by the gray bars in Figure 3.
From a local maximum at position 1, longer segments are continually more unlikely up to
a length of 50, which contains the majority of segments. The peak at position 50 corre-
sponds with the window length w and is caused by a small minimum entering the window
and dominating it for the whole window length until it is pushed out again. Segment
lengths larger than w are only possible if the same small minimizer is repeated. This is
unlikely for random sequences, but occurs in genomes, due to repetitive sequences.

One of our bachelor students approximated this shape using an exponential function
(see [5]). Additionally, we were able to devise a recursive formula to describe the shape
that depends on the size of the hash universe m, q-gram size, window size w , and a cutoff
parameter k . The result of the prediction for several hash universe sizes is illustrated in
Figure 3. Even for small hash universes (q ≈ 500), the predicted distribution closely
resembles the empirical distributions.

However, computing the prediction for larger hash universes is very resource intensive
and still offers much room for optimization.
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Figure 3: Distribution of segment lengths with q = 31 and w = 50. Counts from a
simulated DNA sequence with 108 bases are shown as gray bars. The predicted
distribution for varying sizes of hash universes m are show as yellow and red dots
(lines were added to better illustrate the difference between different values of
m). In the top left corner, are detailed view on the low segment lengths is
shown.
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This report gives a quick explanation on how to calculate energy spectra
from data measured by Cherenkov telescopes. I use publicly available data
observed by the H.E.S.S, Veritas, MAGIC, and FACT telescopes to fit the
spectral energy distribution of the Crab nebula. I use Markov Chain Monte
Carlo methods (MCMC) to optimize the likelihoods and quantify the statis-
tical errors.

1 IACT Observations

Imaging atmospheric Cherenkov telescopes measure very high energy gamma-rays from
distant sources in the universe. The four prominent, and currently operating, telescopes
are H.E.S.S, Veritas, MAGIC, and FACT. In a joint effort started in 2016, each collabo-
ration has agreed to publish parts of their data in a common format. [3] The published
data includes matrices and tables to describe the instrument response functions as well as
measurements of gamma-rays recorded from the Crab Nebula. The actual measurements
are encoded as a lists of likely gamma-ray candidates, their estimated energy, and point
of origin on the sky. The gamma-ray candidates are divided into signal and background
regions using the reflected regions method. [1, 2]



136

2 Statistical Modeling for SED analysis

Spectral energy distributions (SEDs) are of particular interest to many astronomers.
SEDs show the energy resolved output of a source over the observed energy range.
These curves can often be used to validate or invalidate models of cosmic ray acceleration
mechanisms.

Most established analysis of IACT data follow the arguments by Li and Ma [6] to build a
statistical model of the measurement process. [5] The likelihood for the expected signal
counts per energy bin can be expressed using using a joint poisson for the signal and
background region.

L ∼
∏
i

Poisson(µs,i + αµb,i | non,i) · Poisson(µb,i | noff ,i)

Here α us the ratio between exposures in the signal and background regions, µs and
µb the expected counts in the signal and background region respectively, and the mea-
sured counts non and noff . The µs are calculated by forward folding a spectral model
through the detector response function. Essentially reducing the number of free param-
eters. Often no such instrument response can be supplied for the background counts
as it would require expensive simulations of hadronic interactions in the atmosphere for
different observation conditions. This leaves one free parameter per energy bin which is
undesirable for minimization and is circumvented by building the profile likelihood. The
µb are disregarded by building the profile likelihood and expressing the µb as a function
of the other parameters by setting

∂L
∂µb

= 0. (1)

The resulting profile likelihood has only as many parameters left as the assumed spectral
model. For the Crab Nebula In this analysis I assume a log-parabola spectral form

dφ

dE
= φ0

(
E

E0

)−Γ−β log10 ( EE0 ),
(2)

since it is a popular choice to approximate the energy spectrum of the Crab Nebula. To
sample the posterior prior distributions for the parameters have to be defined. For this
analysis I chose the following priors for all datasets

Φ0 ∼ NT (µ = 4, σ = 1)
α ∼ NT (µ = 2.5, σ = 1)
β ∼ NT (µ = 4, σ = 1).
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where NT is a normal distribution which is truncated at zero. The high-level statistical
model can easily be expressed using probabilistic programming frameworks like PyMC [8].
The forward fold step has be performed using numerical integration, since there is no
analytically closed form for the integral of 2 The model could easily be sampled using
stochastic samples like Metropolis. However the number of samples needed to converge
is excessively large. I use Hamilton Monte Carlo samplers instead. The difficulty lies in
expressing the forward fold step while keeping information about the gradient. I imple-
mented the forward fold step as a computational graph within the Theano framework [9]
which allows for gradient based sampling methods like NUTS [4] in conjunction with
PyMC.

3 Results and Future Work

Figure 1 shows the result of 10 000 samples gathered from the profile likelihood for the
MAGIC and the FACT data. The results are compatible with the ones gained using a
classical approach to likelihood minimization and error estimation in [7] (to be published in
2019). The profile likelihood, with only 3 free parameters, could have easily been sampled
using non-hamilton Monte Carlo approaches. The next step however is to sample the
full, non profile, likelihood including the nuisance parameter µb for each energy bin. This
will increase the number of parameters to approximately 50. At the moment the integral
of the spectral model (2) is calculated in a numerical way. An analytical solution, or even
approximation, will reduce runtime greatly.
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Figure 1: These distributions plots show the samples in the Monte Carlo chain. The
blue and red lines indicate the values calculated in [7] using the same data for
FACT and MAGIC respectively. The sampled distributions apparently matche
the maximum likelihood values from [7] closely.
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Obtaining the probability density function (pdf) of a physical quantity is
one frequent objective in experimental physics. In Cherenkov astronomy,
one such quantity is the energy of cosmic gamma radiation, which is used
to reason about the characteristics of celestial objects. If, however, the
relevant quantity cannot be assessed experimentally, it has to be reconstructed
from correlated quantities which are measured instead. Deconvolution is
the reconstruction of the pdf of an in-accessible quantity from secondary,
measured quantities. In the last year, we developed a novel unified view on
deconvolution algorithms, rephrasing them in the language of data science.
Based on our unified formulation, we found a novel stopping condition which
guarantees fast convergence.

1 Introduction

An accurate and reliable estimate of the sought-after probability density function, e.g.
the energy spectrum of an astrophysical particle source, is crucial to understand the un-
derlying physical principles of observed phenomena. In cases where the density of the
relevant quantity cannot be accessed experimentally, deconvolution (also known as “un-
folding”) is applied to estimate this density from correlated quantities that are measured,
instead. This estimation is usually aggravated by several deficiencies of the measurement
apparatus [1]. It’s name stems from the measured pdf g : X ! R being modeled as a con-
volution of the relevant pdf f : Y ! R with a detector response function R : X �Y ! R.
To obtain f , this model of g has to be inverted—it has to be “de-convolved”.

g(x) =

∫
Y

R(x j y) � f (y) dy (1)
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2 Classical Algorithms

Classical deconvolution algorithms proposed in experimental physics solve a discrete vari-
ant g = Rf of the problem statement from Eq. 1. Estimates f̂ obtained this way tend
to exhibit a large variance, due to the usually poor condition of the matrix R. We identi-
fied the discretization of g to be a clustering problem. Supervision of the clustering can
improve the critical matrix condition and lead to more stable results [2].

Our framework [4] unifies the most well-known deconvolution algorithms RUN [1], IBU
[5], and, as a work in progress, an SVD-based approach [6]. Thus, it discloses similari-
ties and differences between algorithms, guiding practicioners in algorithm selection and
paving the way for new combinations of algorithmic aspects. Even though the presented
algorithms are widely adopted in the physics community, their performances have not
been compared with each other previously. Our work closes this gap but also reveals
that all of these algorithms can produce similarly accurate estimates in the domain of
Cherenkov astronomy, if their meta-parameters are tuned well [4].

3 Deconvolution through Supervised Learning

The Dortmund Spectrum Estimation Algorithm (DSEA) [7] takes another path than the
classical algorithms by re-phrasing deconvolution as a supervised learning task. Here, the
estimate is aggregated from classifier predictions on the relevant quantity of individual
examples. It is then improved by iterating the reconstruction, updating the density of the
training set—which is used to obtain the classifier—with the latest estimate.

DSEA underlies the intriguing idea that P(Y � i) can be recovered from a classifier’s
confidence. In addition, a uniform prior is imposed on x , i.e. P̂(X = x) = 1

N
. The

outcome is the DSEA estimator, which estimates f from confidence values.

f̂ i =
1

N

N∑
n=1

cM(i j xn) (2)

The advantages of DSEA are manifold: Un-discretized inputs X are supported, so that
the clustering required for classical algorithms can be circumvented. Moreover, aggre-
gating contributions (confidences) of individual examples will enable us to study the
deconvolution result as a function of other variables, e.g. zenith angle and time, in fu-
ture work. Last but not least, the algorithm paves the way for a tightened collaboration
between physicists and machine learning experts. However, the original DSEA has been
shown to diverge from the optimal solution after having found a suitable estimate [4].
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4 Adaptive Steps for Fast Convergence

To cope with the divergence of DSEA and to reduce the number of iterations needed,
we proposed the extended algorithm DSEA+ [4], which embraces three aspects:

� Instead of weighting each example with the estimated probability of its discrete
state, each example is weighted with the ratio between this estimated probability
and the corresponding probability in the un-weighted training set. This modification
stops the divergence almost entirely.

� The steps p(k) = f̂
(k)
� f̂

(k�1)
taken by DSEA are scaled with some �(k) � 0, which

leads to the update rule f̂
(k)+

= f̂
(k�1)

+�(k) � p(k). At first, we investigated some
simple strategies to choose �(k), namely constant and decaying step sizes [3]. Even
though these strategies enforce convergence, they are hard to tune and they slow
down the algorithm drastically.

� Therefore, a near-optimal step size �
(k)
RUN is chosen, based on the regularized ob-

jective function `r from RUN. Unlike in RUN, `r is minimized only in the search
direction that is determined by DSEA. We observe that this adaptive strategy con-
verges as soon as the likelihood can not be improved in the given search direction.
Moreover, the algorithm makes use of step sizes greater than one, thus approaching
the optimal solution faster than the original DSEA.

�
(k)
RUN = argmin

� � 0
`r
(
f̂
(k�1)

+ � � p(k)
)

(3)

5 Future Work

We will employ DSEA+ in physical analyses of real-world telescope observations, also
leveraging that this algorithm is the first to enable time-dependent (or angle-dependent)
deconvolution. Moreover, we seek to re-phrase deconvolution once again—this time
not in terms of classification but regression. The currently taken classification approach
has been motivated by the availability of confidence values expressing the uncertainty
of predictions. Lifting DSEA+ to regression will in turn require an accurate assessment
of uncertainty in regression predictions. If successfull, this new approach will produce
continuous estimates of the sought-after probability density, which are more versatile
than the discrete estimates produced by the existing classification-based approach.

Concerning the other plans of the C3 project—simulation, distributed learning, and tai-
lored deep learning—deconvolution is always a key aspect: In almost any analysis of
real-world data, deconvolution is the final step. It summarizes to the practicioner what
the telescope has seen, bridging from data analysis to physical interpretation. Therefore,
we must evaluate our advances in other areas also in terms of deconvolution accuracy.
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Our deconvolution software is starting to be adopted by physicists. It is available as
an open source package for Julia and Python, with additional information hosted at
https://sfb876.tu-dortmund.de/deconvolution.
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Reliable and accurate reconstruction methods are vital to the success of
high-energy physics experiments such as IceCube. Machine learning based
techniques, in particular deep neural networks, can provide a viable alternative
to maximum-likelihood methods. Most common neural network architectures
originate from non-physical domains such as image recognition. While these
methods can enhance the reconstruction performance in IceCube, there is
much potential for tailored techniques. In the typical physics use-case, many
symmetries, invariances and prior knowledge exist in the data, which are
yet to be exploited by current network architectures. Novel and specialized
deep learning based reconstruction techniques are desired which can leverage
the physics potential of experiments like IceCube. A new approach using
generative neural networks for the reconstruction of cascade-like events in
IceCube is presented.

1 Event Reconstruction in IceCube

A key challenge to the success of experiments such as IceCube is the reliable and accurate
reconstruction of events. In IceCube, further challenges arise as the detector is situated
at the geographic South Pole where resources are limited. This results in a dilemma
since performance is often paired with computational complexity. But even for offline
reconstructions, the computational complexity of the most advanced maximum-likelihood
methods can render these intractable and hence limit the physics potential.
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Figure 1: On the left, the angular resolution for cascade events is shown for the current
state-of-the-art reconstruction method (Monopod [3]) and for the newly de-
veloped method based on deep neural networks (DNN reco). On the right, the
muon energy resolution is shown for the current standard methods [3, 4] and
the deep learning based method.

Machine learning based methods, in particular deep neural networks, might help to over-
come these obstacles. The use of convolutional neural networks (CNNs) [1] can greatly
enhance the reconstruction performance in IceCube as shown in [2]. Despite their suc-
cess, convolutional architectures have considerable limitations. They assume translational
invariance and the data to be aligned on a regular grid. These assumptions are only ap-
proximately fulfilled in IceCube. Most importantly though, prior knowledge cannot easily
be exploited by the network architecture as it could, for instance, in maximum-likelihood
methods. Novel deep learning based methods specifically tailored to the needs in high-
energy physics experiments such as IceCube are needed.

2 Convolutional and Generative Neural Networks

The previously developed reconstruction method based on CNNs [2] was extended to
incorporate classification and regression tasks for all event topologies in IceCube. In
addition, extensive tests were performed to validate the performance and to quantify the
effect of systematic uncertainties in the Monte Carlo simulation. As of writing this, the
CNN approach provides the best muon energy and cascade directional reconstruction in
IceCube as illustrated in fig. 1. It can improve the resolution by up to 50% while reducing
the runtime by two to three orders of magnitude. The developed method has already
been used in a search for neutrino emission from the Galactic Plane where it improved
the sensitivity by almost a factor of 2. Details will be provided in a future publication.

First steps have been taken to incorporate prior knowledge into the network architecture
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Figure 2: The parameter space is scanned to obtain the best fit value for the cascade
direction. In contrast to the simulation (right), the scan over the generator
output (left) is less noisy and provides smooth gradients for a minimization.

as it is done for maximum-likelihood-methods [5]. For a maximum-likelihood-method,
one generally compares measured data to some expectation value. This can for instance
be the number of measured photons at a specific photomultiplier. The expected number
of photons is then obtained from Monte Carlo simulations. This process, while being the
most accurate, is extremely slow and not always tractable. Reconstruction of a single
event may take hours to days in an approach like this.

Instead of performing computing intensive simulations, a generative network can be used
to approximate these. A neural network, the generator, is trained to predict the expected
waveforms at each DOM for a given cascade hypothesis. Once the generator network is
trained, it can then be used in reverse mode. The waveforms for a given event can now
be compared to the generated waveforms for a given hypothesis. A distance measure
is computed between the generated and true waveforms. This distance (negative log
likelihood, χ2, earth mover distance, etc.) is a function of the cascade hypothesis and
can be minimized analogous to a maximum-likelihood approach.

An example for an event with two free parameters, the zenith and azimuth direction of
the cascade, is shown in fig. 2. The distance measure, in this case the earth mover
distance, is calculated for every (zenith, azimuth) pair in order to obtain a scan of the
landscape. The landscape of the generator network is much better behaved and provides
smooth gradients, which is not the case for the simulated events. For this particular
event, the reconstruction via the generator network provides a reconstructed direction
which is only 0.29◦ away from the true cascade direction as opposed to the simulation
which only achieves a resolution of 2◦. The simulation required many CPU and GPU
hours, while the generator network (once trained) only required O(s). In contrast to the
simulation, the generator network is fully differentiable, hence, gradient descent can be
used to maximize the likelihood. In this case, the per event reconstruction time reduces
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to O(100ms).

In this approach, translational invariance in the cascade hypothesis can be exploited rather
than the approximative translational invariance in measured data which is affected by the
detector acceptance and ice inhomogeneities. Moreover, irregularities in the detector
grid are now naturally accounted for and prior knowledge such as how the waveforms are
parameterized can easily be included in the generator architecture to reduce the number
of free parameters. Challenges remain once the dimensionality is increased to the full
cascade hypothesis consisting of the vertex position and time, the initial cascade direction
and energy. Nevertheless, the results so far are very promising.

3 Conclusion and Outlook

Standard neural network architectures such as CNNs are well suited for the application
in IceCube and can further improve the event reconstruction accuracy, while greatly re-
ducing the per event runtime. Despite their success, these methods have considerable
limitations. In the physics use-case, extensive knowledge typically exists about the data
generation process, constraints, and physics laws the data obeys. Yet, current deep learn-
ing architectures can not fully exploit this information. Novel and tailored deep learning
based reconstruction techniques are therefore desired which can combine the strengths of
existing architectures and maximum-likelihood methods. The presented approach using
generative neural networks provides a promising step towards these goals.
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In this work a potential astrophysical flux of tau neutrinos is investigated.
The measurement of tau neutrinos would be a clear astrophysical signal since
no tau neutrino flux from the atmosphere is expected. Tau neutrinos can be
detected with the IceCube detector by their unique double-cascade signature
at high-energies. But the signal is buried in a large amount of background
events with a signal-to-background ratio of about O(1 : 1010) at trigger
level. To remove these background events methods from the field of machine
learning are applied. A detection of tau neutrinos would require a very pure
sample to achieve a high significance and a very efficient analysis to obtain
sufficient statistics in limited time of measurement. This report presents the
results achieved in the year 2018.

1 Introduction

A physical motivation, a detailed introduction to the IceCube detector and a description
of all event signatures relevant for this analysis can be found in [7].

To analyse the astrophysical flux of tau neutrinos a sample with a high expected fraction
of tau neutrinos has to be obtained at first. This can be achieved by a two-step event
selection. The first step is the selection of events with a double pulse signature in at least
one of IceCubes Digital Optical Modules (DOMs), which is described in [7] and [6]. The
second step is the selection of cascade-like events over a background of track-like events
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originating from charged current muon neutrino interactions and atmospheric muons.
The process of feature selection for this classification task is illustrated in [6].

2 Cascade Selection

The starting point for the cascade selection are all events that deposit at least 2000
photoelectrons, corresponding to deposited energies of roughly 10TeV, and that show a
double pulse waveform in at least one DOM throughout the event. These requirements
reduce backgrounds from single cascades (charged current electron neutrino events and
all flavor neutral current events) to a subdominant level with respect to the sought after
signal, charged current tau neutrinos. The signal is still dominated by track-like back-
grounds, that can also produce double pulses, but fortunately show different topologies
in the detector.

After applying the process described in [6] to select suitable features for this classification
task a Random Forest [3] is trained to solve this task. The signal component is splitted up
before training in contained and uncontained event and only those where the tau neutrino
interaction vertex and the tau decay vertex are both within the detector boundaries are
considered as signal in the training. Fig. 1 shows the result of the classification in form
of the expected event rate for each component as a function of the Random Forest
classification score.
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Figure 1: Expected event rates for different simulated components as a function of
the Random Forest classification score.

The classification score cut to obtain the final sample is optimized via the model rejection
factor [5],
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MRF =
1

ns

∞∑
nobs=0

µ90(nobs, nb)
nnobsb
nobs!

exp(−nb), (1)

where µ90(n, nb) is the 90% poisson upper limit for n observed events with a background
expectation of nb and zero expected signal. This optimisation yields a classification score
cut of 0.62 and a MRF of ∼1.6 for an astrophysical flux assumption [1] of

Φν(E) = 0.90 · 10−18 ·
(

E

100TeV

)−2.13
1

GeV cm2 sr s
. (2)

The model rejection factor is directly connected to the average upper limit that can be
set on the flux assumption it is calculated for

Φ̄ν,90(E) = Φν(E) ·MRF = Φν(E) ·
µ̄90(nobs, nb)

ns
. (3)

This results in a signal expectation of roughly two events in 7 years of livetime and a
background expectation of slightly less than one event. This is an increase in signal rate
compared to a previous double pulse analysis conducted by the IceCube collaboration [2]
by a factor of 2.14, while keeping a similar background rate (when comparing event rates
for similar astrophysical flux assumptions).

3 Analysis Sensitivity

The tau neutrino flux normalisation will be measured with a Poisson likelihood fit, where
the likelihood is given by

L(n|λ) =
N∏
i=0

PPB,i+λPS,i (ni), (4)

with the number of measured events n as well as the binned PDFs for signal and back-
ground PS and PB. Since the expected amount of total events is very low, the back-
ground is kept fixed and only the signal normalisation is varied with a fixed spectral index.
To estimate the sensitivity of the analysis pseudo-experiments assuming no true signal
are performed. The sensitivity is defined as the average upper limit of these pseudo-
experiments. The confidence intervals presented are constructed as unified confidence
intervals with the Feldman-Cousins method [4]. Fig. 2 shows the distribution of 90%
upper limits for 1000 pseudo-experiments assuming the astrophysical flux described in
eq. 2. The resulting sensitivty is ∼ 1.1× 10−18/(GeV cm2 sr s).
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Figure 2: Distribution of 90% upper limits on the tau neutrino flux normalisation for
1000 background only pseudo-experiments.
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The FACT-Tools, an extension of the streams frame-work to analyze the
data of the First G-APD Cherenkov Telescope (FACT), saw major updates
in 2017 and 2018. Since the last release version v0.17.2, released on
5.12.2016, many new features, code cleanups, and bug fixes were imple-
mented. Between v0.17.2 and the current version v1.1.2, released on
17.12.2018, 992 commits by 8 contributors were merged into master. The
most important changes include a full system of coordinate transforms from
ICRS via horizontal to the FACT camera frame, a new reader for fits files, a
new inputstream to read runwise simulation metadata, a single xml steering
file for both simulations and observations, a service that provides the correct
gain for each run automatically, a service that finds the correct drs file for
each run, and a service that finds bright stars in the field of view.

1 Introduction

The FACT-Tools are an extension to the streams framework [3], developed to analyze the
observed as well as simulated data of the First G-APD Cherenkov Telescope (FACT) [1,
2]. FACT is an Imaging Atmospheric Cherenkov Telescope (IACT), observing since
October 2011 at the Observatorio del Roque de los Muchachos on the Canary Island of
La Palma, Spain. Every night, given good weather conditions, FACT takes between 400
GB and 1 TB of raw data.

To reconstruct the particle type, energy and origin of the recorded air showers, several
steps have to be performed.

mailto:maximilian.noethe@tu-dortmund.de
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1. Calibration of the raw time series in each pixel

2. Extracting the number of photons and their mean arrival time in each pixel

3. Removal of pixel not likely to contain Cherenkov signal

4. Parameterization of the resulting images

5. Reconstruction of energy, particle type and origin from the image parameters

Steps 1 trough 4 are performed using FACT-Tools, resulting in one fits file per observation
run, corresponding to one or five minutes of data taking. A python-based machine-
learning reconstruction performs step 5.

Since version v0.17.2 [5], 992 commits were merged into the master branch:

Table 1: Commits into master since v0.17.2

Commits Author Institute
514 Maximilian Nöthe Exp. Physik 5b, TU Dortmund
196 Jens Buß Exp. Physik 5b, TU Dortmund
126 Kai Brügge Exp. Physik 5b, TU Dortmund
85 Michael Bulinski Exp. Physik 5b, TU Dortmund
28 Sebastian A. Mueller IPP, ETH Zürich
23 Dominik Neise IPP, ETH Zürich
19 Hendrik Hildebrandt Exp. Physik 5b, TU Dortmund
1 Christian Bockermann LS8 Informatik, TU Dortmund

2 New Features

In this section, the most important new features in FACT-Tools v1.1.2 [4] compared to
v0.17.2 are described.

Coordinate Frames (v1.0.0) A system of coordinate transforms was implemented.
Allowing transformations between equatorial, horizontal and FACT camera coordinates.
The transformations from equatorial to horizontal and vice versa implement first order
precession corrections which makes them accurate to a level below 30 arcseconds, which
is approximately 10 times smaller than a FACT camera pixel. An example on how to use
this coordinate transforms can be found in Listing 1.
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Listing 1: Get the current position of the Crab Nebula in camera coordinates for a given
telescope pointing direction.

ZonedDateTime time = ZonedDateTime.now();
EarthLocation location = EarthLocation.FACT;
double focalLength = 4889.0;
HorizontalCoordinate pt = HorizontalCoordinate.fromDegrees(5.0, 0.0);

EquatorialCoordinate eq = EquatorialCoordinate.fromDegrees(83.63, 22.01);
HorizontalCoordinate hz = eq.toHorizontal(time, location);
CameraCoordinate camera = hz.toCamera(pt, focalLength);

New FITS reader (v1.0.0) The new hdureader package provides a much improved
reading of fits files, including FACT’s custom compressed zfits data files. With the fixes
included in v1.1.2, every FITS file produced by the FACT should be read correctly by
FACT-Tools.

CeresStream (v1.0.0) A new stream was implemented to read important runwise
simulation metadata from a second inputfile per simulation run.

GainService (v1.0.0) A new service was implemented, making it easy to get the
correct gain for a data run. Before, FACT-Tools assumed the gain was constant over
time and used a static resource file for game calibration. This assumption turned out to
be false and was fixed by providing a database file with measured gains for each night.

Merged files for simulations and observations (v1.0.0) There are several differences
between simulated and observed FACT data, that require different steps to be performed,
although the major part of the analysis is exactly the same. Before FACT-Tools v1.0.0,
every analysis step had a steering file each for observations and simulations, resulting in
many duplications and making it hard to spot differences and to maintain. For v1.0.0,
these xmls got merged into a single xml, branching where necessary.

Adding measured noise to simulated air showers (v1.1.0) FACT’s simulation chain
implements on overly simplistic model of the electronics noise and the night sky back-
ground photons. To overcome this, a processor to superimpose measured noise on
simulated air shower signal was developed, resulting in labeled dataset with more realistic
noise behaviour.
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DrsFileService (v1.1.0) The calibration of FACT’s raw data requires an inputfile
with calibration constants that should be as close in time to the data file as possible. For
batch processing, this file is selected upfront, this is however not possible for realtime
analysis, where the calibration coefficients need to be updated several times per night.
For this, a new service was implemented, yielding the correct calibration constants for
the current run.

StarService, (v1.1.0) Bright stars in the field of view induce additional noise in the
camera. To ignore pixels that survive the cleaning process only due to this higher noise
level, a new service was implemented that yields bright stars from the Yale Bright Stars
catalogue currently in the field of view.

3 Bug Fixes and Smaller Improvements

In versions v1.1.2, a bug in the hdureader that prevented correct reading of zfits file
having ZTILELEN > 1, was fixed. Before, only the first event in each tile was read and
then repeated.

Before v1.0.2, FACT-Tools would return an exit code of 0, even if an exception was
thrown.

Before v1.1.0 the Timespread processor would fail if given an empty pixelset.

v1.0.0 also added the possibility to write header keywords into fits files.

All output keys of the standard analysis are now in snake_case.
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A large number of extragalactic sources are active galactic nuclei. These
can be divided into several subclasses depending on the observed character-
istics. A central feature for the classification is the viewing angle of the
sources’ jet relative to our line of sight.

One aim of this analysis is to study the jet kinematics of candidates of
TeV radio galaxies using VLBI images. Determined jet speeds are used to
calculate constraints on the viewing angle of the candidates. The results
help to define the characteristics of the source population and to learn about
acceleration mechanisms of active galactic nuclei in general.

New radio interferometers like LOFAR and SKA observe large parts of
the sky on short timescales. For the study of the obtained detailed images
improved analysis methods have to be developed since existing ones cannot
handle a large amount of data. As a first step towards an automatized
analysis, this work is developing a pipeline for jet kinematic analysis.

Radio Interferometry

Radio interferometry enables high-resolution imaging of extragalactic sources on milliarc-
second resolution [5]. Thus, it provides information about their innermost structures,
their source classes, and their emission mechanisms. Radio interferometric data can be
used to determine the viewing angle of active galactic nuclei. The viewing angle is an
important feature for the classification of such sources. Therefore, it is of particular
interest.
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New radio interferometers like the Low-Frequency Array (LOFRA) [6] and the upcoming
Square Kilometer Array (SKA) [1] obtain detailed images of large parts of the radio sky.
These telescopes have an improved sensitivity compared to previous experiments, which
is achieved by a large number of antennas. The resulting increase in data volumes of
100 PB/day in the case of the SKA is a big challenge for data science. Existing analysis
software has to be adapted to be able to perform calibration and imaging of the low-level
data in reasonable time. It is therefore essential to develop an automated analysis chain.
With the help of the high-level data, it is possible to resolve the extended jet structures
of active galactic nuclei and analyze their jet characteristics.

Study of Jet Characteristics of TeV Radio Galaxies

In this work, high-level radio images are analyzed with the aim to estimate the viewing
angle of TeV radio galaxy candidates. To gather information about the evolution of
radio-loud sources and their jets, the Monitoring Of Jets in Active galactic nuclei with
VLBA Experiments (MOJAVE) program measures these sources at 15 GHz on a regular
basis [2]. The obtained images are well suited to compute the velocity of the jets and
to determine constraints on the viewing angle of the sources. For the automatization of
the calculations, a pipeline for jet kinematic analysis was developed in python.

Pipeline for Jet Kinematic Analysis

The first task of the analysis is to remove remaining PSF structures from the radio
images. Therefore, source models are built iteratively to obtain clean images. These
are utilized for the model fitting of the jets. Two-dimensional Gaussian components are
used to get a simplified representation of the sources’ jet morphologies. The parameters
of the Gaussians are adjusted with a chi-square fit. Both tasks are performed using
DIFMAP [4].

Figure 1 illustrates the dynamic evolution of the TeV radio galaxy 3C 264. Clean images
overlaid with Gaussian components are shown for different observation epochs. The
spatial space between the epochs corresponds to the period between the observations.
Identified components, which are used for jet kinematic calculations, are shown in color. A
linear regression is performed to determine their velocities. Another intrinsic jet parameter
is the jet to counter jet flux ratio, as it is related to the Doppler factor of the source.
Together with the velocities of the components, it can be used to constrain the viewing
angle. Figure 2 displays two areas. The blue one is related to the components’ velocity.
The flux ratio between jet to counter jet limits the orange one. The overlapping area
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indicates the allowed parameter space. Thereby, the upper intersection point marks the
upper limit for the viewing angle.
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Figure 1: Dynamic evolution of the TeV radio galaxy 3C 264. Clean images are overlaid
with model components created in DIFMAP. Identified components are dis-
played in color. Gray components are not used for calculations. Contours of
the clean images begin at 4σ and increase logarithmically. The PSF of the
individual epochs is represented by black dashed ellipses.
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All required calculations are combined in one pipeline making manual intervention hardly
necessary.

Outlook

As mentioned in the introduction, new radio interferometers like LOFAR and SKA pro-
duce a large number of images, which cannot be analyzed manually. Therefore, it is
essential to develop automated pipelines for the modeling and classification of VLBI ob-
servations. These will help to increase populations of rare source types and allow to
improve our general understanding of astrophysical acceleration mechanisms. Testing
recently developed software like WSCLEAN [3] and machine learning approaches using
neural networks is currently work in progress.
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This work aims at a more detailed understanding of high energy muons.
At muon energies between TeV and PeV, the relevant range for Neutrino
Astronomy Experiments, the muon cross sections have uncertainties of sev-
eral percent. Since these uncertainties worsen the reconstruction of these
particles, the goal is to reduce the uncertainty to below percent level. The
approach is devided into three parts. In a first theoretical step, corrections
to the bremsstrahlung and pair production cross section are calculated, since
these processes are the most dominant ones. For the second simulation step,
the improved cross sections are implemented into the Monte-Carlo Simula-
tion leading to a complete restructuring of the code. The final analyzing step
deals with the measurement of cross section normalization. In this report the
concept for the final step to fit the bremsstrahlung normalization just using
the simulation library PROPOSAL is shown.

1 Introduction

High energy muons are the dominant event type, measured by most underground de-
tectors from proton decay experiments to neutrino observatories. To reconstruct these
muons, large amounts of Monte-Carlo Simulations representing the measured data are
necessary. The resolution of the event reconstruction is therefore limited by the precision
of the Monte-Carlo Simulation. To further improve the muon reconstruction, more pre-
cise Simulations are needed. In the IceCube Experiment [2] the muons are propagated
with the Lepton propagator PROPOSAL [5]. One advantage of PROPOSAL are the
multiple cross section parametrizations, that are implemented to do systematic studies
on the effects of different muon cross sections. In a new version of PROPOSAL [3, 6] a
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complete restructuring of the code was done and a simple exchange of the cross section
calculation is now provided. With this new version, a study of the muon cross section
was conducted.

2 Energy loss Spectrum

A measurement of the muon cross section can be done with the distribution of energy
losses. Having a sample of single muons with the same energy and traveling the same
length through the same medium, the energy spectrum of the secondaries are representing
the cross sections, if the muon energy remains nearly constant. In reality the muons
have energies underlying a power-law spectrum, traveling different lengths through the
detector, while loosing their energy and in case of atmospheric muons, might arrive in
bundles.

Instead of atmospheric muons, neutrino-induced muons can be used, which only occur
as single muons. A bundle can also be created by single muons via the production of
muon pairs. Although the energy loss through those processes can be neglected [4],
the additional energy losses through these muons influence the secondary distribution.
Unfortunately the effect is not considered in this study, because this process is not yet
implemented in PROPOSAL.

The different lengths only increase or decrease the amount of secondaries in the detector,
so the secondary spectrum can be normed in length. The power law spectrum of the
muon energies is smearing out the secondary distribution. Another problem with the muon
energies is, that the muons loose their energy while propagating through the detector,
so the later secondaries are produced by muons with lower energies compared to the
losses when the muon enters the detector. If the detector consist of a cubic kilometer
of ice and the propagated length through the detector varies between 100 m and 1 km,
the difference in the muon energies between entering and leaving the detector is in most
cases negligible. However, if large energy losses of around a tenth of the muon energy or
more occur, it is not valid anymore for the later losses, to correspond them to the initial
muon energy. Therefore the analysis is more sensitive to higher energy losses than to
small losses and instead of measuring the complete cross section, only the bremsstrahlung
normalization is analyzed.

To study the effect of these assumptions and approximations, a study with the Lepton-
propagator PROPOSAL was made, propagating 105 muons with energies between 10
and 30 TeV and a spectral index of −3 through 100 m to 1 km of ice. The energy
distribution of the secondaries is shown in figure 1. Here, the secondaries consist of
the four interaction processes Ionization, pair production, bremsstrahlung and inelastic
nuclear interaction, as well as the electrons originating from the muon decay, which are
also visible in the detector.
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Figure 1: Energies of the different secondaries when propagating 105 muons with energies
between 10 TeV and 30 TeV through ice with lengths between 100 m and 1
km. Also the sum of the energy losses in 15 meter bins is shown. The number
after the process in the legend representing the amount of interactions in 100
m for the specific process.

IceCube consists of around 5000 Photodetectors at 86 Strings with a String spacing
of about 120 meter. These Photodetectors are deployed into the glacial ice at the
geographic south pole in 1500 to 2500 meter depths, constructing an instrumented
volume of 1 km3. This sparse DOM-density, good for detecting rare high energy neutrino
events, weakens the resolution of single energy losses. The most challenging part for the
main analysis will be the poor detector resolution, so that just high energy losses can be
well reconstructed. The reconstruction mechanism [1] used in IceCube bins the muon
track into 15 meter bins and fits the energy loss for each bin, which is indicated by the
Binned Track in figure 1.
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3 Bremsstrahlung Normalisation Measurement

Due to the different muon energies during the muon propagation and the binned energy
loss reconstruction, only the bremsstrahlung normalization is fitted. For that, a secondary
spectrum like in figure 1 is created for different bremsstrahlung multipliers between 0.5
and 1.5, shifting the cross section up and down. The difference in each energy loss bin
is then parametrized with a linear function and feed into a poisson likelihood fit for each
bin. The performance of this study is then tested while injecting secondary spectrums
created with random multiplier and fitting the normalization. For 40 randomly sampled
multipliers, the fit using the secondary spectrum recovers the injected multiplier with a
mean deviation of 1.0(8)%.
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The main objective of our research is to get over todays hardware restric-
tions in processing capabilities due to electrical power consumption or thermal
discharge constraints. We are working in particular on handling large continu-
ous event data streams, which are characterized by a enormous heterogeneity
of the event complexity. One of our approaches is to use modern hardware of
different architectures to aim the event heterogeneity and get the best results
in performance and energy consumption. To validate our approaches, we are
processing real world scientific use cases on our self-developed experimental
systems, that we get from our collaboration partners of the particle physics
department in the SFB876 collaboration, while metering the execution time
and energy consumption compared to existing solutions.

Since the last report, we did analysis on the efficiency of Tracking Algo-
rithms used in the LHCb software framework. Our ongoing work is about
an Event-complexity-driven Machine Placement Algorithm, briefly referred as
EcoMap, which is able to place the events on the most suitable hardware
with focus on energy, processing time and machine load. Our heterogeneous
hardware cluster consists of high-performance Intel Xeon Cores and power-
efficient ARM Cortex cores. Using placement strategies based on the event
complexity, we try to minimize the computation time per event on the one
hand, but the energy on the other hand. Usually, this two characteristics
behave in contrary ways and thus, to combine these two measures, we have
chosen the energy-delay-product as an efficiency metric.
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1 Introduction

The LHCb project at CERN is a large and complex research project grown over the last
decades. Its general scope is to explain the matter/anti-matter asymmetry. At the time
of writing this report, we are working on this project for three years. Our main topic in the
SFB876 is the C5 Sub-Project, where a continuous stream of hits inside the LHC (Large
Hadron Collider) is produced by the several stages of the LHCb detector, which have
to be processed in real time, since there are no capabilities to store all collision events
permanently with the current storage technology. Thus, the HLT (High Level Trigger)
needs to select events that have to be stored for further analysis. [1] Our specific research
topic is to improve the High Level Trigger (HLT) decision time and explore new techniques
to process all the experiment data in hard time constraints and sample it down to the
maximum load which the storage can handle.

Ressource
Xeon
Server

Odroid C2
Cluster

CPU Nr. 2 40
CPU Freq. 2.80 GHz 1.50 GHz
Cores 24 160
Threads 48 160
RAM 256 GB 80 GB
Power 203 W* 120 W+

*CPUs only by perf stat
+Secondary power measurement

Table 1: Characteristics of our
Test Systems.
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Figure 1: Test Data Set Event Size Histogram

We used some very different test systems as shown in Table 1, on the one hand a dual
socket Intel Xeon E5-2695 Server with 48 virtual cores, which represents state of the art
hardware, and on the other hand a self constructed ARM cluster with 160 ARM Cortex-
A53 cores. The single core performance of the Cortes-A53 cores is of course lower than
the Xeon cores, but these architecture provides more efficiency and therefore more cores
at the same level of energy, package size and thermal discharge.

The goal is to find new solutions for processing this big amounts of data with limited
resources faster than it has been performed in the first run of the LHCb project and allow
the physicists to make experiments with more precise decisions. A challenge of the data
is the wide spread of heterogeneity of the events, which is caused by different interactions
of the particles after the collision. The event size histogram in Figure 1 shows the event
sizes on a logarithmic scale.
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We have the approach not to appraise the event heterogeneity as a problem, but rather
as a part of the solution, because it makes it possible to distribute events based on their
complexity on the most suitable hardware.

2 Event complexity-driven Machine Placement

In the current configuration, the High Level Triggers concept used by the LHCb Project
is a large computing grid of state of the art Xeon-based server machines.

Due to the heterogeneous event complexity as investigated in Figure 1, our ongoing
work is about an Event-complexity-driven Machine Placement Algorithm, briefly referred
as EcoMap, which is able to place the events on the most suitable hardware with focus
on energy, processing time and machine load.

In Figure 2, one can see that the overall energy consumption is at the lowest level when
processing events on ARM Cortex-A53 Cores (highest threshold), while on the other
hand the execution time effort is lower when placing all events on state of the art Intel
Xeon E5-2695 cores (lowest threshold). One might think that the race is already done
by the ARM cluster, because of the lower energy amount needed and the fact that the
energy is product of power and time consumption. But unfortunately, it’s not that easy,
because there are still strict time constraints for the average processing time of a single
event, due to the constant event stream which has to be processed in time.

As a better metric, we propose to use the energy-delay-product (EDP) as a metric for
system efficiency, because it aims the problem to get a ’fair’ trade off between energy on
the one hand, but on the other hand it further has the advantage of perfect scalability
between energy consumption and execution time. For example, if a system’s EDP is fine,
but the processing time is too high, the number on systems can be doubled, which leads
to a half of the processing time and two times of the energy costs, so that the EPD is
constant. The approach is to place the events on different hardware architectures, which
are the most suitable for the job at the moment of processing to minimize the EDP.
Thus, we now took a closer look to the specific relation between event complexity and
processing characteristics, instead of just looking at overall energy or time for the whole
workload and tried to find criteria for making an EDP optimizing placement decision.

In our placement experiments , we started with processing all events on the Xeon Server
and then we slowly raised the threshold, which means we moved all events below the
current threshold to the ARM-Cluster.
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An interesting observation is that there is a minimum in the EDP, which is not at the
outer right end of the plot, where all events are placed on the ARM-Cluster. Instead,
regarding to the EDP as control factor for placement, there is an optimal threshold and
it is reasonable to place small events on the Xeon Server and bigger events on the ARM
Cluster to reach this optimum.

We can also see that the EDP in the minimum is about 45% of the EDP compared to
placing all events on the server, which is marked as 100%. This is significantly lower and
means that it is possible to save an very big amount of energy and time.

3 Conclusion and Future Work

Our experiments have shown that the ARM Cortex-A53 low power cluster has got a
better energy efficiency than a state-of-the-art Xeon dual socket server system, while
the Xeon Server has a better single thread performance. Moreover, we could show when
adding a dynamic placement algorithm like EcoMaP to use cases with event streams
of heterogeneous event complexities, there is still optimization potential in the balance
of energy and time consumtion by placing the events at runtime to the most suitable
hardware.

In addition, our research is further aiming a distributed storage solution after the Trigger,
which offers fast OLAP functionality on stored data, but also OLTP capabilities during
data acquisition.
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One of the four big experiments at the Large Hadron Collider (LHC) near Geneva is
the LHCb experiment [1]. Its main focus is the research of the asymmetry between
matter and anti-matter in the observable universe. Matter and anti matter should have
been produced in equal amounts during the early stages of the universe. Today we
observe a large asymmetry between the two, so that it is assumable, that physical laws
influence matter and antimatter in different ways. Physicists at the LHCb experiment are
investigating the charge-parity (CP ) violation in decays of beauty and charm hadrons as
one necessity cause for this asymmetry. Due to the focus on hadrons containing b and c
quarks, the LHCb detector is designed as a single-arm forward spectrometer (see Figure
1). At the interaction point of the proton beams, which lies inside the vertex locator
(VELO), a large amount of particles is produced by many different physical processes.
These particles decay into new particles, which fly through the detector and interact
with the detector material. Different subdetectors are responsible for the reconstruction
and identification of these particles. The flight path reconstruction is performed by the
tracking system consisting of the VELO, TT, IT and OT. The particle identification
system is composed of the two RICH detectors, the two calorimeters ECAL and HCAL,
as well as the Muon chambers. Information from all components is used to reconstruct
the complete decay chain, by combining the tracks and tracing them back to heavier
mother particles.

At the LHC, collisions are produced at a rate of 40 million collisions per second. Consid-
ering down times of the collider, the experiment has to handle nearly 40×1014 collisions
per year. It is not possible to store every collision, as each one of them creates about
100 kB of data. Thus, an online trigger system is utilised, which is passed by only a few
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Chapter 2

The LHCb Detector

2.1 Detector layout

LHCb is a single-arm spectrometer with a forward angular coverage from approximately 10 mrad
to 300 (250) mrad in the bending (non-bending) plane. The choice of the detector geometry is
justified by the fact that at high energies both the b- and b-hadrons are predominantly produced in
the same forward or backward cone.

The layout of the LHCb spectrometer is shown in figure 2.1. The right-handed coordinate
system adopted has the z axis along the beam, and the y axis along the vertical.

Intersection Point 8 of the LHC, previously used by the DELPHI experiment during the LEP

Figure 2.1: View of the LHCb detector.

– 2 –

Figure 1: Scheme of the LHCb detector, illustrating the various subdetectors for recon-
struction and identification of particles and their tracks. [2]

per mille of the events, resulting in an amount of data that is savable on a large storage
cluster. After a centralised loose preselection of the complete dataset, the data is used
by physicists, who store the data that corresponds to their analysis’ conditions in form
of ROOT [4] nTuple structures. These nTuples are much smaller than the full recorded
dataset, but can still reach a size of several hundreds of Gigabytes.

To show the necessity of handling the data in an efficient way, a measurement of time-
dependent CP violation in the decay B0→ D∗±D∓ is being performed. The reconstruction
is done with D−→ K+π−π− and D∗+→ D0π+, where the D0 decays into K− π+.

In B0 → D∗±D∓ decays a a decay-time-dependent CP asymmetry can be measured,
because freely propagating B0 mesons can mix into their anti particle state (B0) and vice
versa and the charge-conjugated final states D∗+ D− and D∗−D+ are common to B0

and B0 mesons. The asymmetry results from the interference between the amplitudes
of the direct decays and decays after B0-B0 mixing:

Af (t) =
Γ(B0(t)→ f )− Γ(B0(t)→ f )

Γ(B0(t)→ f ) + Γ(B0(t)→ f )
=
Sf sin(∆mt)− Cf cos(∆mt)

cosh
(

∆Γt
2

)
+Df sinh

(
∆Γt

2

) . (1)

The decay-time-dependent asymmetry is given by the difference between the time-depen-
dent-decay widths of B0 and B0 mesons decaying into the final state f , normalised to
the sum. An analogous asymmetry exists for the final state f . B0(t) and B0(t) denote
the initial B flavour and the parameters ∆m and ∆Γ are the differences of the masses
and decay widths between the heavy and light mass eigenstates concerning the B0-B0

system [6]. With some assumptions, the time-dependent asymmetries become

Af (t) = Sf sin(∆mt)− Cf cos(∆mt), Af (t) = Sf sin(∆mt)− Cf cos(∆mt), (2)

where Sf , Sf , Cf and Cf are the CP observables.
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The analysis of CP violation in B0→ D∗±D∓ decays can be divided into two parts. The
first comprises the selection, where signal and background decays are separated. Due
to wrong reconstruction or misidentification, these so-called background decays can be
mistakenly be present in the data set and hence, need to be removed in the selection. The
selection chain starts with rectangular cuts on kinematical requirements. In this context
a rectangular cut requires a certain measured quantities to have values in a specific
range. Theses ranges are well-defined and do not vary depending on other quantities
in the event. At a latter stage in the selection a multivariate analysis is performed,
which exploits correlations between quantities. Although good control over the different
backgrounds is achieved, background contributions are still present in the data set at the
end of the selection. Thus, a statistical background subtraction is performed by fitting
the invariant B0 mass.
The second part of the analysis is a maximum-likelihood fit of the B0 meson decay-time
distribution to measure the CP parameters. Figure 2 shows a representative fit of the
decay-time distribution using simulated data. As can be seen in Fig. 2, the decay-time
distribution does not follow a usual exponential distribution, but shows a drop towards
lower values. This effect originates from inefficiencies in the reconstruction that are
more likely at low decay times. To describe the deviation of the decay-time distribution
from the exponential shape, a parametrisation including cubic splines is used [5]. Another

C
an

di
da

te
s 

/ (
 0

.1
0 

ps
 )

0

500

1000

1500

2000

2500

3000

3500

) (ps)0B(t
2 4 6 8 10

Pu
ll

5−

0

5

Figure 2: Decay time distribution of the decay B0→ D∗±D∓ of simulated data.

effect that needs to be taken into account is the decay-time resolution, which results from
the limited precision in the determination of momenta and vertex positions. In order to
describe the distribution of the reconstructed decay time appropriately, this effect can
be caught up by convolving the theoretical decay-time PDF with a resolution model
describing the probability density of the difference between the true and reconstructed
decay times. As presented in Fig. 3 this deviation can be described by the sum of three



172

C
an

di
da

te
s 

/ (
 0

.0
12

 p
s 

)
2000

4000

6000

8000

10000

12000

14000

πK →0D
LHCb simulation

 (ps)truet-t
0.5− 0 0.5

Pu
ll

5−

0

5

Figure 3: Difference between true and reconstructed decay times of simulated data.

Gaussians. Results of the data fit cannot be shown yet, because the analysis is ongoing
and the central values of the CP parameters are still unknown. However, preliminary
statistical uncertainties were already obtained. For the parameter S this uncertainty is
about twice as large as in the respective analyses of the Belle and BaBar experiments [3,7].
Thus, to become competitive with the B-factories, the statistics needs to be increased.
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The LHCb experiment entered an upgrade phase in Dezember 2018, which
will last 2 years. Not only the detector but also the computing farm will be
changed. The planning for this started 10 years ago. A certain amount of
computing power was planed to be bought by a fixed budget, but meanwhile
"Moores Law died" so the plan cannot be converted. There a different solu-
tion approaches in the LHCb collaboration to reach the necessary computing
power, one is the usage of GPUs.
Computing tasks can only benefit from the multi processor architecture of an
GPU, if they are massively parallelizable. Different algorithms are running in
the online farm to reconstruct the events. Most of them are independent and
parallelizable, On the one hand it is the combination of hits to reconstruct
the tracks an the other hand the processing of RAW informations.
Last year the report was focused on the development of new tracking algo-
rithms. This report will describe the decoding of the so called RAW banks
of the SciFi tracker. These contain all informations of the channels which
detect a signal. The known channel IDs need to be translated to physical
positions in the detector.
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1 Introduction

The LHCb experiment is one of the four big experiments located at the Large Hadron
Collider (LHC) near Geneva, Switzerland. Its main focus is the search for rare decays and
effects of CP -violation in decays of beauty and charm hadrons [1]. Due to some physical
constraints in the production of b and c quarks through proton proton collisions the
LHCb detector is designed as a single-arm forward spectrometer. Over the past years
the understanding of the detector and its systematical effects has reached an almost
perfect level. At the moment, the most limiting factor for analyses is the statistical
uncertainty. The only way to improve this is to massively increase the dataset. For this
reason, as mentioned before an upgrade of the experiment is foreseen [5]. Most of the

Figure 1: The LHCb upgrade detector with the various subdetectors for the identification
of particles and reconstruction of their tracks [2].

existing detector will be replaced, but the general structure of the detector will remain the
same. In the Vertex Locator (Velo) the position of the primary interaction is detected.
The Upstream Tracker (UT) and the SciFi Tracker also belong to the tracking system.
Other components like the Ring Imaging Cherenkov Detectors (RICH), the Electronic
Calorimeter (ECAL), the Hadronic Calorimeter (HCAL) and the Muon Chambers (M2-
M5) are used for the particle identification.
A major change is the new triggerless readout of the full detector with 40MHz. This
leads to a data rate of 40Tb/s which is the input of the high level trigger(HLT) [6].
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2 Details of the SciFi Tracker

Before the actual decoding part is described, some technical details of the SciFi Tracker
are explained to understand the data format.
In total the Tracker consists of 3 stations with 4 layers each. These layers are build out
of so called modules, which again are composed of 8 fibre mats. Each mat is connected
to 4 SiPM1 arrays. These are connected to the so called FrontEnd electronics (FE). A
FPGA based algorithm is looking for clusters of hits. A real signal has a different width
a high than a background hit, caused for example by thermal noise. Only the informa-
tion from found clusters, so called zero suppressed data, is send from the FE to the BE
(BackEnd electronics). The BE has to pack the data from several FE boards and send
it to the computing farm where the actual decoding will take place. It is important to
mention that the stations have a different widths, T1 and T2 consist of 10 modules and
T3 is larger with its 12 modules.

3 Status and outlook

The aim of one working group of the LHCb collaboration is to run the first Trigger stage
(HLT1) on GPU [4]. The project, Allen, can be found at https://gitlab.cern.ch/
lhcb-parallelization/Allen. Multiple streams can send data to the GPU. Than a
visitor service will load the necessary Algorithms. One of these is the SciFi hit decoding.
Every data-package has a global header which contain information about the associ-
ated proton-proton collision, like a time stamp. This information is followed by detector
component specific informations, for the SciFi this are the station number, MatID etc.
with these information a position in the detector is unambiguously defined. The actual
numbering scheme is constant for a certain time and can be a loud as a constant in the
code [7]. During the development of the decoder the data-format was changed to reduce
the needed bandwidth. The amount of Hits is not longer in the header [3]. To allocate
the correct size of memory for the result vector of decoded Hits a pre count is necessary.

Successfully a GPU version of the SciFi decoder was implemented. There will be further
improvements and fine tuning of the code, but first the input data from the encoder has
to be fixed. As mentioned before the global header was changed, but also further changes
are discussed at the moment. For example the numbering scheme of the detector. This
has a direct effect of the procedure who the Hits are mapped to Threads and Warps. At
the moment the biggest problem is the fixed number of RAW banks per station. In the
first two stations a RAW bank is connected to a single Module, but in the last station

1silicon photonmultiplier
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this is not possible. This leads to a ugly branching in the code, which slows down the
speed and efficiency of the algorithm significant.
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