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1 Introduction

The reconstruction of experimentally inaccessible quantities, e.g. a particle’s energy, from
other observables, is a common challenge for experiments in particle- and astroparticle
physics, as well as in other research areas. For the decay and interaction of particles,
for example, where the underlying physics is governed by stochastical processes, this
corresponds to solving an inverse problem, described by the Fredholm integral equation
of the first kind.

g(y) =

Z b

a

A(x, y)f(x)dx , (1)

where f(x) describes the distribution of the experimentally inaccessible quantity x,
whereas g(y) is the distribution of an observable y, obtained experimentally. A(x, y)
is generally referred to as the response function and includes the physics of a particle
decay or interaction and all detector effects, such as a limited acceptance or additional
smearing. In most cases the response function has to be obtained from Monte Carlo sim-
ulations. Obtaining a solution to Eq. 1 is often referred to unfolding or deconvolution.

Several algorithms for solving Eq. (1) exist. The most common ones are singular value
decomposition (SVD) [1], iterative Bayesian unfolding [2, 3] and TRUEE [4], which is
based on the popular RUN-algorithm [5] and uses Tikhonov-regularization [6]. Iterative
Bayesian Unfolding and the SVD approach are also included in the RooUnfold package [7]
for the Root analysis toolkit [8]. All of these algorithms have in common that – although
the distribution f(x) is reliably reconstructed – the information on the individual events
is lost in the unfolding process. This lost information might, however, be valuable for the
extraction of physically relevant parameters. Furthermore, the number of variables used
in the unfolding is limited in most cases, which implies that the information available for
unfolding is constrained as well.

The Dortmund Spectrum Estimation Algorithm (DSEA) aims at overcoming the afore-
mentioned challenges, by treating a discretized version of Eq. (1)

~g(y) = A(x, y)~f(x) (2)

as a multinominal classification task. In that case ~g and ~f are histogrammed versions of
the respective distributions and A(x, y) is the so-called response matrix. Approximating
f(x) by ~f is suitable for most practical applications, in case a sufficient number of bins
is used. In DSEA every bin in ~f is interpreted as a specific class of events. The corre-
sponding classification task can then be solved by an – at least in principle – arbitrary
classifier, which returns the probability cjk of an event k to belong to bin j in ~f . The
final bin content of fj is then obtained by adding all cjk. In order to avoid a potential
bias on the input distribution DSEA can be used iteratively, using a uniform distribution
as input. For algorithmic details on DSEA we refer to [9].

The versatility of the DSEA algorithm is tested using data recorded at the LHCb ex-
periment. The LHCb experiment is one of the four large experiments operated at the
Large Hadron Collider near Geneva, Switzerland. One of its main goals is the research on
the asymmetry of matter and anti-matter in our universe. According to Big Bang theo-
ries matter and anti-matter have been produced in equal amounts 13.8 billion years ago.
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However, in today’s universe there is no evidence of large quantities of antimatter. Hence,
it is assumed that physical laws influence matter and anti-matter in different ways. In
order to find answers to this and other open questions, physicists are investigating decays
of hadrons containing b and c quarks at the LHCb experiment. Precision measurements
of observables from the flavour sector of the Standard Modal are performed to carry out
an indirect search for New Physics. In order to maximise the sensitivity with respect
to these goals, the LHCb detector is designed as a single-arm forward spectrometer (see
Figure 1). At the interaction point of the proton beams, which lies within the Vertex Lo-
cator, a large amount of particles is created by many different physical processes. These
particles decompose into new particles that fly through the detector and interact with the
detector material. Various subdetectors are responsible for the reconstruction and identi-
fication of these particles. Entire decay chains are reconstructed by combining tracks and
tracing them back to their heavier parent particles. Tracks of charged particles are bent
by the magnet. The curvatures of the trajectories allow to determine the momenta of the
particles. However, the detector can locate tracks with a limited precision. This leads to
a limited momentum resolution, which is about �p/p = 0.5% at low momenta and up to
0.8% at momenta around 100 GeV/c [10]. Experimental limitations like the momentum
resolution have the consequence that distributions do not reflect the truth. For example,
measured invariant masses have a resolution in the range of 10–20 MeV/c2 [10]. As a
test of the DSEA algorithm, the invariant mass of a K⇤0 meson, which is reconstructed
through its decay into a charged kaon and pion, is considered. The nominal width of the
K⇤0 resonance is 47.3 ± 0.5MeV/c2 [11], which is large compared to the mass resolution
at LHCb.

2.2 LHCb detector

Figure 2.2.: Polar angle distribution of the b and b̄ in bb̄ pair production calculated by the PYTHIA
event generator [80].
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Figure 2.3.: LHCb detector drawing (side view) [71, 81]. The Vertex Locator (VELO) is built around
the interaction point (IP) at x = y = z = 0. Further detector components are the two Ring Imaging
Čerenkov Detectors (RICH1 and RICH2), the Tracker Turicensis (TT), the magnet, the three tracking
Stations (T1-T3) and five muon stations (M1-M5). The calorimetry system consists of Silicon Pad De-
tector (SPD), Preshower (PS), the Electromagnetic Calorimeter (ECAL) and the Hadronic Calorimeter
(HCAL). Finally, there are two Beam Conditions Monitor stations (BCM-U and BCM-D).

Turicensis (TT) and the spectrometer magnet. Upstream of the VELO and downstream of the
TT, there are the two Beam Conditions Monitor stations BCM-U and BCM-D. Behind the mag-
net, there are the three main tracking stations (T1-T3) and another Čerenkov Detector (RICH2).
Next is the calorimetry system, which comprises the Scintillating Pad Detector (SPD), a preshower
(PS), the Electromagnetic Calorimeter (ECAL) and the Hadronic Calorimeter (HCAL). In front of
the SPD, there is a first muon station M1 and behind the calorimeters, there are four muon stations
M2-M5. The following sections will discuss the different detectors based on References [71, 84].

19

Figure 1: Scheme of the LHCb detector, illustrating the various subdetectors for identi-
fication and reconstruction of particles and their tracks.[12]

The paper is organized as follows. Section 2 discusses the convergence of DSEA, whereas
the performance of the algorithm with respect to the agreement with the underlying
distribution is presented in Sec. 3. The paper is concluded with a summary and an
outlook in Sec. 4.
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2 Convergence

Using DSEA, the reconstructed spectrum is obtained iteratively, which implies that the
overall convergence of the algorithm is crucial for the success of the unfolding procedure.
Following an approach presented in [13], the convergence of DSEA is quantified by com-
paring spectra obtained in two succeeding iterations via a �2-test. The �2-value for the
k-th iteration is obtained using the following equation:

�2

nbins
=

1

nbins

nbinsX

i=1

(f̂k,i � f̂k�1,i)2

�2
k,i

, (3)

where f̂k,i and f̂k�1,i represent estimates for the i-th bin, obtained in the k-th and (k�1)-
th iteration, respectively. The 1-� uncertainties on the content of bin i are given as �k,i.
For the systematic studies presented here, the convergence of DSEA was investigated
with respect to the number of bins, the number of input examples and the confidence
threshold selected to suppress contributions of small confidence values. The outcome of
the studies are presented in Figs. 2 to 4 and discussed in the text.
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Figure 2: Convergence of DSEA for different numbers of bins, using 50,000 input examples
and a confidence threshold of 0.01 (left) and 0.05 (right).

Figure 2 depicts the convergence of DSEA for different numbers of bins in the recon-
structed spectrum, using 50,000 input examples. The results obtained with a confidence
threshold of 0.01 are shown in Fig. 2a, whereas the convergence for a confidence threshold
of 0.05 are presented in Fig. 2b. One finds that the algorithm converges reliably for both
confidence thresholds, as the convergence criterion is met after at most two iterations,
independent of the number of bins. It is further found that DSEA converges the fastest,
when only 10 bins are utilized, whereas the convergence behaviour for 30, 50 and 100 bins
is found to be comparable. Comparing the �2-values the algorithm converges to, with
respect to the confidence thresholds investigated here one finds that this value is slightly
smaller for a confidence threshold of 0.01.

Figure 3 presents the convergence of DSEA for different numbers of input examples ntrain,
studied for confidence thresholds of 0.01 (Fig. 3a) and 0.05 (Fig. 3b). It is found that
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Figure 3: Convergence of DSEA for different numbers of input examples, using 30 bins
and a confidence threshold of 0.01 (left) and 0.05 (right).
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Figure 4: Convergence of DSEA for different confidence thresholds, using 50,000 input
examples and 30 bins (left) and 50 bins (right).

the convergence criterion is met after at most two iterations, independent of the number
of input examples, and therefore concluded that the algorithm converges reliably. One
further observes that the �2 value DSEA converges to, is smaller for a smaller number of
input examples.

Figure 4 shows the convergence of DSEA for different confidence thresholds, evaluated
for 30 (Fig. 4a) and 50 bins (Fig. 4b). The convergence for a confidence threshold of
0.01 is shown in red, whereas the behaviour for confidence thresholds of 0.03 and 0.05
are depicted in black and blue, respectively. One finds that the convergence criterion
is met after at most two iterations, independent of the selected confidence threshold
and therefore it is concluded that the algorithm converges reliably. It is further found
that DSEA converges slightly faster for smaller confidence thresholds. The �2-value the
algorithm converges to, however, is found to differ only marginally.

4



3 Performance

Within this section the performance of DSEA with respect to the agreement with the
underlying distribution is investigated. This agreement is quantified by means of the
Hellinger distance, which, for the discrete case, is defined as:

H(f, f̂) =
1p
2

vuut
nbinsX

i=1

(
p

fi �
q
f̂i)2 , (4)

where f and f̂ , represent the underlying and the reconstructed distribution, respectively.
The smaller H(f, f̂), the better the agreement between f and f̂ . Unlike other distance
measures, e.g. a �2 distribution, the Hellinger distance does not take into account the
estimated uncertainties. Using a �2 as a distance measure, was studied, but found to
be rather unsatisfying with respect to finding an optimal setting for DSEA, as recon-
structed spectra with large uncertainties were found to be favoured, due to the definition
of the �2-distribution. Section 3.1 discusses the selection of optimal input parameters via
an L-Curve, whereas exemplary spectra are discussed and compared to the underlying
distribution in Sec. 3.2.

3.1 L-Curve

Unsurprisingly, the unfolding results depend on the input settings of the algorithm. Thus,
finding a set of parameters, yielding an optimal unfolding result, is crucial for the success
of the entire unfolding procedure. In addition to an optimal agreement with the under-
lying distribution, the algorithm should also have converged, which means that changes
in the reconstructed spectrum are small between succeeding iterations. The overall per-
formance of the algorithm is studied using so-called L-curves, where the agreement in
terms of a distance measure (y-axis) is plotted versus the convergence criterion of the
algorithm (x-axis). For the study at hand the Hellinger distance (see Eq. (4)) was used as
a distance measure and the �2 between succeeding iterations was used as a convergence
criterion (see Sec. 2). Selecting an optimal set of parameters generally implies finding a
trade-off between agreement and convergence, as both criteria need to be simultaneously
fulfilled. This includes the specification of a fixed number of iterations, which provides a
stopping criterion.

As DSEA was found to converge reliably (see Sec. 2) the �2 between succeeding iterations
generally decrease with an increasing number of iterations. It should therefore be noted
that the number of iterations decreases from left to right in the L-Curve plots.

Figure 5 shows the Hellinger distance between the reconstructed spectrum and the un-
derlying true distribution vs. the convergence, quantified as in Sec. 2. Different numbers
of bins are compared using 50,000 input examples. Values obtained for a confidence
thresholds of 0.01 and 0.05 are depicted in Fig. 5a and Fig. 5b. One finds that except
for the 10 bins case, the optimal performance, indicated by small values of the Hellinger
distance, is reached after the second (50- and 100 bins) or third (30 bins) iteration. In
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Figure 5: Hellinger distance vs. performance for different number of bins using 50,000
input examples and confidence thresholds of 0.01 (left) and 0.05 (right).
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Figure 6: Hellinger distance vs. convergence for different numbers of input examples,
using 30 bins and confidence thresholds of 0.01 (left) and 0.05 (right).

those cases an increase in the Hellinger distance, which indicates a decrease in the agree-
ment of the compared distributions, is observed. For the 10 bins case, however, one finds
that the algorithm reliably converges towards an optimal agreement with the underlying
distribution. This can be understood from the fact, that a fixed number of 50,000 input
examples was used, independent of the number of bins. When using for example 100 bins
instead of 10, the number of examples available per bin is decreased by a factor of 10.
Comparing Figs. 5a and 5b one further finds that the agreement is slightly better for a
confidence threshold of 0.01.

Figure 6 depicts the Hellinger distance between the reconstructed spectrum and the
underlying distribution vs. the convergence, for different numbers of input examples,
obtained using 30 bins. Values obtained using confidence threshold of 0.01 and 0.05
are shown in Figs. 6a and 6b, respectively. One finds that an optimal performance
is reached after two (ntrain = 10, 000 and ntrain = 20, 000) or three (ntrain = 50, 000
and ntrain = 100, 000) iterations. An increase of the Hellinger distance is observed with
an increasing number of iterations. Therefore, a better agreement of the reconstructed
spectrum with an increasing number of input examples available per class is observed
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Figure 7: Hellinger distance vs. convergence for different confidence thresholds using
50,000 input examples and 30 (left) and 50 bins (right).

again. Comparing Figs. 6a and 6b one further finds that a slightly better agreement is
achieved by choosing a confidence threshold of 0.01 (please note the different scales of
the y-axes).

Figure 7 presents the Hellinger distance between the reconstructed spectrum and the
underlying distribution vs. the convergence of DSEA for different confidence thresholds,
using 50,000 input examples. The results obtained using 30- and 50 bins are shown in
Figs. 7a and 7b. Again, one finds that an optimal performance, is reached after two (50
bins, Fig. 7b) or three (30 bins, Fig. 7a) iterations. An increase of the Hellinger distance
is observed with an increasing number of iterations. One further finds that the values
obtained for the Hellinger distance are rather similar, after two and three iterations, but
deviate further and further as the number of iterations increases. Comparing Figs. 7a
and 7b, one finds that a slightly better agreement is reached, when selecting 30 bins.
This can be understood from the fact that a fixed number of 50,000 events was used in
both cases, which leads to a 66% increase for the examples available per class, when 30
instead of 50 bins are selected.

Investigating the performance of DSEA with respect to different input settings, it was
found that the algorithm generally reaches its optimal performance – indicated by a
minimum in the Hellinger distance – after only two or three iterations. Except for the
case, where only 10 bins were utilized, the Hellinger distance was found to increase,
with an increasing number of iterations, which indicates a decrease in agreement. This
behaviour is somewhat undesirable from an algorithmic point of view and will be discussed
in greater detail in Sec. 4. As expected, the performance of the algorithm was found to
increase with an increasing number of input examples available per bin. With respect
to different confidence thresholds applied, it was found that the performance changes
only marginally around the minimum of the Hellinger distance. Larger deviations were
observed, as the overall performance decreases.
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Figure 8: Comparison of the reconstructed spectrum (red) with the underlying distribu-
tion (blue) for 100 bins (left) and 30 bins (right), obtained using 50,000 input examples
and confidence threshold of 0.01.
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Figure 9: Comparison of the reconstructed spectrum (red) and the underlying distribution
(blue), obtained for 50 bins and a confidence threshold of 0.03, using 10,000 (left) and
100,000 (right) input examples, respectively.

3.2 Exemplary Spectra

Figure 8 shows the comparison of the reconstructed spectrum (red) with the underlying
distribution (blue). The depicted results were obtained using 50,000 input examples
and a confidence threshold of 0.01. The outcome for 100 bins is shown in Fig. 8a,
whereas the result obtained for 30 bins is presented in Fig. 8b. One finds that the
distributions agree well in both cases. It is further observed that the unfolding result
overestimates the bin content of the true distribution in the first and the last bin(s).
Furthermore, the reconstructed spectrum has a tendency to underestimate the true bin
content near the maximum of the distribution. Unlike for the first and last bins, however,
this underestimation is generally well within the estimated uncertainties. In general, the
reconstructed uncertainties were found to be smaller in the 30 bins example. As already
discussed above, this can be understood from the smaller number of input events available
per class in the 100 bin scenario.
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Figure 10: Comparison of the reconstructed spectrum (red) and the underlying distribu-
tion (blue) using 50 bins and 50,000 input examples, as well as confidence thresholds of
0.03 (left) and 0.05 (right), respectively.

Figure 9 depicts the comparison of the unfolding result and the underlying distribution,
obtained using 50 bins and a confidence threshold of 0.03. The results obtained using
10,000 and 100,000 input examples are shown in Figs. 9a and 9b, respectively. The
rising and falling edges of the distribution were found to be well reconstructed in both
cases. Again, the first and last bins tend to be overestimated. When using 100,000
input examples, the reconstructed spectrum has a tendency to underestimate the true
bin content near the maximum of the distribution. In addition to the generally good
agreement, both spectra were found to agree well within the estimated uncertainties
around the maximum, when using 10,000 input examples. As expected, the estimated
uncertainties were found to be larger for the result obtained using 10,000 input examples.

Figure 10 shows the comparison of the underlying distribution and the unfolding result,
obtained using 50,000 input examples and 50 bins. The outcome for a confidence thresh-
old of 0.03 is presented in Fig. 10a, whereas the result for a confidence threshold of 0.05 is
depicted in Fig. 10b. In both cases, the reconstructed spectrum was found to agree well
with the true mass distribution. Again, the bin content appears to be underestimated
for bins located near the upper- and the lower boundary of the histogram. The bins
near the maximum of the distribution, as well as the rising and falling edges, however,
were found to be reliably reconstructed. Furthermore, both spectra show similar features
and the estimated uncertainties deviate only marginally. It is therefore concluded that
for the study at hand the specific choice of the confidence threshold does not impact
the reconstructed spectrum, as long as the other settings are selected close to the opti-
mum. This conclusion is further supported by Figs. 7a and 7b, where the minimum of
the Hellinger distance was found to deviate only marginally for different choices of the
confidence threshold.

All in all it was found that the mass distribution of the decay of K⇤0-mesons can be
reliably reconstructed using Monte Carlo simulations from the LHCb experiment and
the Dortmund Spectrum Estimation Algorithm DSEA. Spectra were successfully recon-
structed using different settings and found to agree with the underlying distribution
within the estimated uncertainties. As expected, the overall size of the uncertainties

9



was found to increase with a decreasing number of training events available per class.
Furthermore, it was found that bins near the upper and lower edge of the spectrum are
generally underestimated. This behaviour is of course undesirable in an unfolding, but
can be circumvented by treating these bins as over- and underflow bins, respectively.

4 Conclusion and Outlook

This paper discussed the application of the Dortmund Spectrum Estimation Algorithm
(DSEA) on Monte Carlo simulations of the LHCb experiment at CERN. The application
focused on the reconstruction of mass spectra from the decay of K⇤0-mesons in a mass
regime between 850 and 950 GeV/c2. The detailed investigations involved studies on the
convergence behaviour of DSEA, as well as analyses on the overall agreement with the
underlying distribution. Unlike studies on artificial data, so-called toy Monte Carlo, in-
vestigations on LHCb simulations provided insight into the applicability of the algorithm
in a realistic setting, while at the same time allowing for detailed comparisons with the
underlying distributions.

The Dortmund Spectrum Estimation Algorithm (DSEA) was investigated on its conver-
gence behaviour with respect to the number of bins, the number of input examples and
the selected confidence threshold. It was found that the convergence criterion is met
after two to three iterations, independent of the selected settings. We therefore con-
cluded that DSEA converges reliably, for analyses aiming at the reconstruction of the
mass distribution in K⇤0-decays.

It was found that mass spectra from the decay of K⇤0-mesons can be reliably reconstructed
in a mass regime between 850 and 950 GeV/c2, using up to 100 bins. DSEA was found to
converge reliably for all settings used in the study discussed here. Further observations
showed that an optimal agreement with the underlying distribution was reached after
only two to three iterations. Except for cases where only 10 bins were used for the
reconstructed spectrum, the agreement was found to decrease with an increasing number
of iterations. This behaviour is somewhat undesirable, as the optimal number of iterations
needs to be select manually. Using a variable step width between the individual operations
or combining all iterations in an ensemble are possible extensions of the algorithm, in
order to avoid a manual selection of the optimal number of iterations. These possible
extensions, however, will be investigated in future studies.

With respect to the number of bins and the number of examples used for the training
of the classifier, it was found that these two parameters cannot be easily separated.
The performance of DSEA was found to depend on the number of examples available for
training per bin. This is understandable from a machine learning point of view, as a larger
number of training examples per class generally leads to a better statistical description
and a better classification performance.

In summary, it was found that DSEA is fully applicable to real-life problems, such as
the reconstruction of spectra from the LHCb experiment and that the LHCb provides an
excellent test bed for systematic studies on unfolding algorithms in general. Additional
examinations on the algorithmic behaviour of DSEA are planned. These studies will
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involve, for example, the reconstruction of mass spectra with decay widths below the
experimental resolution of the LHCb detector. Such spectra appear as �-peaks, which
are generally hard to reconstruct in an unfolding, due to the applied regularizations, which
assume a smooth behaviour of the sought after function f(x). A successful application
of DSEA to this type of distribution is expected to increase the energy resolution of the
LHCb detector.
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