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Abstract. IceCube is a 1 km3 scale neutrino telescope located at the geographic
South Pole. The large number of reconstructed attributes as well as the small signal
to background ratio in an atmospheric neutrino analysis makes IceCube well suited for
a detailed study within the scope of machine learning. A systematic study intended
to improve the event selection was carried out including a detailed feature selection
using MRMR as well as the training and testing of a Random Forest. Finally, the
forest was applied on IceCube data. A good agreement between data and Monte Carlo
expectations has been observed.

1. Introduction

The IceCube neutrino telescope (Ahrens et al. 2004) was completed in December 2010
at the geographic South Pole. There are 5160 Digital Optical Modules (DOMs) mounted
on 86 vertical cables (strings) forming a three dimensional array of photosensors. The
spatial distance between individual strings is 125 m. IceCube DOMs are buried at
depths between 1450 m and 2450 m corresponding to an instrumented volume of 1 km3.
The spacing of individual DOMs on a string is 17 m (Ahrens et al. 2004; DeYoung
2009).

The detection principle of IceCube is based on Cherenkov light emitted by charged
leptons created via the interaction of neutrinos with nuclei in the ice or the bedrock.
Atmospheric neutrinos are produced in extended air showers where cosmic rays inter-
act with nuclei of the Earth’s atmosphere. Within these interactions mainly pions and
kaons are produced which then subsequently decay into muons and neutrinos (Honda
et al. 1995). The measurement of the atmospheric neutrino spectrum is hindered by a
dominant background of atmospheric muons. A rejection of atmospheric muons can
be achieved by selecting upward going tracks only since the Earth is opaque to muons.
However, a small fraction of atmospheric muons is still mis-reconstructed as upward
going.

For the starting point of this analysis (the so-called Level 3) where many advanced
reconstruction algorithms have already been run and the dominant part of the atmo-
spheric muons has already been removed, we expect Nback ≈ 9.699 × 106 background
events and Nsig ≈ 1.5788 × 104 signal events in 33.28 days of IceCube in the 59-string

configuration. This corresponds to a signal to background ratio of R = 1.63 × 10−3.
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Figure 1. Stability estimation for the MRMR Feature Selection depicting the Jac-
card and Kuncheva’s index. The stability of the feature selection goes into saturation
as the number of attributes increases. For a number of attributes ≥ 20 both stability
measures lie above 0.85.

Approximately 2600 reconstructed attributes were available at Level 3. The low signal
to background ratio in combination with the large number of attributes makes this task
well suited for a detailed study within the scope of machine learning.

2. Feature Selection and Feature Selection Stability

This work is based on a sample where cuts of vLineFit > 0.19 and θZenith > 88◦ were al-
ready applied previously in order to further reject the muonic background. Furthermore,
we reduced the number of attributes entering our final feature selection by excluding
those that were known to not contribute to the improvement of the selection. This
pre-selection of attributes reduced the number of attributes entering the final selection
to 477.

A Maximum Relevance Minimum Redundancy (MRMR) (Ding & Peng 2003;
Schowe & Morik 2010) algorithm embedded within the F S E
(Schowe 2010) for RM (Mierswa et al. 2006) was used for feature selection.
Simulated events from C (Heck et al. 1998) were used as background. Simulated
events from the IceCube neutrino generator N were used as signal. The machine
learning environment RM (Mierswa et al. 2006) was used throughout the study.

To obtain a reliable set of features an estimation of the stability of the feature
selection is crucial. The F S S V, also included in the
F S E for RM, was used to estimate the stability and the
outcome is depicted in Figure 1. The Jaccard index is depicted by triangles, whereas
squares represent Kuncheva’s index (Kuncheva 2007). Figure 1 clearly shows that
MRMR can be considered stable on IceCube Monte Carlo simulations if the consid-
ered number of attributes in the selection is nAttributes ≥ 20.

3. Training and Application of a Random Forest

Figure 2 (a) shows the output of the Random Forest after a 5-fold cross validation.
Within this cross validation 3.8 × 105 simulated background and 7 × 104 simulated
signal events were used. In order to avoid overtraining the number of events used for
training was limited to 2.8 × 104 for each class. The number of trees in the forest was
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Figure 2. Random Forest score (signalness) for simulated signal and background
events as well as for data. When the total number of MC events is scaled to match
data in the absolute number of events a data/MC mismatch is observed for signal-
ness > 0.2 (a). When the total number of MC however, is scaled up by 23% to
match the data for signalness > 0.2 a mismatch is only observed for small signalness
values (b).

chosen to be ntrees = 500. The simulation was scaled to the expected number of events
for each class in real data.

In Figure 2 (a) a data/MC mismatch for a signalness s ≥ 0.2 is observed, which
would in turn lead to an underestimation of the remaining muonic background. To
achieve a realistic background estimate the Corsika events are rescaled by a factor of
1.23 such that they match the distribution of data for s ≥ 0.2. This leads to a data/MC
mismatch only in the low signalness region (Figure 2 (b)).

Due to the small error bars on the expected number of signal and background
events for individual cuts the performance of the forest can be considered stable (see
Table 1). No indications of overtraining were observed within the cross validation.
Note however that the large error bars on the number of expected background events
are due to small statistics when cuts in the high signalness regions are applied.

The performance of the forest on data lies within the range expected from the cross
validation. Only for a signalness cut of s = 1.0 one finds an under-fluctuation of 96 %
of the expected number of events.

The last two columns of Table 1 show the expected purity of the final neutrino sam-
ple under the assumption that the number of background events is as expected from the
mean of the cross validation (column 6) and as a worst case scenario (column 7). One
finds that in both cases a purity well above 95 % can be achieved for the cuts listed in
Table 1. Note that the error bars shown in Table 1 represent the statistical errors derived
from the cross validation only. Systematic errors, like ice properties, DOM sensitivity
or uncertainties regarding the production of neutrinos in the atmosphere (spectral index,
flux normalization, π/K-ratio) have not yet been included.

4. Summary and Outlook

An investigation within the scope of machine learning was carried out using IceCube
data and Monte Carlo simulations for the detector in the 59-string configuration. The
MRMR algorithm implemented in the F S E (Schowe 2010) for
the data mining environment RM (Mierswa et al. 2006) was used for feature
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Cut Est. Back. Est. Sig. Sum Data Pur.[%] Pur.(worst
case) [%]

0.990 114 ± 57 4817±44 4931±64 4988 97.7 96.7
0.992 98 ± 37 4633±43 4731±57 4757 97.9 97.1
0.994 71 ± 37 4414±41 4485±55 4476 98.4 97.6
0.996 60 ± 32 4122±32 4182±45 4134 98.5 97.8
0.998 22 ± 20 3695±44 3717±50 3638 99.4 98.8
1.000 5 ± 11 2932±33 2937±35 2833 99.8 99.4

Table 1. Estimated number of signal and background events as well as the es-
timated purity after an application of cuts on the signalness. The number of data
events yielded for individual cuts is shown as well. The error bars represent the sta-
tistical error derived from the cross validation only. Systematic errors have not yet
been included.

selection. The selection was found to be stable if the number of attributes considered
exceeded 20. A Random Forest was trained and tested on Monte Carlo simulations
using a 5-fold cross validation. Finally, the forest was applied on real data and the
outcome of this application was compared to expectations derived from Monte Carlo
simulations. A good agreement between data and Monte Carlo expectations was ob-
served. We would like to note however, that the results presented in this paper are
preliminary since the Random Forest has not yet been optimized. By doing so in the
near future we hope to obtain even better results.
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