
Technische Universität Dortmund
Fakultät Statistik

Extending Model-Based Optimization
with Resource-Aware Parallelization

and for Dynamic Optimization Problems

Dissertation
zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften

von

MSc.
JAKOB RICHTER

Erstgutachter: Prof. Dr. Jörg Rahnenführer
Zweitgutachter: Prof. Dr. Andreas Groll

Contents

1 Introduction 5

2 Symbols and Notation 11

3 Model-Based Optimization (MBO) 15
3.1 Fundamental Framework . 16
3.2 Initial Design . 18
3.3 Surrogate Model . 19

3.3.1 Gaussian Process Regression (Kriging) 20
3.3.2 Other Methods . 24

3.4 Acquisition Functions . 26
3.4.1 Expected Improvement . 28
3.4.2 Confidence Bound . 29
3.4.3 Augmented Expected Improvement 30
3.4.4 Other Acquisition Functions 31

3.5 Termination . 32
3.6 Related Work . 33

4 Parallel MBO 35
4.1 Prerequisites . 35
4.2 Synchronous Parallelization . 39

4.2.1 Multiple Proposals by Multiple Confidence Bounds 40
4.2.2 Surrogate Believer . 41

4.3 Asynchronous Parallelization . 42
4.3.1 Expected Expected Improvement 46
4.3.2 Surrogate Believer . 46

1

Contents

4.4 Related Work . 47
4.5 Resource-Aware Model-Based Optimization 48

4.5.1 Job Scheduler . 50
4.5.2 Scheduling Priority . 51
4.5.3 Resource Estimation . 53
4.5.4 Resource-Aware Knapsack Scheduling 53

5 MBO with Concept Drift 57
5.1 Prerequisites . 57
5.2 Concept Drifts for Dynamic Optimization Problems 58
5.3 Window Approach . 60
5.4 Time as Covariate . 61
5.5 Related Work . 62
5.6 Error Measurement . 63

6 Parallel MBO Benchmark 67
6.1 Objective Functions with Heterogeneous Runtimes 67
6.2 Setup . 69
6.3 Evaluation . 70

6.3.1 Quality of Resource Estimation 71
6.3.2 High Runtime Estimation Quality: rosenbrockd 72
6.3.3 Low Runtime Estimation Quality: rastrigind 77

6.4 Conclusion . 80

7 MBO CD Benchmark 83
7.1 Synthetic Dynamic Objective Functions 83
7.2 Setup . 90
7.3 Evaluation . 91

7.3.1 No Drift . 93
7.3.2 Sudden Drift . 100
7.3.3 Incremental Drift . 105
7.3.4 Drifts combined . 108

7.4 Conclusion . 110

2

Contents

8 Summary 115

Bibliography 119

Appendix A Parallel MBO Benchmark 129
A.1 High Runtime Estimation Quality: rosenbrockd 129
A.2 Low Runtime Estimation Quality: rastrigind 132

Appendix B MBO CD Benchmark 135
B.1 No Drift . 136
B.2 Sudden Drift . 141
B.3 Incremental Drift . 146

3

1 Introduction

Sequential model-based optimization has gained a lot of attention since Jones et al.
(1998) proposed the Efficient Global Optimization (EGO) algorithm. However, the
foundations for EGO have been laid much earlier. To improve the estimations of
gold values in the earth for mining, Krige (1951) pioneered the principle of distance
based estimations. Until then the gold value for a new spot was estimated by
averaging the values of surrounding equidistant probes and unusual high or low
values were “’adjusted’ by arbitrary methods”. Krige (1951) assumed that the gold
value at each point is distributed following a log-normal distribution with different
parameters for the mean and the variance. For any new spots the parameters of
this distribution have to be estimated. These parameters are estimated based on
known values in combination with their distances to the new spot. Even though
the original work by Krige is far from the contemporary understanding of Gaussian
process regression he still lends his name to the method, also known as Kriging.
While the theory of Gaussian processes stems from the 1950s, the estimation of the
parameters of a Gaussian process based on observations, in other words, fitting a
Gaussian process to data, is relatively new and well explained and widely discussed
in Rasmussen et al. (2006). The key idea remains the same as in the original work
by Krige: The outcome for each observation follows a distribution, i.e. the normal
distribution for Gaussian process regression. The parameters of this distribution
are dependent on the location of this observation and have to be estimated based
on known outcomes. Typically for spatial methods, points in the vicinity are
accounted for with a higher weight.

Following the initial motivation of Krige, to find the location where the highest
gold value can be estimated, Kriging became essential for optimization of all kind

5

1 Introduction

of functions. The gold value in the earth can be seen as a function of spatial
coordinates. The same principle can be applied to many scenarios in real life to
formulate optimization problems. The productivity of a factory can be seen as a
function that depends on the number of machines, number of workers and other
variables that have influence on the productivity. In engineering, the stability
of a structure can be seen as a function of the mix of materials, design choices
and production parameters. The lift of an airplane wing can be modeled as a
function depending on different curvature parameters. These examples show that
optimization can be applied in many scenarios. Furthermore, they have in common
that it is unfeasible and in some cases even impossible to try out all possible
settings in order to find an optimal setting. Also there is no evident mathematical
formula that describes the connection between the variables and the objective value.
As Golovin et al. (2017) puts it:

Any sufficiently complex system acts as a black-box when it becomes
easier to experiment with than to understand.

If an evaluation of a single setting causes non-negligible costs, such as time, money,
energy etc., these problems are commonly referred to as Expensive Black-Box
Optimization problems.

If the number of trials is limited, design of experiments is a popular field in statistics
to find a set of points that cover the search space optimally according to a certain
criterion. Statistical methods are used to model the influence of explanatory
variables on the response variable. Such a regression model can estimate the
response variable for new values of the explanatory variables. In this regard, such
a model behaves like a mathematical function itself. Given a vector of explanatory
variables it returns the predicted numerical outcome.

This motivates the usage of such a model as a proxy for optimization, as the
model can be evaluated much faster then the original expensive black-box, making
optimization easier. The idea is, that the optimization of the function derived from
the regression model yields values of the explanatory variables that lead to a value
closer to the true optimum of the response variable than the already tried values.

6

If we assume that the regression model reflects the true interaction between the
explanatory variables and the response, the optimum of the surrogate would give
us the optimal choice of the explanatory variables for the black-box. This idea was
the first approach to model-based optimization.

It is justified to assume that the true interaction between the explanatory variables
and the response cannot be modeled entirely but that the interaction is captured
to a certain degree. We especially care about the accuracy of the regression model
in the area of the optimum. Coming back to the example of Krige, we would probe
for gold especially in areas where the regression model predicts high gold values.
Afterwards, we would use the result of these newly acquired probes to further
improve our regression model. Finally, we would drill again where our updated
regression model predicts the highest gold values. This basically describes the
principle of sequential model-based optimization (SMBO).

Eventually, it is not optimal to only drill where the regression model predicts
the highest gold value because this would prevent the exploration of new areas.
Therefore, instead of using the location that maximizes the surrogate prediction,
we choose the location that maximize an acquisition function. These acquisition
functions combine the surrogate’s mean and uncertainty point estimates into one
value that reflects the “promisingness” of a new location. Thus, maximizing the
acquisition function leads to proposals that are balanced between exploration of
new regions and exploitation of regions where the surrogate predicts an optimum.

SMBO has been applied to optimize the hyperparameter settings for machine
learning methods (Snoek et al., 2012), to optimize machine learning pipelines for
survival analysis (Richter, Madjar, et al., 2019), to optimize production processes,
to guide material studies, in general algorithm configuration (Hutter et al., 2011)
and further more. SMBO is applied to all kinds of expensive black-box optimization
problems where other optimizers that require many evaluations, such as evolutionary
optimizers, fail due to runtime limitations.

In fact, such problems can be highly complex in various terms and each challenge
introduces a new theoretical field of black-box optimization. The cost to obtain an

7

1 Introduction

output can be very high, unknown in advance and vary based on the input. The
output can be noisy and the noise can be heteroscedastic. The relation between
input and output can change over time. The input space can contain categorical or
ordinal values. In this work we will only discuss the optimization of deterministic
objective functions with numeric input.

In this thesis two new MBO methods will be presented. Each tackles a different
problem of black-box optimization with MBO.

The first contribution is RAMBO (Richter, Kotthaus, Bischl, et al., 2016; Richter,
Kotthaus, A. Lang, et al., 2017), which is a framework for parallel resource-
aware model-based optimization. It offers a solution to the problem of evaluating
multiple black-box configurations with different runtimes simultaneously within
MBO. Strategies that tackle this problem can be divided into synchronous and
asynchronous methods. Instead of proposing one configuration in an iterative
fashion, as done by ordinary SMBO, synchronous methods usually propose as
many configurations as there are parallel black-box instances available. Previously
proposed synchronous methods neglect the problem of heterogeneous runtimes
which causes idling, when evaluations end at different times. Asynchronous methods
can be seen as multiple SMBO processes that run independently on each parallel
instance but that share their knowledge about evaluated points. RAMBO is a
synchronous method that uses runtime predictions to propose configurations that
can be evaluated with little idling. As a consequence, RAMBO can evaluate more
configurations than other synchronous parallel MBO methods within the same
time. We show how RAMBO compares against the most common synchronous and
asynchronous approaches on two different sets of synthetic benchmark functions.
One set has easily predictable runtimes and we expect RAMBO to be able to
reduce idling times. The other set has hardly predictable runtimes and serves as
an exemplary worst case. The results show that synchronous and asynchronous
methods each have their advantages and disadvantages and that RAMBO can
outperform common synchronous MBO methods if the runtime is predictable but
still obtains comparable results in the worst case.

8

The second contribution is an extension of MBO towards dynamic optimization
problems. We present two approaches that enable MBO to handle black-box
functions where the relation between input and output changes over time. The
window approach trains the surrogate only on the most recent observations. The
time-as-covariate approach includes the time as an additional input variable in the
surrogate, giving it the ability to learn the effect of the time. We show how the
proposed approaches handle the scenarios of no drift, sudden drift and incremental
drift on a set of synthetic benchmark functions, where the change happens in a
controlled fashion. The results show that the new methods improve the performance
if a drift is present and that the time-as-covariate approach works better on lower-
dimensional problems where it is easier for the surrogate to capture the influence
of the time.

The research leading to this thesis has received funding from the Deutsche Forschungs-
gemeinschaft (DFG) within the Collaborative Research Center SFB 876 – Providing
Information by Resource-Constrained Data Analysis – Project A3. The research on
resource-aware model-based parallelization was done in collaboration with Helena
Kotthaus who also wrote her dissertation (Kotthaus, 2018) partly on this topic.
The work on the concept drift adaptation was supported by discussions with Prof.
Dr. Jian-Jia Chen and Junjie Shi. The maintenance and further development
of mlrMBO (Bischl, Richter, et al., 2017) is an essential part of this work. The R
package mlrMBO offers a versatile MBO toolbox and all developed methods are
available as derivatives of this package.

9

2 Symbols and Notation

All symbols that are used consistently throughout this work are listed below. Index
values i and j are context sensitive. Superscripts are written in brackets to not
be confused with exponents. Model-based optimization is an iterative algorithm
and as a consequence the value of symbols such as θ`, µ̂pθq, ŝpθq, D etc. change
iteratively. For readability an iteration index is suppressed.

Symbol Meaning

Model-based Optimization (MBO)
Θ Domain, search space
d Dimensionality of the search space
θ Input, configuration, optimization parameters, point in Θ
θl Single optimization parameter, l P 1, . . . , d

fpθq : Θ Ñ R Objective function that w.l.o.g. is to be minimized
ν Function value, outcome

fpθ˚q “ ν˚ Global optimum and optimal value of f

θ̂
˚ Estimated point for global optimum

θ` Proposed point to be evaluated
θpiq Already evaluated point, i P 1, . . . , n

µ̂pθq Surrogate model mean prediction
ŝpθq Surrogate model uncertainty as standard deviation

D Design that the surrogate model is trained on
acqpθq Arbitrary acquisition function that, w.l.o.g. has to be maximized

σ2
n Noise variance, nugget effect

σ2
f Signal variance

11

2 Symbols and Notation

Symbol Meaning

Parallel MBO
k Number of workers
q Number of proposals per iteration
b Number of busy workers

θ`piq Proposal i out of q total proposals, i P 1, . . . , q

θ
pjq

busy Proposal that is currently under evaluation, j P 1, . . . , b

ν̃j,busy Temporary fake outcome for the unknown outcome of fpθ
pjq

busyq

D̃ Design that contains temporary fake outcomes
tpθq Runtime: Time needed to evaluate fpθq

t̂pθq Estimated runtime for fpθq

Scheduling
J Set of jobs
pj Priority of job j P J

MBO-CD
t Time since optimization start

t∆ Window size
ft Function at time t

µ̂t Surrogate model mean prediction for time t

ŝt Surrogate model uncertainty for time t

θ˚
t True optimum at time t

θ`
t Proposal for time t

12

The following table lists the most often used abbreviations and the location of their
definition in alphabetical order.

Abbreviation Meaning Definition

AEI Augmented Expected Improvement (3.4.8) p. 30
CB Confidence Bound (3.4.5) p. 29
EEI Expected Expected Improvement (4.3.1) p. 46
EI Expected Improvement (3.4.4) p. 28
FE Fitness Error (5.6.1) p. 64
qCB q-Confidence Bound (4.2.1) p. 40
TEI Temporal Expected Improvement (5.4.3) p. 62

13

3 Model-Based Optimization
(MBO)

In this chapter, the individual components of the MBO framework will be introduced.
In Section 3.1 the fundamental MBO framework will be presented independently
from any assumptions and choices of the surrogate or acquisition function. The
succeeding sections are dedicated to the single components of the MBO framework.
In Section 3.2 the role of the initial design and the definition of the search space is
briefly discussed. Section 3.3 is dedicated to the first building block of the MBO
framework: the surrogate. The Gaussian process regression will be introduced here
since it is used as surrogate throughout this work. Furthermore, the effect of the
choice and configuration of the surrogate on the optimization will be discussed.
The second essential MBO building block, the acquisition function, is the topic of
Section 3.4. The concrete acquisition functions that are of importance in this work
will be discussed here. Finally, the particularities of the termination criteria for
MBO will be discussed in Section 3.5 and related work that was not mentioned
until that point is mentioned in Section 3.6.

The terms (sequential) model-based optimization, or shortly MBO (Hutter et al.,
2011), efficient global optimization (EGO, Jones et al., 1998) and Bayesian (global)
optimization (Močkus, 1975) are often used interchangeable. However, there are
slight differences: MBO is the most general term that is used for the idea of using
surrogates to guide the optimization, efficient global optimization is the term coined
in Jones et al. (1998). MBO is also referred to as Bayesian optimization if Kriging
is used as a surrogate. Kriging is also known as Gaussian process regression.

15

3 Model-Based Optimization (MBO)

3.1 Fundamental Framework

In the following, the fundamental model-based optimization framework will be
introduced. Given an expensive black-box function fpθq : Θ Ñ R the optimization
goal is to find (without loss of generality)

θ˚
“ arg min

θPΘ
fpθq. (3.1.1)

We assume that no further information about the structure of f is known. This
especially includes the absence of derivative information of f . Furthermore and
importantly, f is expensive and thus effectively limiting the number of evaluations
we have to obtain an optimization result. We call Θ the search space. The
dimensionality of Θ is denoted with d P N. Θ has to be bounded. For most parts
in this work Θ is considered a subset of Rd which is not necessarily required by all
methods.

The key idea behind the model-based optimization framework is to use a so-called
surrogate model that predicts the outcomes of f for unknown values of θ. The
general approach is illustrated as a flow chart in Figure 3.1.

(1)
Generate

initial design

(2)
Fit surrogate

model

(5)
Budget

exceeded?

(6)
Return

best point

(3)
Propose

new point(s)

(4)
Evaluate
function

and update
design

yesno

Figure 3.1: General SMBO approach.

The steps are explained in the following:

16

3.1 Fundamental Framework

(1) An initial design of ninit points θpiq (i “ 1, . . . , ninit) is sampled from Θ and
f is evaluated at these points to obtain outcomes νpiq “ fpθpiqq. The design
D “ t

`

θpiq, νpiq
˘

| i “ 1, . . . , ninitu forms the training data for the surrogate
model.

(2) Fit the surrogate model on D, whereas ν serves as the dependent variable.

(3) Obtain a proposal point θ` that will be evaluated on f . Therefore, an
acquisition function is optimized and the optimum serves as the proposal
point θ`. These points should either have a good expected objective value or
a high potential to find new minima in unexplored regions.

(4) Evaluate the proposed points on the objective f to obtain outcome νpi`1q.
Append new evaluations to design: D “ D Y t

`

θpi`1q, νpi`1q
˘

u.

(5) If the budget is not exhausted (and no other termination criterion is met), go
to step (2).

(6) Otherwise, return the proposed solution for the optimization problem.

A detailed discussion for each step can be found in the following sections 3.2 to 3.5.
In Listing 1 the pseudo code is given for sequential MBO.

Algorithm 1 Sequential model-based optimization algorithm with single point
proposal for deterministic functions.
Require: expensive black-box function fpθq : Θ Ñ R, acquisition function

acqpθq : Θ Ñ R
1: sample ninit points from Θ: tθpiq|i “ 1, . . . , ninitu

2: evaluate νpiq “ fpθpiqq for i “ 1, . . . , ninit
3: D Ð t

`

θpiq, νpiq
˘

|i “ 1, . . . , ninitu

4: while budget is not exhausted do
5: fit surrogate model on D to obtain estimators µ̂, ŝ
6: propose new point θ` Ð arg maxθ acqpθq

7: evaluate ν Ð fpθ`q

8: D Ð D Y tpθ`, νqu

9: return optimal setting θ̂
˚

“ arg minθPD fpθq

17

3 Model-Based Optimization (MBO)

3.2 Initial Design

For the initial design two aspects have to be considered: First, the number of points
and secondly, how to sample the points from the search space Θ.

If the search space is purely numeric (Θ Ă Rd), a rule of thumb is ninit “ 4 ¨ d. An
established method to sample the points is to use a space-filling Latin hypercube
sample (LHS, McKay et al., 1979). However, a comparison of the effects of different
sample sizes and sampling strategies, such as LHS or random sample, by Morar
et al. (2017) stated that the optimal initial design varies from problem to problem
and no clear recommendation could be given.

Alternatively, MBO can be initialized with an already evaluated design, which can
be seen as a warm start. If available, this is always preferable, because it brings all
available knowledge about f into the optimization. However, if this design is only
densely populated around a certain area it should be augmented with additional
samples to allow for a reasonable good fit of the initial surrogate model.

In some situations a distribution is given for the location of the optimum. Then
it is beneficial to sample the ninit points according to this a-priori distribution,
because it increases the chance that the surrogate is accurate in the desired region.
However, this should not be confused with rescaling. Rescaling a certain variable
is recommended, if the effect on the outcome of changing this variable by a small
value depends on its value. For example, this is often the case for optimization
parameters θl that are theoretically valid in p0, 8q. A change of θl “ 0.1 to θl “ 0.2
is expected to have the same effect on the outcome as a change of θl “ 100 to
θl “ 200. In those cases we should optimize θ̃l P p´8, 8q and obtain the input θl by
applying the transformation θl “ 2θ̃l as illustrated in Figure 3.2 before evaluating
fpθq. Also other transformations are possible.

18

3.3 Surrogate Model

´3

0.125

´2 ´1 0

1

1

2

2

4

3

8

θ̃l

2θ̃l

Figure 3.2: A transformation of the search space is a practical consideration to
allow the surrogate to fit more accurately in regions where the objective function
is sensitive for changes of a certain parameter.

3.3 Surrogate Model

The most common surrogate used for MBO is Gaussian process regression (also
known as Kriging). This combination dates back to the EGO Algorithm presented
in Jones et al. (1998). Its usage is widespread with various practical results. It has
two desirable characteristics for MBO which are: First, the predicted uncertainty
for known points is 0 for deterministic optimization problems. Second, the further
away a point is from known points, the higher the uncertainty. More details
on the Gaussian process regression are given in Section 3.3.1. One drawback of
Gaussian process regression is that it only poorly handles categorical variables. As
in this work all optimization problems are defined on a purely numerical domain
only a short review of methods for mixed-valued search spaces will be given in
Section 3.3.2.

In this section surrogate models are introduced as machine learning models. This
is motivated by the fact that within the mlrMBO toolbox and within the general
formulation of the SMBO framework (compare Algorithm 1) the surrogate is
interchangeably by any regression method.

For readability and compatibility across the chapters, the variables that contain the
same values will maintain the same notation, although their meaning changes in
the context of the surrogate. The search space Θ becomes the feature space for the

19

3 Model-Based Optimization (MBO)

model and accordingly the design D becomes the training data with feature vectors
(covariates) θ1, . . . , θd and the label vector (outcome) ν. The mean prediction of
the surrogate for input θ is denoted with µ̂pθq and its uncertainty prediction is
denoted with ŝpθq.

The following sections are motivated by the fact that specific knowledge about
certain aspects of the methods used to build the surrogate is helpful to avoid
mistakes that lead to bad optimization performance. It has to be clear how the
surrogate handles different characteristics of the search space Θ and how the
surrogate obtains uncertainty estimations. In contrast to a machine learning task,
where the best method can be simply selected by its predictive performance, for
model-based optimization it is difficult to define a performance measure that reflects
the purposefulness of the surrogate model. Any measure based on averaging the
residuals might put too much emphasis on regions in Θ where accuracy is not
important. After all, the accuracy only has to be high in regions of potential
optima, i.e. where the surrogate predicts a minimal outcome. Additionally, the
uncertainty prediction has to be meaningful in such a way that it converges towards
the noise variance (i.e. 0 for deterministic problems) the more we know about a
specific point and it has to increase the further we are away from known points.

3.3.1 Gaussian Process Regression (Kriging)

The Gaussian process regression is the standard surrogate for model-based op-
timization, especially if referred to by Bayesian optimization. The relationship
between the label ν and the covariates θl is modeled by a Gaussian process with
an a-priori mean function and an a-priori covariance function. The following
description corresponds to the derivations in Rasmussen et al. (2006).

To understand how the regression works, we first acknowledge that a Gaussian
process is completely specified by its mean function m : Θ Ñ R and its covariance
function k : Θ ˆ Θ Ñ R. Accordingly, if we model the objective function f using

20

3.3 Surrogate Model

Gaussian process regression we assume that:

f „ GP pm, kq . (3.3.1)

Following the definition of a Gaussian process, we can now assume that for any
finite set of points, given as matrix X “ pθp1q, . . . , θpnqq1, the outcome

f “ pfpθp1q
q, . . . , fpθpnq

qq
1 (3.3.2)

follows a multivariate normal distribution:

f |X „ N pmpXq, KpX, Xq ` σ2
nIq, with

mpXq “ pmpθ
p1q

X q, . . . , mpθ
pnq

X qq
1

(3.3.3)

and KpX, Zq P RnX ˆnZ as the matrix of all pairwise covariances given by the
function k where the entry at position pi, jq contains the covariance between the
i-th row θ

piq
X in X and the j-th row θ

pjq

Z in Z given by kpθ
piq
X , θ

pjq

Z q. Furthermore, σ2
n

is the noise variance of the outcomes, also called nugget effect, if we assume that
ν “ fpθq ` ϵ with ϵ „ N p0, σ2

nq iid., i.e. the noise is assumed to be homoscedastic.
If the function is assumed to be deterministic, we set σ2

n “ 0. As a consequence, a
single outcome follows a normal distribution:

fpθq „ N pmpθq, kpθ, θq ` σ2
nq. (3.3.4)

Accordingly, mpθq and kpθ, θq directly give us the desired mean prediction µ̂pθq

and uncertainty prediction ŝpθq for any point θ.

So far we specified the Gaussian process without prior knowledge. For Gaussian
regression we look at the Gaussian process that is conditioned on our training
observations of function outcomes ν (as realizations of f) with the corresponding
input values in matrix X from the training data D. For any finite set of random
variables f˚, with the associated values X˚ coming from the conditional Gaussian

21

3 Model-Based Optimization (MBO)

process, the conditional Gaussian distribution can then be derived to:

f˚|X˚, X, f „ N pmpX˚q ` K pX˚, Xq
`

KpX, Xq ` σ2
nI

˘´1
pf ´ mpXqq ,

KpX˚, X˚q ´ KpX˚, Xq
`

KpX, Xq ` σ2
nI

˘´1
KpX, X˚qq.

(3.3.5)

Similar to Equation (3.3.4) the mean prediction µ̂pθq can directly be obtained
from the mean parameter of the distribution and by replacing f with the observed
realizations ν and setting X˚ “ θ1. The same holds for the uncertainty estimation
ŝpθq which is then equivalent to the second parameter of the Gaussian distribution.

Still we need to determine m and k before we can calculate the predictions. For
MBO m is usually set to be a constant (mpθq “ β0) and k is usually calculated
with some distance-based kernel estimator C using the Euclidean distance between
two points. Snoek et al. (2012) propose to use the Matérn 5{2 Kernel which is also
used in the Bayesian optimization framework Spearmint and will also be used for
this work. So we calculate

kpθX , θZq “ σ2
f ¨ Cp|θX ´ θZ |q, with

Cprq “ C5{2prq “

ˆ

1 `

?
5r

ρ
`

5r2

3ρ2

̇

¨ exp
ˆ

´

?
5r

ρ

̇

,
(3.3.6)

σ2
f as the signal variance parameter or also called covariance amplitude (Snoek

et al., 2012) and ρ as the scaling parameter.

If we assume the choice of the kernel as fixed this leaves us with the positive
parameters β0, σ2

f , σ2
n and ρ. These parameters can be obtained by optimizing the

marginal likelihood which is explained in detail in Rasmussen et al. (2006). We
have to note that the maximum likelihood optimization itself forms an optimization
problem which cannot be reliably solved for certain priors by many implementations.
Especially for small values of r the likelihood becomes numerically instable. There-
fore, in mlrMBO points that are too close to each other are avoided. Furthermore,
it can happen that the likelihood maximization leads to values of ρ close to 0, so
that the kernel (see Equation (3.3.6)) estimates a covariance of 0 for nearly all
distances. This has the effect that the prediction is a flat surface with µ̂pθq “ β0

and ŝ2
pθq “ σ2

f `
a

σ2
n.

22

3.3 Surrogate Model

ν
ei

0.0 2.5 5.0 7.5 10.0

−2

0

2

0.0

0.1

0.2

0.3

θ

type

µ

µ̂

ei

type

init

prop

Kernel: gauss, scaled

ν
ei

0.0 2.5 5.0 7.5 10.0

−3

−2

−1

0

1

2

0.00

0.05

0.10

0.15

0.20

0.25

θ

type

µ

µ̂

ei

type

init

prop

Kernel: matern5_2, scaled

ν
ei

0.0 2.5 5.0 7.5 10.0

−3

−2

−1

0

1

2

0.00

0.05

0.10

0.15

0.20

θ

type

µ

µ̂

ei

type

init

prop

Kernel: matern3_2, scaled

ν
ei

0.0 2.5 5.0 7.5 10.0

−3

−2

−1

0

1

2

0.00

0.05

0.10

0.15

θ

type

µ

µ̂

ei

type

init

prop

Kernel: gauss, unscaled

ν
ei

0.0 2.5 5.0 7.5 10.0

−3

−2

−1

0

1

2

0.00

0.05

0.10

0.15

θ

type

µ

µ̂

ei

type

init

prop

Kernel: matern5_2, unscaled

ν
ei

0.0 2.5 5.0 7.5 10.0

−3

−2

−1

0

1

2

0.00

0.05

0.10

0.15

θ

type

µ

µ̂

ei

type

init

prop

Kernel: matern3_2, unscaled

Figure 3.3: Exemplary influence of the kernel on the estimation µ̂ () and ŝ (gray
area). All plots show the surrogate model fitted on the initial design (). In each
column the Kriging is fitted using one of the three kernels Gaussian, Matérn
5{2 and Matérn 3{2. In the top row the input θ is scaled to r0, 1s, whereas for
the bottom row the input remains untransformed. The true objective function
is drawn in a solid line (). The lower part of each plot shows the acquisition
function that is maximized to obtain the next proposal (▲).

Furthermore, it becomes clear that with the choice of the Euclidean distance,
Gaussian process regression is only well defined for a purely real-valued search
space Θ and the length scale of each covariate matters. As a consequence it is often
preferable to scale all covariates θl to r0, 1s, if no further knowledge is available. In
Figure 3.3 a Gaussian process regression is shown for different choices of the Kernel
and with and without scaling θl to r0, 1s. This example demonstrates, that the
scaling of the covariates to r0, 1s strongly influences the predictions. In contrast, the
choice of the kernel does not have such a dramatic impact in this example, as the
predictions appear similar. However, small differences lead to different optima in
the acquisition function and over multiple iterations the generated proposals within
the MBO procedure might differ from optimization runs with different kernels.

23

3 Model-Based Optimization (MBO)

Summing up, we have defined Gaussian process regression for real-valued covariates.
In this work only covariates of such domain will be used. Gaussian regression for
categorical covariates and for mixed domains is a dedicated research topic. However,
in some particular cases common techniques to decode categorical covariates into
numerical covariates, such as one-hot encoding, might work.

3.3.2 Other Methods

As mentioned, Kriging has desirable properties of extrapolation and interpolation.
For purely categorical domains specific distance measures or kernels exist but
their usage for MBO is not widespread and still subject to research (Swiler et al.,
2014; Horn et al., 2019; Ru et al., 2019). A more established way to deal with
categorical variables in Θ is to use an alternative regression method within the
MBO framework. Any regression method that supports categorical covariates and
offers an uncertainty estimation can potentially be used. A popular choice is the
random forest, which was successfully applied by Hutter et al. (2011) and by Bischl,
Richter, et al. (2017) to optimize over mixed-valued search spaces. However, the
random forest has certain drawbacks, which are illustrated in Figure 3.4. The
advantage of not making any assumptions on the covariates and their relationship
to the label comes at a cost of two major drawbacks: First, the random forest
yields no extrapolation and can only predict values within the range of the training
values, as the prediction in unseen areas is only the mean of those observations
that are in the same terminal nodes of the individual trees. Second, uncertainty
estimation of the random forest is the highest where the individual trees have
disagreeing predictions, which is usually the case in areas where the target function
is very steep. Both drawbacks have to be taken into account to avoid proposals in
areas that are not of interest.

In other regression methods the tree approach is used to divide the search space
into purely numerical subspaces. As soon as a node of the tree consists of a purely
numerical space a normal Gaussian regression can be fitted. Such a method is
proposed as Bayesian Treed Gaussian Process in Gramacy et al. (2008). Originally,

24

3.3 Surrogate Model

ν
cb

0.0 2.5 5.0 7.5 10.0

−3

−2

−1

0

1

2

−3

−2

θ

type

init

prop

type

µ

µ̂

cb

Iter 1

ν
cb

0.0 2.5 5.0 7.5 10.0

−3

−2

−1

0

1

2

−3

−2

θ

type

µ

µ̂

cb

type

init

prop

seq

Iter 2

ν
cb

0.0 2.5 5.0 7.5 10.0

−3

−2

−1

0

1

2

−3.0

−2.5

−2.0

−1.5

−1.0

θ

type

µ

µ̂

cb

type

init

prop

seq

Iter 3

Figure 3.4: Same initial situation as in Figure 3.3. Here, we see three exemplary
MBO iterations with a random forest with 100 trees and a minimal node size of
one as surrogate model. In this example, the chosen acquisition function has to
be minimized. In iteration 1 the wide plateau of the acquisition function leads to
a proposal that is close to an already existing one. In iteration 2 the acquisition
function has its local minima where the mean prediction has the highest jump.

it is developed to allow fitting non-stationary processes. The non-stationary process
is split in the definition space Θ using a specialized tree. However, as Snoek (2013)
pointed out, a problem lies at the borders of each segmentation. The Gaussian
process that is fitted within each tree node is not aware of the points in neighboring
segments. As a result the uncertainty is high at the borders seen from both sides.
Therefore, a point in such regions will be often selected by the acquisition function
and evaluating this point in one segment will not decrease the uncertainty in the
neighboring segment. However, in each MBO iteration the segmentation of Θ can
be different, potentially lowering the chance of over-evaluating certain areas. Assael
et al. (2015) propose to only split at the observations instead of between them and
to include the observations in both tree nodes.

Forrester and Keane (2009) consider the use of an SVM as a surrogate but note that
the uncertainty estimation will converge to the noise of the real function. This is a
problem with many surrogates (including tree based surrogates). Their uncertainty
does not reflect the uncertainty of the model but only the noise in the underlaying
training data. This makes the use of many acquisition functions problematic as
they rely on higher uncertainty in regions where no observations are present.

25

3 Model-Based Optimization (MBO)

3.4 Acquisition Functions

As mentioned, the idea of model-based optimization is that it is cheaper to optimize
the surrogate than the true objective. Optimizing the surrogate directly would
mean that instead of fpθq we minimize µ̂pθq. If we assume that the surrogate is
accurate, this would be a good idea. But SMBO is an iterative process for the
reason to improve the accuracy in relevant areas of Θ. The strategy to evaluate the
point θ` that minimizes µ̂pθq in each iteration would likely not lead to an increased
accuracy. For most situations such θ` would be identical or very close to the best
observed point in D, as illustrated in Figure 3.5.

ν
m

ean

0.0 2.5 5.0 7.5 10.0

−3

−2

−1

0

1

2

−2

−1

0

1

θ

type

init

prop

type

µ

µ̂

mean

Iter 1

ν
m

ean

0.0 2.5 5.0 7.5 10.0

−3

−2

−1

0

1

2

−2

−1

0

1

θ

type

init

prop

seq

type

µ

µ̂

mean

Iter 2

ν
m

ean

0.0 2.5 5.0 7.5 10.0

−3

−2

−1

0

1

2

−2

−1

0

1

θ

type

init

prop

seq

type

µ

µ̂

mean

Iter 3

Figure 3.5: Visualization of MBO iterations, with the same starting conditions as
in Figure 3.3. The mean response is drawn as a dashed line in the upper pannel.
The lower panel shows the acquisition function which is identical to the mean
response in this example. The point that minimizes the mean response is drawn
as a triangle (▲). Once it is evaluated and part of the design D it is drawn as a
rectangle (■).

To avoid this pure exploitation of the global minimum in µ̂, the optimization of
the acquisition function replaces the direct optimization on µ̂. The aim of the
acquisition function (also called infill criterion) is to deliver a good heuristic that
drives the selection of the next proposal θ` within the MBO framework. To obtain
the next proposal the acquisition function is maximized (or minimized, depending
on the formulation):

θ` :“ arg max
θ

acqpθq. (3.4.1)

In other words, the acquisition function should be high where there is a high chance
of a global minimum of f . To achieve that, most acquisition functions combine the

26

3.4 Acquisition Functions

surrogates estimation of the outcome µ̂ and the point-wise uncertainty ŝ, following
the idea that the acquisition function should be high for low values of µ̂ and/or
high values of ŝ. Various acquisition functions are discussed in the literature, whilst
the expected improvement (EI) arguably is the most popular choice. However, the
EI is built on the assumption that the posterior of ν is normally distributed. This
cannot always be justified and motivates the choice of other acquisition functions
such as the confidence bound.

Optimization of the acquisition function It is assumed that the surrogate yields
cheap predictions µ̂ and ŝ and as a consequence the evaluation of the acquisition
function is also cheap. However, the optimization of the acquisition function forms
its own optimization problem. For small and simple search spaces the acquisition
function can be optimized reliably. Unfortunately, for high-dimensional search
spaces it still remains a challenge because of the multimodality of the acquisition
function and the curse of dimensionality. Additionally, as certain surrogates such
as the random forest yield a discontinuous acquisition function, the use of gradient-
based optimizers is restricted. Therefore derivative-free optimizers such as the
evolutionary search algorithms CMA-ES (Hansen et al., 2001) are a popular choice.
Also extensive iterative random search strategies are applied. The focus search that
is used in mlrMBO (Bischl, Richter, et al., 2017) and also in this work falls into this
category. In the default setting it evaluates a random design of 1000 points on the
search space. The found optimal point then serves as the center of the new search
space that is 1

4th of the size in each dimension. These two steps are repeated five
times.

As a side remark, in Section 3.3.1 it was stated that in order to obtain the
Kriging hyperparameters a likelihood is maximized. It was also mentioned that
this optimization can lead to constant predictions for µ̂ and ŝ. All presented
acquisition functions are only dependent on these two values and as a consequence
the acquisition function will be constant if these values are constant across Θ. In
this case the optimization of a constant acquisition function will return a random
point as θ`. This problem was also highlighted in Benassi et al. (2011). They
propose a Bayesian approach to incorporate the uncertainty of these parameters

27

3 Model-Based Optimization (MBO)

into the calculation of the expected improvement, which results in a more stable
optimization. In many practical implementations (also in the R-package mlrMBO)
this problem is ignored with the hope that the design is big enough to reliably
maximize the likelihood and obtain Kriging parameters that do not yield constant
predictions.

3.4.1 Expected Improvement

The expected improvement is defined as the expected value of the potential im-
provement Ipθq:

EIpθq :“ EpIpθqq, (3.4.2)

whereas Ipθq is the random variable that models the improvement over the currently
best observed function value νmin:

Ipθq :“ max tνmin ´ fpθq, 0u . (3.4.3)

Here, fpθq is interpreted as a random variable as in equation (3.3.4). Under
the same assumptions as for the Gaussian process regression, fpθq is normally
distributed with fpθq „ N pµ̂pθq, ŝ2

pθqq. Under this assumption, EIpθq can be
expressed analytically (Jones et al., 1998) in closed form as

EIpθq “ pνmin ´ µ̂pθqq Φ
ˆ

νmin ´ µ̂pθqq

ŝpθq

̇

` ŝpθqϕ

ˆ

νmin ´ µ̂pθq

ŝpθq

̇

, (3.4.4)

where Φ and ϕ are the distribution and density function of the standard normal
distribution.

In Figure 3.6 an exemplary optimization process with three iterations is given,
where the EI is used as acquisition function. This example demonstrates, that the
EI leads to exploratory (Iteration 1) and also exploitative proposals (Iteration 2
and 3) which in the consequence can lead to a fast optimization progress.

28

3.4 Acquisition Functions

ν
ei

0.0 2.5 5.0 7.5 10.0

−3

−2

−1

0

1

2

0.00

0.05

0.10

0.15

0.20

0.25

θ

type

µ

µ̂

ei

type

init

prop

Iter 1

ν
ei

0.0 2.5 5.0 7.5 10.0

−3

−2

−1

0

1

2

0.00

0.05

0.10

0.15

θ

type

µ

µ̂

ei

type

init

prop

seq

Iter 2

ν
ei

0.0 2.5 5.0 7.5 10.0

−3

−2

−1

0

1

2

0.00

0.02

0.04

θ

type

µ

µ̂

ei

type

init

prop

seq

Iter 3

Figure 3.6: Visualization of MBO iterations, with the same starting conditions as
in Figure 3.3. The EI acquisition function is drawn below as a dashed line ().
The optimal point of the acquisition function is drawn as a triangle (▲) at the
respective position on the true outcome of the objective function. Once it is
evaluated it is drawn as a rectangle (■).

3.4.2 Confidence Bound

A mathematically simpler approach to balance µ̂pθq and ŝpθq for a point θ is given
by the lower confidence bound:

CBpθ, λq “ µ̂pθq ´ λŝpθq, (3.4.5)

where λ ą 0 is a hyperparameter that controls the “exploration vs. exploitation”
trade-off. A higher value of λ implies more exploration. In Figure 3.7 the CB is
illustrated for λ “ 2. Note that for readability, in this formulation CB is actually

ν
cb

0.0 2.5 5.0 7.5 10.0

−3

−2

−1

0

1

2

−4

−2

0

θ

type

init

prop

type

µ

µ̂

cb

Iter 1

ν
cb

0.0 2.5 5.0 7.5 10.0

−3

−2

−1

0

1

2

−4

−3

−2

−1

0

1

θ

type

µ

µ̂

cb

type

init

prop

seq

Iter 2

ν
cb

0.0 2.5 5.0 7.5 10.0

−3

−2

−1

0

1

2

−3

−2

−1

0

1

θ

type

µ

µ̂

cb

type

init

prop

seq

Iter 3

Figure 3.7: The same objective function and settings as in Figure 3.6 but with
confidence bound with λ “ 2 as acquisition function. Here, the CB is drawn as
a minimization problem for an easier intuition.

29

3 Model-Based Optimization (MBO)

minimized, contrary to our definition of the acquisition function. To comply with
the definition the CB is multiplied with ´1.

3.4.3 Augmented Expected Improvement

If the optimization problem is stochastic, i.e.

θ˚
“ arg min

θPΘ
fpθq ` ε, (3.4.6)

with ε „ Np0, σ2
nq iid., the previous acquisition functions are not an optimal choice

because they do not account for the noise in the observed function outcomes. For
stochastic optimization special acquisition functions are proposed. The augmented
expected improvement (Huang et al., 2006) is a popular choice and extends the
expected improvement (Section 3.4.1).

Instead of using the best observed function value νmin to calculate the improvement
it uses the effective best solution:

θ˚˚ :“ arg min
θPD

µ̂pθq ` c ¨ ŝpθq, (3.4.7)

with c as a tuning parameter that is usually set to 1. It adds an uncertainty term
to each observed function value to obtain a pessimistic estimate. An optimistic
reference value would prevent re-evaluation of outcomes that perform well just due
to noise.

The augmented expected improvement is calculated similarly to the EI as follows:

AEIpθq “ pµ̂pθ˚˚
q ´ µ̂pθqq ¨ Φ

ˆ

µ̂pθ˚˚q ´ µ̂pθqq

ŝpθq

̇

` ŝpθq ¨ ϕ

ˆ

µ̂pθ˚˚q ´ µ̂pθq

ŝpθq

̇

¨

ˆ

1 ´
σn

a

σ2
n ` ŝ2

pθq
loooooomoooooon

correction

̇

, (3.4.8)

30

3.4 Acquisition Functions

with σ2
n denoting the variance of the random error (nugget effect) in the Kriging

model. The higher the model uncertainty ŝ2
pθq, the smaller the correction term.

The closer ŝ2
pθq gets to σ2

n, the bigger the correction. This means that the AEI is
decreased in areas where the surrogates uncertainty estimation is close to noise of
the function. This avoids additional evaluations in areas where the surrogate has
sufficient knowledge. The example in Figure 3.8 shows that the AEI favors more
exploitative evaluations to increase the model certainty in a specific area.

ν
aei

0.0 2.5 5.0 7.5 10.0

−3

−2

−1

0

1

2

0.000

0.025

0.050

0.075

θ

type

init

prop

type

µ

µ̂

aei

Iter 1

ν
aei

0.0 2.5 5.0 7.5 10.0

−3

−2

−1

0

1

2

0.00

0.02

0.04

0.06

θ

type

init

prop

seq

type

µ

µ̂

aei

Iter 2

ν
aei

0.0 2.5 5.0 7.5 10.0

−2

0

2

0.00

0.02

0.04

0.06

θ

type

init

prop

seq

type

µ

µ̂

aei

Iter 3

Figure 3.8: The same objective function as in Figure 3.6 but with the augmented
expected improvement as acquisition function. The Kriging parameter σ2

n is fixed
to 0.5 which results in an overall higher uncertainty estimation (gray area).

In this example we set σ2
n “ 0.5 even though the function is deterministic. In

practice the noise variance is often not known and will be estimated as one parameter
of the Kriging regression. Other surrogates might not be able to give an estimate
for σ2

n. In such a case one could argue that the residual variance can be taken as a
replacement.

3.4.4 Other Acquisition Functions

The presented acquisition functions just reflect a selection of the most commonly
used ones. There is also active research on this field. In some early texts the
probability of improvement is often suggested as an acquisition function but as
it only maximizes the probability and neglects the amount of improvement it is
known to not work well (Jones, 2001). In Srinivas et al. (2012) an optimal choice for
the λ parameter of CB is inferred under certain conditions. In the overview paper

31

3 Model-Based Optimization (MBO)

by Shahriari et al. (2016) other popular strategies such as Thompson sampling
(TS) and entropy search (ES) are mentioned. For TS the acquisition function is a
sample of the conditional Gaussian process and it is assumed that this strategy
has an exploratory characteristic. ES measures the expected information gain from
evaluating a certain point but can only be calculated for discrete search spaces.
The predictive entropy search removes this problem and can be calculated via MC
sampling. It is also highlighted that no single acquisition function works best over
all problems and that in fact the optimal criterion can change during the course
of optimization. Therefore, strategies that combine multiple acquisition functions
such as the entropy search portfolio have been proposed.

3.5 Termination

Usually the termination of the MBO procedure is defined by a budget. This can
either be the number of optimization iterations, function evaluations, a maximum
time span or a combination of those. It is not suggested to terminate based on the
progress that is made in the last number of iterations, because it can happen that
the progress appears to be zero before a jump happens. If MBO does exploratory
evaluations the best found value does not necessarily improve over a number of
iterations but the overall knowledge increases and a jump into a new valley becomes
more likely. Another argument against progress-based termination criteria is that
popular assumptions like convexity or Lipschitz continuity on the objective function
cannot be made, although Pintér (2013) states that the Lipschitz constant can
be estimated during optimization and it can be assumed that it holds for most
objectives. Anyhow, it is impossible to make accurate conclusions about the future
progress of an ongoing optimization based on the past optimization path and
therefore we only use budget-based termination in this work.

Calculation of the Final Result When the optimization has terminated, the final
result θ̂

˚ has to be determined. If the function is deterministic (i.e. σ2
n “ 0) the

32

3.6 Related Work

most common option is to choose the point θpiq from the design D that yielded the
minimum value for ν.

Another option is to determine the point θ that minimizes the surrogate mean
prediction µ̂pθq, with the drawback that the function value is uncertain unless we
do obtain it in an additional evaluation. In case this evaluation reveals that the
last value is worse than the best point from the design, we would return the best
point from the design.

In case the function is stochastic, each observation in the design does not reflect
the true mean of the objective function. Following the first presented strategy
could lead to a result that was just chosen because the one evaluation yielded the
best outcome “by chance”. If we obtain θ̂

˚ by minimizing µ̂pθq we risk to obtain a
result in an area where the surrogate is uncertain. To avoid that we may restrict
the minimization to the points we already know:

θ̂
˚ :“ arg min

θPD
µ̂pθq. (3.5.1)

In other words, we assume that for already evaluated points the surrogate mean
prediction is close to the true mean of the objective function.

3.6 Related Work

Model-based optimization and Bayesian optimization is subject of recent and
ongoing research.

Besides the R-package mlrMBO (Bischl, Richter, et al., 2017), a further major
software contribution is the SMAC (Hutter et al., 2011) framework that uses
random forests as a surrogate and promotes itself to efficiently optimize over wide
categorical search spaces. The Python package hyperopt (Bergstra et al., 2013)
does not use a surrogate that models the function outcome but uses a tree-structured
Parzen-estimator that yields the desired probabilities for the EI directly.

33

3 Model-Based Optimization (MBO)

Adoptions and special methods for various scenarios have been proposed to the
model-based optimization framework. The following section gives a brief overview
of interesting related topics that are not dealt with in this thesis.

Sometimes a cheaper objective function exists that correlates with the expensive
objective function. In Huang et al. (2006) and Forrester, Sóbester, et al. (2007)
Co-Kriging is used to incorporate the knowledge of outcomes of the cheaper function
to estimate and optimize the expensive function and as a consequence, reduce
the number of necessary expensive function evaluations. In Richter (2015) the
method is generalized to be used for arbitrary surrogates and for an array of cheaper
objective functions that increase in cost and fidelity representing the expensive
objective. This is particularly practical for optimizing the hyperparameters of
machine learning methods as cheaper objective functions of lower fidelity can be
acquired by evaluating the performance of the machine learning method on a
subsample of the training data.

The performance of MBO methods on high-dimensional optimization problems can
still be seen as doubtful as there are little publications on real applications on that
topic. Following the curse of dimensionality, the number of design points needed
by the surrogate to model the objective increases dramatically. As pointed out in Z.
Wang et al. (2013) and Wang (2016) usually not all dimensions have a significant
influence on the outcome. Therefore they propose to transform the design into a
lower dimension using a random projection in each iteration. On a set of synthetic
functions Wang (2016) and Munteanu et al. (2019) were able to show that for
selected problems the optimization on the lower dimensional projections can still
reflect the optimization problem and can be handled better by the surrogate.

34

4 Parallel MBO

In this chapter the adaptations that are necessary to enable the MBO framework
to evaluate multiple black-boxes in parallel are presented. Section 4.1 gives the
motivation for parallel MBO and introduces some specific terminology and key
concepts. The concepts can be divided in synchronous (Section 4.2) and asyn-
chronous (Section 4.3) methods. Each section presents the specific methods used in
this thesis, whereas the newly proposed synchronous method RAMBO is presented
in its own Section 4.5. The RAMBO framework was first presented in Richter,
Kotthaus, Bischl, et al. (2016) and extended with the priority refinement in Richter,
Kotthaus, A. Lang, et al. (2017).

4.1 Prerequisites

As already stated, MBO is a popular technique for global optimization of expensive
black-box functions. Deviating from the sequential formulation that was given in
Chapter 3 and that is depicted in Figure 4.1, it is often indispensable to apply
parallelization to speed up the optimization. This is usually achieved by evaluating

θp1q θp2q θp3q θp4q θp5q θp6q θp7q θp8q

MBO Point Proposal

t

Figure 4.1: Sequential MBO on one worker.

35

4 Parallel MBO

as many different input configurations of the objective function per iteration as
there are available workers that can evaluate the black-box.

In the context of algorithm configuration (i.e. optimization of parameters of a
computer algorithm) such worker usually is a single core of a CPU that evaluates
the algorithm exclusively. It has to be noted that many algorithms can make use
of parallel hardware systems themselves. For instance, in machine learning, the
performance of a specific method and its hyperparameter setting is usually evaluated
by conducting a k-fold cross-validation. These k folds form independent problems
that can be evaluated in parallel. Even on a smaller scale a single evaluation can
often be parallelized, e.g. for a random forest, each single tree can be constructed
independently and can form a separate process. These independent processes
can be parallelized naturally. Similar examples can be found for many objective
functions. Nevertheless, functions remain that cannot be parallelized or that cannot
be parallelized to to an extend that makes use of all resources. For instance, if we
have an implementation of an objective function (e.g. a machine learning algorithm)
that can be evaluated on one multi-core system but not on multiple computers, we
would want to evaluate this algorithm in parallel on all available computers in a
cluster. Therefore we need an additional layer of parallelization. In the following,
we ignore any possible internal parallelization of the objective and assume that
parallel evaluation of the objective during optimization is necessary in order to
utilize all available resources.

Definition 4.1.1. The instance that evaluates the objective function
will be called worker, no matter if it is a single CPU or a group of
CPUs within a bigger system. The total number of available workers
will be denoted with k.

The focus of this chapter is to introduce methods that optimize an objective function
in a situation where multiple workers are available.

The proposal of multiple optimization parameters in one MBO iteration is topic
of various publications which are summarized in Section 4.2. If the number of
such multi-point proposals within one iteration equals the number of available

36

4.1 Prerequisites

workers, we call this synchronous parallelization. The proposal of multiple points
per iteration is also called batch proposal. The parallel evaluation of a batch leads
to problems if runtimes of the objective function are heterogeneous. As depicted in
Figure 4.1, heterogeneous runtimes do not create a problem for sequential MBO,
regarding worker utilization. Unfortunately, as shown in Figure 4.2, if the same
configurations were evaluated in parallel, idling times would occur, because some
workers finish faster than others.

θp1q

θp2q

θp3q

θp4q

θp5q

θp6q

θp7q

θp8q

A

B

C

D

synchronous multi-point proposal

idling

t

Figure 4.2: Parallel MBO with synchronous multi-point proposal on four workers.
Black boxes represent time intervals with evaluations. Red boxes represent time
intervals with idling.

Definition 4.1.2. A single evaluation of a proposal θ`piq on the objec-
tive function f forms a job.

Workers that finish earlier than others of the same batch will idle until all workers
have finished their jobs and the MBO procedure generates a new batch of proposals.
In consequence, resources are wasted by waiting, because the time could instead
be used to evaluate more configurations of the objective function.

Care has to be taken to propose and evaluate configurations in such a way that
idle times are avoided. This will ultimately lead to a faster optimization as more
evaluations can be carried out in the same amount of time. The strategy to avoid

37

4 Parallel MBO

idling presented in this thesis is based on applying common scheduling approaches
on a set of proposed points. It is described in detail in Section 4.5.

Another approach to avoid idling times is to establish an asynchronous paralleliza-
tion. Here, all workers share the knowledge about previously evaluated points and
points that are currently under evaluation. Based on this information each worker
generates its own proposal. Therefore, this approach efficiently eliminates idling
times as illustrated in Figure 4.3. This comes with the challenge to take the ongoing

θp1q

θp2q

θp3q

θp4q

θp5q

θp6q

θp7q

θp8qA

B

C

D

asynchronous proposals

t

Figure 4.3: Asynchronous MBO on four workers.

evaluations into consideration for the point proposal. If ongoing evaluations are
neglected, it can happen that a new proposal is very similar to a point that is under
evaluation. The proposal is generated because the uncertainty in the proximity
of the point under evaluation is still estimated to be high. Different strategies to
incorporate points that are under evaluation into the proposal are explained in
Section 4.3.

As a final remark to the introduction: If the evaluation of the objective function
can be efficiently parallelized itself, it should be considered to do so, instead
of parallelizing the optimization. The profit that each evaluation brings to the
optimization is the highest for sequential MBO, because in each iteration the
one single proposal is generated based on maximal knowledge, i.e. all previous
evaluations. However, for multiple proposals within a single iteration each additional

38

4.2 Synchronous Parallelization

proposal is “just an elaborate guess”, which lowers the expected profit of each
additional evaluation. Therefore, reducing the number of parallel proposals makes
the optimization more efficient per evaluation.

4.2 Synchronous Parallelization

We have defined the sequential MBO procedure in Listing 1. It becomes clear that
each iteration depends on the results of the previous iteration. Therefore, it is
sequential by design and there is no apparent way to make use of multiple workers,
e.g. parallel hardware systems, within this algorithm.

In a scenario where k workers are available, a natural idea is to propose k different
configurations in each MBO iteration. This is called synchronous parallelization
because at each iteration the results of the evaluations of the objective function
are fed back to the surrogate synchronously. There are various strategies to obtain
multiple proposals in each iteration. For importance in this work are the qCB
method (Hutter et al., 2012) and the Kriging believer approach (Ginsbourger,
Le Riche, et al., 2010). Others are listed as related work in Section 4.4.

Multi-point proposals derive not only one single proposal θ` from a surrogate model,
but q proposals θ`p1q, . . . , θ`pqq simultaneously. The q proposed points should be
sufficiently different from each other to avoid multiple evaluations of nearly identical
input configurations. The determination of what is “sufficiently different” is a
major concern. Since f is a black-box, a slight change of θl can result in a nearly
identical outcome, or in a completely different outcome of f . Although we treat
f as a black-box, we assume the first case, i.e. that the function is “sufficiently
smooth”.

39

4 Parallel MBO

4.2.1 Multiple Proposals by Multiple Confidence Bounds

The qCB criterion is one of the simplest methods to acquire multiple proposals. It
was introduced by Hutter et al. (2012) as follows:

qCBpθ, λjq “ µ̂pθq ´ λj ŝpθq , with λj „ ExppΛ´1
q (4.2.1)

and is an intuitive extension of the CB criterion (see Section 3.4.2).

To obtain q proposals we first sample q values λ1, . . . , λq from the exponential
distribution with an expected value of Λ (e.g. Λ “ 2). This results in q different
acquisition functions. Each can be optimized independently and will lead to q

different proposals θ`p1q, . . . , θ`pqq.

Since the λj controls the impact of the standard deviation, sampling multiple λj

varies the trade-off between exploration and exploitation of each proposal. It has
to be noted that the choice of Λ´1 as the parameter of the exponential distribution
can have a high effect on which points are proposed, similar to the choice of λ for
the normal CB criterion. A low value of Λ results in low values λi which result
in exploitative proposals that are close to minima of the surrogate. A high values
of Λ results in high values λi which generates exploratory proposals. There is no
guarantee that proposals obtained by different values of λ are sufficiently different
from each other, as illustrated by Figure 4.4.

ν
cb

0.0 2.5 5.0 7.5 10.0

−3

−2

−1

0

1

2

−1

0

1

θ

type

init

prop

type

µ

µ̂

cb

λ1 = 1

ν
cb

0.0 2.5 5.0 7.5 10.0

−3

−2

−1

0

1

2

−2

−1

0

1

θ

type

init

prop

type

µ

µ̂

cb

λ1 = 2

ν
cb

0.0 2.5 5.0 7.5 10.0

−3

−2

−1

0

1

2

−3

−2

−1

0

1

θ

type

init

prop

type

µ

µ̂

cb

λ1 = 4

Figure 4.4: The same objective function and settings as in Figure 3.6 but with the
qCB acquisition function and three different values for λj. We see that in this
example, even though the λ values vary, nearly the same points are proposed.

40

4.2 Synchronous Parallelization

Algorithm 2 Surrogate Believer Multi-point MBO Algorithm
Require: expensive black-box function fpθq : Θ Ñ R, acquisition function

acqpθq : Θ Ñ R
1: sample ninit points from Θ: tθpjq | j “ 1, . . . , ninitu

2: evaluate νpjq Ð fpθpjqq for j “ 1, . . . , ninit
3: D Ð t

`

θpjq, νpjq
˘

| j “ 1, . . . , ninitu

4: while budget is not exhausted do
5: D̃ Ð D
6: for i P t1, . . . , qu do
7: fit surrogate model on D̃
8: propose new point θ`piq Ð arg maxθ acqpθq

9: ν̂piq
Ð fpθ`piqq

10: D̃ Ð D̃ Y t

´

θ`piq, ν̂piq
¯

u

11: evaluate νpiq Ð fpθ`piqq in parallel for i “ 1, . . . , q
12: D Ð D Y t

`

θ`piq, νpiq
˘

|i “ 1, . . . qu

13: return optimal setting θ̂
˚

“ arg minθPD fpθq

4.2.2 Surrogate Believer

The name Kriging believer which was coined by Ginsbourger, Le Riche, et al.
(2010) is a bit unfortunate because the method can be applied for any surrogate
method. Therefore, it will be called surrogate believer in this work. In theory it
can also be used with any acquisition function, although it is most commonly used
in connection with the expected improvement.

It extends the sequential MBO method with additional steps outlined in Algorithm 2.
The first point θ`p1q is proposed using the acquisition function (e.g. EI), exactly as
in the sequential MBO method. Now, to obtain a second proposal, the design D
of evaluated points is extended with θ`p1q and a fake value for ν. This fake value
is obtained from the surrogate mean prediction for this proposal: ν̂p1q

“ µ̂pθ`p1qq.
The design containing the fake value(s) is denoted as D̃. This decreases the model
uncertainty around θ`p1q. In effect, the EI in this area decreases so that the
following proposals will be not in the direct vicinity. Afterwards, the surrogate is
trained on D̃ and the acquisition function is used to obtain the second proposal
θ`p2q. To obtain further proposals we continue the same way and add θ`p2q and

41

4 Parallel MBO

ν
ei

0.0 2.5 5.0 7.5 10.0

−3

−2

−1

0

1

2

0.00

0.05

0.10

0.15

0.20

0.25

θ

type

µ

µ̂

ei

type

design

proposal

θ+ (1)

ν
ei

0.0 2.5 5.0 7.5 10.0

−3

−2

−1

0

1

2

0.00

0.02

0.04

θ

type

µ

µ̂

ei

type

design

proposal

θ+ (2)

ν
ei

0.0 2.5 5.0 7.5 10.0

−3

−2

−1

0

1

2

0.0000

0.0025

0.0050

0.0075

θ

type

µ

µ̂

ei

type

design

proposal

θ+ (3)

Figure 4.5: The same objective function and settings as in Figure 3.6. Here, we
create q “ 3 proposals after the initial design with the surrogate believer approach.
The EI is used as acquisition function and drawn on the bottom of each panel.
The first panel shows the initial design () and the obtained proposal (▲). The
proposal is not evaluated but included as a temporary fake value in the design in
the second panel. Since the fake value is taken from the mean prediction () the
new point in the temporary design does not change the mean prediction but only
the estimated uncertainty (gray area). The second proposal is obtained from
maximizing the EI that is based on the temporary design. The third proposal is
generated likewise by including both previous fake values in the design.

the fake value ν̂p2q
“ µ̂pθ`p2qq to the design D̃. These steps are continued until all

desired q proposals are generated. In Figure 4.5 these steps are visualized for q “ 3
proposals after the initial design.

4.3 Asynchronous Parallelization

Asynchronous execution approaches the problem of parallelizing MBO from a
different angle. In the synchronous case, the problem can occur that an evaluation
of the objective function takes much longer than the others. This results in idle
workers, as a new batch of evaluations is only started after all evaluations have
finished.

Instead of calculating the set of proposals in a single batch, in the asynchronous
setting each proposal is generated on each worker independently. Instead of waiting
for a new set of proposals, each worker calculates its own proposal θ`piq and evaluates
it directly. This means that whenever one worker has finished its evaluation it can

42

4.3 Asynchronous Parallelization

directly start with the next one, therefore effectively reducing idle times to zero.
Figure 4.3 on page 38 illustrates this method for four workers.

Asynchronous MBO introduces new challenges in comparison to its synchronous
counterpart. On a technical side, each worker has to be able to access the design D of
all evaluated points. Some asynchronous methods require additional communication
between workers, as we will see. The main concern is, similar to multi-point proposal
for synchronous MBO, to not evaluate similar points on multiple workers at the
same time. However, this challenge occurs in different forms in asynchronous MBO.
These challenges can be differentiated in three cases:

Case A: A worker finishes while all others are evaluating jobs. This is the most
considered case in literature on asynchronous optimization. Here, one worker has
just finished evaluating a job at tnow and is about to generate a new proposal to
evaluate. In this case the worker has the knowledge of all evaluations completed
until time point tnow. Also the additional knowledge about the input configurations
θ`piq that are currently under evaluation is completely available.

Case B: A worker finishes while at least one worker is generating a proposal. This
case seems to be neglected in literature. It can be argued that it does not need to
be taken into account because the runtime of a single job is much longer than the
generation of a proposal. Therefore, the chance that this case occurs is so small
that it can be neglected. However, the chance that the termination of a job falls
into the time window of another worker generating a proposal increases with the
amount of used workers. The chance additionally increases because, depending on
the method, the generation of a proposal takes longer the more pending evaluations
have to be taken into account.

Case C: Multiple workers start the proposal at the same time. At first glance
this appears to be a very improbable case. However, this case occurs if we start
all workers on the optimization on a given design D at the same time, e.g. at the
beginning of the optimization with a given initial design.

43

4 Parallel MBO

ν
ei

0.0 2.5 5.0 7.5 10.0

−3

−2

−1

0

1

2

0.00

0.05

0.10

0.15

θ

type

µ

µ̂

ei

type

design

proposal

Proposal on worker A

ν
ei

0.0 2.5 5.0 7.5 10.0

−3

−2

−1

0

1

2

0.00

0.05

0.10

θ

type

µ

µ̂

ei

type

design

proposal

Proposal on worker B

Figure 4.6: In this example worker A generates a proposal (▲) based on an initial
design () of five points using the EI acquisition function (drawn at the bottom).
Worker B generates a proposal in the same way with an additional point in the
design. We can see that the additional point changes the EI but not the proposal
that is generated.

The easiest solution is to use a stochastic proposal generation mechanism. This can
be a surrogate that is stochastic (e.g. the random forest) or a stochastic acquisition
function, e.g. the CB criterion with a randomly sampled value for λ similar to the
multiple proposals by multiple confidence bounds in Section 4.2.1 or both options
combined as proposed in Hutter et al. (2012). If the proposals are diverse for the
same given design D, it will prevent the evaluation of similar points for all presented
cases and there is no direct need to include the knowledge of pending evaluations.
However, it has the drawback that not all available knowledge is incorporated in
the proposal generation.

If the proposal mechanism is deterministic, as it would be if we combined the
Gaussian process regression as surrogate with the expected improvement, two
proposals generated on the same design D will be identical. Even if the designs are
different, the obtained proposal still can be very similar as the example in Figure 4.6
demonstrates for an exemplary Case A. Nearly identical proposals can occur if
a point that does not affect the optimum of the acquisition function is added to
the design. Such a point might be far away from the optimum of the acquisition
function and the according outcome ν might not indicate a global minimum. If
the optimum of the acquisition function does not change with a new point, the
subsequent proposal also does not change. We recall that for Gaussian process
regression the influence of a training point (e.g. the evaluation of worker B that is

44

4.3 Asynchronous Parallelization

added to the design) on the prediction of another point depends on the distance
between both, the scaling, the chosen kernel and the kernel parameters that are
data dependent themselves. In another case the response surface might only change
insignificantly if the result is in accordance with the outcome that the surrogate
already predicted.

Having this problem in mind, we introduce different strategies for each case. For
Case A we need to take the pending evaluation of worker A into consideration to
avoid proposing a point that is similar to θ`pAq. The Expected Expected Improve-
ment (Section 4.3.1) and the Surrogate Believer (Section 4.3.2) are two strategies
presented in this work to incorporate pending evaluation into the proposal.

If we neglect Case B it can happen that worker B is proposing the same point
as worker A, for the same reason as in Case A. As worker B does not now which
proposal worker A will generate it can happen that it will propose a similar point as
worker A. As there is no way of obtaining knowledge about the point that worker A
will propose, the only option is to wait until worker A has generated the proposal.
Afterwards, worker B can continue as in Case A. Another option is to neglect this
case, as it might happen rarely as mentioned before.

If Case B occurs often, it might be worth to also consider Case C for the following
reason: If multiple workers are waiting for worker A to finish generating a proposal,
they can either be put into a queue or be grouped. In the queue each worker has
to wait for the previous worker to finish its proposal generation until the worker
generates its own proposal. The time spent waiting can sum up to a significant
amount of time. For the group we can generate multi-point proposals as soon as
the worker A finished its proposal. Therefore, we could combine methods from the
synchronous parallelization (Section 4.2) and the asynchronous parallelization to
generate multiple proposals that incorporate the pending evaluations.

In the following, we will mainly focus on Case A in combination with deterministic
point proposals. Therefore, the following two methods incorporate the ongoing
evaluation in their point-proposal.

45

4 Parallel MBO

4.3.1 Expected Expected Improvement

Ginsbourger, Janusevskis, et al. (2011) motivate the expected EI (EEI) by stating
that for the proposals which are under evaluation we know the distribution of the
outcome ν. The distribution of the outcome is obtained through the surrogate,
i.e. the Gaussian process regression. This allows us to incorporate the uncertainty
about the outcome ν in the EI, which results in the EEI. Given b workers that are
currently evaluating jobs, the unknown values of fpθ

pjq

busyq with j P t1, . . . , bu and
1 ď b ď k are integrated out via Monte Carlo sampling, which is computationally
demanding.

For each Monte Carlo iteration values ν̃1,busy, . . . , ν̃b,busy are drawn from the posterior
distribution of the surrogate regression model at θ

p1q

busy, . . . , θ
pbq

busy. In each Monte
Carlo iteration, these values are combined with the set of already known evaluations
to form a temporary design with fake values. This temporary design is used to fit
the surrogate model and to obtain an EI function. The EEI can then simply be
calculated by averaging the individual expected improvement functions that are
deduced from each Monte Carlo sample:

EEIy pθq “
1

nsim

nsim
ÿ

i“1
EIipθq , (4.3.1)

whereas nsim denotes the number of Monte Carlo iterations.

4.3.2 Surrogate Believer

The Kriging believer approach from Section 4.2.2 can be adapted to incorporate the
pending evaluations of θ

pjq

busy with j P t1, . . . , bu, whereas b denotes the number of
pending evaluations. It can be seen as a simplification of the EEI from the previous
Section 4.3.1. We ignore the fact that the outcome of fpθ

pjq

busyq is not known exactly
and treat each pending evaluation as if its outcome can be directly predicted by
the surrogate. Therefore, we derive temporary fake outcomes from the surrogate:
ν̃j,busy “ µ̂pθ

pjq

busyq. The temporary design D̃ is created by combining the design of

46

4.4 Related Work

completed evaluations D with the fake values. Finally, we simply calculate the
EI over the surrogate that is fitted on design D̃. This has the advantage of being
computationally cheaper than the EEI.

4.4 Related Work

There are further methods to generate multi-point proposals for synchronous
MBO.

The qEI criterion was proposed by Ginsbourger, Le Riche, et al. (2010). It
directly optimizes the expected improvement over q points. As the qEI criterion is
computationally expensive, Chevalier et al. (2013) proposed approximations for
q ď 10. But these also require expensive Monte Carlo Sampling.

The constant liar proposed by Ginsbourger, Le Riche, et al. (2008) is a simplified
alternative to the surrogate believer method (Section 4.2.2). Instead of using
µ̂pθ`piqq as a fake value, a constant value is taken for all q proposals. Ginsbourger,
Le Riche, et al. (2008) look at three ways to choose the constant value, namely
minpνq, maxpνq and meanpνq, with ν being the vector of all outcomes in the
design D. According to their work, minpνq gave the best optimization result,
maxpνq led to well spread points across the search space and the surrogate believer
did not lead to any improvement. However, this statement in Ginsbourger, Le Riche,
et al. (2008) is solely based on a single two-dimensional test function (Branin), so
it should not be generalized. Also the fake value maxpνq can lead to numerical
problems while fitting a Gaussian process regression, because of the big differences
of the function outcomes within close vicinity.

In Bischl, Wessing, et al. (2014) multi-objective optimization is used to find a set
of proposals that has a high diversity as well as a high expected improvement.

Another asynchronous approach is presented in Kandasamy et al. (2018). They
propose to use Thompson Sampling, where a single realization from the Gaussian
process is drawn. This realization is a function which can be optimized analogously

47

4 Parallel MBO

to an acquisition function to generate a proposal. They claim that this ensures
enough diversity to not have to implement any heuristics or expensive calculations
to consider proposals that are under evaluation. Those evaluations are simply
ignored.

4.5 Resource-Aware Model-Based Optimization

The main goal of resource-aware model-based optimization is to use the resources as
efficiently as possible to reduce the time needed to obtain an optimization result.

As described in the previous chapter, asynchronous MBO directly leads to a
complete worker utilization, if we neglect waiting problems as described for Case B
and C in Section 4.3. However, besides the advantage of an increased worker
utilization, asynchronous execution can also potentially cause additional runtime
overhead due to the higher number of surrogate fits, especially when the number of
workers increases. Therefore, our experiments include a comparison with the above
described asynchronous and synchronous approaches to investigate the advantages
and disadvantages.

Instead of using asynchronous execution to efficiently utilize parallel computer
architectures, our new approach uses the synchronous execution combined with
resource-aware scheduling. The key idea is to use a second regression model that
estimates the runtime of each proposal. Similar to the surrogate, which is used to
estimate the outcome of the objective function, the runtime regression model is used
to predict the elapsed time to evaluate an input configuration. The estimations are
based on the runtime measured on previous runs. We use the estimated runtimes
to calculate how these jobs can be efficiently distributed on the available workers.
This distribution is calculated following a knapsack scheduling strategy. The aim
of the scheduling is to select and distribute the jobs in such a way that the ideling
times are reduced.

The theoretical Resource-Aware Model-Based Optimization (RAMBO) framework
is outlined in Figure 4.7. It shows different aspects of the resource-aware parallel

48

4.5 Resource-Aware Model-Based Optimization

MBO Method Job Selection

Scheduling
Job Tracker

Syn vs. Asyn.
Feedback

Surrogate Model
Resource Estimator Acquisition Function

Job Profile:
Priority, Resource Demands

Outlier handling etc.

Figure 4.7: Schematic representation of the RAMBO framework. The MBO Method
defines which regression method is used to build the surrogate and the resource
(runtime) estimation. The Job Selection uses an acquisition function to select a
set of possible jobs. Each job has a Job Profile which contains the information
needed by the Scheduling to efficiently distribute the jobs to the workers. A
theoretical Job Tracker could terminate jobs if the expected outcome does not
promise further optimization progress, e.g. because of an updated surrogate.

49

4 Parallel MBO

evaluation within the MBO framework. The underlying MBO method remains
and is extended with a resource estimator (Section 4.5.3) that works similar to
the surrogate but predicts the needed resources for each configuration θ. The job
selection derives a set of proposals from the surrogate and the resource estimator.
The set of jobs goes to the job scheduler (Section 4.5.1) which will distribute the
jobs on the workers based on their profiles. Some aspects like the job tracker
and the outlier handling, which would allow cancellation of running jobs, are not
implemented, but form the basis for further research on the RAMBO framework.

4.5.1 Job Scheduler

In the literature schedulers are defined in many ways and for various purposes. For
the purposes in this thesis we define a schedule for a list of jobs J “ t1, . . . , qu and
k available workers as follows:

Definition 4.5.1. A schedule X P p0, 1qkˆq is a matrix with k rows
and q columns. Element xij is 1 iff i P t1, . . . , ku and j P J , job j is
calculated on worker i. Otherwise xij “ 0.

The purpose of a scheduler is to calculate an optimal schedule and therefore it is
defined as follows:

Definition 4.5.2. The job scheduler is given a set of jobs J . Each
job has a given priority pj and a given runtime tj, j P J . The maximal
allowed time for evaluation of jobs is given as tmax. For k available
workers the scheduler obtains the optimal schedule X˚ that maximizes
the sum of priorities

X˚
“ arg max

xij

k
ÿ

i“1

ÿ

jPJ

pjxij (4.5.1)

50

4.5 Resource-Aware Model-Based Optimization

under the restriction that the maximal allowed time tmax is not exceeded

tmax ě
ÿ

jPJ

tjxij @i P 1, . . . , k (4.5.2)

and that no job is executed more than once

1 ě

k
ÿ

i“1
xij @j P J. (4.5.3)

This definition implies that not all jobs in J have to be scheduled. For example,
jobs with a low priority and a high runtime might not get evaluated.

4.5.2 Scheduling Priority

One prerequisite for scheduling is a priority value for each job. The priorities of
the proposed points should reflect their usefulness for optimization. We propose
to derive the priority directly from the acquisition function. Therefore, we use
the qCB acquisition function (see Section 4.2.1) to obtain a set of job proposals.
The qCB is suitable because the individual proposals are independent of each
other in contrast to multiple proposals obtained by Surrogate Believer, Constant
Liar or qEI. In consequence, there is no inherent order within the set of obtained
proposals θ`pjq from the qCB acquisition function. This means that there is no
general rule to determine how promising or important individual proposals are
in comparison to each other. In theory proposals obtained by confidence bounds
with a high value of λ have a more exploratory characteristic as they focus on
uncertainty regions. In contrast, proposals obtained by confidence bounds with a
low value λ are more exploitative as they are in regions where the surrogate predicts
an optimal outcome. We decided that the highest priority should go to proposals
with an exploitative characteristic. In other words, only additional resources should
be used for exploration. Therefore, we define the priority for each proposal as
pj :“ ´λj , i.e. we give the highest priority to the proposal θ`pjq that was proposed
using the smallest value of λj.

51

4 Parallel MBO

Afterwards we refine the job priorities to prevent jobs in close proximity from each
having high priority values. The idea is to lower the priority of a job if a job with
higher priority is in the direct vicinity. The distance between the jobs is calculated
using the Euclidean distance in the search space Θ, i.e. dj1,j2 “ |θ`pj1q ´θ`pj2q|. The
goal is to avoid parallel evaluations of very similar proposals θ`pjq and encourage
the scheduler to select sets of jobs with proposals more scattered in the search space.
This is necessary because the qCB does not include a penalty for the proximity of
selected points.

The priority refinement procedure is defined as follows: Given a set of q jobs, we
apply hierarchical clustering using the complete linkage method. In the first step
(i “ 1) of the procedure, the job with the highest priority is given the first position
in J̃ . For each following step i ě 2 all jobs are split into i clusters. Of these i

clusters the i ´ 1 clusters that contain jobs which are already in J̃ are discarded,
leaving one cluster. The job with the highest priority within this cluster is put into
position i in J̃ and the counter i is increased by one. The procedure is continued
until q jobs have assigned positions in J̃ . It generates an ordering in J̃ where each
job has the highest priority of the most distant cluster to its predecessor following
the hierarchy induced by the clustering. The job with position 1 in J̃ gets assigned
the highest priority value q, position 2 gets q ´ 1 and so on until the last job gets
the lowest priority 1.

The complete priority refinement algorithm is also given as pseudo code in Listing 3.
Note that the hierarchical clustering is just generated once and that the different
cluster sizes are obtained by cutting the dendrogram at an appropriate height. Also
no jobs are removed from the hierarchical clustering, instead clusters with jobs in J̃

are just ignored when choosing j˚. Naturally, from the j clusters in each iteration
of the refinement algorithm, there are always j ´ 1 clusters that are ignored and
one “new” cluster that has a candidate for j˚.

52

4.5 Resource-Aware Model-Based Optimization

Algorithm 3 Priority refinement algorithm for hierarchically clustered jobs.
Require: jobs J “ t1, . . . , qu, job priorities tp1, . . . , pqu, hierarchical clustering hc

of jobs.
1: J̃ Ð H

2: for i “ 1 Ñ q do
3: hc̃ Ð divide hc into i clusters
4: remove clusters from hc̃ that contain jobs in J̃
5: j˚ Ð arg maxjPhc̃

pj

6: J̃ Ð J̃ Y j˚

7: p̃j˚ Ð q ´ i ` 1
8: return refined job priorities p̃j, with j P 1, . . . , q

4.5.3 Resource Estimation

A separate regression is used to model the resource demands, i.e. the runtimes tj,
for the generated proposals θ`pjq. A sensible choice is to choose the same regression
method that is used for the surrogate, since both models are defined on the same
domain. In the same fashion as for the MBO algorithm, in each MBO iteration
the resource estimation model is fitted on the runtimes of previous evaluations in
dependency of their optimization parameter settings θ.

As a side remark, for an application with actually measured runtimes a log-
transformation is recommended, as runtimes are often distributed with a positive
skew, i.e. right-tailed. Log-transformed runtimes can be closer to a normal distribu-
tion, which will likely lead to a better regression fit if a Gaussian process regression
is chosen.

4.5.4 Resource-Aware Knapsack Scheduling

The scheduling strategy follows two goals. First, the aim is to reduce the idle time.
Second, the time until feedback is obtained should be as short as possible, so we
can profit from new knowledge, i.e. obtained function values, as fast as possible. If
the second goal was not given, the direct consequence would be to evaluate many
jobs in one iteration, because it is easier to reduce idle time for a bigger set of

53

4 Parallel MBO

jobs. This, however, would be a bad idea since we do not benefit from the newly
obtained knowledge that is generated by a finished job until the complete schedule
has been processed. To fulfill both goals we develop a heuristic that balances both
aspects.

Our algorithm is embedded in the MBO framework (cmp. Figure 3.1). It adapts the
point proposal in Step (3) and needs a slight modification of the point evaluation
in Step (4). First, we propose more points than we actually execute within one
iteration. Afterwards, we use the scheduler to select and schedule a subset of
promising proposals. The evaluation is adapted, so that it evaluates the proposals
on the k workers according to the schedule.

We use the qCB acquisition function (see Section 4.2.1) to obtain q proposals, with
q randomly drawn values of λj „ Expp1

2q, as in Richter, Kotthaus, Bischl, et al.
(2016). We set q “ 8 ¨ k to obtain a set of proposals larger than the number of
available workers. These q proposals form the set of jobs J “ t1, . . . , qu. Having
more jobs than workers allows the scheduler to schedule multiple jobs on one
worker and to discard jobs with a high runtime and a low priority. The priority
of each job is set as explained in Section 4.5.2. For each job in J we obtain the
estimated runtime t̂j from the resource estimator. To ensure a fast feedback of
model updates we set tmax to the estimated runtime of the job with the highest
priority. At the same time we want to maximize the profit, given by the priorities
of each job, within each MBO iteration. This maximization problem can be solved
by a job scheduler as defined in Section 4.5.1. As a solver we utilize the 0 ´ 1
multiple knapsack algorithm, implemented in the R-package adagio for global
optimization routines (Borchers, 2018), which solves the maximization problem
in Equation (4.5.1) approximately. The knapsacks are the available workers and
their individual capacity is tmax. The items are the jobs J , their weights are the
estimated runtimes t̂j and their values are the priorities pj.

Before we apply the solver, we manually schedule the job with the highest priority to
the first CPU exclusively. This job defines the upper time bound tmax. Accordingly,
all jobs with higher runtimes are directly discarded. Then the scheduling solver
is applied to assign the remaining candidates in J to the remaining k ´ 1 CPUs.

54

4.5 Resource-Aware Model-Based Optimization

Given that the runtime estimates are accurate, this leads to a schedule X˚ that
can be run in parallel within the given time and maximizes the sum of priorities.
If a worker is left without a job, we query the resource estimator for a job with
an estimated runtime smaller or equal to t̂max to fill the gap, regardless of their
predicted outcome. This procedure ensures that no idling occurs while we could
instead evaluate another configuration.

As mentioned beforehand, the evaluation step within the MBO framework has to
be adapted. This is a mere technical matter as we have to make sure that the
jobs assigned to each worker are actually evaluated on said worker. From the
schedule we can derive the starting times relative to the first one, i.e. the first k

jobs start at t “ 0. The job k ` 1 starts after the shortest job from the first k jobs
finished, because the corresponding worker is the first worker to get free, and so
on (see Figure 4.3). We pass the list of jobs sorted by their relative starting time
to the system and they will be evaluated on the desired workers. This is because
the system evaluates them in the given order and as soon as one worker becomes
available, the next job in the list will be assigned to it. One important aspect has
been neglected so far: The foundation of the scheduling are the estimated runtimes
t̂. If the actual runtimes differ too much, the schedule will not be correct anymore.
As just mentioned the system will always assign the next job in the list to the next
free worker. This will balance out wrong schedules to a certain degree.

55

5 MBO with Concept Drift

In this chapter, two adaptations are presented that extend the MBO framework to
handle dynamic optimization problems (DOPs) which are functions that change
over the course of time. Section 5.1 motivates the use of the MBO idea for DOPs.
In Section 5.2 we will specify concept drifts for optimization problems. In the
following we present the two MBO adaptations: The window approach in Section 5.3
and the time-as-covariate approach in Section 5.4. Since the error measurement
for DOPs is different from static optimization problems and heavily influences the
choice of the optimization strategy, we dedicate Section 5.6 to define the scenario
and a suitable online error measure.

5.1 Prerequisites

Usually, within the MBO framework the objective function is assumed to be
constant over time. However, in real life the relationship between the input θ

and the output ν often changes over time. Such a problem can be a process
that is influenced by external factors which cannot be controlled. These can be
factors that can be measured but not controlled (e.g. outside temperature) or
factors that just can be measured latently (e.g. because they change over time).
Another practical example is hyperparameter tuning for online machine learning
algorithms. Here, the algorithm has to predict labels for new data that sequentially
become available. The true labels also become available after the prediction is
made and as a consequence the available training data grows. For offline learning
it is well established to tune the hyperparameters (Thornton et al., 2013) of a

57

5 MBO with Concept Drift

learning algorithm for a specific problem to achieve better predictive performance.
For online learning hyperparameter tuning should be applied constantly as the
nature of the problem can change over time. First, because more training data
become available, second because the relationship between features and label can
change and third because the structure of the data can change. All three points
make continuous tuning of hyperparameters necessary to achieve best predictive
performance at each point in time.

Taking the time into consideration changes the optimization problem in Equa-
tion (3.1.1) to a dynamic optimization problem (DOP), as we are interested in the
optimum for each point in time t:

θ˚
t “ arg min

θPΘ
ftpθq. (5.1.1)

To solve DOPs with MBO we propose two adaptations that can be easily integrated
into the MBO framework (Section 3.1). First, we introduce a simple window
approach in Section 5.3. It limits the design that is used to train the surrogate to
the most recent observations. Second, we introduce the time-as-covariate approach
in Section 5.4S. It includes the time as an additional covariate in the design, giving
the surrogate the ability to learn the effect of the time on the outcome.

5.2 Concept Drifts for Dynamic Optimization
Problems

The term Concept Drift is often used in the context of Online Machine Learn-
ing (Gama et al., 2014). We differentiate between three different kinds of concept
drifts as illustrated in Figure 5.1. If the change of the objective functions hap-
pens instantaneously it is labeled as sudden drift. An incremental drift describes
changes that happen continuously but not necessarily endlessly. It could be a
smooth transition from one state to another but also a never ending continuous
change. If different states are active repetitively its called a recurring drift. In

58

5.2 Concept Drifts for Dynamic Optimization Problems
op

tim
um

θ˚ t

Time

Sudden Incremental Recurring

Figure 5.1: Patterns of different concept drifts, figure adapted from Gama et al.
(2014).

the literature these definitions are usually used in connection with drifts between
different concepts. A concept in the context of online learning is the relationship
between the features x and the label y of a dataset.

In the dynamic optimization literature, the default is to assume a sudden change
of the objective function. Sudden changes happen at discrete points in time but
can have different severities. The severity roughly describes how far the optimum
moves away in the search space Θ due to the sudden change. A probable reason for
the absence of incremental changes in DOP literature might be that the proposed
algorithms (e.g. genetic algorithms) are mostly tailored for changes that only occur
after many evaluations of the objective function were made (Cruz et al., 2011). In
such a scenario it is not assumed that the function changes continuously for each
evaluation. However, in our scenarios we want to include this case. Especially as
for expensive black-box optimization it is more likely that changes happen at a rate
where we are not capable of running hundreds of evaluations on one steady state
of the objective function. So we borrow the drift vocabulary of the online machine
learning literature for our DOPs. Accordingly, we consider objective functions with
incremental, sudden and reoccurring drifts. In this work we only focus on the first
two drift types.

59

5 MBO with Concept Drift

5.3 Window Approach

The idea of the window approach is to drop older evaluations from the design D,
since they likely are not valid anymore. Evaluations are invalid at the current time
t if they do not reflect the relationship between the input θ and the output ν that
is currently expressed through ftpθq. This change of ft over time can be seen as a
concept drift.

To limit the knowledge of the surrogate to evaluations that are likely to be still
valid, we subset the design D to evaluations that were made within the last t∆

time units:

Dt∆ “ tpθpjq, νpjq
q | pθpjq, νpjq

q P D ^ j P rtnow ´ t∆, tnowsu . (5.3.1)

Observations outside the window are ignored and thus the uncertainty predicted by
the surrogate increases in the corresponding areas. As a consequence, the chance
increases that the acquisition function will suggest to re-evaluate the objective
function in areas of discarded points. This way the surrogate will always maintain
an estimate of the true objective which is close to the state of the function at
the current time. Similar to window-based approaches in time series analysis,
the choice of the window width symbolizes a trade-off. On the one hand, a large
window provides more information for the surrogate and a more precise estimation
of the true objective function if no change of the objective function happens, i.e.
no concept drift occurs. However, if a change happens the surrogate will only be
able to adapt slowly to that change. On the other hand, if the window is too small,
it can happen that the surrogate is not able to get a correct notion of the true
objective function as it relies on less information. The advantage of a small window
size can be a faster adaption to changes in the objective function.

Note that evaluations cannot be considered deterministic anymore as the same θ

leads to different outcomes ν depending on the time that they are evaluated
at. Therefore, we have to configure the MBO framework to deal with stochastic
objective functions. This affects the acquisition function, where the EI is not a
valid choice anymore and can be replaced with the AEI (see Section 3.4.3). The

60

5.4 Time as Covariate

CB acquisition function (see Section 3.4.2) is unaffected as it has no reference value.
It also affects the surrogate which has to be aware that each observation in the
design has some uncertainty. If Kriging is chosen as a surrogate, the nugget effect
σ2

n should be estimated to account for the additional uncertainty.

5.4 Time as Covariate

For this approach the idea is to let the surrogate completely model the effect
of the time. Depending on the regression method, this allows to model complex
interactions between the time t and the features θ. Accordingly, the time is included
in the surrogate model as an additional covariate t. Introducing an additional
dimension renders the surrogate fit more difficult, e.g. because more parameters
have to be estimated if Kriging is used as a surrogate. As mentioned, the choice of
the surrogate model heavily determines the ability to cope with different drifts. For
example, a discontinuity in the input space, like it is introduced by a sudden drift,
is a challenge for a Kriging surrogate. Additionally, this approach relies on a certain
extrapolation capability of the surrogate, as we are interested for predictions at
the current time tnow but only have observations from the past.

To propose an input setting for the next iteration, i.e. tnow, we optimize the
acquisition function on the hyperplane with fixed time t “ tnow. Therefore, the
acquisition function has to be adapted. For the confidence bound (see Section 3.4.2)
the change is merely technical:

CBtpθ, λq “ µ̂tpθq ´ λŝtpθq , (5.4.1)

whereas µ̂t denotes the mean prediction of the surrogate for a fixed time t and ŝt

the corresponding uncertainty estimation at time t.

In contrast to the CB, the EI (Equation (3.4.4) on page 28) relies on the best
observed outcome ymin. This is problematic, as for DOPs it is likely that ymin

is not valid anymore, because the relation between the corresponding input and
the previously evaluated ymin has changed for the current state of the objective

61

5 MBO with Concept Drift

function. Therefore, we propose an adaption of the EI that uses an effective best
point as a reference value instead of the possibly invalid ymin. The effective best
point is a pessimistic estimate of which already evaluated point could be the best
point at the current time t:

θ˚˚
“ arg min

θPD
µ̂tpθq ` c ¨ ŝtpθq , (5.4.2)

with c as a tuning parameter which is set to c “ 1 as default. Using this effective
best point to calculate the expected improvement yields, what we propose as the
Temporal Expected Improvement:

TEItpθq “ E pmax tµ̂tpθ
˚˚

q ´ ftpθq, 0uq , (5.4.3)

This approach is inspired by the Augmented Expected Improvement (see Sec-
tion 3.4.3). Accordingly, we assume ftpθq to be a normally distributed random
variable with ftpθq „ N pµt̂pθq, st̂

2
pθqq. In contrast to the AEI, we set the noise

variance σn to zero, because in dependence of the time the objective function is
deterministic, i.e. for the same t and θ the function always returns the same result.
Since we set σn “ 0, the TEI does not include the additional correction term that
is needed for the AEI in Equation (3.4.8). Therefore, the TEI can be calculated
analytically as follows:

TEItpθq “ pµ̂tpθ
˚˚

q ´ µ̂tpθqq Φ
ˆ

µ̂tpθ
˚˚q ´ µ̂tpθq

ŝtpθq

̇

` ϕ

ˆ

µ̂tpθ
˚˚q ´ µ̂tpθq

ŝtpθq

̇

(5.4.4)

with ϕ and Φ as the standard normal density and distribution function.

5.5 Related Work

DOPs have been in the focus of evolutionary optimization strategies, where a
function evaluation is considered comparably inexpensive. Excellent surveys are
given in Branke (2005) and Cruz et al. (2011). Independent from this work, Nyikosa
et al. (2018) proposed to apply Bayesian optimization on dynamic optimization

62

5.6 Error Measurement

problems. They exclusively use the CB as acquisition function and introduce the
usage of specific temporal Kernels for the Gaussian process surrogate. This has
the advantage that the temporal Kernel kT can be specifically chosen to handle
periodicity or other temporal peculiarities. However, they assume that the process
has to have a separable covariance:

Covpftpθq, ft1pθ1
qq “ kSpθ, θ1

q ¨ kT pt, t1
q, (5.5.1)

which is a strong assumption since it implies that the time t and the input θ have
independent influence on the outcome ν. In this chapter, we do not follow this
approach which gives us the advantage to freely choose the regression method for
the surrogate.

5.6 Error Measurement

To evaluate the performance of our optimizer we need an evaluation measure
that considers the online characteristic of our optimization. In comparison to
regular MBO we are not only interested in the distance to the optimum of the
final result of the optimization process, but also in the distance to the optimum at
any given time point t. In particular for DOPs the choice of the error measure can
heavily influence the final ranking of the optimization algorithms. A plethora of
evaluation measures exists in the DOP literature (Cruz et al., 2011). Many are
tailored for the characteristics of evolutionary optimization algorithms, e.g. Current
best-of-generation evolution, Mean best-of-generation etc. The mentioned measures
and most others take only the best solution of a set of evaluations, e.g. a single
generation, into account. Each generation is evaluated on the same state of the
objective function, i.e. at the same point in time. Usually multiple generations are
used to optimize the objective until a state change happens. This means that many
evaluations of the objective can perform badly without affecting the performance
measure.

63

5 MBO with Concept Drift

In our scenario the setup is quite different. As we deal with function evaluations
that take a significant amount of time, we have to assume that the state of the
objective function already changed after each evaluation. This continuous state
change does not allow us to run multiple evaluations on the same state of the
objective function successively.

In our benchmark scenario we know the true optimal outcome ν˚
t for any given

point in time. Therefore we can simply calculate the fitness error

errFE “ ftpθ
`
t q ´ ν˚

t (5.6.1)

for the minimization of f at any given time point t. For the evaluation of the whole
optimization run we average the errors over all time points which gives us the mean
fitness error (MFE).

A motivational example can be given by a machine that produces a product. The
machine can be controlled by the input parameters θ. In the best case (θ˚

t) all
products are perfect and no loss occurs. Unfortunately, θ˚

t is unknown and changes
over the time due to external factors. The goal is to set θ`

t in such a way that
over the course of time the average loss is as low as possible. As we only have one
machine, every evaluation counts into the error measurement. This is a substantial
difference from the error measurement in the evolutionary setting where only the
error of the best evaluation within an evolution or a batch is taken into account.
Note that in Equation (5.6.1) we use θ`

t as input setting instead of θ̂
˚

t as in the
original formulation of the dynamic minimization problem in Equation (5.1.1). The
latter would be the estimation of the best input setting. For ordinary sequential
MBO the proposal of the best point is usually obtained by taking the configuration θ

that led to the best outcome (see Section 3.5). Such a point would likely be an
optimum for an outdated state of our objective function. Alternatively, we could
propose the input setting that minimizes f̂ t as the best input setting θ̂

˚

t . This
proposal could minimize the error in a single iteration of our optimization process.
However, using such a proposal in each iteration will likely lead to stagnation or
even decrease of the performance as we will not be able to explore new areas in our
search space and probably not be able to adapt to a drift. Summing up, we use the

64

5.6 Error Measurement

input setting suggested by the acquisition function θ`
t to measure the error because

it is the only input configuration that is evaluated within the chosen set-up. This
implies that exploration can negatively affect the overall error with the benefit of
exploring the search space.

65

6 Parallel MBO Benchmark

The purpose of the benchmark in this chapter is to analyze which MBO paralleliza-
tion strategy (see Chapter 4) works best for black-box functions with heterogeneous
runtimes within a limited time budget. The benchmark considers the scenario
of reliably and unreliably predictable runtimes as well as two different degrees of
parallelization on 4 and 16 workers. The benchmark was first published in Richter,
Kotthaus, A. Lang, et al. (2017).

6.1 Objective Functions with Heterogeneous
Runtimes

To cover a variety of problems, we consider two categories of synthetic base functions
that will serve as objective functions:

1. Functions with a smooth surface: rosenbrockd and bohachevskyd with di-
mension d P t2, 5u. They are likely to be fitted well by the Kriging regression
that is used as a surrogate and to predict the runtime.

2. Highly multimodal functions: ackleyd and rastrigind (d P t2, 5u). We
expect that Kriging models have problems to achieve a good fit here.

All base functions are implemented in the R package smoof (Bossek, 2017). Their
2-dimensional versions are illustrated in Figure 6.1

In our optimization scenario, which is mainly motivated by machine learning
problems, we want to consider heterogeneous runtimes. The goal is to build a

67

6 Parallel MBO Benchmark

−5

0

5

10

−5 0 5 10
x1

x2

2e+05 1e+06y

 Rosenbrock

−10

0

10

−10 0 10
x1

x2

0 200 400 600y

 Bohachevsky N. 1

−20

0

20

−20 0 20
x1

x2

5 10 15 20y

 Ackley

−3

0

3

−3 0 3
x1

x2

0 20 40 60 80y

 Rastrigin

Figure 6.1: All base functions in their 2-dimensional versions that are used in this
benchmark. The global optimum is marked with a dot.

benchmark with synthetic functions that reflects our optimization scenario. As
synthetic functions have no significant runtime, it is necessary to simulate artificial
runtimes. The artificial runtime in dependence of the input θ is given by the same
set of functions as mentioned above. The functions with artificial runtime are
derived by combining a base function with a time function. The time function
determines the number of seconds it takes to calculate the objective value of
the base function. E.g., for the combination rastrigin2.rosenbrock2 it would
require rosenbrock2(θ) seconds to retrieve the objective value rastrigin2(θ) for an
arbitrary point θ. Technically, we simulate the runtime by sleeping rosenbrock2(θ)
seconds before returning the objective. We simulate the runtime with either
rosenbrockd or rastrigind and analyze all combinations of our four objective
functions, except where the objective and the time function are identical.

A prerequisite for this approach is the unification of the input space. Therefore, we
scale values from the input space of the time function to the input space of the
base function. The output of the time functions is scaled to return values between
5 min to 60 min.

68

6.2 Setup

6.2 Setup

We consider the following optimizers and optimization set-ups:

rs: Random search, serving as base-line.

qCB: Synchronous approach using qCB where in each iteration q “ k

points are proposed as explained in Section 4.2.1.

ei.bel: Synchronous approach using the surrogate believer approach
with k proposals in each iteration as explained in Section 4.2.2).

asyn.eei: Asynchronous approach using EEI with nsim “ 100 Monte
Carlo iterations (Section 4.3.1). If a worker finishes and another
worker is busy generating a proposal, the worker will wait
until the proposal is generated and can be included in the EEI
calculation. However, no queue is generated if multiple workers
are waiting. See Case B in Section 4.3.

asyn.ei.bel: Asynchronous surrogate believer approach as explained in Sec-
tion 4.3.2. The same waiting mechanism as for asyn.eei is
applied here.

rambo: The new synchronous resource-aware approach that schedules
q “ 8 ¨ k proposals obtained by the qCB acquisition function
on the k workers to reduce idling as explained in Section 4.5.

qCB and ei.bel are implemented in the R package mlrMBO (Bischl, Richter, et al.,
2017), which builds upon the machine learning framework mlr (Bischl, M. Lang,
et al., 2016). asyn.eei, asyn.ei.bel and rambo are also based on mlrMBO. All
aforementioned optimizers (except the random search) use a Gaussian process
regression as a surrogate. The covariance is estimated with a Matern5

2 -kernel and
σ2

n is set to 0 since the optimization is deterministic. rambo uses the same settings
for the regression model that predicts the runtimes.

69

6 Parallel MBO Benchmark

Additionally, we compare our implementations to:

smac: Asynchronous approach that turns k independent optimization
runs of the SMAC Algorithm into a single asynchronous opti-
mization with k workers by sharing the surrogate model data
(also called shared-model-mode 1).

SMAC cannot be initialized with a predefined design. Therefore, it was allowed
the same initial budget as the other optimizers. It was started with the default
parameters and the shared-model-mode activated. SMAC uses a random forest as
surrogate and the EI criterion. The shared-model-mode does not include knowledge
about pending evaluations.

The optimizations are repeated 10 times and conducted on k “ 4 and k “ 16
CPUs (workers). For each repetition a random initial design is generated by Latin
hypercube sampling with n “ 4 ¨ d points. The initial design is the same for
all optimizers within a repetition. We allow each optimization to run for 4 h on
4 workers and for 2 h on 16 workers in total which includes all computational
overhead and idling.

All computations were performed on a Docker Swarm cluster using the R package
batchtools (M. Lang et al., 2017).

6.3 Evaluation

To have a comparable measure across different objective functions we standardize
the objective value to r0, 1s, with 0 being the best. The target value 0 is determined
by the average of the best ν reached by any optimization method after the complete
time budget across all 10 replications. The reference value 1 is determined by
the average of the best ν reached in the initial design across all 10 replications.
Note, that the initial design is identical for all algorithms for a given problem but

1Hutter, F., Ramage, S.: Manual for SMAC version v2.10.03-master. Department of Computer
Science, UBC. (2015), www.cs.ubc.ca/labs/beta/Projects/SMAC/v2.10.03/manual.pdf

70

www.cs.ubc.ca/labs/beta/Projects/SMAC/v2.10.03/manual.pdf

6.3 Evaluation

different for each replication. This excludes the initial runs of smac which are not
taken into consideration here. We call this standardized objective value accuracy.
This accuracy gives the distance between the best found point at time t and the
target value. If an optimization method needs 2 h to reach an accuracy of 0.5, this
means that within 2 h half of the way to 0 has been accomplished, after starting at
1. We compare the differences between optimization methods at three accuracy
levels 0.5, 0.1 and 0.01.

6.3.1 Quality of Resource Estimation

The quality of resource-aware scheduling naturally relies on the accuracy of the
resource estimation. Without reliable runtime predictions, the schedules potentially
cannot be applied as planned and an efficient utilization of the workers is not
guaranteed. As Figure 6.2 by way of example shows, the runtime prediction for the
rosenbrock2 time function works well as the residual values are getting smaller
over time, while the runtime prediction for rastrigin2 is comparably imprecise,
taking into consideration that the real runtimes range between 5 min and 60 min.
Similarly for rosenbrock5 the residuals are getting smaller after 30 min, while the
residuals for rastrigin5 do not indicate any improvement of the estimation over
time. This encourages to consider scenarios separately where runtime prediction
is possible (rosenbrockd, Section 6.3.2) and settings where runtime prediction is
error-prone (rastrigind, Section 6.3.3) for further analysis.

71

6 Parallel MBO Benchmark

bohachevsky.rastrigin_2d bohachevsky.rosenbrock_2d

0.0 1.0 2.0 3.0 4.0 0.0 1.0 2.0 3.0 4.0

−1000

0

1000

hours

t̂−
t (

se
cs

)

bohachevsky.rastrigin_5d bohachevsky.rosenbrock_5d

0.0 1.0 2.0 3.0 4.0 0.0 1.0 2.0 3.0 4.0

−1000

−500

0

500

1000

1500

hours

t̂−
t (

se
cs

)

Figure 6.2: Residuals of the runtime prediction in the course of time for the
rosenbrockd and rastrigind time functions on 4 workers and bohachevskyd

as objective function. Positive values indicate an overestimated runtime and
negative values an underestimation.

6.3.2 High Runtime Estimation Quality: rosenbrockd

In this section we analyze the performance of all optimization methods on all
problems with rosenbrockd as time function. Figure 6.3 shows boxplots for the
time required to reach the specified accuracy levels in 10 repetitions within a budget
of 4 h real time on 4 workers (upper part) and 2 h on 16 workers (lower part). The
faster an optimization method reaches the desired accuracy level, the lower the
displayed box and the better the method. If an algorithm did not reach an accuracy
level within the time budget, we impute the missing time value with the respective
time budget (4 h or 2 h) plus a penalty of 1000 s, noticeable as observations above
the respective time budget in the boxplots.

Table 6.1 lists the aggregated ranks over all objective functions, grouped by method,
accuracy level, and number of workers (k). To obtain the average ranks, the

72

6.3 Evaluation

ackley.rosenbrock bohachevsky.rosenbrock rastrigin.rosenbrock

2d (k =
 4)

5d (k =
 4)

0.5 0.1 0.01 0.5 0.1 0.01 0.5 0.1 0.01

0

1

2

3

4

0

1

2

3

4

accuracy level

ho
ur

s

Method asyn.eei asyn.ei.bel RAMBO ei.bel qCB rs smac

ackley.rosenbrock bohachevsky.rosenbrock rastrigin.rosenbrock

2d (k =
 16)

5d (k =
 16)

0.5 0.1 0.01 0.5 0.1 0.01 0.5 0.1 0.01

0

1

2

0

1

2

accuracy level

ho
ur

s

Method asyn.eei asyn.ei.bel RAMBO ei.bel qCB rs smac

Figure 6.3: Accuracy level vs. execution time for different objective functions using
time function rosenbrockd (lower is better).

73

6 Parallel MBO Benchmark

Table 6.1: Rankings of the optimization methods on problems with reliable runtime
prediction, i.e. rosenbrockd as time function.

k “ 4 k “ 16
Method 0.5 0.1 0.01 0.5 0.1 0.01
asyn.eei 3.32 (2) 3.52 (1) 4.97 (2) 3.75 (3) 4.30 (3) 5.45 (3)
asyn.ei.bel 3.55 (3) 4.10 (3) 4.97 (2) 3.48 (2) 4.08 (2) 4.53 (2)
RAMBO 3.17 (1) 3.85 (2) 4.57 (1) 3.13 (1) 3.93 (1) 4.47 (1)
ei.bel 4.38 (4) 4.98 (4) 5.90 (5) 5.00 (5) 5.48 (6) 6.28 (6)
qCB 4.52 (5) 5.03 (5) 5.63 (4) 4.72 (4) 5.17 (4) 6.10 (4)
rs 6.02 (6) 6.67 (6) 6.83 (7) 5.50 (7) 6.48 (7) 6.87 (7)
smac 6.22 (7) 6.70 (7) 6.82 (6) 5.32 (6) 5.47 (5) 6.17 (5)

optimization methods are ranked w.r.t. their performance for each replication,
problem, accuracy level and k before they are aggregated with the mean. If there
are ties because an accuracy level was not reached, all values obtain the worst
possible rank.

The results show that the new Resource-Aware MBO (RAMBO) method reaches
the defined accuracy levels first in two cases on k “ 4 workers and always reaches
the levels first on 16 workers. rambo is closely followed by the asynchronous
variant asyn.eei on 4 workers but the lead becomes more clear on 16 workers.
In comparison to the unscheduled synchronous algorithms (ei.bel, qCB), rambo
as well as asyn.eei and asyn.ei.bel reach the given accuracy levels in shorter
time. This is clearly visible for the objective functions that are hard to model
(ackleyd, rastrigind). The simpler asyn.ei.bel performs better than asyn.eei
on 16 workers. Except for smac, all presented MBO methods outperform base-line
rs on almost all problems and accuracy levels. The bad average results for smac
are partly due to its low performance on the d “ 5 problems and probably because
of the disadvantage of using a random forest as a surrogate on purely numerical
problems. It can be speculated that the strengths of smac are black-box problems
of another structure (e.g. search spaces with more discrete values).

74

6.3 Evaluation

For an analysis of the scheduling behavior, Figure 6.4 exemplary visualizes the true
mapping of the jobs for all MBO methods on 16 workers for the d “ 5 versions of
the problems from one of the ten stochastic repetitions. The random search rs is
left out, because it naturally does not lead to idling. Each gray box represents the
computation of a job on the respective worker. The red boxes, which are especially
visible for asyn.eei, show the time that is needed for the proposal generation. The
remaining scheduling plots for k “ 4 workers and on the two-dimensional objectives
are given in Figures A.1, A.2 and A.3 in the Appendix A.1 on pages 129ff.

The necessity of a resource estimation for jobs with heterogeneous runtimes becomes
obvious, as qCB and ei.bel can cause long idle times by evaluating jobs together
in one iteration with large runtime differences. The scheduling in rambo manages
to clearly reduce this idle time by two means: Either multiple jobs are proposed to
fill gaps created by a highly prioritized job with a relatively long runtime, or only
jobs with similar runtime are proposed within a single MBO iteration.

The Monte Carlo approach of asyn.eei generates a high computational overhead
as indicated by the red boxes. This reduces the effective number of evaluations,
which decreases the optimization performance. Idling occurs because the calculation
of the EEI is encouraged to wait for ongoing EEI calculations to include their
proposals. The time needed for a single EEI proposal increases with the number of
already evaluated points as the training of the surrogate takes longer with more
training points. asyn.ei.bel and smac have a comparably low overhead and thus
basically no idle time. This seems to be an advantage for asyn.ei.bel on 16 CPUs
where it performs better on average than its complex counterpart asyn.eei.

Summed up, if the resource estimation that is used in rambo has a high quality,
rambo is able to outperform the considered MBO algorithms qCB, ei.bel, and smac
on the given set of functions. This indicates that the increased resource utilization
obtained by the scheduling in rambo leads to the same accuracy within shorter
time, especially if the number of available workers increases. This also implies that
within a given time-frame rambo potentially reaches higher accuracy levels.

75

6 Parallel MBO Benchmark

ackley.rosenbrock_5d bohachevsky.rosenbrock_5d rastrigin.rosenbrock_5d

asyn.eei
asyn.ei.bel

R
A

M
B

O
ei.bel

qC
B

sm
ac

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

0
4
8

12
16

0
4
8

12
16

0
4
8

12
16

0
4
8

12
16

0
4
8

12
16

0
4
8

12
16

hours

W
or

ke
r

Figure 6.4: Worker usage of the different optimization methods on the functions
with the rosenbrock5 time function, which can be modeled reliably by the
resource estimator. Time is plotted on the x-axis and the mapping of the jobs on
k “ 16 workers on the y-axis. Each gray box represents the runtime of job on a
specific worker. Each red box represents the time needed for the point proposal.
If it is not shown, the time is insignificantly short. For smac the proposal time
is not measured individually but is included in the overall runtime. The gaps
represent idle time. For the synchronous MBO algorithms (rambo, qCB, ei.bel)
the blue vertical lines indicate the beginning of each MBO iteration.

76

6.3 Evaluation

6.3.3 Low Runtime Estimation Quality: rastrigind

The time function rastrigind used in the following scenario is difficult to fit by
the regression method, as indicated by the residual plot in Figure 6.2. For this
reason, the benefit of the knapsack scheduling in rambo is expected to be minimal.
For example, in a possible worst case multiple supposedly short jobs are assigned
to one CPU but their real runtime is considerably longer and causes unwanted idle
times.

Similar to the Figure 6.3 from the previous section, Figure 6.5 shows boxplots
for the benchmark results, but with rastrigind as the time function. Table 6.2
provides the mean ranks of each optimization method, calculated in the same way
as in the previous Section 6.3.2.

Despite possible wrong scheduling decisions, rambo still manages to outperform
qCB and performs comparably to ei.bel. asyn.eei reaches all accuracy levels
fastest on 4 workers. Similar to the benchmark results in the previous Section 6.3.2,
the simplified asyn.ei.bel seems to benefit from its reduced overhead and places
first on 16 workers.

smac cannot compete with the MBO methods that use a Gaussian process as a
surrogate. Overall, rambo appears not to be able to outperform the asynchronous
MBO methods as unreliable runtime estimates likely lead to suboptimal scheduling
decisions. The real worker utilization for the functions with rastrigin5 as time
function and k “ 16 workers is given in Figure 6.6. The remaining scheduling plots
for k “ 4 workers and on the two-dimensional objectives are given in Figures A.4,
A.5 and A.6 in the Appendix A.2 on pages 132ff. In comparison to the scheduling
plot of the previous section in Figure 6.4, the rastrigin5 apparently leads to longer
runtimes on average. As a result, the overhead for point proposals of asyn.eei
becomes relatively smaller. Additionally, the EEI proposal itself has to consider
fewer evaluated points, making it effectively faster. In contrast, rambo nearly
behaves identical to the other asynchronous methods ei.bel and qCB. rambo is
not able to schedule multiple jobs on a single worker, even though the simulated
runtimes are heterogeneous. However, it could be that in some cases jobs with a

77

6 Parallel MBO Benchmark

ackley.rastrigin bohachevsky.rastrigin rosenbrock.rastrigin

2d (k =
 4)

5d (k =
 4)

0.5 0.1 0.01 0.5 0.1 0.01 0.5 0.1 0.01

0

1

2

3

4

0

1

2

3

4

accuracy level

ho
ur

s

Method asyn.eei asyn.ei.bel RAMBO ei.bel qCB rs smac

ackley.rastrigin bohachevsky.rastrigin rosenbrock.rastrigin

2d (k =
 16)

5d (k =
 16)

0.5 0.1 0.01 0.5 0.1 0.01 0.5 0.1 0.01

0

1

2

0

1

2

accuracy level

ho
ur

s

Method asyn.eei asyn.ei.bel RAMBO ei.bel qCB rs smac

Figure 6.5: Accuracy level vs. execution time for different objective functions using
hard-to-fit time function rastrigind (lower is better).

78

6.3 Evaluation

ackley.rastrigin_5d bohachevsky.rastrigin_5d rosenbrock.rastrigin_5d

asyn.eei
asyn.ei.bel

R
A

M
B

O
ei.bel

qC
B

sm
ac

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

0
4
8

12
16

0
4
8

12
16

0
4
8

12
16

0
4
8

12
16

0
4
8

12
16

0
4
8

12
16

hours

W
or

ke
r

Figure 6.6: Similarly to Figure 6.4 this plot shows the worker utilization for
problems with the rastrigin5 time function which can be hardly modeled by
the resource estimator. Note that this just visualizes one of the ten stochastic
repetitions.

79

6 Parallel MBO Benchmark

Table 6.2: Rankings of the optimization methods on problems with unreliable
runtime predictions (rastrigind as time function).

k “ 4 k “ 16
Method 0.5 0.1 0.01 0.5 0.1 0.01
asyn.eei 3.65 (1) 3.25 (1) 4.47 (1) 4.42 (3) 4.38 (2) 5.20 (3)
asyn.ei.bel 3.88 (2) 3.50 (2) 4.52 (2) 3.90 (1) 3.77 (1) 4.33 (1)
RAMBO 4.50 (4) 4.70 (4) 4.72 (3) 4.43 (4) 4.63 (4) 5.17 (2)
ei.bel 4.22 (3) 4.42 (3) 4.87 (4) 4.33 (2) 4.55 (3) 5.27 (4)
qCB 4.95 (5) 4.80 (5) 5.38 (5) 5.10 (5) 5.00 (5) 5.82 (5)
rs 6.30 (7) 6.42 (6) 6.63 (6) 5.80 (7) 6.23 (7) 6.43 (6)
smac 5.90 (6) 6.98 (7) 7.00 (7) 5.27 (6) 5.63 (6) 6.72 (7)

long predicted runtime and a low priority are discarded, leading to slightly more
evaluations than qCB as it can be observed for the bohachevskyd objective on k “ 4
workers.

Despite the inability to schedule multiple jobs onto a single worker, rambo reaches
comparable results to ei.bel and performs slightly better than qCB. Altogether,
the asynchronous parallelization methods perform better on the chosen problems
with a hard-to-predict runtime.

6.4 Conclusion

This benchmark compared the new knapsack based resource-aware parallel MBO
algorithm rambo against popular synchronous and asynchronous MBO approaches
on a set of synthetic, continuous test functions with artificial runtimes. The artificial
runtimes were taken from the function value of two of the functions included in
the benchmark. One function is hard to model by the Gaussian process regression,
while the other can be easily modeled. For the latter, runtimes could be predicted
reliably, leading to an advantage for rambo. When the runtimes could not be
predicted accurately by the resource estimator, rambo was not able to outperform
the other methods. Most likely, unreliable runtime estimates lead to suboptimal

80

6.4 Conclusion

scheduling decisions. The results on 16 parallel workers also indicate that rambo
can handle high grades of parallelization, in contrast to the expensive asynchronous
approach that relies on Monte Carlo simulations. On problems with hard-to-predict
runtimes the asynchronous approaches performed best on 4 workers and only the
simplified asynchronous surrogate believer kept its lead on 16 workers.

If the runtime of jobs is predictable, the rambo approach for parallel MBO with
high numbers of available workers appears to be a viable optimization method.
The runtime estimation quality often is hard to determine in advance. For some
real applications like hyperparameter optimization for machine learning methods
predictable runtimes can be assumed. Interestingly the choice of the acquisition
function and the multiple point proposal strategy do not influence the optimization
performance as heavily as the choice of the parallelization strategy, e.g. both
synchronous approaches perform similarly.

The good performance of rambo is not entirely expected, since the asynchronous
approaches easily achieve higher utilization of the workers. Therefore, a higher
amount of total jobs evaluated could be expected. More evaluated optimization
parameter settings θ should lead to a higher chance of finding optimal solutions,
unless the parameters are chosen poorly. The proposal for asynchronous methods
always has to handle k ´ 1 missing evaluations, whereas for the synchronous
proposal at least one of k proposals can be created with the complete knowledge.
The high number of missing evaluations for the asynchronous method can become
unfortunate when a pending job finishes shortly after a proposal was generated.
If this proposal was generated some seconds later it could have been generated
based on more knowledge. Therefore, it seems promising to use a hybrid method
that combines the resource estimation and multi-point proposal of the synchronous
rambo approach but also has the capability to start asynchronous evaluations. The
hybrid method should include a validator for the resource estimation that checks
whether the resource estimations are reliable by a simple cross-validation on the
measured runtimes. If the runtimes are heterogeneous and unreliably estimated the
hybrid method will use an asynchronous behavior. If the runtimes are homogeneous
the hybrid will use a synchronous behavior. If the runtimes are heterogeneous and

81

6 Parallel MBO Benchmark

reliably estimated, the method could divide jobs into groups of jobs. Within the
groups the runtimes are homogeneous and the jobs are evaluated in a synchronous
manner, but the groups are evaluated asynchronously.

Further improvements are possible by formulating a criterion that directly rewards
the selection of multiple points as well as it punishes highly expected idle times.
Such a group acquisition function could have the following form:

acqgroupptθ`p1q, . . . , θ`pqq
uq “

q
ÿ

i“1

“

acqpθ`piq
q
‰

¨ dptθ`p1q, . . . , θ`pqq
uq ´ γ ¨ sptθ`p1q, . . . , θ`pqq

uq, (6.4.1)

whereas dp. . .q is a reward that encourages the selection of points that are spread
across the search space, such as the average distance between the given points,
and sp. . .q is the expected idle time to encourage the selection of points that can
be scheduled without idle time. The tunable parameter γ balances the influence
of expected idle time. The acquisition function could be the qCB as it has the
desirable property that it is independent of the selected points. Maximizing acqgroup

would lead to a set of proposals that are well distributed, have low idle time and
are likely good solution candidates.

In the presented benchmarks, only the runtime was considered by the resource
estimation. Also, the memory and energy consumption could be taken into con-
sideration. This is of interest for machine learning problems where not only the
number of available workers is a limiting factor but also the available random access
memory.

82

7 MBO CD Benchmark

The goal of the benchmark is to compare the optimization performance of different
MBO CD approaches on dynamic optimization problems with different types of
drifts.

7.1 Synthetic Dynamic Objective Functions

To obtain a set of dynamic test functions we augment static functions that are
well-known in the optimization community in such a way that we can control
what kind of drift occurs. Therefore, we construct the dynamic optimization
problems (DOPs) from three parts: An objective function, a drift function and a
transformation function.

The constructed DOP will be a function of the form fδ,gpθ, tq. To obtain different
time-dependent versions of the same objective function a transformation in the
domain space will be applied. We obtain the DOP through a composition of
the static objective function f and a state-dependent transformation function g:
fpgpθ, wqq. The transformation function gpθ, wq : r0, 1s Ñ r0, 1s transforms the
input θ according to the drift state w. The drift function δptq : r0, 1s Ñ r0, 1s is the
function that maps the time t to the drift state w, e.g. δptq “ 0.5 implies that the
time does not change the state of the function. The procedure is explained in more
detail hereafter.

83

7 MBO CD Benchmark

Objective Function: First, we take one of the black-box functions fpθq from
Table 7.1. All of them are implemented in the R-package smoof (Bossek, 2017)
and have already been used to generate DOPs (Cruz et al., 2011; Nyikosa et al.,
2018), but usually with stochastic changes. Functions that are defined on a 1, 2 and

Table 7.1: Objective functions that serve as base functions divided in two sets. d is
the dimensionality of the input space Θ, θ˚ is the location of the global optimum.

Function d θ˚

Set 1
1 p0.5q1

2 p0.5, 0.5q1Ackley
5 p0.5, 0.5, 0.5, 0.5, 0.5q1

1 p0.5q1

2 p0.5, 0.5q1Griewank
5 p0.5, 0.5, 0.5, 0.5, 0.5q1

1 p0.5q1

2 p0.5, 0.5q1Rastrigin
5 p0.5, 0.5, 0.5, 0.5, 0.5q1

Set 2
Branin 2 p0.12, 0.82q1, p0.54, 0.15q1, p0.96, 0.17q1

Camelback 2 p0.49, 0.68q1, p0.51, 0.32q1

Goldstein-Price 2 p0.5, 0.25q1

5-dimensional input space are grouped in set 1 and the others in set 2. All functions
of set 1 have a parabolic surface combined with cosine waves of different amplitude
and frequency as illustrated in Figure 7.1. Consequently they are multimodal.
Functions of set 2 are also multimodal but with fever local minima and a smoother
surface. Functions that were originally constructed as maximization problems
were flipped to become minimization problems. Furthermore, each function is
standardized in two ways. The input space is scaled to r0, 1sd and function values
are scaled, so that fpθ˚q “ 0 and the median performance is 1. The median
performance is obtained by evaluating a grid of minp100d, 106q values of θ P Θ on
the objective function and calculating the median of the outcomes.

84

7.1 Synthetic Dynamic Objective Functions

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−d Ackley Function

x

y

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

1−d Griewank Function

x

y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

1−d Rastrigin Function

x

y

Figure 7.1: All objective functions from set 1 in their 1d versions.

Drift Function: The drift function δ ptq is utilized to introduce different types of
drifts into the function, depending on the elapsed time t: We consider the following
drift functions δptq : r0, 1s Ñ r0, 1s:

No Drift δn ptq “ 0.5 ,
Sudden Drift at t “ 0.5 δs ptq “ 1r0.5,1s ptq and
Incremental Sinus Drift δi ptq “ ´0.5 ¨

`

sin
`

π
2 ´ π ¨ t

˘

´ 1
˘

,

with δsp0q “ δip0q “ 0 and δsp1q “ δip1q “ 1. The outcome of δptq will define the
weight w of the drift, whereas w “ 0.5 is the middle between two states indicating
no derivation from the original objective function. All drift functions are illustrated
in Figure 7.2.

Transformation Function: Finally, we define a function gpθ, wq which transforms
the input depending on the state of the drift w. The function will be constructed
in such a way that for a fixed transformation intensity K and w “ 0: gpθ, 0q “ θ

1
K ,

so that the optima are dragged to the left. For w “ 0.5 no transformation should
be applied so that gpθ, 0.5q “ θ for all values of K. For w “ 1: gpθ, 1q “ θK , which
has the effect that all optima are dragged to the right.

85

7 MBO CD Benchmark

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

No Drift

t

w

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sudden Drift

t
w

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Incremental Sinus Drift

t

w

Figure 7.2: The three different drift functions δn, δi and δs.

To achieve this we define the transformation function for each dimension l “

1, . . . , d:
g pθl, wq :“ θc

l with

c “
K ` 1
1 ´ K

¨

ˆ

w ´
K

K ´ 1

̇´1

´ 1 .
(7.1.1)

The weight w controls the influence of the transformation and K P p1, 8q is the
maximal transformation intensity. In this work we chose K “ 3 for a strong shift if
w is 0 or 1. This function is displayed in Figure 7.3 for different values of w and K.

If the global optimum θ˚ is known, its position at time t can be derived from the
inverse of g. In fact g in Equation (7.1.1) is constructed so that the inverse solves
to:

g´1
pθ, wq “ gpθ, 1 ´ wq. (7.1.2)

For a one dimensional objective function with an optimum at θ˚ “ 0.5, the optimum
for w “ 0 is at gp0.5, 1q “ 0.125 and for w “ 1 the optimum is at gp0.5, 0q « 0.794 .
We see that this transformation does not mean that fpgpθ, 1qq is a mirrored version
of fpgpθ, 0qq. To achieve that, gpθ, 1q would have to be a point reflection of gpθ, 0q,
instead it is reflected at the line of identity.

86

7.1 Synthetic Dynamic Objective Functions

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ

g(
θ i

, w
)

k=2
w=0

w=1

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

θ

g(
θ i

, w
)

k=3
w=0

w=1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ

g(
θ i

, w
)

k=4
w=0

w=1

Figure 7.3: The transformation function gpθ, wq for K “ t2, 3, 4u.

Combination: To put all pieces together, we first plug the drift function δptq into
our transformation function to obtain g pθl, δptqq. This means that the intensity of
the transformation is controlled by the time through the drift function. Applying
this scheme, we can combine any static objective function f with any drift function
δptq and the transformation function g so that

fδ,gpθ, tq “ f pg pθ, δ ptqqq . (7.1.3)

Figures 7.4 and 7.5 visualize how the functions and the optimum change over time
for the one and two-dimensional DOPs constructed out of the static objective
functions.

For DOPs derived through the presented procedure the optimal value is known for
each point in time which allows us to calculate the MFE as defined in Section 5.6.
Additionally, the optimal value does not change over time, which is advantageous
because it allows to study the effect of the changing location of the optima inde-
pendently from the effect of a changing optimal value. Although we only analyze
changing locations in this work, the presented concept is easily extendable to con-
struct DOPs with changing optimal values by introducing a second transformation
function that transforms the outcomes depending on the time.

87

7 MBO CD Benchmark

Ackley Griewank Rastrigin

N
o

D
rif

t

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
t

θ

0.01 0.1 1 10
y

Ackley w. No Drift

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
t

θ

0.01 0.1 1 10
y

Griewank w. No Drift

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
t

θ

0.01 0.1 1 10
y

Rastrigin w. No Drift

Su
dd

en
D

rif
t

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
t

θ

0.01 0.1 1 10
y

Ackley w. Sudden Drift

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
t

θ

0.01 0.1 1 10
y

Griewank w. Sudden Drift

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
t

θ

0.01 0.1 1 10
y

Rastrigin w. Sudden Drift

In
cr

em
.

D
rif

t

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
t

θ

0.01 0.1 1 10
y

Ackley w. Incremental Drift

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
t

θ

0.01 0.1 1 10
y

Griewank w. Incremental Drift

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
t

θ

0.01 0.1 1 10
y

Rastrigin w. Incremental Drift

Figure 7.4: All 1d functions from set 1 with their different drifts.

The presented procedure has the advantage that the location θ˚
t of the optima

can always be calculated analytically if the location of the optima of the original
black-box function is known. As a consequence the distance to the optimum in
the domain space can be calculated for each point in time which is an advantage
because it allows more error measures to be used.

88

7.1 Synthetic Dynamic Objective Functions

Incremental t “ 0 Incremental t “ 0.5 Incremental t “ 1
Sudden t ă 0.5 No Drift Sudden t ě 0.5

Ackley
(Set 1)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
θ1

θ 2

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
θ1

θ 2

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
θ1

θ 2

Griewank
(Set 1)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
θ1

θ 2

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
θ1

θ 2

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
θ1

θ 2

Rastrigin
(Set 1)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
θ1

θ 2

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
θ1

θ 2

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
θ1

θ 2

Branin
(Set 2)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
θ1

θ 2

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
θ1

θ 2

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
θ1

θ 2

Camelback
(Set 2)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
θ1

θ 2

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
θ1

θ 2

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
θ1

θ 2

Goldstein-
Price
(Set 2)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
θ1

θ 2

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
θ1

θ 2

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
θ1

θ 2

Figure 7.5: All 2d functions with incremental drift and their states at t “ 0, t “ 0.5
and t “ 1. For t “ 0.5 the state equals the constant state of the function with no
drift. For t “ 0 and t “ 1 the states equal the two different states for the sudden
drift. This figure uses the same color scale as Figure 7.4.

89

7 MBO CD Benchmark

7.2 Setup

For the benchmark we consider two trivial baselines, the ordinary drift-unaware
Bayesian optimization and the newly developed adaptations as presented in Chap-
ter 5:

rs: Random search that at each time step evaluates a random configura-
tion from the search space serving as a naive base-line.

constant: From the initial design the best configuration is taken and evaluated
at each time step.

bo: Sequential MBO executed regularly without notion of concept drifts
that might occur. At each time step the suggested point is evaluated.

bo_tw: Concept drift aware MBO with time-window (see Section 5.3) and
two different window sizes of 20 and 40 time steps.

bo_tac: Concept drift aware MBO with time as covariate (see Section 5.4).

All MBO-related optimizers use a Gaussian process regression as a surrogate. The
covariance is estimated with a Matern5

2 -kernel. For bo_tw the nugget effect is
estimated during the surrogate fit, to account for the non-deterministic behavior of
the objective function over time.

Each of the bo optimization algorithms is run with two different acquisition func-
tions.

_cb2 The confidence bound with λ “ 2 as defined in Section 3.4.2.

_aei The augmented expected improvement as defined in Section 3.4.3 is
used in combination with ordinary sequential MBO (bo) and bo_tw.

_tei The temporal expected improvement as defined in Equation (5.4.3) in
Section 5.4 is only used in combination with the concept drift aware
bo_tac.

90

7.3 Evaluation

The number of MBO iterations is chosen equivalent to the number of discrete time
steps that are available. We conduct the experiments once by dividing the time
frame of r0, 1s into 50 time steps and once into 100 time steps. In other words, we
conduct our experiments once with a budget of 50 optimization iterations and once
100 optimization iterations. This allows us to analyze how a different granularity
on the time scale influences the optimization.

A single benchmark problem consists of a combination of a single DOP (i.e.
an objective function with a specific drift type) and the optimization budget.
Each optimizer is applied on each problem with 50 stochastic repetitions. For
each repetition a different random initial design is generated by Latin hypercube
sampling with 4 ¨ d points. All optimizers start with the same initial design on one
problem within one stochastic repetition.

7.3 Evaluation

The following chapters provide a detailed analysis of the benchmark results for
each drift type separately. For each problem we will visualize the fitness error
averaged over all stochastic repetitions for each time step. This visual tool allows
us to analyze how each optimizer behaves over time on a specific problem and for
specific drift types.

To asses the performance of each optimizer, instead of looking at each optimiza-
tion problem individually, the results of multiple problems will be grouped and
summarized. A group consists of problems with functions that belong to the
same function set (see Table 7.1) that have the same dimensionality and which are
optimized with the same number of evaluations (50 or 100).

For each group two aggregating evaluations are carried out to compare the perfor-
mance of the optimizers. For both evaluations the performance of each optimizer
is calculated by the mean fitness error (MFE, see Section 5.6) for each single
stochastic repetition of a problem.

91

7 MBO CD Benchmark

The first evaluation method generates a preference graph. This directed graph
shows which optimizer was able to beat which optimizer in a pairwise comparison.
The pairwise comparison is conducted with a one-sided paired-sample sign test
on the MFE values of each repetition and of each problem across two competing
optimizers. The MFE values from two optimizers can be seen as paired because
each result pair belongs to a specific problem and a specific stochastic repetition
(implying the same initial design). Each test is conducted at the 5% significance level
without further adjustment for multiple testing, as this analysis is only meant as an
exploratory visualization of the stochastic results. Note that this non-parametric
test results in the following logical pitfall:

A beats B ^ B beats C ­ùñ A beats C (7.3.1)

Corner cases can exist, where the sign test indicates that A is not significantly
better than C, but A is significantly better than B and B is significantly better
than C.

The results of all pairwise comparisons yield a directed graph. A directed line from
Algorithm A to Algorithm B indicates that A yielded significantly better results
than B. A transitive reduction on the results removes direct edges if there also
exist an indirect path to improve readability. For example, if A beats B and C,
and B beats C the edge between A and C is removed. This reduction introduces an
ambiguity where we no longer can differentiate between the situation where A beats
C significantly and the situation where A only beats C through B, as discussed
above. However, if according to the test procedure A beats B and B beats C but
A does not beat C in a direct comparision, it still holds that A performed better
than C in the majority of cases, with the only restriction that the number of cases
is not significant. Accordingly, it is a sensible decision to neglect this corner case
for this visual tool and allow the conclusion that A performs better than C.

The second evaluation method analyzes the mean average ranks of each optimizer.
Therefore, we first rank the optimizers among each other for each problem and
each stochastic replication by their MFE. Afterwards, we calculate the mean of
all ranks for each optimizer across all problems and replications within one group

92

7.3 Evaluation

of problems. For the sake of completeness the averaged MFE values for each
problem and optimizer are also included in tabular fashion in the appendix. For
both tables we conduct a statistical analysis on the underlying unsummarized
data to find out which optimizers do not perform significantly worse than the
best performing optimizer. To verify whether there are statistically significant
differences between the optimizers, we perform a non-parametric test procedure
as recommended in Demšar (2006). First, the Friedman test is employed to test
whether there are any statistical differences between all optimizers. If the null
hypothesis of no statistical differences between the optimizers cannot be rejected,
we will underline all results to indicate that no algorithms are significantly different
from each other. Second, if the null is rejected, we test each optimizer against the
best performing one on the null hypothesis that the best performing optimizer
is not better than the competitor. Therefore, the one-sided paired-sample sign
test is applied on the MFE values of each repetition and each problem of the
given group and the two competing optimizers. The test is adjusted for multiple
comparisons using the Bonferroni-Holm-Correction. All results of optimizers that
are not significantly worse than the best performing optimizer will be underlined to
indicate that they are potential candidates for the best method. The test procedure
is conducted at the global 5% significance level.

In a final comparison we will give a short combined analysis for all drift types that
aims to guide a decision in case the drift type and function characteristics are not
known beforehand.

7.3.1 No Drift

To understand specific characteristics of the different optimizers it is worthwhile
to begin with the case of no drift. It is expected that the ordinary sequential bo
methods perform best because they do not have to model a temporal influence
and operate on the complete evaluation design. Also bo_tw20 and bo_tw40 are
expected to behave exactly like ordinary bo for the first 20 and 40 optimization
evaluations. For bo_tac we suspect a slightly worse performance than ordinary bo,

93

7 MBO CD Benchmark

Set 1: Ackley 5d Set 1: Griewank 5d Set 1: Rastrigin 5d Set 2: Goldstn−Prc. 2d

Set 1: Ackley 2d Set 1: Griewank 2d Set 1: Rastrigin 2d Set 2: Camelback 2d

Set 1: Ackley 1d Set 1: Griewank 1d Set 1: Rastrigin 1d Set 2: Branin 2d

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Iteration

F
itn

es
s

E
rr

or

Algorithm
bo_aei

bo_tac_tei

bo_tw20_aei

bo_tw40_aei

constant

rs

Figure 7.6: Optimization curves for optimizers that use the aei or tei acquisition
function on problems with 100 optimization iterations and no drift.

since bo_tac models an additional variable which potentially lowers the prediction
quality of the surrogate.

The plot in Figure 7.6 shows the fitness error at each time point averaged over all
stochastic repetitions on a subset of problems with 100 optimization iterations and
with EI-based acquisition functions. This plot only contains a subset of the results
for better readability. The optimization curves for the cb2 acquisition function and
with 50 iterations are found in Appendix B on pages 136ff. These plots help to
indicate some problems the optimizers are facing on specific functions.

94

7.3 Evaluation

Set 1: Ackley 1d Set 1: Griewank 1d Set 1: Rastrigin 2d

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
0.00

0.25

0.50

0.75

1.00

Iteration

F
itn

es
s

E
rr

or

Algorithm bo_aei bo_cb2 bo_tac_cb2 bo_tac_tei

Figure 7.7: Exemplary optimization curves illustrating the effect of the choice of
the acquisition function on selected objective functions of set 1 with no drift. The
fact that bo_aei performs worst and bo_cb2 performs best illustrates that in
some cases it is not the specific MBO strategy that determines the performance
but the choice of the acquisition function.

In the following, we will discuss some of the peculiarities before looking at the
overall performance of all algorithms.

Contrary to the expectations, the bo_tac_tei optimizer shows better performance
than bo_aei for the Ackley 1d, Griewank 1d and Rastrigin 2d function even
though it has to model an additional covariate. These functions are heavily
multimodal as they are all overlayed with a cosine wave with a high frequency.
Looking at Figure 7.7 we see that using another acquisition function leads to
better results for the ordinary Bayesian optimizer bo_cb2. This leads to the
assumption that the aei acquisition function fails in these cases, as it interprets the
cosine waves as noise and puts more emphasis on exploration which leads to many
evaluations with bad performance. This assumption is backed by Figure 7.8 which
shows the evaluated points in the search space and their function outcome for the
Ackley 1d function for one stochastic repetition. However, the bad performance
due to exploration for bo_aei is not a general rule, as we can see in the results of
Rastrigin 1d, Rastrigin 5d and Griewank 5d in Figure 7.6 for these functions
of set 1. It also has to be stressed that exploration is a desired behavior of a
global optimizer. However, for specific target functions it can be advantageous
to search locally and exploit the knowledge of a local optimum. Adding to that,

95

7 MBO CD Benchmark

bo_aei bo_cb2

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

1e−05

1e−03

1e−01

θ

ν
25

50

75

100
Iteration

Figure 7.8: For the Ackely 1d function the bo_aei optimizer does many ex-
ploratory evaluations even in the later iterations whereas bo_cb2 does many
evaluations close to the global optimum. Note the log-scale.

in our setting, the chosen error measure punishes exploration as each exploratory
evaluation with a performance below the average increases the MFE. In a setting
without concept drift we would only measure the error of the best found setting
and all exploratory evaluations would not decrease the final performance value.

The constant approach achieves a low error for some 2d problems (Goldstein-Price
2d and Griewank 2d). For these objective functions the initial design seems to be
sufficient to find a good solution and constant benefits from not having exploratory
evaluations that negatively affect the average error over time.

The bad performance of bo_aei can probably be attributed to the exploratory
characteristic of the algorithm. In Figure 7.6 we see that the error increases after
iteration 25 for Ackley 2d and after iteration 75 for Ackley 5d. Here bo_aei
probably has found a good configuration but the acquisition function forbids the
algorithm to revisit this region and the exploration only leads to configurations
that yield a bad performance. In the following, we will call this the saturation
effect, where the surrogate has reached a certain security that prevents exploitation
in the area of the optimum. Again, if we were interested in the performance on a
static optimization problem, only the lowest point of the curve would determine
the final performance.

For the window-based optimizers (bo_tw) a distinct pattern can be observed. At
iteration 20 (for bo_tw20) and 40 (for bo_tw40) the error suddenly increases which

96

7.3 Evaluation

is especially visible for Branin 2d and Camelback 2d. At these iterations the
information from the initial design falls out of the window and the uncertainty
predicted by the surrogate increases in certain regions. Note that all evaluations
from the initial design are assigned to t “ 0. The re-exploration leads to an error
peak as bad performing areas are reevaluated. This pattern repeats all 20 (for
bo_tw20) and 40 (for bo_tw40) iterations as information about bad performing
configurations gets repeatedly lost.

The additional optimization curves for 50 iterations (Fig. B.1) and for the cb2
acquisition function with 50 (Fig. B.2) and 100 (Fig. B.3) iterations are given in
the Appendix B.1 on pages 136ff. The optimization curves for 50 iterations are
given for completeness. Basically, they are equal to the first 50 iterations of the
100 iteration setting. The comparison between the optimization curves from the
EI based optimizers in Figure 7.6 and the optimizers that use the cb2 acquisition
function in Figure B.3 demonstrates that the confidence bound does not punish
exploitation as much as the aei. Therefore, the mentioned saturation effect does
not occur that notably, which is especially visible for the Ackley functions, where
the cb2 optimizers constantly obtain low error values.

The preference plot in Figure 7.9 shows which optimization algorithms were able
to beat each other in a pairwise comparison across all problems of set 1 with the
same dimensionality and with the same number of optimization iterations. The
plots show that each optimizer with the cb2 acquisition function can beat its
aei/tei counterpart in 1d and 2d. For 5d this only holds for bo_tac_cb2 that
beats bo_tac_tei. The plots also indicate that bo_cb2 performs well across all
subsets. The bo_tac approaches perform notably worse on the 5d problems and
comparably well to the ordinary bo_aei/bo_cb2 approaches on the 1d problems.
The results of the time window (bo_tw) approaches are inconclusive. Even though
no drift occurs in the objective function and the shorter time window approach
leads to a less accurate surrogate, bo_tw40_aei cannot beat bo_tw20_aei on the
1d and 2d groups of set 1, which can also be accounted to the saturation effect. If
we only look at time window approaches with the cb2 acquisition function, the
order is as expected and bo_tw40_cb2 beats bo_tw20_cb2 in all groups. This

97

7 MBO CD Benchmark

Iters: 50, 1d

bo_aei

bo_cb2bo_tac_cb2

bo_tac_tei

bo_tw20_aei

bo_tw20_cb2

bo_tw40_aei

bo_tw40_cb2

constant

rs

Iters: 50, 2d

bo_aei

bo_cb2

bo_tac_cb2

bo_tac_tei

bo_tw20_aei

bo_tw20_cb2

bo_tw40_aei

bo_tw40_cb2

constant

rs

Iters: 50, 5d

bo_aei

bo_cb2

bo_tac_cb2

bo_tac_tei

bo_tw20_aei

bo_tw20_cb2

bo_tw40_aei

bo_tw40_cb2

constant

rs

Iters: 100, 1d

bo_aei

bo_cb2bo_tac_cb2

bo_tac_tei

bo_tw20_aei

bo_tw20_cb2

bo_tw40_aei

bo_tw40_cb2

constant

rs

Iters: 100, 2d

bo_aei

bo_cb2

bo_tac_cb2

bo_tac_tei

bo_tw20_aei

bo_tw20_cb2

bo_tw40_aei

bo_tw40_cb2

constant

rs

Iters: 100, 5d

bo_aei bo_cb2

bo_tac_cb2

bo_tac_tei

bo_tw20_aei

bo_tw20_cb2

bo_tw40_aei bo_tw40_cb2

constant

rs

Figure 7.9: Preference graphs for each problem group of set 1 with no drifts.

highlights that the behavior induced by the choice of the acquisition function, can
heavily influence the final performance.

The preference plot for problems of set 2 is given in Figure B.4 on page 139. On
set 2 optimizers with the cb2 acquisition function no longer outperform their
aei/tei counterparts. On the contrary, bo_aei performs better than bo_cb2 and
in general the optimizers using the aei/tei acquisition function outperform their
cb2 counterparts.

The average ranked performance of each optimizer is displayed in Table 7.2. The
ordinary bo_cb2 obtains good rankings. Only on the 5d problems of set 1 and
on set 2 ordinary bo_aei performs well. It appears that the optimizers with the
tac approach perform worse on the 2d and 5d problems of set 1 than their tw
counterparts.

98

7.3 Evaluation

Table 7.2: Rankings of the optimization methods on each subset of problems with
no drift.

AEI CB2

Se
t

d It
er

at
io

ns

bo
_a

ei

bo
_t

ac
_t

ei

bo
_t

w2
0_

ae
i

bo
_t

w4
0_

ae
i

bo
_c

b2

bo
_t

ac
_c

b2

bo
_t

w2
0_

cb
2

bo
_t

w4
0_

cb
2

rs co
ns

ta
nt

50 6.34 (7) 3.39 (3) 7.37 (9) 7.01 (8) 3.32 (2) 3.24 (1) 5.43 (6) 3.72 (4) 9.87 (10) 5.31 (5)1 100 5.99 (6) 3.23 (3) 7.55 (9) 7.31 (8) 2.77 (1) 2.94 (2) 6.05 (7) 3.34 (4) 9.89 (10) 5.92 (5)
50 5.17 (6) 7.27 (9) 4.57 (4) 5.09 (5) 2.98 (1) 6.61 (8) 3.78 (3) 3.45 (2) 9.99 (10) 6.09 (7)2 100 6.28 (7) 7.01 (9) 4.79 (4) 5.15 (5) 2.83 (2) 5.41 (6) 4.13 (3) 2.74 (1) 9.99 (10) 6.67 (8)
50 2.93 (1) 7.83 (9) 4.09 (4) 3.37 (2) 3.48 (3) 7.06 (7) 4.94 (6) 4.16 (5) 9.95 (10) 7.19 (8)

Set 1

5 100 3.15 (2) 7.99 (9) 4.48 (5) 3.57 (4) 2.56 (1) 6.88 (7) 5.45 (6) 3.24 (3) 9.99 (10) 7.68 (8)
50 2.57 (2) 3.37 (3) 7.45 (8) 5.35 (6) 3.93 (4) 5.17 (5) 8.93 (9) 6.85 (7) 9.61 (10) 1.78 (1)Set 2 2 100 2.43 (2) 3.30 (3) 7.62 (8) 5.93 (6) 3.32 (4) 4.71 (5) 8.93 (9) 6.83 (7) 9.86 (10) 2.06 (1)

For set 1 the optimizers with the cb2 acquisition function mostly yield better
performance than their aei/tei counterparts and vice versa for set 2. For set 2
surprisingly constant is the best performing strategy. As we can see for the other
optimizers in Figure 7.6 the outliers with bad performance negatively affect the final
performance as well as the bad fitness error in the beginning of the optimization.
In Table 7.3 the mean fitness error is given for each problem of set 2 individually
and in Table B.1 on page 140 the errors for all problems are listed. However, we

Table 7.3: MFE and its standard deviation of each optimization method on each
problem of set 2 with no drift averaged over 50 stochastic repetitions.

AEI CB2

Fu
nc

tio
n

It
er

at
io

ns

bo
_a

ei

bo
_t

ac
_t

ei

bo
_t

w2
0_

ae
i

bo
_t

w4
0_

ae
i

bo
_c

b2

bo
_t

ac
_c

b2

bo
_t

w2
0_

cb
2

bo
_t

w4
0_

cb
2

rs co
ns

ta
nt

50 0.14 ˘0.07 0.18 ˘0.11 0.52 ˘0.11 0.31 ˘0.07 0.20 ˘0.09 0.30 ˘0.14 0.70 ˘0.12 0.35 ˘0.09 1.54 ˘0.25 0.20 ˘0.19Branin 100 0.07 ˘0.03 0.11 ˘0.07 0.50 ˘0.07 0.27 ˘0.04 0.09 ˘0.04 0.15 ˘0.06 0.64 ˘0.09 0.30 ˘0.06 1.54 ˘0.15 0.20 ˘0.19
50 0.47 ˘0.23 0.74 ˘0.71 1.73 ˘0.20 1.04 ˘0.23 0.75 ˘0.30 0.97 ˘0.51 2.06 ˘0.21 1.28 ˘0.22 2.16 ˘0.39 0.13 ˘0.08Camelback 100 0.26 ˘0.12 0.40 ˘0.34 1.58 ˘0.13 0.94 ˘0.11 0.35 ˘0.16 0.54 ˘0.35 1.80 ˘0.17 1.09 ˘0.16 2.23 ˘0.28 0.13 ˘0.08
50 1.77 ˘0.95 2.02 ˘2.11 3.60 ˘1.41 2.60 ˘1.15 2.36 ˘1.22 2.92 ˘2.12 6.17 ˘1.91 4.63 ˘1.83 8.39 ˘2.77 0.05 ˘0.10Gldstn-Pr 100 0.94 ˘0.64 0.96 ˘0.82 3.22 ˘0.98 2.47 ˘0.84 1.32 ˘0.63 2.05 ˘1.33 5.97 ˘1.81 3.71 ˘1.08 7.92 ˘1.66 0.05 ˘0.10

99

7 MBO CD Benchmark

are not discussing each problem in detail, as we try to draw conclusions that are
generally applicable.

We looked at the results with no drift and expected bo_cb2 or bo_aei to perform
best. In general these ordinary methods work well and mostly exploratory eval-
uations decrease their performance for the concept drift specific error measure.
On selected functions the choice of the acquisition functions heavily changes the
behavior and thus the performance of an optimizer. On functions with higher
dimensionality the tac approaches perform worse than the drift-unaware optimiz-
ers.

7.3.2 Sudden Drift

For all problems with a sudden drift the change happens at t “ 0.5, so after 25 or 50
optimization iterations. We expect that the fitness error for all optimizers increases
dramatically at the sudden change. For the concept drift unaware optimizers
bo_aei and bo_cb2 we do not expect any recovery after the sudden change. For
the concept drift aware optimizers we expect that the fitness error decreases again
after the change and ideally it recovers to values close to the fitness error before
the sudden change. The time-as-covariate approaches try to model the influence of
the time. Obviously, the surrogate will not be able to anticipate the sudden change.
It will need some iterations so that the surrogate realizes that the change should
be attributed to the time covariate. Additionally, this discontinuity will challenge
the Gaussian process regression, which expects input from a differentiable function.
For the mentioned reasons we do not expect the bo_tac approaches to perform
best. The windowed bo_tw* optimizers should reach better performances according
to their window size. For bo_tw20 we expect that at least after 20 iterations the
fitness error decreases, since all outdated observations are forgotten until then. For
bo_tw40 we expect the same behavior after 40 iterations.

Until t “ 0.5 the function is static and therefore we expect the same behavior from
the optimizers as in the previous Section 7.3.1. However, since the functions at

100

7.3 Evaluation

Set 1: Ackley 5d Set 1: Griewank 5d Set 1: Rastrigin 5d Set 2: Goldstn−Prc. 2d

Set 1: Ackley 2d Set 1: Griewank 2d Set 1: Rastrigin 2d Set 2: Camelback 2d

Set 1: Ackley 1d Set 1: Griewank 1d Set 1: Rastrigin 1d Set 2: Branin 2d

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

0

2

4

6

0

5

10

15

0.0

2.5

5.0

7.5

0.0

0.5

1.0

1.5

0.4

0.8

1.2

0.6

0.9

1.2

0.0

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

0.0

0.3

0.6

0.9

0.25

0.50

0.75

1.00

0.4

0.6

0.8

1.0

Iteration

F
itn

es
s

E
rr

or

Algorithm
bo_aei

bo_tac_tei

bo_tw20_aei

bo_tw40_aei

constant

rs

Figure 7.10: Optimization curves for optimizers that use the aei or tei acquisition
function on all problems with 100 optimization iterations and a sudden drift.

t P r0, 0.5q are different from the functions without drift which are untransformed
(see Figures 7.4, 7.5), the performance can vary.

In Figure 7.10 it is visible that bo_aei and all other optimizers are directly impacted
by the sudden change for all functions. Only for functions of set 2 the impact
seems less severe and bo_aei can recover better than for functions of set 1. On
set 2 bo_tac_tei is also able to adapt the changes, whereas for all 5d problems
of set 1, we hardly see any recovery. It seems that bo_tac_tei works better on
the lower dimensional problems. The behavior of the windowed optimizers is
nearly as expected. It is clearly visible that bo_tw_20 adapts faster than bo_tw_40.

101

7 MBO CD Benchmark

Similar to the no drift scenario we see, that after 20 and 40 iterations we have
recurring peaks of high error values, which are especially visible for Ackley 1d
and Rastrigin 1d and Branin 2d. More exploratory evaluations of the smaller
window might negatively affect the performance but the faster adaptation seems to
make up for it. Interestingly the surrogate obtained by the smaller window size
seems to suffice to reach low error levels, since for most functions both window
sizes lead to similarly low error levels. For Ackley 5d no optimizer was able to
recover after the sudden change.

The additional optimization curves for 50 iterations (Fig. B.5) and for the cb2
acquisition function with 50 (Fig. B.6) and 100 (Fig. B.7) iterations are given in
the Appendix B.2 on pages 141ff. The observable behaviors are similar to the ones
from Figure 7.10. In the 50 iteration setting bo_tac_tei and bo_tac_cb2 are less
able to recover after the sudden change than within the 100 iteration setting. For
Ackley 1d and Ackely 2d we can observe a performance decrease even before the
drift occurs in Figure 7.10 (100 iterations). This saturation effect was already
discussed in the previous Section 7.3.1. If the drift occurs earlier (see Figure B.5,
50 iterations) such effects naturally cannot be observed, since the saturation of
the surrogate has not been reached. In the direct comparison between the two
acquisition functions, we again notice that the saturation effect is less observable
for cb2 based optimizers. The recovery after the sudden change does not seem to
be affected by the choice of the acquisition function.

Looking at the preference graphs in Figure 7.11, we clearly see that the smaller
window sizes have been beneficial for this benchmark. All optimizers with a
window size of 20 iterations beat their counterpart with a windows size of 40. The
time-as-covariate approach only works well for the one-dimensional problems of
set 1. Similar to our observations on the problems with no drift, the window-
based optimizers that use the expected improvement based acquisition functions
(bo_tw*_aei) perform better on the 5-dimensional problems with 100 iterations
than their bo_tw*_cb2 counterparts. For the other cases the results are somewhat
inconclusive giving a slight benefit to the confidence bound.

102

7.3 Evaluation

Iters: 50, 1d

bo_aei

bo_cb2

bo_tac_cb2 bo_tac_tei

bo_tw20_aei

bo_tw20_cb2

bo_tw40_aei

bo_tw40_cb2

constant

rs

Iters: 50, 2d

bo_aei

bo_cb2

bo_tac_cb2 bo_tac_tei

bo_tw20_aei

bo_tw20_cb2

bo_tw40_aei bo_tw40_cb2

constant

rs

Iters: 50, 5d

bo_aei

bo_cb2

bo_tac_cb2

bo_tac_tei

bo_tw20_aei

bo_tw20_cb2

bo_tw40_aei bo_tw40_cb2

constant

rs

Iters: 100, 1d

bo_aei

bo_cb2

bo_tac_cb2

bo_tac_tei

bo_tw20_aei

bo_tw20_cb2

bo_tw40_aei

bo_tw40_cb2

constant

rs

Iters: 100, 2d

bo_aei

bo_cb2 bo_tac_cb2 bo_tac_tei

bo_tw20_aei bo_tw20_cb2

bo_tw40_aei bo_tw40_cb2

constant

rs

Iters: 100, 5d

bo_aei bo_cb2

bo_tac_cb2

bo_tac_tei

bo_tw20_aei

bo_tw20_cb2

bo_tw40_aei

bo_tw40_cb2

constant

rs

Figure 7.11: Preference graphs for each problem group of set 1 with sudden drifts.

The preference plot for problems of set 2 is given in Figure B.8 on page 144. Similar
to our observations on functions with no drift, the optimizers using the aei/tei
acquisition function outperform their cb2 counterparts on set 2. Also the bigger
window size appears to be the better choice for set 2 in contrast to set 1.

In conclusion bo_tw20_aei performed well for problems with sudden drift. The av-
eraged ranks in Table 7.4 show that it did not perform best for the one-dimensional
problems of set 1 and for set 2. However, if we look at the individual mean fitness
errors in Table B.2, we see that bo_tw20_aei at least performed comparably well for
a few functions out of these subsets, namely Griewank 1d and Camelback 2d. Also
bo_tw20_cb2 performed best on the one-dimensional problems of set 1, strength-
ening the claim that the choice of the acquisition function can dominate the
performance of an algorithm. For set 2 bo_tac_tei performs well, next to the

103

7 MBO CD Benchmark

Table 7.4: Rankings of the optimization methods on each subset of problems with
sudden drifts.

AEI CB2

Se
t

d It
er

at
io

ns

bo
_a

ei

bo
_t

ac
_t

ei

bo
_t

w2
0_

ae
i

bo
_t

w4
0_

ae
i

bo
_c

b2

bo
_t

ac
_c

b2

bo
_t

w2
0_

cb
2

bo
_t

w4
0_

cb
2

rs co
ns

ta
nt

50 6.86 (8) 3.20 (2) 3.96 (4) 6.65 (7) 5.87 (6) 3.51 (3) 2.83 (1) 5.70 (5) 9.55 (10) 6.87 (9)1 100 8.07 (9) 2.88 (2) 4.77 (5) 5.94 (6) 6.74 (7) 3.35 (4) 2.24 (1) 3.30 (3) 9.81 (10) 7.91 (8)
50 4.96 (3) 6.27 (7) 2.39 (1) 5.15 (4) 5.32 (5) 6.27 (7) 3.37 (2) 5.35 (6) 9.16 (10) 6.77 (9)2 100 6.92 (8) 5.96 (6) 1.92 (1) 4.43 (4) 6.35 (7) 5.53 (5) 2.03 (2) 4.13 (3) 9.69 (10) 8.04 (9)
50 3.85 (2) 8.23 (10) 2.92 (1) 4.44 (4) 4.60 (5) 7.90 (8) 4.35 (3) 4.75 (6) 8.19 (9) 5.76 (7)

Set 1

5 100 5.33 (6) 8.37 (9) 1.99 (1) 3.64 (3) 5.18 (5) 7.35 (8) 2.61 (2) 4.40 (4) 8.89 (10) 7.24 (7)
50 4.23 (1) 4.73 (3) 5.07 (5) 4.89 (4) 4.67 (2) 5.75 (7) 6.31 (9) 5.46 (6) 7.91 (10) 5.99 (8)Set 2 2 100 4.33 (4) 3.93 (1) 5.58 (6) 4.93 (5) 4.28 (2) 4.28 (2) 7.05 (9) 5.61 (7) 8.75 (10) 6.27 (8)

ordinary drift-unaware optimizers. Interestingly, the number of iterations did not
have a notable effect on the rankings of the optimizers.

104

7.3 Evaluation

7.3.3 Incremental Drift

For problems with an incremental drift a constant change of the functions response
surface leads to the assumption that drift-unaware optimizers will slowly decrease
in performance. We expect window-based optimizers to be able to adapt to the
steady change although they will likely lack behind, since the surrogate is always
trained on an outdated state of the function. In contrast, the time-as-covariate
approach seems to be the most promising in this scenario. In an ideal case the
surrogate is able to learn and predict the influence of the time, resulting in an
overall low fitness error.

The optimization curves in Figure 7.12 partly confirm our assumptions. The
performance of bo_tei decreases to the same extent as the constant proposal
towards the end on functions of set 2. Surprisingly, even the random evaluations of
rs reach a better performance after iteration 50 for Griewank 2d, Griewank 5d,
Rastrigin 2d and Rastrigin 5d. In the first 20 and 40 iterations the curves
for bo_tw20_tei and bo_tw40_tei follow the same path as the ones for bo_tei.
In the first 20 and 40 iterations the curves for bo_tw20_tei and bo_tw40_tei
follow the same path as the ones for bo_tei. This is expected, since as long as the
initial design is still included in the window, these methods work identical. Still
the adaptation to the incremental drift is surprisingly slow for functions of set 1.
Similar to the observations made on functions with sudden drift, also here, the
smaller window size is beneficial and allows a faster adaptation to the drift. Again,
the smaller window size does not increase the fitness error due to a surrogate with
less information.

Functions of set 2 have a comparably simple response surface with relatively small
regions of very high function outcomes. The constant approach suffers from this
characteristic, since the previously best setting from the initial design falls into
such an area of high function outcomes after half of the time, which can also be
seen in Figure 7.5. In contrast all other optimizers visually appear to perform
well. Apart from some outliers in the beginning, bo_tac_tei reaches the lowest
error values throughout the time. For the window-based optimizers we can observe
the same behavior on set 2 as for functions without drift in general. The loss of

105

7 MBO CD Benchmark

Set 1: Ackley 5d Set 1: Griewank 5d Set 1: Rastrigin 5d Set 2: Goldstn−Prc. 2d

Set 1: Ackley 2d Set 1: Griewank 2d Set 1: Rastrigin 2d Set 2: Camelback 2d

Set 1: Ackley 1d Set 1: Griewank 1d Set 1: Rastrigin 1d Set 2: Branin 2d

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

0

2

4

6

0

5

10

15

0

2

4

6

0.4

0.8

1.2

0.4

0.6

0.8

1.0

1.2

1.4

0.75

1.00

1.25

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

0.3

0.6

0.9

0.5

0.7

0.9

0.7

0.8

0.9

1.0

Iteration

F
itn

es
s

E
rr

or

Algorithm
bo_aei

bo_tac_tei

bo_tw20_aei

bo_tw40_aei

constant

rs

Figure 7.12: Optimization curves for optimizers that use the aei or tei acquisition
function on all problems with 100 optimization iterations and an incremental
drift.

informations from the initial design and badly performing points lead to recurring
peaks of a high fitness error.

The additional optimization curves for 50 iterations (Fig. B.9) and for the cb2
acquisition function with 50 (Fig. B.10) and 100 (Fig. B.11) iterations are given
in the Appendix B.3 on pages 146ff. In the 50 iteration setting bo_tac_tei and
bo_tac_cb2 are less able to follow the incremental change than within the 100
iteration setting, which is especially visible for the Ackley 2d, Ackley 5d and
Griewank 5d functions. As expected, the performance of bo_tw40 is similarly bad

106

7.3 Evaluation

Iters: 50, 1d

bo_aei

bo_cb2

bo_tac_cb2 bo_tac_teibo_tw20_aei bo_tw20_cb2

bo_tw40_aei bo_tw40_cb2

constant

rs

Iters: 50, 2d

bo_aeibo_cb2

bo_tac_cb2

bo_tac_tei

bo_tw20_aei bo_tw20_cb2

bo_tw40_aei

bo_tw40_cb2

constant

rs

Iters: 50, 5d

bo_aei bo_cb2 bo_tac_cb2

bo_tac_tei

bo_tw20_aei

bo_tw20_cb2

bo_tw40_aei bo_tw40_cb2

constant

rs

Iters: 100, 1d

bo_aei

bo_cb2

bo_tac_cb2

bo_tac_tei

bo_tw20_aeibo_tw20_cb2

bo_tw40_aeibo_tw40_cb2

constant rs

Iters: 100, 2d

bo_aei bo_cb2

bo_tac_cb2

bo_tac_tei

bo_tw20_aeibo_tw20_cb2

bo_tw40_aeibo_tw40_cb2

constant

rs

Iters: 100, 5d

bo_aei bo_cb2

bo_tac_cb2

bo_tac_tei

bo_tw20_aei

bo_tw20_cb2

bo_tw40_aei

bo_tw40_cb2

constant

rs

Figure 7.13: Preference graphs for each problem group of set 1 with incremental
drifts.

to the drift-unaware bo methods for the 50 iteration setting, since the design is
identical until iteration 40. But also the smaller window size is not sufficient to
make the optimizer aware of the continuous change of the objective function within
50 iterations on set 1. The direct comparison between the two acquisition functions
shows that bo_tac_cb2 is better able to follow the optimum than bo_tac_aei
on the Ackley and Griewank functions. We can assume that the exploitative
characteristic of the confidence bound is beneficial in this scenario as it allows the
surrogate to better fit in the region of the current global optima.

The individual preference plots in Figure 7.13 show that in all cases for the
window-based optimizers the smaller window performs better, even independent of
the acquisition function. A specific preference for an acquisition function is less
clear, although bo_tw20_aei is never beat by bo_tw20_cb2 and for 5d problems

107

7 MBO CD Benchmark

Table 7.5: Rankings of the optimization methods on each subset of problems with
incremental drifts.

AEI CB2

Se
t

d It
er

at
io

ns

bo
_a

ei

bo
_t

ac
_t

ei

bo
_t

w2
0_

ae
i

bo
_t

w4
0_

ae
i

bo
_c

b2

bo
_t

ac
_c

b2

bo
_t

w2
0_

cb
2

bo
_t

w4
0_

cb
2

rs co
ns

ta
nt

50 6.05 (6) 3.77 (4) 3.62 (3) 5.72 (5) 6.35 (8) 3.58 (2) 3.49 (1) 6.07 (7) 8.21 (10) 8.15 (9)1 100 6.74 (7) 4.11 (5) 3.37 (2) 4.05 (3) 7.28 (8) 4.05 (3) 3.12 (1) 4.17 (6) 9.25 (10) 8.87 (9)
50 6.17 (7) 4.95 (4) 3.27 (1) 5.55 (5) 6.26 (8) 3.67 (3) 3.43 (2) 5.89 (6) 8.53 (10) 7.28 (9)2 100 7.29 (7) 4.23 (5) 2.94 (1) 4.25 (6) 7.55 (8) 3.59 (3) 3.17 (2) 4.19 (4) 9.35 (10) 8.43 (9)
50 5.27 (5) 7.59 (9) 3.03 (1) 5.45 (7) 5.05 (3) 5.11 (4) 3.55 (2) 5.29 (6) 8.01 (10) 6.65 (8)

Set 1

5 100 6.75 (8) 6.26 (6) 2.65 (1) 4.21 (4) 6.59 (7) 3.85 (3) 3.09 (2) 4.37 (5) 9.01 (10) 8.21 (9)
50 3.54 (1) 3.64 (2) 5.41 (6) 5.25 (5) 4.10 (3) 4.52 (4) 7.69 (9) 5.98 (7) 8.79 (10) 6.08 (8)Set 2 2 100 4.02 (4) 2.61 (1) 6.22 (6) 4.65 (5) 4.00 (3) 3.21 (2) 8.15 (9) 6.25 (7) 9.32 (10) 6.56 (8)

bo_tac_cb2 clearly outperforms bo_tac_tei. The time-as-covariate approach only
outperforms the bo_tw20 approaches on problems of set 2 (see Figure B.12). This
indicates that the time-as-covariate approach only works well, if the surrogate can
reliably model the response surface.

The averaged rankings in Table 7.5 show that apart from some cases bo_tw20_aei
and bo_tw20_cb2 are promising optimizers although their performance is lacking
on problems of set 2.

The results of the time-as-covariate approaches are inconclusive. On set 2 bo_tac_tei
performs best, whereas on set 1 bo_tac_cb2 works comparably well. The number
of iterations does not have a notable effect on the rankings of the optimizers.

7.3.4 Drifts combined

If the drift type is not known in advance, the question remains, which optimizer
is an overall good choice. This is very hard to answer, as we saw that different
effects can determine the success of a specific optimizer and there is no general
winner. Additionally, in a real application, some prior knowledge about the drift

108

7.3 Evaluation

Table 7.6: Rankings of the optimization methods on each subset of problems with
all drift types combined and on all problems averaged.

AEI CB2

Se
t

d It
er

at
io

ns

bo
_a

ei

bo
_t

ac
_t

ei

bo
_t

w2
0_

ae
i

bo
_t

w4
0_

ae
i

bo
_c

b2

bo
_t

ac
_c

b2

bo
_t

w2
0_

cb
2

bo
_t

w4
0_

cb
2

rs co
ns

ta
nt

50 6.42 (7) 3.46 (2) 4.98 (4) 6.46 (8) 5.18 (6) 3.44 (1) 3.92 (3) 5.16 (5) 9.21 (10) 6.78 (9)1 100 6.93 (8) 3.41 (1) 5.23 (5) 5.77 (7) 5.60 (6) 3.45 (2) 3.80 (4) 3.60 (3) 9.65 (10) 7.56 (9)
50 5.44 (6) 6.16 (8) 3.41 (1) 5.26 (5) 4.85 (3) 5.52 (7) 3.53 (2) 4.90 (4) 9.22 (10) 6.72 (9)2 100 6.83 (8) 5.73 (7) 3.22 (2) 4.61 (4) 5.58 (6) 4.84 (5) 3.11 (1) 3.69 (3) 9.67 (10) 7.72 (9)
50 4.02 (2) 7.88 (9) 3.35 (1) 4.42 (5) 4.38 (4) 6.69 (8) 4.28 (3) 4.73 (6) 8.72 (10) 6.54 (7)

Set 1

5 100 5.08 (6) 7.54 (8) 3.04 (1) 3.81 (3) 4.78 (5) 6.03 (7) 3.71 (2) 4.00 (4) 9.30 (10) 7.71 (9)
50 3.44 (1) 3.91 (2) 5.97 (7) 5.16 (6) 4.23 (3) 5.15 (5) 7.65 (9) 6.10 (8) 8.77 (10) 4.62 (4)Set 2 2 100 3.59 (2) 3.28 (1) 6.47 (8) 5.17 (6) 3.87 (3) 4.07 (4) 8.04 (9) 6.23 (7) 9.31 (10) 4.96 (5)

All 5.22 (8) 5.17 (7) 4.46 (1) 5.08 (6) 4.81 (4) 4.90 (5) 4.76 (2) 4.80 (3) 9.23 (10) 6.57 (9)

might be available. This would heavily influence the choice, as one of the presented
drift scenarios might be more probable. However, to obtain an overview, which
optimizers performed generally well, the averaged ranks over all drift types are given
in Table 7.6. The averaging implies that an equal probability of each scenario is
assumed. Also the average ranks do not reflect the absolute differences, which have
been of a higher magnitude for scenarios with drift than for the no drift scenario.
Therefore, the meaningfulness of the given averaged ranks is very limited. For the
average across all problems in the last row no significance test was conducted. Note
that constant is underlined for set 2 because the sign test ignores the value of the
difference. Therefore, the number of cases where constant placed first in the no
drift scenario are sufficient for the test to not reject the hypothesis that constant
is worse than the best performing optimizer. Since there is no clear winner for
all drift types or across all different functions no clear recommendation can be
given if the drift type and the function structure is unknown beforehand. Even if a
drift of any kind is expected it is probably beneficial to be aware of the optimizers
behavior in the no drift scenario. A longer time frame without a drift can cause
behaviors, such as the saturation effect for optimizers that use the tei and aei
acquisition function or the re-exploration effect of the tw approaches, that we both

109

7 MBO CD Benchmark

observed in the no drift scenario. In general, for lower dimensional problems with a
simple response surface bo_tac_tei seems to be a promising candidate. For higher
dimensional problems bo_tw20_aei works best in average.

7.4 Conclusion

This benchmark compared two new Bayesian optimization approaches for dynamic
optimization problems (DOPs) against three baselines. To adapt Bayesian opti-
mization for problems, where the positions of the optima change over time, we
proposed two approaches: First, the time-as-covariate approach includes the time
as an additional covariate into the surrogate, which allows the surrogate to directly
model the influence of the time on the function outcomes. Second, the window
approach reduces the design of the surrogate to observations that are made within
a certain recent time frame, which allows the surrogate to forget outdated concepts
of the objective function. Both approaches were benchmarked with the lower
confidence bound acquisition function and special adaptations of the expected
improvement.

To obtain a comprehensive understanding of the optimizer’s behavior we bench-
marked our adaptations against the drift-unaware default Bayesian optimization
on the three scenarios: no drift, sudden drift and incremental drift. All scenarios
are created by a benchmark setup that was designed to convert common synthetic
benchmark functions to DOPs with a desired drift. We defined a performance
measure that includes every evaluation into the calculation of the average error,
which is uncommon for DOPs, where usually just the best of a batch is taken into
consideration.

The results show that no optimizer is a clear winner but that each method has
its strengths and weaknesses. In general, the proposed methods are able to beat
the baseline of the ordinary Bayesian optimization, whereas the window-based
Bayesian optimization with a smaller window is the most promising candidate for
the 5d problems and the time-as-covariate approach performed best on the 1d, and

110

7.4 Conclusion

simpler 2d problems. The number of iterations did not play an important role for
the final rankings. For most cases the augmented expected improvement appears
to be the preferable acquisition function.

Altogether, the results also show that a real application of MBO on dynamic
optimization problems faces many challenges, since there is no clear winner in
this benchmark. They can serve as preliminary results that help to develop a
more flexible MBO-CD framework. The first thing to mention is that the defined
error measure influences how an MBO-CD algorithm should be designed. In our
scenario we argue that every black-box evaluation counts towards the performance
measurement. A more realistic scenario might be that we have two separated
evaluations with individual budgets. One budget is for the production-evaluation,
where we want to minimize the error and a second budget is for exploration-
evaluations where we allow evaluations with a high error, so that the surrogate can
obtain information about uncertain regions or the drift type. This could be a setting
in a factory with a production line, where we want to produce items with the highest
possible quality. For the exploration-evaluations a second smaller production line
would be available, where we produce items with different production settings that
can be discarded if the quality is not sufficient. If these exploration-evaluations
produce items of higher quality, we can adjust the production parameters. Another
practical example could be a machine-learning method that is set to optimal
hyper-parameters to obtain the best predictions while in online operation. As soon
as there are free computational resources (e.g. at night), these resources can be
used to evaluate other hyper-parameters. Afterwards, the MBO-CD framework
can adapt the online hyper-parameters to improve the prediction quality of the
online operation. An additional challenge is to find an optimal strategy, if these
exploration-evaluations are obtained parallel or even parallel to the production-
evaluations.

Such a scenario would allow us to distinguish between exploratory and exploitative
evaluations. With this distinction we could measure the performance only of the
exploitative evaluations, i.e. the configurations where the model expects a good
performance. This would allow us to conclude if the surrogate correctly models

111

7 MBO CD Benchmark

the current state of the true objective function. In the current setting, where each
evaluation is included in the error, we punish exploratory evaluations. Also in
this current setting we can adapt the optimizers to better balance exploration and
exploitation.

The analysis of the results showed that in some cases potentially unwanted behaviors
of the optimizers can be observed. Such issues are the saturation effect, which was
especially notable for optimizers that use the aei or tei acquisition function. Here,
the acquisition function prevents the optimizers from evaluating regions where
we expect a good outcome. Another issue is the failing adaption after a sudden
change.

This allows two conclusions: Fist, the methods should be improved on a mathemat-
ical level, e.g. by adapting the acquisition function, the Gaussian process regression
or the surrogate in general. Second, the optimization process should be supervised,
either by a human or by another algorithm that detects unwanted behaviors of
the optimizer. For online machine learning it is common to detect concept drifts
with a method that is independent from the machine learning method itself. Such
external concept drift detectors could help to determine the window size for the
incremental drift or trigger a deletion of the outdated design if a sudden drift is
detected. We also noticed that for certain functions different acquisition functions
perform better. This is a common problem in MBO and can potentially be solved
using a portfolio of acquisition functions.

We have to highlight that in this work we are restricted to problems where the
optimal value stays unchanged and only the position of the optimum changes. This
makes it easier to detect unwanted behavior of the optimizer, since an increased
error directly implies that the evaluated values move away from the optimum.
In other settings it could happen that the optimal value changes. If in such a
situation the overall outcomes of the function increase during optimization we can
no longer be sure that an increased error is the result of a change of the location of
the optimum. The observed effect could also be an upwards shift in the function
value space. On the other hand, if the outcomes during the optimization are
continuously low, it does not imply a good performing optimization anymore. It

112

7.4 Conclusion

could happen that a new optimum appears in an undetected area with even lower
function outcomes. As explained, the presented benchmark is easily expandable to
introduce a controllable shift in the function value space. This shift likely poses a
completely new challenge for the optimizers.

113

8 Summary

Bayesian optimization is a very current and active field of research. Many extensions,
adaptations and use cases are presented regularly. On the one hand, it is a challenge
to form a common and concise understanding of the state-of-the-art, but on the
other hand it opens up many possibilities to combine newest research results and
ideas to create new algorithms and applications. Within this work two novel
extensions of the model-based optimization framework are presented that are each
on its own independent developments.

The first extension is RAMBO which is a framework for applying MBO in parallel
in a resource-aware fashion. We benchmarked state-of-the-art asynchronous and
synchronous strategies against our newly proposed scheduled synchronous approach.
The scheduling approach uses a second regression model to predict the runtime of
each evaluation of the expensive black-box. With this information, we were able to
avoid the parallel evaluation of black-box configurations that have heterogeneous
runtimes and lead to idle times. Also, the algorithm was able to schedule multiple
evaluations with short runtimes on one worker, while other workers evaluate long-
running black-box configurations. If the runtimes are heterogeneous and well
predictable by the regression model, the newly proposed scheduling approach is
able to reach the optimum faster than their competitors. On problems with an
unpredictable runtime RAMBO was still able to obtain comparable optimization
performance to the state-of-the-art parallel MBO methods but was inferior to
asynchronous optimizers. Especially for a high degree of parallelization with 16
workers the asynchronous approach performed well if the single proposal can be
obtained comparably fast. A slow asynchronous point proposal due to either a
large design or a computationally intensive acquisition function can decrease the

115

8 Summary

overall optimization performance of an asynchronous optimizer. In contrast to a
synchronous method, where the proposals are only generated once in each iteration
on the master, the asynchronous method obtains each proposal individually on
each worker. The asynchronous methods incorporate the ongoing evaluations in
their proposal. The problem how to deal with ongoing proposal generations seems
to be neglected in the literature so far. A promising approach could be a hybrid
optimizer that uses asynchronous and synchronous methods combined. As soon
as multiple ongoing proposals are detected the hybrid optimizer could switch to a
synchronous proposal for the workers in question.

The second contribution MBO-CD is an extension of MBO towards dynamic
optimization problems. We present two approaches how MBO can be taught to
handle black-box functions where the relation between input and output changes
over time, i.e. where a concept drift occurs. The window approach trains the
surrogate only on the most recent observations. The time-as-covariate approach
includes the time as an additional input variable in the surrogate, giving it the
ability to learn the effect of the time. For the latter, a special acquisition function,
the temporal expected improvement, has been proposed. Both approaches were
benchmarked against the drift-unaware classic Bayesian optimization. A special
benchmark framework was designed to allow the simulation of different drift types
on static objective functions. The chosen drift scenarios were no drift, sudden drift
and incremental drift. To measure the performance of the optimizers, the mean
fitness error was chosen, where each evaluation during the optimization counts
equally towards the error. Therefore, any exploratory evaluation possibly increases
the overall error, although the evaluation might be necessary to detect the drift or
find better performing regions of the objective function. The benchmark showed
that both proposed concept drift aware optimizers were able to beat the baseline
in the majority of cases. However, there is no clear winner for all drift types
across all problems. The results suggest that for easily modeled objectives of lower
dimensionality the time-as-covariate approach obtains good results, whereas for
higher dimensional objectives of higher complexity the window approach performs
better. Furthermore, we observed that the acquisition function can heavily influence
the average optimization performance. In general the newly suggested temporal

116

expected improvement for the time-as-covariate approach or the augmented expected
improvement for the window approaches obtains better rankings than the lower
confidence bound, although the EI-based optimizers suffer from a saturation effect
when the global optimum is fitted accurately by the surrogate. In those cases, the
EI-based acquisition function forbids exploitative reevaluations of configurations
close to the optima, leading to exploratory evaluations in bad performing areas
which negatively affects the average performance. Therefore, a potential further
development could target two aspects. First, separate exploratory and exploitative
observations and control the balance of both, so that an error measure that counts
every evaluation can be minimized. Second, create a scenario where we allow
exploratory evaluations without counting them towards the error. This could
include a parallel setup where one part of the workers is assigned to do exploration
evaluations and another part of workers is assigned to do the evaluations that count
towards the final performance.

All optimization benchmarks in this thesis were conducted on synthetic functions
with a purely real-valued domain. These synthetic benchmarks are mathematical
functions that are commonly used in the optimization literature. The advantages
are that the true optimum location and value is known which is not the case for
most machine-learning hyper-parameter optimization problems and most real-world
optimization problems in general. Additionally, the results of synthetic benchmarks
are deterministic, so it is less likely to overinterpret results that are just artifacts
of noise. Both facts increase the overall comparability and interpretability of the
results across different problems.

However, the question if our observations will also apply to real-world problems
remains open and should be the focus of an independent benchmark. Many real-
world optimization problems are not defined on a purely numeric search space
and include categorical or even hierarchical parameters. Such complex search
spaces form a dedicated current research topic. Accordingly, an extension of
RAMBO towards categorical search spaces creates a new challenge since not only
the surrogate but also the model that predicts the runtimes has to be adapted.
Hierarchical or categorical search spaces usually imply that certain search regions

117

8 Summary

are uncorrelated. This opens up an opportunity to use this structural knowledge to
distribute evaluations of uncorrelated configurations across the workers to maximize
the knowledge that can be obtained in parallel. Also for MBO-CD hierarchical
or categorical search spaces create a new challenge. While the application of the
window approach might be straightforward, the time-as-covariate approach has to
deal with an even more complex surrogate that can extrapolate and also deal with
categorical variables. It is questionable if the default random forest, which usually
is the go-to solution if MBO is applied on mixed-valued search spaces, will suffice
as a surrogate to obtain a good optimization performance.

Methodically, non-deterministic functions as they are found in real-life, might not
be a particular problem for the presented methods. Obviously, the optimization
problem will be harder and require more evaluations and the final point proposal
has to be adapted as well as the choice of the acquisition function. For RAMBO we
could argue that stochasticity is even beneficial, because evaluating configurations
that are too similar is not a waste of resources anymore, it is even necessary to
improve the accuracy of the surrogate. For MBO-CD we already assume that the
function is not deterministic because it changes over time. However, the problem
will become more complex as now the insecurity can be attributed to the noise and
to the time.

The results in this work further demonstrate that the MBO framework is highly
customizable and there hardly is a configuration that works best on multiple
scenarios. Either a human expert has to supervise the MBO configuration or the
self-configuration of MBO with reasonable settings for a given scenario has to be
improved. This can be achieved either by simple heuristics or by applying techniques
of meta-learning and AutoML to obtain a better surrogate and automatically
configure MBO reasonably.

118

Bibliography

Assael, John-Alexander M., Ziyu Wang, Bobak Shahriari, and Nando de Freitas
(Mar. 4, 2015). Heteroscedastic Treed Bayesian Optimisation, pp. 1–9. arXiv:
1410.7172. url: http://arxiv.org/abs/1410.7172.

Benassi, Romain, Julien Bect, and Emmanuel Vazquez (2011). “Robust Gaus-
sian Process-Based Global Optimization Using a Fully Bayesian Expected Im-
provement Criterion”. In: Learning and Intelligent Optimization. Ed. by Carlos
A. Coello Coello. Vol. 6683. Berlin, Heidelberg: Springer, pp. 176–190. doi:
10.1007/978-3-642-25566-3_13.

Bergstra, J., D. Yamins, and D. D. Cox (2013). “Making a Science of Model Search:
Hyperparameter Optimization in Hundreds of Dimensions for Vision Architec-
tures”. In: Proceedings of the 30th International Conference on International
Conference on Machine Learning - Volume 28 (Atlanta, GA, USA). ICML’13.
JMLR.org, pp. I-115–I-123. url: http://dl.acm.org/citation.cfm?id=
3042817.3042832.

Bischl, Bernd, Michel Lang, Lars Kotthoff, Julia Schiffner, Jakob Richter, Erich
Studerus, Giuseppe Casalicchio, and Zachary M. Jones (2016). “Mlr: Machine
Learning in R”. In: Journal of Machine Learning Research 17.170, pp. 1–5. url:
http://jmlr.org/papers/v17/15-066.html.

Bischl, Bernd, Jakob Richter, Jakob Bossek, Daniel Horn, Janek Thomas, and
Michel Lang (Mar. 9, 2017). mlrMBO: A Modular Framework for Model-Based
Optimization of Expensive Black-Box Functions, pp. 1–26. arXiv: 1703.03373.
url: http://arxiv.org/abs/1703.03373.

119

https://arxiv.org/abs/1410.7172
http://arxiv.org/abs/1410.7172
https://doi.org/10.1007/978-3-642-25566-3_13
http://dl.acm.org/citation.cfm?id=3042817.3042832
http://dl.acm.org/citation.cfm?id=3042817.3042832
http://jmlr.org/papers/v17/15-066.html
https://arxiv.org/abs/1703.03373
http://arxiv.org/abs/1703.03373

Bibliography

Bischl, Bernd, Simon Wessing, Nadja Bauer, Klaus Friedrichs, and Claus Weihs
(2014). “MOI-MBO: Multiobjective Infill for Parallel Model-Based Optimization”.
In: Learning and Intelligent Optimization Conference. LION. Lecture Notes in
Computer Science. Florida: Springer, pp. 173–186. doi: 10.1007/978-3-319-
09584-4_17.

Borchers, Hans Werner (2018). Adagio: Discrete and Global Optimization Routines.
Version 0.7.1.

Bossek, Jakob (2017). “Smoof: Single- and Multi-Objective Optimization Test
Functions”. In: The R Journal 9.1, pp. 103–113. url: https://journal.r-
project.org/archive/2017/RJ-2017-004/index.html.

Branke, and J. (June 2005). “Evolutionary Optimization in Uncertain Environments-
a Survey”. In: IEEE Transactions on Evolutionary Computation 9.3, pp. 303–317.
doi: 10.1109/TEVC.2005.846356.

Chevalier, Clément and David Ginsbourger (Jan. 7, 2013). “Fast Computation of
the Multi-Points Expected Improvement with Applications in Batch Selection”.
In: Learning and Intelligent Optimization. International Conference on Learning
and Intelligent Optimization. Springer Berlin Heidelberg, pp. 59–69. doi: 10.
1007/978-3-642-44973-4_7.

Cruz, Carlos, Juan R. González, and David A. Pelta (July 1, 2011). “Optimization
in Dynamic Environments: A Survey on Problems, Methods and Measures”. In:
Soft Computing 15.7, pp. 1427–1448. doi: 10.1007/s00500-010-0681-0.

Demšar, Janez (2006). “Statistical Comparisons of Classifiers over Multiple Data
Sets”. In: Journal of Machine Learning Research 7 (Jan), pp. 1–30. issn: ISSN
1533-7928. url: http://www.jmlr.org/papers/v7/demsar06a.html.

Forrester, Alexander I. J. and Andy J. Keane (Jan. 1, 2009). “Recent Advances in
Surrogate-Based Optimization”. In: Progress in Aerospace Sciences 45.1, pp. 50–
79. doi: 10.1016/j.paerosci.2008.11.001.

Forrester, Alexander I. J., András Sóbester, and Andy J. Keane (Dec. 8, 2007).
“Multi-Fidelity Optimization via Surrogate Modelling”. In: Proceedings of the
Royal Society of London A: Mathematical, Physical and Engineering Sciences
463.2088, pp. 3251–3269. doi: 10.1098/rspa.2007.1900.

120

https://doi.org/10.1007/978-3-319-09584-4_17
https://doi.org/10.1007/978-3-319-09584-4_17
https://journal.r-project.org/archive/2017/RJ-2017-004/index.html
https://journal.r-project.org/archive/2017/RJ-2017-004/index.html
https://doi.org/10.1109/TEVC.2005.846356
https://doi.org/10.1007/978-3-642-44973-4_7
https://doi.org/10.1007/978-3-642-44973-4_7
https://doi.org/10.1007/s00500-010-0681-0
http://www.jmlr.org/papers/v7/demsar06a.html
https://doi.org/10.1016/j.paerosci.2008.11.001
https://doi.org/10.1098/rspa.2007.1900

Bibliography

Gama, João, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid
Bouchachia (Mar. 2014). “A Survey on Concept Drift Adaptation”. In: ACM
Comput. Surv. 46.4, 44:1–44:37. doi: 10.1145/2523813.

Ginsbourger, David, Janis Janusevskis, and Rodolphe Le Riche (2011). Dealing
with Asynchronicity in Parallel Gaussian Process Based Global Optimization,
pp. 1–27. url: https://hal.archives-ouvertes.fr/hal-00507632.

Ginsbourger, David, Rodolphe Le Riche, and Laurent Carraro (Mar. 2008). A
Multi-Points Criterion for Deterministic Parallel Global Optimization Based on
Gaussian Processes, pp. 1–30. url: https://hal.archives-ouvertes.fr/hal-
00260579.

– (2010). “Kriging Is Well-Suited to Parallelize Optimization”. In: Computational
Intelligence in Expensive Optimization Problems. Springer, pp. 131–162. isbn:
978-3-642-10701-6.

Golovin, Daniel, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro,
and D. Sculley (2017). “Google Vizier: A Service for Black-Box Optimization”. In:
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining - KDD ’17. The 23rd ACM SIGKDD International
Conference. Halifax, NS, Canada: ACM Press, pp. 1487–1495. doi: 10.1145/
3097983.3098043.

Gramacy, Robert B and Herbert K. H Lee (Sept. 1, 2008). “Bayesian Treed
Gaussian Process Models With an Application to Computer Modeling”. In:
Journal of the American Statistical Association 103.483, pp. 1119–1130. doi:
10.1198/016214508000000689.

Hansen, Nikolaus and Andreas Ostermeier (June 2001). “Completely Derandomized
Self-Adaptation in Evolution Strategies”. In: Evolutionary Computation 9.2,
pp. 159–195. doi: 10.1162/106365601750190398.

Horn, Daniel, Jörg Stork, Nils-Jannik Schüßler, and Martin Zaefferer (2019). “Sur-
rogates for Hierarchical Search Spaces: The Wedge-Kernel and an Automated
Analysis”. In: Proceedings of the Genetic and Evolutionary Computation Con-
ference (Prague, Czech Republic). GECCO ’19. New York, NY, USA: ACM,
pp. 916–924. doi: 10.1145/3321707.3321765.

121

https://doi.org/10.1145/2523813
https://hal.archives-ouvertes.fr/hal-00507632
https://hal.archives-ouvertes.fr/hal-00260579
https://hal.archives-ouvertes.fr/hal-00260579
https://doi.org/10.1145/3097983.3098043
https://doi.org/10.1145/3097983.3098043
https://doi.org/10.1198/016214508000000689
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1145/3321707.3321765

Bibliography

Huang, D., T. T. Allen, W. I. Notz, and N. Zeng (Mar. 1, 2006). “Global Optimiza-
tion of Stochastic Black-Box Systems via Sequential Kriging Meta-Models”. In:
Journal of Global Optimization 34.3, pp. 441–466. doi: 10.1007/s10898-005-
2454-3.

Hutter, Frank, Holger H. Hoos, and Kevin Leyton-Brown (Jan. 17, 2011). “Se-
quential Model-Based Optimization for General Algorithm Configuration”. In:
Learning and Intelligent Optimization. Ed. by Carlos A. Coello Coello. Lecture
Notes in Computer Science 6683. Springer Berlin Heidelberg, pp. 507–523. doi:
10.1007/978-3-642-25566-3_40.

– (2012). “Parallel Algorithm Configuration”. In: Learning and Intelligent Optimiza-
tion. Ed. by Youssef Hamadi and Marc Schoenauer. Lecture Notes in Computer
Science 7219. Springer Berlin Heidelberg, pp. 55–70. doi: 10.1007/978-3-642-
34413-8_5.

Jones, Donald R. (2001). “A Taxonomy of Global Optimization Methods Based on
Response Surfaces”. In: Journal of Global Optimization 21.4, pp. 345–383. doi:
10.1023/A:1012771025575.

Jones, Donald R., Matthias Schonlau, and William J. Welch (Dec. 1, 1998). “Efficient
Global Optimization of Expensive Black-Box Functions”. In: Journal of Global
Optimization 13.4, pp. 455–492. doi: 10.1023/A:1008306431147.

Kandasamy, Kirthevasan, Akshay Krishnamurthy, Jeff Schneider, and Barnabas
Poczos (Mar. 31, 2018). “Parallelised Bayesian Optimisation via Thompson
Sampling”. In: International Conference on Artificial Intelligence and Statistics.
International Conference on Artificial Intelligence and Statistics, pp. 133–142.
url: http://proceedings.mlr.press/v84/kandasamy18a.html.

Kotthaus, Helena (2018). “Methods for Efficient Resource Utilization in Statistical
Machine Learning Algorithms”. TU Dortmund. 153 pp. url: http://dx.doi.
org/10.17877/DE290R-18928 (visited on 01/07/2020).

Krige, D. G. (Dec. 1, 1951). “A Statistical Approach to Some Basic Mine Valuation
Problems on the Witwatersrand”. In: Journal of the Southern African Institute
of Mining and Metallurgy 52.6, pp. 119–139. issn: 0038-223X. url: https:
//journals.co.za/content/saimm/52/6/AJA0038223X_4792.

122

https://doi.org/10.1007/s10898-005-2454-3
https://doi.org/10.1007/s10898-005-2454-3
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-34413-8_5
https://doi.org/10.1007/978-3-642-34413-8_5
https://doi.org/10.1023/A:1012771025575
https://doi.org/10.1023/A:1008306431147
http://proceedings.mlr.press/v84/kandasamy18a.html
http://dx.doi.org/10.17877/DE290R-18928
http://dx.doi.org/10.17877/DE290R-18928
https://journals.co.za/content/saimm/52/6/AJA0038223X_4792
https://journals.co.za/content/saimm/52/6/AJA0038223X_4792

Bibliography

Lang, Michel, Bernd Bischl, and Dirk Surmann (Feb. 22, 2017). “Batchtools: Tools
for R to Work on Batch Systems”. In: Journal of Open Source Software 2.10,
p. 135. doi: 10.21105/joss.00135.

McKay, M. D., R. J. Beckman, and W. J. Conover (May 1, 1979). “Comparison
of Three Methods for Selecting Values of Input Variables in the Analysis of
Output from a Computer Code”. In: Technometrics 21.2, pp. 239–245. doi:
10.1080/00401706.1979.10489755.

Močkus, J. (1975). “On Bayesian Methods for Seeking the Extremum”. In: Op-
timization Techniques IFIP Technical Conference. Springer, pp. 400–404. url:
http://link.springer.com/content/pdf/10.1007/978- 3- 662- 38527-
2_55.pdf.

Morar, Marius Tudor, Joshua Knowles, and Sandra Sampaio (May 1, 2017). “Initial-
ization of Bayesian Optimization Viewed as Part of a Larger Algorithm Portfolio”.
In: Data Science meets Optimization Workshop: CEC2017 & CPAIOR 2017:
DSO 2017, pp. 1–6. url: https://www.research.manchester.ac.uk/portal/
en/publications/initialization- of- bayesian- optimization- viewed-
as-part-of-a-larger-algorithm-portfolio(128f1b9a-5717-4458-9423-
89386cb1d103).html.

Munteanu, Alexander, Amin Nayebi, and Matthias Poloczek (2019). “A Framework
for Bayesian Optimization in Embedded Subspaces”. In: International Conference
on Machine Learning, pp. 4752–4761.

Nyikosa, Favour M., Michael A. Osborne, and Stephen J. Roberts (Mar. 9, 2018).
Bayesian Optimization for Dynamic Problems, pp. 1–10. arXiv: 1803.03432.
url: http://arxiv.org/abs/1803.03432.

Pintér, János D. (Mar. 14, 2013). Global Optimization in Action: Continuous and
Lipschitz Optimization: Algorithms, Implementations and Applications. Springer
Science & Business Media. 481 pp. isbn: 978-1-4757-2502-5. Google Books:
uv7lBwAAQBAJ.

Rasmussen, Carl Edward and Christopher K. I. Williams (2006). Gaussian Processes
for Machine Learning. Adaptive Computation and Machine Learning. Cambridge,
Mass: MIT Press. 248 pp. isbn: 978-0-262-18253-9.

123

https://doi.org/10.21105/joss.00135
https://doi.org/10.1080/00401706.1979.10489755
http://link.springer.com/content/pdf/10.1007/978-3-662-38527-2_55.pdf
http://link.springer.com/content/pdf/10.1007/978-3-662-38527-2_55.pdf
https://www.research.manchester.ac.uk/portal/en/publications/initialization-of-bayesian-optimization-viewed-as-part-of-a-larger-algorithm-portfolio(128f1b9a-5717-4458-9423-89386cb1d103).html
https://www.research.manchester.ac.uk/portal/en/publications/initialization-of-bayesian-optimization-viewed-as-part-of-a-larger-algorithm-portfolio(128f1b9a-5717-4458-9423-89386cb1d103).html
https://www.research.manchester.ac.uk/portal/en/publications/initialization-of-bayesian-optimization-viewed-as-part-of-a-larger-algorithm-portfolio(128f1b9a-5717-4458-9423-89386cb1d103).html
https://www.research.manchester.ac.uk/portal/en/publications/initialization-of-bayesian-optimization-viewed-as-part-of-a-larger-algorithm-portfolio(128f1b9a-5717-4458-9423-89386cb1d103).html
https://arxiv.org/abs/1803.03432
http://arxiv.org/abs/1803.03432
http://books.google.com/books?id=uv7lBwAAQBAJ

Bibliography

Richter, Jakob (2015). “Modellbasierte Hyperparameteroptimierung für maschinelle
Lernverfahren auf großen Daten”. TU Dortmund. 81 pp.

Richter, Jakob, Helena Kotthaus, Bernd Bischl, Peter Marwedel, Jörg Rahnenführer,
and Michel Lang (May 29, 2016). “Faster Model-Based Optimization Through
Resource-Aware Scheduling Strategies”. In: Learning and Intelligent Optimization.
LION. Springer International Publishing, pp. 267–273. doi: 10.1007/978-3-
319-50349-3_22.

Richter, Jakob, Helena Kotthaus, Andreas Lang, Janek Thomas, Bernd Bischl,
Peter Marwedel, Jörg Rahnenführer, and Michel Lang (June 19, 2017). “RAMBO:
Resource-Aware Model-Based Optimization with Scheduling for Heterogeneous
Runtimes and a Comparison with Asynchronous Model-Based Optimization”.
In: Learning and Intelligent Optimization. LION. Lecture Notes in Computer
Science. Springer, Cham, pp. 180–195. doi: 10.1007/978-3-319-69404-7_13.

Richter, Jakob, Katrin Madjar, and Jörg Rahnenführer (July 15, 2019). “Model-
Based Optimization of Subgroup Weights for Survival Analysis”. In: Bioinfor-
matics 35.14, pp. i484–i491. doi: 10.1093/bioinformatics/btz361.

Ru, Binxin, Ahsan S. Alvi, Vu Nguyen, Michael A. Osborne, and Stephen J. Roberts
(June 20, 2019). Bayesian Optimisation over Multiple Continuous and Categorical
Inputs, pp. 1–15. arXiv: 1906.08878. url: http://arxiv.org/abs/1906.08878.

Shahriari, B., K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas (Jan. 2016).
“Taking the Human Out of the Loop: A Review of Bayesian Optimization”. In:
Proceedings of the IEEE 104.1, pp. 148–175. doi: 10.1109/JPROC.2015.2494218.

Snoek, Jasper (2013). “Bayesian Optimization and Semiparametric Models with
Applications to Assistive Technology”. Toronto: University of Toronto. 129 pp.

Snoek, Jasper, Hugo Larochelle, and Ryan P Adams (2012). “Practical Bayesian
Optimization of Machine Learning Algorithms”. In: Advances in Neural Infor-
mation Processing Systems 25. Ed. by F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger. Curran Associates, Inc., pp. 2951–2959. url: http:
//papers.nips.cc/paper/4522-practical-bayesian-optimization-of-
machine-learning-algorithms.pdf.

Srinivas, N., A. Krause, S. M. Kakade, and M. W. Seeger (May 2012). “Information-
Theoretic Regret Bounds for Gaussian Process Optimization in the Bandit

124

https://doi.org/10.1007/978-3-319-50349-3_22
https://doi.org/10.1007/978-3-319-50349-3_22
https://doi.org/10.1007/978-3-319-69404-7_13
https://doi.org/10.1093/bioinformatics/btz361
https://arxiv.org/abs/1906.08878
http://arxiv.org/abs/1906.08878
https://doi.org/10.1109/JPROC.2015.2494218
http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms.pdf
http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms.pdf
http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms.pdf

Bibliography

Setting”. In: IEEE Transactions on Information Theory 58.5, pp. 3250–3265.
doi: 10.1109/TIT.2011.2182033.

Swiler, Laura P., Patricia D. Hough, Peter Qian, Xu Xu, Curtis Storlie, and Herbert
Lee (2014). “Surrogate Models for Mixed Discrete-Continuous Variables”. In:
Constraint Programming and Decision Making. Springer, pp. 181–202. url:
http://link.springer.com/chapter/10.1007/978-3-319-04280-0_21.

Thornton, Chris, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown (2013).
“Auto-WEKA: Combined Selection and Hyperparameter Optimization of Clas-
sification Algorithms”. In: Proceedings of the 19th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 847–855. doi:
10.1145/2487575.2487629.

Wang (2016). “Bayesian Optimization in a Billion Dimensions via Random Embed-
dings”. In: The Journal of artificial intelligence research 55, pp. 361–387. doi:
10.1613/jair.4806.

Wang, Ziyu, Masrour Zoghi, Frank Hutter, David Matheson, and Nando De Freitas
(2013). “Bayesian Optimization in High Dimensions via Random Embeddings.”
In: IJCAI. International Joint Conference on Artificial Intelligence, pp. 1778–
1784. isbn: 978-1-57735-633-2.

125

https://doi.org/10.1109/TIT.2011.2182033
http://link.springer.com/chapter/10.1007/978-3-319-04280-0_21
https://doi.org/10.1145/2487575.2487629
https://doi.org/10.1613/jair.4806

Appendices

127

A Parallel MBO Benchmark

A.1 High Runtime Estimation Quality: rosenbrockd

ackley.rosenbrock_2d bohachevsky.rosenbrock_2d rastrigin.rosenbrock_2d

asyn.eei
asyn.ei.bel

R
A

M
B

O
ei.bel

qC
B

sm
ac

0.0 1.0 2.0 3.0 4.0 0.0 1.0 2.0 3.0 4.0 0.0 1.0 2.0 3.0 4.0

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

hours

W
or

ke
r

Figure A.1: Utilization of the k “ 4 workers by the different optimization methods
on the functions with the rosenbrock2 time function, which can be modeled
reliably by the resource estimator. Note that this just visualizes one of the ten
stochastic repetitions.

129

A Parallel MBO Benchmark

ackley.rosenbrock_5d bohachevsky.rosenbrock_5d rastrigin.rosenbrock_5d

asyn.eei
asyn.ei.bel

R
A

M
B

O
ei.bel

qC
B

sm
ac

0.0 1.0 2.0 3.0 4.0 0.0 1.0 2.0 3.0 4.0 0.0 1.0 2.0 3.0 4.0

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

hours

W
or

ke
r

Figure A.2: Utilization of the k “ 4 workers by the different optimization methods
on the functions with the rosenbrock5 time function, which can be modeled
reliably by the resource estimator. Note that this just visualizes one of the ten
stochastic repetitions.

130

A.1 High Runtime Estimation Quality: rosenbrockd

ackley.rosenbrock_2d bohachevsky.rosenbrock_2d rastrigin.rosenbrock_2d
asyn.eei

asyn.ei.bel
R

A
M

B
O

ei.bel
qC

B
sm

ac

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

0
4
8

12
16

0
4
8

12
16

0
4
8

12
16

0
4
8

12
16

0
4
8

12
16

0
4
8

12
16

hours

W
or

ke
r

Figure A.3: Utilization of the k “ 16 workers by the different optimization methods
on the functions with the rosenbrock2 time function, which can be modeled
reliably by the resource estimator. Note that this just visualizes one of the ten
stochastic repetitions.

131

A Parallel MBO Benchmark

A.2 Low Runtime Estimation Quality: rastrigind

ackley.rastrigin_2d bohachevsky.rastrigin_2d rosenbrock.rastrigin_2d

asyn.eei
asyn.ei.bel

R
A

M
B

O
ei.bel

qC
B

sm
ac

0.0 1.0 2.0 3.0 4.0 0.0 1.0 2.0 3.0 4.0 0.0 1.0 2.0 3.0 4.0

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

hours

W
or

ke
r

Figure A.4: Utilization of the k “ 4 workers by the different optimization methods
on the functions with the rastrigin2 time function, which can hardly be modeled
by the resource estimator. Note that this just visualizes one of the ten stochastic
repetitions.

132

A.2 Low Runtime Estimation Quality: rastrigind

ackley.rastrigin_5d bohachevsky.rastrigin_5d rosenbrock.rastrigin_5d
asyn.eei

asyn.ei.bel
R

A
M

B
O

ei.bel
qC

B
sm

ac

0.0 1.0 2.0 3.0 4.0 0.0 1.0 2.0 3.0 4.0 0.0 1.0 2.0 3.0 4.0

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

hours

W
or

ke
r

Figure A.5: Utilization of the k “ 4 workers by the different optimization methods
on the functions with the rastrigin5 time function, which can hardly be modeled
by the resource estimator. Note that this just visualizes one of the ten stochastic
repetitions.

133

A Parallel MBO Benchmark

ackley.rastrigin_2d bohachevsky.rastrigin_2d rosenbrock.rastrigin_2d

asyn.eei
asyn.ei.bel

R
A

M
B

O
ei.bel

qC
B

sm
ac

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

0
4
8

12
16

0
4
8

12
16

0
4
8

12
16

0
4
8

12
16

0
4
8

12
16

0
4
8

12
16

hours

W
or

ke
r

Figure A.6: Utilization of the k “ 16 workers by the different optimization methods
on the functions with the rastrigin2 time function, which can hardly be modeled
by the resource estimator. Note that this just visualizes one of the ten stochastic
repetitions.

134

135

B MBO CD Benchmark

B MBO CD Benchmark

B.1 No Drift

Set 1: Ackley 5d Set 1: Griewank 5d Set 1: Rastrigin 5d Set 2: Goldstn−Prc. 2d

Set 1: Ackley 2d Set 1: Griewank 2d Set 1: Rastrigin 2d Set 2: Camelback 2d

Set 1: Ackley 1d Set 1: Griewank 1d Set 1: Rastrigin 1d Set 2: Branin 2d

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Iteration

F
itn

es
s

E
rr

or

Algorithm
bo_aei

bo_tac_tei

bo_tw20_aei

bo_tw40_aei

constant

rs

Figure B.1: Optimization curves for optimization strategies that use the aei acqui-
sition function on problems with 50 optimization iterations and no drift.

136

B.1 No Drift

Set 1: Ackley 5d Set 1: Griewank 5d Set 1: Rastrigin 5d Set 2: Goldstn−Prc. 2d

Set 1: Ackley 2d Set 1: Griewank 2d Set 1: Rastrigin 2d Set 2: Camelback 2d

Set 1: Ackley 1d Set 1: Griewank 1d Set 1: Rastrigin 1d Set 2: Branin 2d

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Iteration

F
itn

es
s

E
rr

or

Algorithm
bo_cb2

bo_tac_cb2

bo_tw20_cb2

bo_tw40_cb2

constant

rs

Figure B.2: Optimization curves for optimization strategies that use the cb2 acqui-
sition function on problems with 50 optimization iterations and no drift.

137

B MBO CD Benchmark

Set 1: Ackley 5d Set 1: Griewank 5d Set 1: Rastrigin 5d Set 2: Goldstn−Prc. 2d

Set 1: Ackley 2d Set 1: Griewank 2d Set 1: Rastrigin 2d Set 2: Camelback 2d

Set 1: Ackley 1d Set 1: Griewank 1d Set 1: Rastrigin 1d Set 2: Branin 2d

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Iteration

F
itn

es
s

E
rr

or

Algorithm
bo_cb2

bo_tac_cb2

bo_tw20_cb2

bo_tw40_cb2

constant

rs

Figure B.3: Optimization curves for optimization strategies that use the cb2 acqui-
sition function on problems with 100 optimization iterations and no drift.

138

B.1 No Drift

Iters: 50, 2d

bo_aei

bo_cb2

bo_tac_cb2

bo_tac_tei

bo_tw20_aei

bo_tw20_cb2

bo_tw40_aei

bo_tw40_cb2

constant

rs

Iters: 100, 2d

bo_aei

bo_cb2

bo_tac_cb2

bo_tac_tei

bo_tw20_aei

bo_tw20_cb2

bo_tw40_aei

bo_tw40_cb2

constant

rs

Figure B.4: Preference graphs for each problem subset of set 2 with no drift.

139

B MBO CD Benchmark

Table B.1: MFE and its standard deviation of each optimization method on each
problem with no drift averaged over 50 stochastic repetitions.

AEI CB2

Se
t

Fu
nc

tio
n

d It
er

at
io

ns

bo
_a

ei

bo
_t

ac
_t

ei

bo
_t

w2
0_

ae
i

bo
_t

w4
0_

ae
i

bo
_c

b2

bo
_t

ac
_c

b2

bo
_t

w2
0_

cb
2

bo
_t

w4
0_

cb
2

rs co
ns

ta
nt

50 0.49 ˘0.04 0.19 ˘0.16 0.45 ˘0.06 0.50 ˘0.04 0.16 ˘0.18 0.12 ˘0.09 0.24 ˘0.06 0.12 ˘0.03 0.89 ˘0.03 0.59 ˘0.28
1

100 0.48 ˘0.04 0.13 ˘0.18 0.44 ˘0.03 0.50 ˘0.03 0.07 ˘0.12 0.07 ˘0.12 0.22 ˘0.04 0.07 ˘0.03 0.90 ˘0.02 0.59 ˘0.28
50 0.40 ˘0.21 0.45 ˘0.14 0.32 ˘0.17 0.36 ˘0.18 0.22 ˘0.14 0.30 ˘0.12 0.24 ˘0.12 0.26 ˘0.22 0.96 ˘0.02 0.75 ˘0.16

2
100 0.45 ˘0.15 0.40 ˘0.06 0.27 ˘0.17 0.35 ˘0.19 0.18 ˘0.15 0.17 ˘0.07 0.19 ˘0.09 0.17 ˘0.11 0.96 ˘0.01 0.75 ˘0.16
50 0.51 ˘0.18 0.65 ˘0.14 0.54 ˘0.17 0.53 ˘0.17 0.45 ˘0.13 0.61 ˘0.12 0.46 ˘0.10 0.48 ˘0.16 0.99 ˘0.01 0.88 ˘0.07

Ackley

5
100 0.40 ˘0.16 0.53 ˘0.10 0.40 ˘0.17 0.38 ˘0.14 0.30 ˘0.13 0.39 ˘0.08 0.35 ˘0.07 0.34 ˘0.16 0.99 ˘0.00 0.88 ˘0.07

50 0.62 ˘0.12 0.46 ˘0.20 0.67 ˘0.09 0.63 ˘0.10 0.50 ˘0.16 0.49 ˘0.21 0.57 ˘0.20 0.50 ˘0.19 1.05 ˘0.09 0.44 ˘0.36
1

100 0.57 ˘0.07 0.33 ˘0.18 0.65 ˘0.05 0.62 ˘0.07 0.33 ˘0.16 0.38 ˘0.19 0.57 ˘0.19 0.39 ˘0.20 1.07 ˘0.05 0.44 ˘0.36
50 0.41 ˘0.07 0.76 ˘0.12 0.44 ˘0.11 0.41 ˘0.07 0.43 ˘0.07 0.67 ˘0.09 0.47 ˘0.11 0.45 ˘0.08 1.01 ˘0.07 0.42 ˘0.15

2
100 0.39 ˘0.05 0.71 ˘0.09 0.43 ˘0.07 0.38 ˘0.06 0.39 ˘0.05 0.65 ˘0.07 0.45 ˘0.08 0.36 ˘0.07 1.02 ˘0.05 0.42 ˘0.15
50 0.20 ˘0.02 0.39 ˘0.10 0.23 ˘0.02 0.21 ˘0.02 0.21 ˘0.02 0.29 ˘0.04 0.26 ˘0.03 0.23 ˘0.03 0.91 ˘0.04 0.41 ˘0.10

Griewank

5
100 0.19 ˘0.02 0.42 ˘0.11 0.23 ˘0.02 0.21 ˘0.02 0.19 ˘0.02 0.29 ˘0.02 0.25 ˘0.02 0.22 ˘0.02 0.91 ˘0.03 0.41 ˘0.10

50 0.40 ˘0.08 0.20 ˘0.11 0.66 ˘0.06 0.51 ˘0.09 0.26 ˘0.10 0.26 ˘0.11 0.45 ˘0.19 0.30 ˘0.12 0.99 ˘0.07 0.36 ˘0.28
1

100 0.21 ˘0.05 0.15 ˘0.08 0.64 ˘0.04 0.47 ˘0.09 0.15 ˘0.05 0.15 ˘0.07 0.37 ˘0.16 0.17 ˘0.09 0.97 ˘0.06 0.36 ˘0.28
50 0.48 ˘0.09 0.51 ˘0.17 0.41 ˘0.07 0.47 ˘0.08 0.32 ˘0.10 0.57 ˘0.15 0.36 ˘0.12 0.33 ˘0.12 1.00 ˘0.05 0.47 ˘0.18

2
100 0.54 ˘0.06 0.37 ˘0.14 0.37 ˘0.07 0.42 ˘0.06 0.23 ˘0.11 0.38 ˘0.13 0.29 ˘0.11 0.24 ˘0.09 1.01 ˘0.05 0.47 ˘0.18
50 0.47 ˘0.06 0.73 ˘0.14 0.50 ˘0.07 0.47 ˘0.07 0.54 ˘0.09 0.71 ˘0.08 0.58 ˘0.09 0.54 ˘0.07 0.93 ˘0.03 0.52 ˘0.10

Set 1

Rastrigin

5
100 0.41 ˘0.07 0.65 ˘0.09 0.45 ˘0.07 0.41 ˘0.08 0.43 ˘0.07 0.63 ˘0.06 0.53 ˘0.07 0.41 ˘0.08 0.93 ˘0.02 0.52 ˘0.10

50 0.14 ˘0.07 0.18 ˘0.11 0.52 ˘0.11 0.31 ˘0.07 0.20 ˘0.09 0.30 ˘0.14 0.70 ˘0.12 0.35 ˘0.09 1.54 ˘0.25 0.20 ˘0.19
Branin

100 0.07 ˘0.03 0.11 ˘0.07 0.50 ˘0.07 0.27 ˘0.04 0.09 ˘0.04 0.15 ˘0.06 0.64 ˘0.09 0.30 ˘0.06 1.54 ˘0.15 0.20 ˘0.19

50 0.47 ˘0.23 0.74 ˘0.71 1.73 ˘0.20 1.04 ˘0.23 0.75 ˘0.30 0.97 ˘0.51 2.06 ˘0.21 1.28 ˘0.22 2.16 ˘0.39 0.13 ˘0.08
Camelback

100 0.26 ˘0.12 0.40 ˘0.34 1.58 ˘0.13 0.94 ˘0.11 0.35 ˘0.16 0.54 ˘0.35 1.80 ˘0.17 1.09 ˘0.16 2.23 ˘0.28 0.13 ˘0.08

50 1.77 ˘0.95 2.02 ˘2.11 3.60 ˘1.41 2.60 ˘1.15 2.36 ˘1.22 2.92 ˘2.12 6.17 ˘1.91 4.63 ˘1.83 8.39 ˘2.77 0.05 ˘0.10

Set 2

Gldstn-Pr

2

100 0.94 ˘0.64 0.96 ˘0.82 3.22 ˘0.98 2.47 ˘0.84 1.32 ˘0.63 2.05 ˘1.33 5.97 ˘1.81 3.71 ˘1.08 7.92 ˘1.66 0.05 ˘0.10

140

B.2 Sudden Drift

B.2 Sudden Drift

Set 1: Ackley 5d Set 1: Griewank 5d Set 1: Rastrigin 5d Set 2: Goldstn−Prc. 2d

Set 1: Ackley 2d Set 1: Griewank 2d Set 1: Rastrigin 2d Set 2: Camelback 2d

Set 1: Ackley 1d Set 1: Griewank 1d Set 1: Rastrigin 1d Set 2: Branin 2d

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0

2

4

6

0

5

10

15

0

1

2

3

4

0.0

0.5

1.0

1.5

0.4

0.8

1.2

0.50

0.75

1.00

1.25

0.5

1.0

1.5

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

0.0

0.3

0.6

0.9

0.25

0.50

0.75

1.00

0.7

0.8

0.9

1.0

Iteration

F
itn

es
s

E
rr

or

Algorithm
bo_aei

bo_tac_tei

bo_tw20_aei

bo_tw40_aei

constant

rs

Figure B.5: Optimization curves for optimization strategies that use the aei acqui-
sition function on problems with 50 optimization iterations and sudden drift.

141

B MBO CD Benchmark

Set 1: Ackley 5d Set 1: Griewank 5d Set 1: Rastrigin 5d Set 2: Goldstn−Prc. 2d

Set 1: Ackley 2d Set 1: Griewank 2d Set 1: Rastrigin 2d Set 2: Camelback 2d

Set 1: Ackley 1d Set 1: Griewank 1d Set 1: Rastrigin 1d Set 2: Branin 2d

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0

2

4

6

0

5

10

15

0

5

10

0.0

0.5

1.0

1.5

0.4

0.8

1.2

1.6

0.50

0.75

1.00

1.25

0.5

1.0

1.5

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

0.0

0.3

0.6

0.9

0.25

0.50

0.75

1.00

0.8

0.9

1.0

Iteration

F
itn

es
s

E
rr

or

Algorithm
bo_cb2

bo_tac_cb2

bo_tw20_cb2

bo_tw40_cb2

constant

rs

Figure B.6: Optimization curves for optimization strategies that use the cb2 acqui-
sition function on problems with 50 optimization iterations and sudden drift.

142

B.2 Sudden Drift

Set 1: Ackley 5d Set 1: Griewank 5d Set 1: Rastrigin 5d Set 2: Goldstn−Prc. 2d

Set 1: Ackley 2d Set 1: Griewank 2d Set 1: Rastrigin 2d Set 2: Camelback 2d

Set 1: Ackley 1d Set 1: Griewank 1d Set 1: Rastrigin 1d Set 2: Branin 2d

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

0

2

4

6

0

5

10

15

0

5

10

0.0

0.5

1.0

1.5

0.4

0.8

1.2

1.6

0.6

0.9

1.2

0.0

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

0.0

0.3

0.6

0.9

0.00

0.25

0.50

0.75

1.00

0.2

0.4

0.6

0.8

1.0

Iteration

F
itn

es
s

E
rr

or

Algorithm
bo_cb2

bo_tac_cb2

bo_tw20_cb2

bo_tw40_cb2

constant

rs

Figure B.7: Optimization curves for optimization strategies that use the cb2 ac-
quisition function on problems with 100 optimization iterations and sudden
drift.

143

B MBO CD Benchmark

Iters: 50, 2d

bo_aei

bo_cb2

bo_tac_cb2

bo_tac_tei

bo_tw20_aei

bo_tw20_cb2

bo_tw40_aei

bo_tw40_cb2constant

rs

Iters: 100, 2d

bo_aei bo_cb2

bo_tac_cb2

bo_tac_tei

bo_tw20_aei

bo_tw20_cb2

bo_tw40_aei

bo_tw40_cb2

constant

rs

Figure B.8: Preference graphs for each problem subset of set 2 with sudden drift.

144

B.2 Sudden Drift

Table B.2: MFE and its standard deviation of each optimization method on each
problem with sudden drift averaged over 50 stochastic repetitions.

AEI CB2

Se
t

Fu
nc

tio
n

d It
er

at
io

ns

bo
_a

ei

bo
_t

ac
_t

ei

bo
_t

w2
0_

ae
i

bo
_t

w4
0_

ae
i

bo
_c

b2

bo
_t

ac
_c

b2

bo
_t

w2
0_

cb
2

bo
_t

w4
0_

cb
2

rs co
ns

ta
nt

50 0.72 ˘0.08 0.61 ˘0.13 0.61 ˘0.06 0.71 ˘0.08 0.66 ˘0.04 0.59 ˘0.11 0.55 ˘0.07 0.64 ˘0.04 0.95 ˘0.03 0.83 ˘0.13
1

100 0.77 ˘0.09 0.45 ˘0.08 0.53 ˘0.03 0.64 ˘0.06 0.60 ˘0.03 0.43 ˘0.07 0.38 ˘0.05 0.47 ˘0.05 0.95 ˘0.02 0.83 ˘0.13
50 0.78 ˘0.10 0.86 ˘0.10 0.74 ˘0.10 0.79 ˘0.11 0.79 ˘0.11 0.87 ˘0.08 0.77 ˘0.10 0.78 ˘0.10 1.00 ˘0.01 0.93 ˘0.07

2
100 0.75 ˘0.11 0.73 ˘0.13 0.57 ˘0.14 0.68 ˘0.10 0.69 ˘0.09 0.74 ˘0.11 0.54 ˘0.12 0.65 ˘0.12 1.00 ˘0.01 0.92 ˘0.08
50 0.93 ˘0.05 0.98 ˘0.03 0.95 ˘0.05 0.94 ˘0.04 0.95 ˘0.04 0.98 ˘0.03 0.95 ˘0.04 0.95 ˘0.04 1.01 ˘0.00 0.97 ˘0.03

Ackley

5
100 0.88 ˘0.08 0.95 ˘0.06 0.86 ˘0.08 0.88 ˘0.09 0.87 ˘0.08 0.93 ˘0.05 0.85 ˘0.07 0.87 ˘0.08 1.01 ˘0.00 0.97 ˘0.03

50 1.12 ˘0.12 0.91 ˘0.18 0.97 ˘0.11 1.10 ˘0.11 1.11 ˘0.12 0.96 ˘0.17 0.95 ˘0.11 1.11 ˘0.12 1.25 ˘0.08 1.12 ˘0.20
1

100 1.11 ˘0.11 0.79 ˘0.14 0.85 ˘0.07 0.92 ˘0.08 1.04 ˘0.09 0.88 ˘0.16 0.79 ˘0.12 0.84 ˘0.11 1.27 ˘0.06 1.11 ˘0.19
50 1.19 ˘0.07 1.28 ˘0.26 1.03 ˘0.09 1.19 ˘0.07 1.21 ˘0.08 1.21 ˘0.21 1.07 ˘0.11 1.22 ˘0.07 1.32 ˘0.06 1.26 ˘0.14

2
100 1.16 ˘0.06 1.14 ˘0.20 0.76 ˘0.07 0.96 ˘0.07 1.20 ˘0.07 1.01 ˘0.15 0.83 ˘0.08 0.97 ˘0.08 1.31 ˘0.05 1.25 ˘0.13
50 1.19 ˘0.06 1.82 ˘0.16 1.10 ˘0.08 1.21 ˘0.08 1.20 ˘0.07 1.54 ˘0.18 1.21 ˘0.07 1.22 ˘0.07 1.26 ˘0.05 1.29 ˘0.05

Griewank

5
100 1.20 ˘0.05 1.71 ˘0.20 0.75 ˘0.08 1.05 ˘0.06 1.17 ˘0.06 1.37 ˘0.13 0.88 ˘0.06 1.12 ˘0.06 1.25 ˘0.03 1.27 ˘0.05

50 0.96 ˘0.08 0.69 ˘0.16 0.85 ˘0.08 0.97 ˘0.07 0.91 ˘0.09 0.74 ˘0.14 0.76 ˘0.11 0.91 ˘0.08 1.16 ˘0.06 0.95 ˘0.18
1

100 0.90 ˘0.07 0.61 ˘0.10 0.80 ˘0.05 0.79 ˘0.07 0.84 ˘0.08 0.63 ˘0.09 0.59 ˘0.08 0.62 ˘0.12 1.15 ˘0.05 0.94 ˘0.18
50 0.99 ˘0.06 1.02 ˘0.14 0.86 ˘0.10 0.99 ˘0.06 0.99 ˘0.07 1.03 ˘0.13 0.93 ˘0.07 1.00 ˘0.07 1.16 ˘0.06 0.97 ˘0.14

2
100 0.96 ˘0.06 0.89 ˘0.14 0.67 ˘0.07 0.84 ˘0.06 0.92 ˘0.07 0.89 ˘0.13 0.69 ˘0.07 0.83 ˘0.08 1.16 ˘0.04 0.96 ˘0.14
50 1.00 ˘0.04 1.08 ˘0.08 0.94 ˘0.05 1.00 ˘0.05 1.01 ˘0.04 1.06 ˘0.07 0.99 ˘0.05 1.01 ˘0.04 1.09 ˘0.03 0.97 ˘0.09

Set 1

Rastrigin

5
100 0.96 ˘0.05 1.03 ˘0.09 0.80 ˘0.06 0.89 ˘0.04 0.97 ˘0.05 1.01 ˘0.07 0.86 ˘0.05 0.93 ˘0.04 1.09 ˘0.02 0.96 ˘0.09

50 0.98 ˘0.36 1.09 ˘0.44 1.27 ˘0.20 1.05 ˘0.31 0.89 ˘0.41 1.30 ˘0.46 1.25 ˘0.22 1.10 ˘0.33 3.05 ˘0.30 2.65 ˘1.87
Branin

100 0.77 ˘0.26 0.79 ˘0.21 1.14 ˘0.13 0.99 ˘0.17 0.64 ˘0.34 0.88 ˘0.34 1.23 ˘0.16 0.96 ˘0.20 3.00 ˘0.26 2.61 ˘1.84

50 4.50 ˘0.54 4.64 ˘1.97 3.62 ˘0.46 4.49 ˘0.71 4.52 ˘0.58 4.14 ˘1.29 3.91 ˘0.47 4.32 ˘0.68 4.82 ˘0.58 6.93 ˘1.83
Camelback

100 4.08 ˘0.62 3.24 ˘1.34 2.80 ˘0.27 3.17 ˘0.42 4.10 ˘0.67 3.03 ˘1.30 3.11 ˘0.27 3.20 ˘0.53 4.74 ˘0.37 6.80 ˘1.80

50 3.02 ˘0.87 4.89 ˘1.99 5.56 ˘1.68 4.18 ˘1.15 4.12 ˘1.59 6.03 ˘1.86 8.61 ˘2.12 5.25 ˘1.84 6.39 ˘1.88 2.19 ˘3.12

Set 2

Gldstn-Pr

2

100 2.15 ˘0.80 3.21 ˘1.02 5.39 ˘1.10 3.94 ˘1.06 2.74 ˘1.00 3.95 ˘1.84 7.93 ˘1.48 5.58 ˘1.14 6.21 ˘1.42 2.15 ˘3.06

145

B MBO CD Benchmark

B.3 Incremental Drift

Set 1: Ackley 5d Set 1: Griewank 5d Set 1: Rastrigin 5d Set 2: Goldstn−Prc. 2d

Set 1: Ackley 2d Set 1: Griewank 2d Set 1: Rastrigin 2d Set 2: Camelback 2d

Set 1: Ackley 1d Set 1: Griewank 1d Set 1: Rastrigin 1d Set 2: Branin 2d

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0

2

4

6

0

5

10

15

0

1

2

3

0.4

0.8

1.2

0.4

0.6

0.8

1.0

1.2

1.4

0.6

0.8

1.0

1.2

1.4

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

0.5

0.7

0.9

1.1

0.6

0.7

0.8

0.9

1.0

0.85

0.90

0.95

1.00

Iteration

F
itn

es
s

E
rr

or

Algorithm
bo_aei

bo_tac_tei

bo_tw20_aei

bo_tw40_aei

constant

rs

Figure B.9: Optimization curves for optimization strategies that use the aei ac-
quisition function on problems with 50 optimization iterations and incremental
drift.

146

B.3 Incremental Drift

Set 1: Ackley 5d Set 1: Griewank 5d Set 1: Rastrigin 5d Set 2: Goldstn−Prc. 2d

Set 1: Ackley 2d Set 1: Griewank 2d Set 1: Rastrigin 2d Set 2: Camelback 2d

Set 1: Ackley 1d Set 1: Griewank 1d Set 1: Rastrigin 1d Set 2: Branin 2d

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0

2

4

6

0

5

10

15

0

5

10

0.4

0.8

1.2

0.4

0.6

0.8

1.0

1.2

1.4

0.6

0.8

1.0

1.2

1.4

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

0.3

0.5

0.7

0.9

1.1

0.6

0.7

0.8

0.9

1.0

0.85

0.90

0.95

1.00

Iteration

F
itn

es
s

E
rr

or

Algorithm
bo_cb2

bo_tac_cb2

bo_tw20_cb2

bo_tw40_cb2

constant

rs

Figure B.10: Optimization curves for optimization strategies that use the cb2
acquisition function on problems with 50 optimization iterations and incremental
drift.

147

B MBO CD Benchmark

Set 1: Ackley 5d Set 1: Griewank 5d Set 1: Rastrigin 5d Set 2: Goldstn−Prc. 2d

Set 1: Ackley 2d Set 1: Griewank 2d Set 1: Rastrigin 2d Set 2: Camelback 2d

Set 1: Ackley 1d Set 1: Griewank 1d Set 1: Rastrigin 1d Set 2: Branin 2d

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

0

2

4

6

0

5

10

15

0

3

6

9

0.4

0.8

1.2

0.4

0.6

0.8

1.0

1.2

1.4

0.75

1.00

1.25

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

0.3

0.6

0.9

0.3

0.5

0.7

0.9

0.7

0.8

0.9

1.0

Iteration

F
itn

es
s

E
rr

or

Algorithm
bo_cb2

bo_tac_cb2

bo_tw20_cb2

bo_tw40_cb2

constant

rs

Figure B.11: Optimization curves for optimization strategies that use the cb2
acquisition function on problems with 100 optimization iterations and incremental
drift.

148

B.3 Incremental Drift

Iters: 50, 2d

bo_aei

bo_cb2 bo_tac_cb2

bo_tac_tei

bo_tw20_aei

bo_tw20_cb2

bo_tw40_aei

bo_tw40_cb2

constant

rs

Iters: 100, 2d

bo_aei

bo_cb2

bo_tac_cb2

bo_tac_tei

bo_tw20_aei

bo_tw20_cb2

bo_tw40_aei

bo_tw40_cb2 constant

rs

Figure B.12: Preference graphs for each problem subset of set 2 with incremental
drift.

149

B MBO CD Benchmark

Table B.3: MFE and its standard deviation of each optimization method on each
problem with incremental drift averaged over 50 stochastic repetitions.

AEI CB2

Se
t

Fu
nc

tio
n

d It
er

at
io

ns

bo
_a

ei

bo
_t

ac
_t

ei

bo
_t

w2
0_

ae
i

bo
_t

w4
0_

ae
i

bo
_c

b2

bo
_t

ac
_c

b2

bo
_t

w2
0_

cb
2

bo
_t

w4
0_

cb
2

rs co
ns

ta
nt

50 0.86 ˘0.04 0.70 ˘0.08 0.84 ˘0.06 0.87 ˘0.04 0.87 ˘0.04 0.67 ˘0.09 0.83 ˘0.04 0.87 ˘0.04 0.92 ˘0.03 0.93 ˘0.07
1

100 0.85 ˘0.03 0.58 ˘0.04 0.72 ˘0.05 0.81 ˘0.04 0.86 ˘0.03 0.48 ˘0.04 0.71 ˘0.06 0.81 ˘0.04 0.92 ˘0.02 0.92 ˘0.07
50 0.92 ˘0.03 0.89 ˘0.07 0.89 ˘0.05 0.92 ˘0.04 0.93 ˘0.03 0.87 ˘0.09 0.90 ˘0.05 0.92 ˘0.03 0.98 ˘0.01 0.95 ˘0.05

2
100 0.91 ˘0.03 0.75 ˘0.08 0.82 ˘0.05 0.87 ˘0.05 0.92 ˘0.03 0.63 ˘0.09 0.83 ˘0.05 0.85 ˘0.05 0.98 ˘0.01 0.95 ˘0.05
50 0.96 ˘0.02 0.98 ˘0.02 0.95 ˘0.02 0.96 ˘0.02 0.96 ˘0.02 0.98 ˘0.02 0.96 ˘0.02 0.96 ˘0.02 1.00 ˘0.00 0.98 ˘0.02

Ackley

5
100 0.95 ˘0.02 0.92 ˘0.05 0.92 ˘0.03 0.93 ˘0.03 0.94 ˘0.03 0.91 ˘0.07 0.93 ˘0.03 0.93 ˘0.02 1.00 ˘0.00 0.98 ˘0.02

50 1.08 ˘0.10 1.05 ˘0.13 0.94 ˘0.10 1.06 ˘0.11 1.09 ˘0.10 1.01 ˘0.10 0.94 ˘0.09 1.06 ˘0.11 1.16 ˘0.09 1.22 ˘0.18
1

100 1.04 ˘0.13 1.02 ˘0.08 0.87 ˘0.08 0.86 ˘0.06 1.05 ˘0.09 1.00 ˘0.08 0.86 ˘0.08 0.87 ˘0.09 1.16 ˘0.07 1.21 ˘0.18
50 1.10 ˘0.09 1.00 ˘0.23 0.90 ˘0.10 1.08 ˘0.08 1.10 ˘0.10 0.89 ˘0.12 0.90 ˘0.11 1.09 ˘0.09 1.16 ˘0.06 1.21 ˘0.21

2
100 1.07 ˘0.08 0.89 ˘0.15 0.77 ˘0.09 0.81 ˘0.10 1.08 ˘0.08 0.79 ˘0.08 0.74 ˘0.07 0.81 ˘0.09 1.16 ˘0.05 1.20 ˘0.21
50 1.03 ˘0.04 1.77 ˘0.46 0.91 ˘0.10 1.07 ˘0.07 1.00 ˘0.05 0.85 ˘0.38 0.94 ˘0.08 1.00 ˘0.06 1.07 ˘0.05 1.11 ˘0.14

Griewank

5
100 1.02 ˘0.05 1.24 ˘0.43 0.64 ˘0.10 0.83 ˘0.07 1.02 ˘0.04 0.50 ˘0.24 0.67 ˘0.07 0.86 ˘0.08 1.08 ˘0.03 1.10 ˘0.14

50 0.97 ˘0.08 0.91 ˘0.10 0.87 ˘0.09 0.96 ˘0.08 0.98 ˘0.08 0.93 ˘0.11 0.86 ˘0.10 0.96 ˘0.10 1.07 ˘0.07 1.09 ˘0.14
1

100 0.91 ˘0.10 0.79 ˘0.07 0.77 ˘0.07 0.77 ˘0.08 0.95 ˘0.10 0.84 ˘0.09 0.75 ˘0.06 0.78 ˘0.10 1.07 ˘0.06 1.08 ˘0.14
50 1.02 ˘0.08 1.01 ˘0.10 0.93 ˘0.08 1.00 ˘0.08 1.02 ˘0.06 0.98 ˘0.10 0.94 ˘0.08 1.01 ˘0.06 1.08 ˘0.05 1.04 ˘0.10

2
100 0.97 ˘0.06 0.93 ˘0.08 0.82 ˘0.06 0.85 ˘0.08 0.98 ˘0.05 0.95 ˘0.08 0.85 ˘0.05 0.87 ˘0.07 1.08 ˘0.03 1.03 ˘0.09
50 0.98 ˘0.04 1.00 ˘0.08 0.91 ˘0.05 0.97 ˘0.05 0.99 ˘0.03 0.99 ˘0.10 0.94 ˘0.04 0.99 ˘0.04 1.01 ˘0.03 0.99 ˘0.07

Set 1

Rastrigin

5
100 0.96 ˘0.03 0.96 ˘0.10 0.83 ˘0.05 0.89 ˘0.05 0.97 ˘0.05 0.94 ˘0.08 0.84 ˘0.05 0.89 ˘0.04 1.01 ˘0.02 0.99 ˘0.07

50 0.66 ˘0.35 0.88 ˘0.29 1.00 ˘0.20 0.97 ˘0.41 0.63 ˘0.30 0.96 ˘0.40 1.10 ˘0.25 0.90 ˘0.33 2.27 ˘0.27 2.21 ˘1.85
Branin

100 0.56 ˘0.23 0.54 ˘0.20 0.91 ˘0.12 0.80 ˘0.16 0.56 ˘0.26 0.57 ˘0.26 1.01 ˘0.11 0.83 ˘0.15 2.27 ˘0.18 2.19 ˘1.83

50 2.61 ˘0.53 1.84 ˘0.79 2.37 ˘0.40 2.76 ˘0.56 2.59 ˘0.49 1.99 ˘0.74 3.08 ˘0.44 2.66 ˘0.30 3.46 ˘0.53 5.08 ˘2.09
Camelback

100 2.23 ˘0.37 1.20 ˘0.57 2.04 ˘0.19 1.77 ˘0.21 2.12 ˘0.39 1.29 ˘0.53 2.50 ˘0.19 2.13 ˘0.25 3.43 ˘0.37 5.02 ˘2.08

50 2.20 ˘1.05 2.83 ˘2.89 3.93 ˘1.32 3.07 ˘1.23 3.23 ˘1.44 3.79 ˘2.07 7.51 ˘2.29 5.25 ˘1.66 6.96 ˘2.13 2.34 ˘3.50

Set 2

Gldstn-Pr

2

100 1.51 ˘0.59 1.52 ˘1.27 4.02 ˘1.12 2.82 ˘0.92 2.08 ˘0.93 2.47 ˘1.76 6.93 ˘1.49 4.59 ˘1.28 6.91 ˘1.69 2.32 ˘3.47

150

	Introduction
	Symbols and Notation
	Model-Based Optimization (MBO)
	Fundamental Framework
	Initial Design
	Surrogate Model
	Gaussian Process Regression (Kriging)
	Other Methods

	Acquisition Functions
	Expected Improvement
	Confidence Bound
	Augmented Expected Improvement
	Other Acquisition Functions

	Termination
	Related Work

	Parallel MBO
	Prerequisites
	Synchronous Parallelization
	Multiple Proposals by Multiple Confidence Bounds
	Surrogate Believer

	Asynchronous Parallelization
	Expected Expected Improvement
	Surrogate Believer

	Related Work
	Resource-Aware Model-Based Optimization
	Job Scheduler
	Scheduling Priority
	Resource Estimation
	Resource-Aware Knapsack Scheduling

	MBO with Concept Drift
	Prerequisites
	Concept Drifts for Dynamic Optimization Problems
	Window Approach
	Time as Covariate
	Related Work
	Error Measurement

	Parallel MBO Benchmark
	Objective Functions with Heterogeneous Runtimes
	Setup
	Evaluation
	Quality of Resource Estimation
	High Runtime Estimation Quality: rosenbrockd
	Low Runtime Estimation Quality: rastrigind

	Conclusion

	MBO CD Benchmark
	Synthetic Dynamic Objective Functions
	Setup
	Evaluation
	No Drift
	Sudden Drift
	Incremental Drift
	Drifts combined

	Conclusion

	Summary
	Bibliography
	Appendix Parallel MBO Benchmark
	High Runtime Estimation Quality: rosenbrockd
	Low Runtime Estimation Quality: rastrigind

	Appendix MBO CD Benchmark
	No Drift
	Sudden Drift
	Incremental Drift

