
WCET-aware Static Locking of Instruction Caches∗

Sascha Plazar
Computer Science 12

TU Dortmund University
D - 44221 Dortmund,

Germany
sascha.plazar@tu-

dortmund.de

Jan C. Kleinsorge
Computer Science 12

TU Dortmund University
D - 44221 Dortmund,

Germany
jan.kleinsorge@tu-

dortmund.de

Peter Marwedel
Computer Science 12

TU Dortmund University
D - 44221 Dortmund,

Germany
peter.marwedel@tu-

dortmund.de
Heiko Falk

Institute of Embedded
Systems /Real-Time Systems

Ulm University
D - 89081 Ulm, Germany
heiko.falk@uni-ulm.de

ABSTRACT
In the past decades, embedded system designers moved from
simple, predictable system designs towards complex systems
equipped with caches. This step was necessary in order to
bridge the increasingly growing gap between processor and
memory system performance. Static analysis techniques had
to be developed to allow the estimation of the cache behavior
and an upper bound of the execution time of a program.
This bound is called worst-case execution time (WCET). Its
knowledge is crucial to verify whether hard real-time systems
satisfy their timing constraints, and the WCET is a key
parameter for the design of embedded systems.

In this paper, we propose a WCET-aware optimization tech-
nique for static I-cache locking which improves a program’s
performance and predictability. To select the memory blocks
to lock into the cache and avoid time consuming repetitive
WCET analyses, we developed a new algorithm employ-
ing integer-linear programming (ILP). The ILP models the
worst-case execution path (WCEP) of a program and takes
the influence of locked cache contents into account. By mod-
eling the effect of locked memory blocks on the runtime of
basic blocks, the overall WCET of a program can be mini-
mized. We show that our optimization is able to reduce the

∗Part of the work on this paper has been supported by
Deutsche Forschungsgemeinschaft (DFG) within the Collab-
orative Research Center SFB 876 ”Providing Information by
Resource-Constrained Analysis”, project A3. The research
leading to these results was also partially funded by the Eu-
ropean IST FP7 NoE ArtistDesign. And work on this publi-
cation has partially been supported by Deutsche Forschungs-
gemeinschaft (DFG) under grant FA 1017/1-1.

estimated WCET (abbr. WCETest) of real-life benchmarks
by up to 40.8%. At the same time, our proposed approach is
able to outperform a regular cache by up to 23.8% in terms
of WCETest.

1. INTRODUCTION
Caches have become popular in the domain of embedded
systems to bridge the growing gap between high processor
and low memory performance. They are developed to work
transparently from the programmer’s point of view by in-
tegrating a fully autonomous hardware controller. Recently
used memory blocks are kept as copies in fast cache memo-
ries since they are likely to be accessed in the near feature. If
a block can be fetched from the cache, a so-called cache hit
occurs. Otherwise, a cache miss occurs and the requested
content has to be fetched from the slow main memory re-
sulting in penalty cycles due to pipeline stalls.

Although caches effectively improve the average-case per-
formance, they are a source of predictability problems due
to their dynamic behavior. Static analysis techniques have
been developed to compute conservative bounds on the
cache behavior and its influence on the runtime of a pro-
gram.

The worst-case execution time (WCET) of a program is the
upper bound of the execution time for all possible input
data and all possible initial system states. The WCET is a
key parameter for real-time scheduling and the development
of hardware platforms which have to satisfy critical timing
constraints. Since the real WCET of a system cannot be de-
termined, static timing analyzers are employed to determine
WCET estimations (WCETest).

The WCET of a program corresponds to the length of the
worst-case execution path (WCEP) which is that path of the
control flow graph (CFG) with the highest execution time.
Optimization of elements like functions on the WCEP can
shorten this longest path in such a way that another path
becomes the new WCEP. Optimization of elements not lying
on the WCEP will not result in a reduction of the WCET.

44

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profi t or commercial advantage and that copies bear this notice and the full citation
on the fi rst page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specifi c permission and/or a fee.
CGO ‘12, March 31-April 4, San Jose, US
Copyright © 2012 ACM 978-1-4503-1206-6/12/03... $10.00

"Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for
 profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
CGO '12, March 31-April 4, San Jose, US
Copyright© 2012 ACM 978-1-4503-1206-6/12/03... $10.00"

Hence, possible switches of the WCEP have to be taken into
account during optimizations.

In this paper, we present a novel WCET-aware optimiza-
tion for static locking of instruction caches. The optimiza-
tion aims at reducing the WCET of a program by stati-
cally locking parts of a program into the cache. Statically
means that the cache content is loaded and locked in ad-
vance and does not change during the program’s execution.
An integer-linear programming (ILP) approach is employed
to select the memory blocks to lock. The ILP explicitly mod-
els the CFG of a program in order to cope with switching
WCEPs. The impact of locked cache contents on the exe-
cution time of the contained basic blocks is modeled as well
and thereby avoids repetitive WCET analyses. To enable
such a WCET-centric optimization, the sophisticated static
WCET analyzer aiT developed by AbsInt [1] is employed.
The main contributions of this paper are as follows:

• Cache content is statically locked based on its impact
on the WCETest of a program.

• The presented ILP-based approach determines a set of
memory blocks to lock into the cache. Its objective is
the reduction of the WCETest by explicitly modeling
the impact of locked cache contents on the WCEP of
a program.

• We show that WCETest reductions of up to 40.8% can
be achieved compared to a system without cache for a
set of real-life programs.

• The practical relevance of our new optimization is at-
tested by outperforming a regular cache by up to 23.8%
w. r. t. WCETest reductions.

This paper is organized as follows: In the next section, an
overview of related work considering memory and cache-
based optimizations is provided. Section 3 presents our new
WCET-aware algorithm for static I-cache locking. Section
4 introduces the WCET-aware C compiler WCC employed
to develop our novel algorithm. An evaluation in Section 5
compares the performance of a system with a regular cache
with our novel WCET-aware static I-cache locking tech-
nique. Finally, Section 6 concludes our work and presents
ideas for future work.

2. RELATED WORK
Falk et al. counteract possible predictability problems of
caches with a static allocation of program code to so-called
scratchpad memories (SPM) [5]. They employ integer-
linear programming to select the optimal content of the
SPM w. r. t. the program’s WCETest. The disadvantage of
moving parts of the code to SPMs is the necessary correction
of the control flow: Far jumps have to be inserted to branch
between different memories leading to an unavoidable code
and runtime overhead. In contrast, the cache locking based
optimization presented in this work exploits the transpar-
ent behavior of a cache and performs a lockdown of cache
content inside the startup code of a program.

Another work considering scratchpad allocation is presented
in [18]. Suhendra et al. developed an ILP-based allocation

of frequently accessed data objects to faster memories in
order to decrease the overall WCETest. Their model of the
program’s WCET and possible execution paths serves as ba-
sis for the ILP-based algorithm presented in [5] and was also
employed for the technique discussed in Section 3. Since only
the intra-function control flow is modeled, a time consum-
ing branch-and-bound approach or a sub-optimal heuristic is
employed to optimize along the WCEP. Furthermore, mov-
ing data objects to SPM is much more easier than locking
instruction blocks into the I-cache. Data elements can be
almost arbitrarily moved around to fill the SPM without
gaps. Thereby, elements are never competing for the same
memory/cache lines as occurring during cache locking.

In [8], Gebhard et al. present a technique for rearranging the
positions of tasks to improve the cache performance. The
interdependency relation of tasks is evaluated in order to
determine a memory layout which maximizes the number of
persistent cache sets for each task.

Papers [16] and [3] present techniques for statically locked
instruction caches which are very close to the work presented
in this paper. In [16], Puaut et al. present two algorithms
which try to minimize the CPU utilization and the interfer-
ences between different tasks, respectively. Although they
consider the WCET as metric, they are not able to react
on switching WCEPs since they always optimize along an
initially determined WCEP. Compared to [16], [3] presents
an additional genetic algorithm which has the disadvantage
that for each created individual, a time consuming WCET
analysis has to be performed.

Puaut et al. also present techniques for I-cache locking [15]
which consider changing WCEPs. However, the way how
WCEPs are recomputed is not detailed. The authors use a
parameter N trading off accuracy of WCEP recomputation
with runtime consumption. Since runtimes for WCEP re-
computation are still very high, the authors are unable to
provide results for some of their benchmarks. In contrast,
the techniques presented in this work scale much better so
that results for very large benchmarks can be gathered.

Static I-cache locking is also proposed by Falk et al. in
[7]. An Execution Flow Graph (EFG) is employed to model
possible execution paths on function level. The WCEP is
determined by applying a modified Dijkstra algorithm before
the most promising function on the WCEP is locked into the
cache. To consider paths which are not the initial WCEP,
two analyses are required for each alternative path in order
to compute the gain of the functions on such a path. As
opposed to this, the approach presented in this paper only
requires two WCET analyses in total.

An extension of [7] was developed by Liu et al. in [12].
There, an Execution Flow Tree is presented which is tra-
versed to generate a simple ILP which selects the functions
to lock into the cache. In contrast to [7] and [12], the ap-
proach proposed in this paper is able to model the intra-
function WCEP including loops at basic block level. The
influence of the memory layout on lockable memory blocks
– and thereby the runtime of basic blocks – is also taken
into account; [7] and [12] ignore the fact that selected func-

45

1 void foo1(int x) {
2 if(x<100)
3 foo2 ();
4 else
5 foo3 ();
6 }

Figure 1: Exemplary program and resulting call
graph

tions may conflict in the cache and thus cannot be locked
simultaneously.

3. WCET-AWARE STATIC CACHE LOCK-
ING

Embedded systems are equipped with caches in kilobyte
ranges, typically from 1 kB up to 16 or 32 kB. Compared
to growing main memories in megabyte ranges, caches are
rather small. The I-cache controller tries to keep copies of
frequently executed memory lines containing sequences of
instructions as cache content for a faster access.

Since the cache can only keep a fraction of the informa-
tion residing in slower memories, cache misses can occur if
a memory address to be accessed is not already stored in
the cache (called real cache misses). If, however, a memory
address is already stored in the cache, a cache hit occurs and
the content can usually be fetched within one cycle.

The amount of cache misses highly depends on the ratio of
cache to memory size, the cache replacement policy and the
structure of the executed program. A high amount of cache
misses implies costly reloading of content from the slow main
memory and leads to a high number of penalty cycles due
to pipeline stalls.

Besides unavoidable real cache misses, the computed WCET
of a program is affected by the overestimation of a static
WCET analyzer as well: If the memory address of an in-
struction fetch cannot be determined, it also cannot be de-
termined if a memory access results in a cache hit or a cache
miss. In such a case, the worst case – usually a cache miss –
has to be assumed (called assumed cache misses). Figure 1
shows a code snippet and the resulting call graph for which
such a situation can occur. If the value analysis of a static
timing analyzer cannot determine whether foo’s parameter
x is less than 100, a cache analysis has to consider both the
if- and the else-path. For a memory layout as depicted in
Figure 2, foo1 and foo2 are mapped to the same cache area
as foo3. Now, the worst case has to be assumed where for
each execution of foo1, x toggles between a value less than
100 and equal or above. Thus, for each execution of foo1,
it has to be assumed that either foo1 and foo2 evict foo3

from the cache or vice versa. This leads to an unnecessary
high number of assumed cache misses if, for instance, x is
usually below 100.

3.1 Cache Locking
To overcome the problems of real and assumed cache misses,
several processor architectures – especially in the embedded
domain – are equipped with techniques to lock the content

Figure 2: Worst-case cache behavior

of caches. The embedded processor ARM926EJ-S [2], which
is considered in this paper, uses a cache-way-based locking
scheme where dedicated locking bits steer if the normal cache
allocation is allowed to access the corresponding cache way.
By locking cache ways, it can be ensured that an access
to locked content always results in a cache hit and thus the
number of real cache misses can be reduced. Overestimation
of the WCET (caused by assumed cache misses) can be
reduced as well since a static timing analyzer can doubtlessly
determine which memory accesses result in cache hits and
which ones result in cache misses.

For an n-way set-associative cache with a size of Scache bytes
and a line size of Sline bytes, each way consists of l cache
lines:

l =
Scache

n ∗ Sline

Each way comprises Sway = Scache/n bytes. Due to the
modulo addressing function of cache controllers, memory
addresses m mod Sway = 0 are mapped to the beginning
of a cache way. Thus, the main memory can be divided
into memory blocks with a size of Sway bytes for which each
block can be entirely locked into a single cache way.

For a way-based lockdown of cache content as supported by
the ARM926EJ-S, only memory blocks with a granularity
based on such a partitioning can be locked into the cache.
Loading content from the main memory and locking it into
a single cache line causes some costs Cline. Thus, the costs
for locking a complete way are as follows:

clock = l ∗ Cline (1)

In order to support an automatic lockdown of instruction
caches to reduce the WCET, possible WCEP switches have
to be recognized and handled which makes optimization
challenging. The following sections present our ILP-based
optimization technique which is capable of modeling a pro-
gram’s control flow and thereby ensures that optimizations
are always performed along the WCEP. It determines an op-
timal set of memory blocks to lock into the cache w. r. t. the
WCET of a program. Our algorithm requires only two
WCET analyses and is able to consider the influence of
locked cache lines on the execution time of a basic block.
The next Section 3.2 models the costs for the locking of cache
lines. Section 3.3 introduces basic block costs representing
their execution times, whereas 3.4 describes the modeling of
a function’s control flow in the ILP. Afterwards, Section 3.5

46

models the global control flow whereas Section 3.6 describes
the ILP’s objective function.

3.2 Lockdown Constraints
In the following, ILP variables are represented using lower-
case letters whereas constants are represented by uppercase
letters. For ILP-based cache locking, the code of a program
to be optimized has to be considered as m memory blocks
with a size equal to the cache’s way size Sway. The blocks
start at memory addresses which are mapped exactly fitting
into cache ways (cf. Section 3.1).

For each of these blocks, a binary decision variable xi decides
whether memory block mbi is locked into an arbitrary cache
way:

xi =


1, if memory block mbi is locked

into the cache

0, else

(2)

An n-way set-associative cache can keep copies of up to n
such memory blocks at the same time since ways can only
be locked entirely. Thus, a constraint has to be formulated
to ensure that the size of the content to lock does not exceed
the cache size:

m∑
i=1

xi <= n (3)

Since the cache has to be filled with code and locked in
advance, overhead in form of execution cycles arise before
the program’s execution. For a cache with ways composed of
l cache lines, Equation (1) is extended to model the overall
lockdown overhead:

olock =

m∑
i=1

xi ∗ l ∗ Cline (4)

3.3 Basic Block Costs
The execution time for a single execution of a basic block bj
is represented by Cmain

j if bj is entirely executed from main

memory whereas Ccache
j is the execution time if the block is

locked into the cache. sj is the size of basic block bj in bytes
and sij is the amount of bytes from basic block bj overlapping

with memory block mbi. Then, dij is the runtime reduction
in cycles if parts of basic block bj located in memory block
mbi are fetched from the cache due to a lockdown of mbi:

dij =
sij
sj
∗ (Cmain

j − Ccache
j) (5)

Each basic block bj of a function F causes some costs cj .
These costs represent the WCET of bj depending on the
memory from which bj ’s instructions are fetched. If bj or
parts of it are locked into the cache, the execution time
decreases by dij cycles:

cj = Cmain
j −

m∑
i=1

xi ∗ dij (6)

3.4 ILP Model of the Control Flow of Func-
tions

For reducible CFGs (refer to [13], p. 196-197, for defi-
nition), an innermost loop L of F has exactly one basic

block bLentry being the loops’ unique entry point, and pos-
sibly several back-edges turning it into a cyclic graph. Not
considering these back-edges turns L’s CFG into an acyclic
graph. GL = (V,E) denotes this acyclic graph in the follow-
ing. Without loss of generality, it can be assumed that there
is at least one basic block bLexit in GL being the loop’s exit
node. The WCET wL

exit of block bLexit is equal to its costs:

wL
exit = cL

exit (7)

The WCET of a path leading from a node bj 6= bLexit of GL

to one of the exit nodes bLexit must be greater than or equal
to the WCET of any successor bsucc of bj in GL, plus the
cost ci of bj :

∀bj ∈ V \ {bLexit} : ∀(bj , bsucc) ∈ E :

wj ≥ wsucc + cj
(8)

A path constructing example is illustrated in Appendix A.1.

Since paths are built bottom-up, variable wL
entry models an

upper bound of the WCET of all paths of a loop L if it is
executed exactly once. In order to model multiple executions
of L, all CFG nodes v ∈ V of GL are represented by a super-
node vL. The costs of vL are the product of L’s WCET for
a single execution and L’s maximal loop iteration count (cf.
Appendix A.2):

cL = wL
entry ∗ CountLmax (9)

Replacing a loop L by a super-node vL in the CFG may
turn another loop L′ of F directly surrounding L into an
innermost loop with acyclic CFG G′

L. Hence, the constraints
of Equations (8) and (9) can be formulated for L′. This way,
the innermost loops of F are successively collapsed in the
CFG so that ILP constraints modeling F ’s control flow are
created from the innermost to the outermost loops.

During optimization, a WCEP switch of a program can only
happen at such points in the CFG where a basic block bj
has more than one successor. Only there, forks in the control
flow are possible where the outgoing paths can have differ-
ent WCETs. But since Equation (8) is formulated for each
successor of bj , variable wj always reflects the WCET of any
path starting at bj – irrespective of the fact which successors
are actually part of the current WCEP. This way, the con-
straint of Equation (8) realizes the implicit consideration of
WCEPs and their changes in the ILP.

The fundamental structure of the ILP constraints of Equa-
tions (7) – (9) stems from the work of Suhendra et al. pro-
posed in [18]. In order to implement a fully functional cache
locking technique, these basic constraints had to be refined
substantially. Our extensions of the original ILP formula-
tion are Equations (2) – (6) and the equations described in
the following sections.

3.5 ILP Model of the Global Control Flow
Up to this point, Equations (5) – (9) only model the intra-
procedural control flow of a single function within the ILP.
In this way, Suhendra’s approach is not able to model the
global control flow and thus requires repetitive WCET anal-
yses to optimize along a switching WCEP. After each local
optimization step, a WCET analysis is performed to update
the functions’ timing and path data. Such a procedure is

47

time consuming and is not desired in the context of cache
locking. Since locking of memory blocks into the cache can
have an impact on the run time of several functions at the
same time, a local optimum could be the result otherwise.

To overcome these difficulties, the global control flow of a
program is modeled within the ILP: without loss of gener-
ality, we assume one dedicated entry block bFentry as first

block of function F . For bFentry, the ILP variable wF
entry de-

notes the WCET of any path starting at bFentry for a single
execution of F .

However, some basic block bj of a function G may contain a
call to function F . In this situation, F ’s WCET represented
by variable wF

entry has to be added to the WCET of block bj .
Thus, the control flow constraint in Equation (8) is extended
by wF

entry, representing F ’s WCET, if block bj calls F :

∀bj ∈ V \ {bLexit} : ∀(bj , bsucc) ∈ E :

wj ≥ wsucc + cj + wF
entry

(10)

The interested reader is referred to Appendix A.3 for an
illustrating example.

3.6 Objective Function
The overall goal of the ILP is to minimize a system’s WCET
by locking memory blocks into cache ways. Due to the na-
ture of Equations (8) and (10), variable wF

entry corresponds
to the WCET of function F including the WCETs of all
functions called by F . Function main is the unique entry
point of an entire program; hence, variable wmain

entry denotes
the WCET of the program. Since the lockdown of cache con-
tent has to be done in advance, the overhead from Equation
(4) have to be added to the overall WCET of a system:

wsystem = wmain
entry + olock (11)

Finally, the value of this variable has to be minimized by
the ILP:

wsystem min. (12)

4. WORKFLOW
WCET-driven optimizations such as our novel WCET-
driven cache locking require support of an underlying com-
piler to collect WCET data and to add the required locking
operations to a program’s startup code. We employ the
WCET-aware C compiler framework (WCC), developed by
Falk et al. [6], which is intended to assist the development
of specialized high- and low-level WCET-driven optimiza-
tions. It is a compiler targeted at Infineon’s TriCore TC1796
processor coupled with AbsInt’s static WCET analyzer aiT
[1] which provides WCETest data that is imported into the
compiler backend and made accessible for optimizations.
We extended this framework to support code generation
and optimization for the ARM platform.

Figure 3 depicts WCC ’s internal structure. The solid arrows
show the flow of information through a normal optimizing
compiler, whereas the dotted arrows show the extensions
necessary for tailored WCET-directed optimizations. One or
more files of a program are read in the form of ANSI-C source
files with user annotations for loop bounds and recursion
depths, called flow facts. These source files are parsed and

aiT WCET
Analysis

ICD-C
Parser

arm-elf-gcc

ANSI-C
Sources &
Flow Facts

High-Level
ICD-C

Code
Generator

Low-Level
LLIR

WCET-driven
Static

I-Cache
Locking

Memory
Hierarchy

Specification

WCET-
Optimized
Assembly

Linker
Script

Figure 3: Workflow of the WCET-aware C compiler
WCC

transformed into the high-level intermediate representation
(IR) called ICD-C [17]. At this level, the compiler frontend
provides several standard compiler optimizations focusing
on ACET minimization.

In the next step, the arm-elf-gcc translates the high-level
IR into assembly code which is read in to generate a low-
level IR called ICD-LLIR [4]. Again, several standard com-
piler optimizations can be performed – now on this ARM-
specific low-level IR. One of these optimizations is the pro-
posed WCET-driven static cache locking technique.

To enable such a WCET-aware optimization, aiT is em-
ployed to perform static WCET analyses on the low-level IR.
Mandatory information about loop bounds (among others
required as constant CountLmax in Equation (9)) and recur-
sion depths is supplied by flow fact annotations. These flow
facts are automatically translated from the high-level IR to
the low-level IR by exploiting DWARF debug information as
proposed by Plazar et al. in [14]. They are always kept valid
and consistent during each optimization and transformation
step of the compiler.

Finally, WCC emits WCET-optimized assembly files and its
own linker script in order to generate the optimized binary.

5. EVALUATION
In order to demonstrate the effectiveness of our WCET-
aware cache locking technique, the approach presented in
this paper is applied to a set of real-life benchmarks. In Sec-
tion 5.1, the experimental environment is described which
is employed to perform evaluations. Section 5.2 discusses
the WCETest reductions achieved by our cache locking de-
scribed in Section 3, whereas Section 5.3 discusses the re-
quired optimization runtime. Finally, Section 5.4 draws
a comparison between our new optimization with existing
WCET-aware cache locking techniques.

48

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

DSPstone Mediabench misc MRTC UTDSP AverageW
C
E
T
 r
e
la
ti
v
e
 t
o
 u
n
c
a
c
h
e
d
 e
x
e
c
u
ti
o
n

10% ILP 15% ILP 20% ILP 10% Cached 15% Cached 20% Cached 30% Cached

40% Cached 50% Cached 60% Cached 70% Cached 80% Cached 90% Cached 100% Cached

Figure 4: Relative WCETests for a 2-way set-associative cache

5.1 Experimental Environment
For benchmarking, we employed the ARM926EJ-S processor
which is equipped with 1 MB ROM as main memory from
which content can be fetched within 6 cycles. The processor
integrates a 16 kB I-cache with 32 bytes line size, least re-
cently used (LRU) replacement strategy and a configurable
associativity of 2 or 4. Content which is available in the
cache can be accessed within 1 cycle. The cache supports
way-based cache locking for which Equations (1) – (12) are
tailored. As stated in [7], loading and locking a single cache
line of 32 bytes requires 47 cycles. These 47 cycles are used
as constant Cline in Equations (1) and (4).

Uniformly, the optimization level O3 is used for which the
WCC compiler (cf. Figure 3) applies 42 different optimiza-
tions in order to evaluate the performance of our new algo-
rithms on highly optimized code. 23 of these optimizations,
comprising various loop optimizations, are performed on the
high-level IR ICD-C. The remaining optimizations are per-
formed on the low-level IR ICD-LLIR.

For our evaluations, we used 100 benchmarks stemming
from the benchmark suites DSPStone [20], MediaBench [11],
MRTC [9] and UTDSP [19]. Additionally, we added a set
of miscellaneous benchmarks referred to as misc. The code
size of the benchmarks ranges from 100 bytes (matrix 1x3)
up to 20 kB for the gsm benchmark.

Today’s embedded systems are equipped with main memo-
ries in megabyte ranges. Compared to this, their caches are
rather small with capacities between 2 kB and 32 kB. Due to
this ratio of small cache compared to a large main memory,
we artificially limited the cache sizes to 10, 15 and 20% of
the program’s overall code size. This guarantees that we
use a similar ratio of cache size to program size for all op-
timizations and static WCET analyses as found in current
embedded systems, in order to generate comparable results.
Otherwise, it would make more sense to use a small scratch-
pad memory – which is fully precitable – instead of a cache
to store the program for a fast execution. But for the sake
of completeness, cache sizes of up to 100% of the program
size are considered for a regular cache in order to explore
the best possible reductions of the WCETest.

For solving the ILP model generated by the algorithm in
Section 3.1, IBM ILOG CPLEX [10] is utilized which is a
sophisticated solver for integer programming problems.

5.2 WCET Estimations
Figure 4 depicts the results achieved by our static cache lock-
ing algorithm if applied to the considered 100 benchmarks.
The 100% line is equal to the estimated WCET of the bench-
marks compiled with the optimization level O3 executed in
a system without any cache. For each benchmark, the left
three bars represent the results achieved by our static cache
locking technique if the cache amounts to 10, 15 and 20%
of the overall program size. These resulting WCETests al-
ready include the overhead for loading and locking parts of
a program’s code into the cache before its execution. In or-
der to assess the efficacy of static cache locking compared
to a regular cache, the right bars represent the results if the
benchmarks are executed on a system with a regular cache.
All bars depict the average WCETest of the optimized pro-
grams of each benchmark suite for a system equipped with a
2-way set-associative cache computed by the static WCET
analyzer as percentage of its “uncached” version.

By locking content into the I-cache, our ILP-based optimiza-
tion is able to reduce the WCETest of the programs by up
to 35.4% for 10% cache for the misc benchmarks. For the
same benchmark set, the WCETest is reduced by up to 37.7
and 40.8% for 15 and 20% cache size, respectively. A system
with a regular cache is able to achieve WCETest reductions
of up to 32.7% for the MediaBench suite and 10% cache size.
If the cache amounts to 15 and 20% of the overall program
size, the WCETest is reduced by up to 36.2 and 37.8%, re-
spectively.

On average over all considered 100 benchmarks, WCETest

reductions of 27.1, 31.2 and 34.3% can be achieved for 10,
15 and 20% cache size if our novel ILP-based cache locking
technique is applied. For a regular cache, however, only
average WCETest reductions of 3.3, 12.3 and 19.5% can be
registered for 10, 15 and 20% cache size. Here, the ILP-
based cache locking optimization outperforms the regular
cache by 23.8, 18.9 and 14.8% for 10, 15 and 20% cache size.

If the cache size of a system without cache locking is in-
creased up to 100% of the program size, the WCETest is
decreased by up to 59.7% for the misc benchmarks. Since
the benchmarks which are gaplessly arranged in memory en-
tirely fit into the cache, no cache misses due to evictions can
occur. Thus, the achieved results represent the highest pos-
sible WCETest reductions for a regular cache as well as for
a statically locked cache. On average, WCETest reductions
of 50.3% for 100% cache size can be documented.

49

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

DSPstone Mediabench misc MRTC UTDSP Average

W
C
E
T
 r
e
la
ti
v
e
 t
o
 u
n
c
a
c
h
e
d
 e
x
e
c
u
ti
o
n 10% Locked 15% Locked 20% Locked

10% Cached 15% Cached 20% Cached

Figure 5: Relative WCETests for a 4-way set-
associative cache

Although larger caches can keep copies of more instructions,
it can happen that smaller caches achieve lower estimated
WCETs due to less cache misses. For instance, a system ex-
ecuting the MRTC benchmark suite which is equipped with
a cache of 70% size has a lower WCETest than with 80%
size. This behavior is caused by the fact that by increasing
the cache size, the mapping of memory blocks to cache lines
is changed due to the modulo addressing function. Perhaps,
other blocks now compete for the same cache lines resulting
in a completely different eviction behavior and possibly in-
creased WCET. For the cases where the capacity of a cache
with l lines is doubled, consistently lower WCETests can
be observed: the set of memory blocks mapped to the same
cache line n is bisected into the blocks which are still mapped
to the same line as before and the set of blocks which are
mapped to cache line l+n. This can only lead to a reduction
of cache misses which are induced by conflicts.

For caches with larger associativity, a memory block can be
mapped to a larger amount of cache ways and thereby, the
number of conflicts tends to be decreased. Figure 5 depicts
the results if a 4-way set-associative cache is employed. Both
the system with a regular cache and a system with cache
content locked by our optimization algorithm perform better
than for a 2-way set-associative cache.

Our ILP-based cache locking optimization is able to decrease
the WCETest compared to a system without cache by up
to 35.4% for 10% cache size. For cache sizes of 15 and
20%, WCETest reductions of up to 46.1 and 48.2% can be
achieved for the misc benchmarks, respectively. Especially
for small cache sizes of 10%, the regular cache significantly
profits from a larger associativity and achieves WCETest re-
ductions of up to 35.5%. For caches with larger capacities
of 15 and 20%, even higher WCETest reductions of up to
38.9 and 38.8% are achieved, respectively.

Even though the regular cache outperforms the statically
locked cache for MediaBench, the average WCETest re-
ductions are worse: The ILP-based cache locking decreases
the WCETest by 29.5, 37.4 and 39.6% for 10, 15 and 20%
cache size, whereas the regular cache can only decrease the
WCETest by 19.8, 25.0 and 29.2% for the same cache sizes.

5.3 Optimization Time
An Intel Xeon E5506 (2.13 GHz) was utilized to consider the
time required for optimization of the benchmarks in Sec-

tion 5.2. Most of the time necessary for our novel WCET-
aware static I-cache locking optimization was consumed by
the WCET analyses using aiT which is always executed on
a single CPU core.

For a single WCET analysis for a system without cache,
up to 90 CPU minutes are required for the latnrm 32 64
benchmark stemming from the UTDSP benchmark suite.
Thereby, an optimization run spends up to 3 hours for the
two required WCET analyses to determine the constants
Cmain

j and Ccache
j (cf. Section 3.3). But more than 90% of

the considered benchmarks are analyzable within 2 minutes.
This is still suitable for most application scenarios since the
optimization essentially doubles the compilation time.

The complexity of solving the ILPs generated by the op-
timization discussed in Section 3.1 is of no practical rele-
vance. For a CFG with n nodes, the ILP has a size of O(n2)
constraints. For a program consisting of m memory blocks
of size Sway, the ILP contains O(n2 + m) variables. The
employed ILP solver CPLEX takes up to 1 CPU minute
(lmsfir 32 64 from UTDSP) but mostly terminates within
a few seconds for the considered benchmarks. Compared
to the WCET analysis required to determine the cost con-
stants Cmain

j and Ccache
j for each basic block, these values

are negligible.

5.4 Comparison with existing optimizations
Besides the considerable performance gain compared to a
regular cache, the algorithm presented in this paper also out-
performs state-of-the-art optimizations for instruction cache
locking. Plazar’s algorithm [7] as well as the optimization
presented by Liu [12] are only able to lock complete func-
tions. Their disadvantage is that if an entire function is
locked into the cache, code blocks which are not part of the
WCEP are locked into the cache as well. This wastes cache
space and thereby optimization potential. Even so, it can-
not be determined how many unused blocks are locked into
the cache: For example, a block on the WCEP which em-
inently contributes to the WCET is locked into the cache.
If, as a result, a WCEP switch occurs, it is possible that
the locked block is no longer part of the new WCEP. Thus,
only counting the locked instructions of the optimized pro-
gram which are not part of the final WCEP cannot answer
the question how many unused content is locked. Generally
speaking, this observation applies for all cache locking based
optimizations – also for the one presented in this paper.

In the following, the algorithm presented in this paper is
compared to Falk’s EFG algorithm which is only marginally
outperformed by Liu’s optimal approach. It turned out, that
function-based locking techniques are not well suited to han-
dle small caches. If, for instance, cache sizes of 10% of the
overall program size are considered, there are cases where no
promising function fits into the cache. Thus, we extended
Falk’s approach such that if the most promising function
does not fit into the remaining cache, only the beginning of
this function is locked into the free cache memory.

Figure 6 shows the results achieved by Falk’s EFG algorithm
(labeled “Reference”) compared to our ILP-based optimiza-
tion if a 2-way set-associative cache is considered. Our new
optimization outperforms locking techniques based on func-

50

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

DSPstone Mediabench misc MRTC UTDSP Average

W
C
E
T
 r
e
la
ti
v
e
 t
o
 u
n
c
a
c
h
e
d
 e
x
e
c
u
ti
o
n

10% ILP 15% ILP 20% ILP

10% Reference 15% Reference 20% Reference

Figure 6: Relative WCETests compared to function-
based locking

tions by up to 33% for the MediaBench suite. The EFG al-
gorithms performs bad in this case, since most benchmarks
have only few functions but monolithic computation kernels.
The only locked functions do not entirely fit into the cache
and their hotspots are often located in the middle or even
at the end of the function which did not fit into the cache
anymore.

But in most cases, the function-based locking profits from
our modification which enables partially locking of promis-
ing functions into the remaining cache. Nevertheless, the
function-based cache locking technique is outperformed by
14.6, 16 and 17.7% w. r. t. WCETest reductions for 10, 15
and 20% cache size averaged over all considered benchmarks.
This underlines the predominance of fine-grained cache lock-
ing techniques based on memory blocks instead of on entire
functions.

Although we did not perform an evaluation of the optimiza-
tion runtimes, a qualitative statement can be made: To con-
sider paths which are not the initial WCEP, Falk’s EFG re-
quires two analyses for each alternative path in order to com-
pute the gain of the functions on such a path. Since 97 of 100
considered benchmarks have concurrent paths, the amount
of required WCET analyses and thereby the optimization
runtime is at least doubled for Falk’s EFG approach com-
pared to our ILP-based optimization.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have shown that the WCETest of a pro-
gram can be effectively reduced by locking parts of its code
into the I-cache. The locked content is preserved against
eviction leading to an increased number of cache hits and a
decreased overestimation of its WCET.

We presented a novel WCET-aware optimization for stati-
cally locked instruction caches. The introduced ILP-based
approach is tailored to select the content of instruction
caches during compile time w. r. t. the WCETest of a pro-
gram to optimize. The selected content is loaded and locked
by the startup code before the program’s execution. The
overhead for loading and locking code into the cache is
explicitly considered in the ILP. As compared to existing
approaches, repetitive time-consuming WCET analyses are
avoided by modeling the control flow of the program in order
to always optimize along a possibly switching WCEP.

We have shown that our algorithm was able to decrease the
WCETest of a set of real-life programs by up to 40.8%. On
average over all considered benchmarks, WCETest reduc-
tions between 27.1 and 39.6% were achieved for cache sizes
ranging from 10 – 20%. A regular cache is outperformed by
9.7 – 23.8% and existing function-based cache locking tech-
niques by 14.6 – 17.7% for the same cache sizes, respectively.

In the future, we plan to extend our static cache locking
optimization to be able to handle multi-task sets. The cache
should be automatically split, and the partitions should be
exclusively assigned to individual tasks.

It also seems to be worthwhile to extend the optimization
presented in this paper to dynamically locked caches. If the
locked content of a cache is exchanged during execution, for
instance, at function calls, code which will not be used in
the near future could be replaced by other heavily used code
blocks.

Furthermore, we intend to combine a code positioning tech-
nique on basic block level with the ILP-based optimization
presented in this paper. By bundling basic blocks residing on
the WCEP, code which does not contribute to the WCET
can be moved aside. Thereby, unprofitable code snippets
could be excluded from locking into the cache which would
otherwise be unavoidable for way-based locking. Possibly,
more basic blocks on the WCEP could be locked into the
cache leading to a decreased WCET compared to cache lock-
ing without code positioning.

Acknowledgments
The authors would like to thank AbsInt Angewandte Infor-
matik GmbH for their support concerning WCET analysis
using the aiT framework.

7. REFERENCES
[1] AbsInt Angewandte Informatik GmbH. aiT

Worst-Case Execution Time Analyzers. 2012.
http://www.absint.com/ait.

[2] Advanced RISC Machines Ltd (ARMTM).
ARM926EJ-S Technical Reference Manual, ARM DDI

0198E edition, 2001-2008.

[3] A. M. Campoy, I. Puaut, A. P. Ivars, and J. V. B.
Mataix. Cache Contents Selection for
Statically-Locked Instruction Caches: An Algorithm
Comparison. In Proceedings of the 17th Euromicro
Conference on Real-Time Systems (ECRTS),
Washington, DC, USA, 2005.

[4] J. Eckart and R. Pyka. ICD-LLIR Low-Level
Intermediate Representation.
http://www.icd.de/es/icd-llir, 2012. Informatik
Centrum Dortmund.

[5] H. Falk and J. C. Kleinsorge. Optimal Static
WCET-aware Scratchpad Allocation of Program
Code. In Proceedings of Design Automation
Conference (DAC), San Francisco, USA, 2009.

[6] H. Falk and P. Lokuciejewski. A compiler framework
for the reduction of worst-case execution times.
Journal on Real-Time Systems, 46(2):251–300, 2010.

[7] H. Falk, S. Plazar, and H. Theiling. Compile-Time
Decided Instruction Cache Locking using Worst-Case

51

Execution Paths. In Proceedings of the 5th
IEEE/ACM International Conference on
Hardware/Software Codesign and System Synthesis
(CODES+ISSS), New York, NY, USA, 2007.

[8] G. Gebhard and S. Altmeyer. Optimal Task Placement
to Improve Cache Performance. In Proceedings of
ACM & IEEE International Conference on Embedded
Software (EMSOFT), New York, USA, 2007.

[9] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper.
The Mälardalen WCET Benchmarks: Past, Present
And Future. In Proceedings of Workshop on Worst
Case Execution Time Analysis (WCET), Brussels,
Belgium, 2010.

[10] International Business Machines Corporation (IBM).
IBM ILOG CPLEX V12.1, 1987, 2009.

[11] C. Lee, M. Potkonjak, and W. H. Mangione-Smith.
MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communications Systems. In
Proceedings of International Symposium on
Microarchitecture (MICRO), Washington, DC, USA,
1997.

[12] T. Liu, M. Li, and C. J. Xue. Minimizing WCET for
Real-Time Embedded Systems via Static Instruction
Cache Locking. In Proceedings of IEEE Symposium on
Real-Time and Embedded Technology and Applications
(RTAS), San Francisco, CA, United States, 2009.

[13] S. S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1997.

[14] S. Plazar, P. Lokuciejewski, and P. Marwedel. A
Retargetable Framework for Multi-objective
WCET-aware High-level Compiler Optimizations. In
Proceedings of the IEEE Real-Time Systems
Symposium (RTSS) WiP, Barcelona, Spain, 2008.

[15] I. Puaut. WCET-Centric Software-controlled
Instruction Caches for Hard Real-Time Systems. In
Proceedings of the Euromicro Conference on
Real-Time Systems (ECRTS), Dresden, Germany,
July 2006.

[16] I. Puaut and D. Decotigny. Low-Complexity
Algorithms for Static Cache Locking in Multitasking
Hard Real-Time Systems. In Proceedings of the IEEE
International Real-Time Systems Symposium (RTSS),
Austin, TX, USA, 2002.

[17] R. Pyka and J. Eckart. ICD-C Compiler Framework.
http://www.icd.de/es/icd-c, 2012. Informatik
Centrum Dortmund.

[18] V. Suhendra, T. Mitra, A. Roychoudhury, and
T. Chen. WCET Centric Data Allocation to
Scratchpad Memory. In Proceedings of IEEE
International Real-Time Systems Symposium (RTSS),
2005.

[19] UTDSP Benchmark Suite.
http://www.eecg.toronto.edu/~corinna/DSP/

infrastructure/UTDSP.html, 2012.

[20] V. Živojnović, J. Martinez, C. Schläger, and H. Meyr.
DSPstone: A DSP-Oriented Benchmarking
Methodology. In Proceedings of the International
Conference on Signal Processing and Technology
(ICSPAT), Dallas, TX, USA, 1994.

APPENDIX
A. ILP CONTROL FLOW MODELING
A.1 Path Modeling
In the following, a small example illustrates the modeling of
the WCEP for a sequence of basic blocks:

bi

bj bk

bl

A path is modeled bottom-up starting at basic block bl.
As per Equation (7), its WCET only depends on the costs
cl which in turn depend on the memory from which bl is
executed:

wl = cl

According to Equation (8), the WCET of block bj (bk is
modeled analogously) is equal to its own costs plus the
WCET of its only successor bl:

wj ≥ cj + wl

wk ≥ ck + wl

Finally, the WCET of the first basic block bi which ends
with a branch instruction is modeled as follows:

wi ≥ ci + wj

wi ≥ ci + wk

A.2 Loop Representation
If the sequence of basic blocks in example A.1 is turned into
a loop named L1, the resulting control flow can be as follows:

bi

bj bk

bl

According to Equation (9), the costs of the supernode vL1

representing loop L1 amount to the WCET of its entry basic
block bi multiplied by its maximum iteration count:

cL = wi ∗ CountLmax

A.3 Global Control Flow
Assumed that basic block bj of example A.1 calls a function
foo, the WCET of foo’s entry basic block bfooentry is added
to the costs of bj according to Equation (10). Only the
constraint of A.1 modeling the WCET of bj thus has to be
extended:

wj = cj + wl + wfoo
entry

52

