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Abstract. Linear dynamical systems (LDS) are applied to model data
from various domains—including physics, smart cities, medicine, biol-
ogy, chemistry and social science—as stochastic dynamic process. When-
ever the model dynamics are allowed to change over time, the number
of parameters can easily exceed millions. Hence, an estimation of such
time-variant dynamics on a relatively small—compared to the number of
variables—training sample typically results in dense, overfitted models.
Existing regularization techniques are not able to exploit the temporal
structure in the model parameters. We investigate a combined reparame-
trization and regularization approach which is designed to detect redun-
dancies in the dynamics in order to leverage a new level of sparsity. On
the basis of ordinary linear dynamical systems, the new model, called
ST-LDS, is derived and a proximal parameter optimization procedure
is presented. Differences to l1-regularization-based approaches are dis-
cussed and an evaluation on synthetic data is conducted. The results
show, that the larger the considered system, the more sparsity can be
achieved, compared to plain l1-regularization.

1 Introduction

Linear dynamical systems (LDS) describe relationships among multiple quanti-
ties. The system defines how the quantities evolve over time in response to past
or external values. They are important for analyzing multivariate time-series
in various domains such as economics, smart-cities, computational biology and
computational medicine. This work aims at estimating the transition matrices
of finite, time-variant high-dimensional vector time-series.

Large probabilistic models [8,17] are parameterized by millions of vari-
ables. Moreover, models of spatio-temporal data like dynamic Bayesian networks
(DBN) [3] become large when transition probabilities between time-slices are not
time-invariant. This induces problems in terms of tractability and overfitting.
A generic solution to these problems is a restriction to sparse models. Approaches
to find sparse models by penalizing parameter vectors with many non-zero weights
are available (e.g., the LASSO [5,15]). However, setting model parameters to zero
implies changes to the underlying conditional independence structure [8]. This is
not desired if specific relations between variables are to be studied.
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To overcome this issue for spatio-temporal data, a combination of reparame-
trization and regularization has been proposed, called spatio-temporal random
fields (STRF) [12], which enables sparse models while keeping the conditional
independence structure intact. Although the model in the aforementioned work
is presented entirely for discrete data, the underlying concept can be extended to
continuous data as well. Here, this idea is investigated and evaluated for multi-
variate Gaussian data where the conditional independence structure is encoded
by the entries of the inverse covariance matrix [8] and a set of transition matri-
ces. It is assumed, that the spatial structure is known and the goal is to find a
sparse representation of the model’s dynamics.

Related Work. In the literature, known approaches that aim at the reduction of
model parameters are based on the identification of sparse conditional indepen-
dence structures which in turn imply sparse parameter vectors. The basic ideas
of these approaches can be applied to both, (inverse) covariance matrices and
transition matrices. Some important directions are discussed in the following.

General regularization-based methods for sparse estimation may be consid-
ered [5,15], but several approaches for dynamic systems arose in the last decades.
In time-varying dynamic Bayesian networks [14], Song et al. describe how to find
the conditional independence structure of continuous, spatio-temporal data by
performing a kernel reweighting scheme for aggregating observations across time
and applying �1-regularization for sparse structure estimation. In subsequent
work, it is shown how to transfer their ideas to spatio-temporal data with dis-
crete domains [7]. The objective function that is used in the latter approach
contains a regularization term for the difference of the parameter vectors of
consecutive time-slices. Therefore, it is technically the most similar to STRF.
However, the estimation is performed locally for each vertex and the resulting
local models are heuristically combined to arrive at a global model. It can be
shown that this is indeed enough to consistently estimate the neighborhood of
each vertex [13].

Statistical properties of conditional independence structure estimation in
undirected models are presented in [20]. In particular, the authors investigate
(i) the risk consistency and rate of convergence of the covariance matrix and
its inverse, (ii) large deviation results for covariance matrices for non-identically
distributed observations, and (iii) conditions that guarantee smoothness of the
covariances.

Han and Liu [6] present the first analysis of the estimation of transition
matrices under a high-dimensional doubly asymptotic framework in which the
length and the dimensionality of the time-series are allowed to increase. They
provide explicit rates of convergence between the estimator and the population
transition matrix under different matrix norms.

�1-regularization is indeed not the only way for inducing sparsity into the
model. Wong et al. [18] show how to incorporate the non-informative Jeffreys
hyperprior into the estimation procedure. The main benefits of their approach
are the absence of any regularization parameter and approximate unbiasedness
of the estimate. However, the resulting posterior function is non-convex and their
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simulation results indicate that the proposed method tends to underestimate the
number of non-zero parameters.

Instead of regularization, score-based methods deliver a combinatorial alter-
native for structure learning. Therein, multiple independence tests are performed
to detect local structures which are finally merged to a global conditional inde-
pendence structure. Since a large number of tests has to be performed, the app-
roach might not be applicable whenever the number of variables is high. Local
search heuristics [10,16] can leverage such complexity issues by restricting the
test-space to neighboring structures.

Approaches mentioned so far assume that a specific segmentation of the
data in suitable time-slices is already available. Fearnhead [4] developed effi-
cient dynamic programming algorithms for the computation of the posterior
over the number and location of changepoints in time-series. Based on this line
of research, Xuan and Murphy [19] show how to generalize Fearnheads algo-
rithms to multidimensional time-series. Specifically, they model the conditional
independence structure using sparse, �1-regularized, Gaussian graphical models.
The techniques presented therein can be used to identify the maximum a posteri-
ori segmentation of time-series, which is required to apply any of the algorithms
mentioned above.

Contribution and Organization. It is shown how to adapt the STRF model
[12] to time-variant linear dynamical systems. Two alternatives are discussed,
namely a reparametrization of the exponential family form of the system and a
reparametrization of the transition matrices. Furthermore, a proximal-algorithm-
based optimization procedure [1,11] for the joint estimation of the compressed
transition matrices is presented. Finally, we evaluate the proposed procedure on
synthetic data in terms of quality and complexity. The results are compared to
�1-regularization and ordinary LDS.

2 Linear Dynamical Systems

Before our spatio-temporal reparametrization can be explained, we introduce
time-variant linear dynamical systems and their estimation from data. Let
x1:T := (x1,x2, . . . ,xT ) be a n-dimensional real valued time-series. We assume
that its autonomous dynamics are fully specified by a finite, discrete-time, affine
matrix equation

xt = At−1xt−1 + εt for 1 < t ≤ T (1)

with state xt ∈ R
n, transition matrix At ∈ R

n×n and noise εt ∈ R
n. We

call x1 the initial state of the system. In total, there are T − 1 transition
matrices A := (A1,A2, . . . ,AT−1)1. Each εt is drawn from the same multi-
variate Gaussian distribution εt ∼ N (0,Σ). Due to this stochasticity, each
xt with t > 1 is a multivariate Gaussian random variable given xt−1, with

1 Notice that A is a short notation for all transition matrices of the system.
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xt|xt−1 ∼ N (At−1xt−1,Σ). If the initial state is considered as a random vari-
able too, e.g., x1 ∼ N (0,Σ), the full joint probability density of x1:T may be
denoted as:

PA,Σ(x1:T ) = PΣ(x1)
T−1∏

t=1

PAt,Σ(xt+1|xt) (2)

If x1 is deterministic instead, one may simply drop the leading factor in (2).

2.1 Parameter Estimation

Estimating the parameters of an LDS is typically done by maximizing the like-
lihood L(A,Σ−1,D) of a given dataset D = {xi

1:T }N
i=1 that contains N realiza-

tions of the time-series x1:T .

L(A,Σ−1,D) =
N∏

i=1

PA,Σ(xi
1:T ) (3)

Notice that we parameterize the likelihood directly in terms of the inverse
covariance matrix. Since non-degenerate covariance matrices are positive def-
inite, such an inverse is guaranteed to exist. Due to numerical convenience,
it is common to minimize the average negative log-likelihood �(A,Σ−1,D) =
− 1

NT log L(A,Σ−1,D) instead. By plugging (2) into (3) and substituting the
Gaussian density for P, the resulting objective function is:

�(A,Σ−1,D) = − 1
NT

log
N∏

i=1

PA,Σ(xi
1:T )

= − 1
NT

N∑

i=1

(
logPΣ(xi

1) +
T−1∑

t=1

logPA,Σ(xi
t+1|xt)

)

= C − 1
2

log det Σ−1 +
1

2NT

N∑

i=1

T∑

t=1

ri�
t Σ−1ri

t (4)

with residual vector ri
t = xi

t−At−1x
i
t−1, constant C = 1

2n log 2π and � indicates
the transpose of a vector or matrix. Here, PΣ(x1) is absorbed into the summation
by setting x0 := 0 and A0 := 0. In the last equation, we made use of the fact
that (det Σ−1) = (det Σ)−1 since any covariance matrix is positive definite. �
is a convex function of the transition matrices and the inverse noise covariance
matrix, due to the convexity of − log det Σ−1 and (At−1xt−1)2. First or second
order optimization procedures may be applied to find the global minimizer of
(4) w.r.t. A or Σ. Hence, it is useful to know the derivatives.

We adopt the notation from [9] whenever an expression involves matrix dif-
ferential calculus. Let the operator vec : Rm×n → R

mn transform a matrix into a
vector by stacking the columns of the matrix one underneath the other—vec(M)



238 N. Piatkowski and F. Schnitzler

represents the matrix M in column-major order. The partial derivative of � w.r.t.
At for 1 ≤ t < T is then

∂�

∂ vec (At)
� =

1
2NT

N∑

i=1

∂
(
ri�

t+1Σ
−1ri

t+1

)

∂ vec (At)
�

= − 1
NT

vec

(
Σ−1

N∑

i=1

(xi
t+1 − Atx

i
t)x

i�
t

)�

(5)

and its partial derivative w.r.t. Σ−1 is

∂�

∂ vec
(
Σ−1

)� = −1
2

∂ log det Σ−1

∂ vec
(
Σ−1

)� +
1

2NT

N∑

i=1

T∑

t=1

∂
(
ri�

t Σ−1ri
t

)

∂ vec
(
Σ−1

)�

= −1
2

vec

(
Σ +

1
2NT

N∑

i=1

T∑

t=1

ri
tr

i�
t

)�

Notice that the first order condition ∂�/∂ vec
(
Σ−1

)�
= 0 implies that the

minimizer Σ∗ must be equal to the empirical second moment of the trans-
formed residual vector. A similar closed form can be derived for A∗

t whenever∑N
i=1 xi

tx
i�
t is invertible.

2.2 Sparse Estimation

Using closed-form expressions for A∗
t or Σ−1∗ typically results in dense matrices,

i.e., solutions with almost no zero entries. This might not be desired, either
because sparse solutions allow for faster computation, or because the resulting
matrices should reveal insights about the dependency between variables. A way
to achieve this is to bias the solution towards sparse matrices by regularizing the
objective function:

�reg(A,Σ−1,D) = �(A,Σ−1,D) + g(A,Σ−1)

where g is an arbitrary non-negative function, the regularizer, that somehow
measures the complexity that is induced by A and Σ−1. Hence, minimizing �reg

will produce solutions that trade off quality (in our case: likelihood) against
complexity. It is common to choose a norm as regularizer. In particular, the l1-
norm is known to induce sparse solution [5,15]. For the LDS objective (4), this
results in

�l1-LDS(A,Σ−1,D) = �(A,Σ−1,D) + λ

T−1∑

t=1

‖At‖1 + δ‖Σ−1‖1 (6)

where ‖ · ‖1 is the entry-wise matrix l1-norm, i.e., ‖M‖1 =
∑n

i=1

∑m
j=1 |[M ]i,j |

for any n × m matrix M . Here, λ and δ are positive weights which control the
strength of the regularization. The larger λ (δ), the smaller will the norm of the
resulting At (Σ−1) be. That is, the larger λ or δ, the higher the number of zero
entries in At or Σ−1, respectively.
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Remark 1. Zeros at the (i, j)-th entry of the inverse covariance matrix correspond
to conditional independence between the variables [xt]i and [xt]j2, given all the
other variables {[xt]k : k �= i �= j} [8]. Since Σ−1 is an inverse covariance matrix,
it is symmetric. Hence, it may be interpreted as the (weighted) adjacency matrix
of an undirected graphical structure G(Σ−1) = (V,U) with n = |V | vertices and
an edge set E. If the estimation is carried out via numerical optimization, special
care has to be taken to ensure that the estimated Σ−1 is symmetric and positive
definite. Results on the estimation of sparse inverse covariance matrices may be
found in [2,5,21]. In what follows, we assume that Σ is known. This is in line
with the original STRF, where a spatial graphical structure is assumed to be
given [12].

Due to the l1 term, (6) can not be optimized by conventional numerical
methods because |x| is not differentiable at x = 0. However, if the gradient of
(6) is Lipschitz continuous with modulus L, the proximal gradient method is
guaranteed to converge with rate O(1/k) when a fixed stepsize η ∈ (0, 1/L] is
used [11].

Recall that we are interested in minimizing (6) w.r.t. all transition matrices
At. Hence, we consider block-wise minimization of the At. The proximal alter-
nating linearized minimization [1] is a variant of the general proximal gradient
algorithm which is designed for a block-wise setting. A closer investigation of
(5) shows, that each partial derivative of (6) w.r.t. At is indeed Lipschitz con-
tinuous. It’s block Lipschitz constant is Lt = 1

T ‖Σ−1‖F ‖ 1
N

∑N
i=1 xi

tx
i�
t ‖F =

‖(∂/∂ vec(At)�)(∂�/∂ vec(At)�)‖F , which is the Frobenius norm of the gra-
dient’s Jacobian w.r.t. to At. This is based on the fact that any differentiable
vector-valued function whose gradient has bounded norm is Lipschitz continuous.

Using these moduli of continuity, the optimization consists of iteratively
updating all transition matrices. Let γ > 1. In each iteration, the transition
matrices are updated according to

vec (Anew
t )� = proxγLt

(
vec (At)

� − 1
γLt

∂�

∂ vec (At)
�

)

with

prox‖·‖1
λ (x) = arg min

y

(
‖y‖1 +

λ

2
‖x − y‖22

)
.

Moreover, since ‖ · ‖1 is fully separable, it can be shown (see, e.g., [11]) that

[prox‖·‖1
λ (x)]j =

⎧
⎪⎨

⎪⎩

xj − λ, xj > λ

0, |xj | ≤ λ

xj + λ, xj < −λ

.

2 [x]i represents the i-th component of vector x. Moreover, [M ]i,j represents the entry
in row i and column j of matrix M .
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2.3 LDS and the Exponential Family

The STRF reparametrization for discrete state Markov random fields is formu-
lated for exponential families [17]. We will now shortly recap the exponential
family form of the multivariate Gaussian, which is also known as information
form. An exponential family with natural parameter θ ∈ R

d may be denoted as

Pθ(x) = exp (〈θ, φ(x)〉 − B(θ)) (7)

with log partition function B(θ) = log
∫

exp (〈θ, φ(x)〉) dx3. In case of the mul-
tivariate Gaussian, parameter and sufficient statistic φ : R

n → R
d are given

by

θ =
(− 1

2 vec(Σ−1)
Σ−1μ

)
and φ(x) =

(
vec(xx�)

x

)
,

respectively. Moreover, the closed form of B(θ) can be computed by the n-
dimensional Gaussian integral:

B(θ) = log
∫

exp (〈θ, φ(x)〉) dx

= log
∫

exp
(

−1
2
x�Σ−1x + x�Σ−1μ

)
dx

= log
(√

(2π)n det Σ−1 exp
(

1
2
μ�Σ−1μ

))
.

Plugging this into Eq. (7) and rearranging, one arrives at the well known expres-
sion for the multivariate Gaussian density:

Pθ(x) = exp (〈θ, φ(x)〉 − B(θ))

=
1√

(2π)n det Σ−1
exp

(
−1

2
x�Σ−1x + x�Σ−1μ − 1

2
μ�Σ−1μ

)

=
1√

(2π)n det Σ−1
exp

(
−1

2
(x − μ)�Σ−1(x − μ)

)
.

Based on this equivalence, the joint density (2) of an LDS can also be rewritten
in terms of exponential families (7)

PA,Σ(x1:T ) = PΣ(x1)
T−1∏

t=1

PAt,Σ(xt+1|xt)

= Pθ1(x1)
T−1∏

t=1

Pθt+1(xt+1|xt)

= exp

(
T∑

t=1

〈θt, φt(xt,xt−1)〉 − B(θt,xt−1)

)

3 The log partition function is usually denoted by A(θ). Since the symbol A is already
reserved for transition matrices, we denote the log partition function with B instead.
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where we used the exponential family form of each xt|xt−1 ∼ N (At−1xt−1,Σ)
and hence, the parameters and sufficient statistic are

θt =
( − 1

2 vec(Σ−1)
vec(Σ−1At−1)

)
, φt(xt,xt−1) =

(
vec(xtx

�
t )

vec(xtx
�
t−1)

)
.

Again, we set x0 := 0 and A0 := 0 to compactify notation. To remove the
functional dependence between the local log-partition functions B(θt,xt−1) and
xt−1, we include the corresponding term − 1

2x�
t−1A

�
t−1Σ

−1At−1xt−1 directly
into the parameters and sufficient statistics:

θ̃t =

⎛

⎝
− 1

2 vec(Σ−1)
vec(Σ−1At−1)

− 1
2 vec(A�

t−1Σ
−1At−1)

⎞

⎠ , φ̃t(xt,xt−1) =

⎛

⎝
vec(xtx

�
t )

vec(xtx
�
t−1)

vec(xt−1x
�
t−1)

⎞

⎠ .

Finally, the joint probability of the LDS in exponential family form is

Pθ̃(x1:T ) = exp
(
〈θ̃, φ̃(x1:T )〉 − B(θ̃)

)

where, θ̃ = (θ̃1, θ̃2, . . . , θ̃T )�, φ̃ = (φ̃1(x1,x0), φ̃2(x2,x1), . . . , φ̃T (xT ,xT−1))�,
and B(θ̃) =

∑T
i=1 B(θ̃t) are the corresponding parameter, sufficient statistics

and log partition function, respectively.
This representation has several drawbacks when compared to the native rep-

resentation in terms of transition matrices. An obvious disadvantage is, that
multiple copies of Σ−1 are encoded into the parameters. Moreover, the transi-
tion matrices can only be recovered via inversion of Σ−1 and subsequent matrix
multiplication with the lower part of θt which encodes Σ−1At−1. Hence, O(n3)
flops are required to extract At−1 from θt which might be prohibitive in a large
system.
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Fig. 1. X-axis: Parameter p of the Bernoulli distribution of the entries of the lower
triangular matrix L̃. Y-axis: Average sparsity of (L̃ + 10In)(L̃ + 10In)�.
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3 Reparametrization of LDS

The main goal of this work is a sparse reparametrization of LDS that does
not alter the dependences which are encoded in the transition matrices. If l1-
regularization is applied to a transition matrix At, some of its entries will be
pushed to 0, and hence, some flow of information between variables is prohibited.
Moreover, if a particular value of At does not change much over time, i.e.,
[At]i,j ≈ c for all 1 ≤ t < T , l1-regularization can not exploit this redundancy.
Here, we aim at finding an alternative representation that is able to sparsify
such redundancies while keeping small interactions between variables intact. For
discrete state Markov random fields, this task has already been solved by STRF.
The core of STRF is a spatio-temporal reparametrization of the exponential
family

θt(Δ) =
t∑

i=1

1
t − i + 1

Δi

with l1 and l2 regularization of the Δi.
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0.22

0.34

0.00 0.07 0.13 0.20

||A
* -A

|| F
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l1-LDS

Fig. 2. Sparsity vs. Error. X-axis: Sparsity of estimated transition matrices. Y-axis:
Estimation error of transition matrices, measured in Frobenius norm ‖A∗ − A‖F .

As already mention at the end of Sect. 2, extracting the transition matri-
ces from the exponential family form of an LDS is rather expensive. In practi-
cal applications of LDS, the transition matrices are of special interest. Either
because a prediction of future states of the system has to be computed, or if
particular interactions between variables are investigated. Therefore, we dismiss
the exponential family representation and perform the reparametrization w.r.t.
the transition matrices.

At(Δ) =
t∑

i=1

1
t − i + 1

Δi
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Fig. 3. X-axis: number of variables n. Y-axis: Normalized negative log-likelihood �/n.
Left: T = 4; Right: T = 8. Lower is better.

Analogous to (6), this results in the objective function

�ST-LDS(Δ,Σ−1,D) = �(A(Δ),Σ−1,D) + λ

T−1∑

t=1

‖Δt‖1 (8)

with Δ = (Δ1,Δ2, . . . ,ΔT−1). Notice that we perform only l1-regularization of
Δ, since the results in [12] suggest that the impact of l2-regularization on the
sparse reparametrization is neglectable. In addition, Σ−1 is treated as a constant
as explained in Remark 1.
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Fig. 4. X-axis: number of variables n. Y-axis: Sparsity of estimated transition matrices.
Left: T = 4; Right: T = 8. Higher is better.

The partial derivatives of � w.r.t. Δt are required to apply the proximal
algorithm from Sect. 2.2. We apply the matrix chain rule (see, e.g., [9]) to get

∂�

∂ vec (Δt)
� =

(
∂�

∂ vec (A(Δ))�

)(
∂ vec (A(Δ))

∂ vec (Δt)
�

)

with
∂[At′(Δ)]l,r

∂[Δt]i,j
=

{
1

t′−t+1 , t′ ≥ t ∧ i = l ∧ j = r

0, else
.
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The block Lipschitz constant Ut =
√∑T−1

t′=t (n/(t′ − t + 1))2 of A(Δ) w.r.t. Δt

is derived as described in Sect. 2.2, i.e.,

Ut =

∥∥∥∥∥

(
∂

∂ vec (Δt)
�

)(
∂�

∂ vec (Δt)
�

)∥∥∥∥∥
F

.

Now, since f = � ◦ A is the composition of two Lipschitz continuous functions,
UtLt is the t-th block Lipschitz constant of f(Δ) = �(A(Δ),Σ−1,D).

4 Experiments

Experiments are conducted in order to investigate and compare the (i) loss,
(ii) sparsity and (iii) estimated transition matrices of the following methods:

– Plain time-variant LDS as defined in (1) with objective function (4)
– l1-LDS with objective function (6)
– ST-LDS with objective function (8)

Here, sparsity is defined as the fraction of zero-entries in a parameter θ ∈ R
d,

i.e., sparsity(θ) = 1
d

∑d
i=1 1(θi = 0). The indicator function 1(expr) evaluates

to 1 iff expr is true.
The synthetic data for the experimental evaluation is generated by the fol-

lowing stochastic process:

1. Fix the number of variables n, time-steps T and samples N .
2. Generate a random inverse covariance matrix Σ−1. This is done by generating

a lower triangular binary matrix L̃ where each entry is draw independently
from a Bernoulli distribution with parameter p. The sign of each non-zero off-
diagonal entry is determined by drawing from another Bernoulli with parame-
ter 1/2. Then, the n×n up-scaled identity matrix 10In is added to L̃ and the
result is multiplied by its own transpose, i.e., Σ̃

−1
= (L̃+10In)(L̃+10In)�.

The implied Σ̃ is normalized in order to have unit variances. Figure 1 shows
the sparsity of the final inverse covariance matrix Σ−1 as a function of n
and p.

3. Generate T −1 random transition matrices A1,A2, . . . ,At−1. The entries are
drawn independently from a uniform distribution over [−ω, ω]:
(a) For [At]i,j and all 1 ≤ t < T . (Fully Time-Variant)
(b) For [A1]i,j and [AT/2]i,j and then copied to all [At]i,j with 1 < t < T/2

and T/2 < t < T , respectively. (Step-wise time-variant)
(c) For [A1]i,j and then copied to all [At]i,j for all 1 < t < T . (Time-

Invariant)
4. For i = 1 to N

(a) Draw xi
1 from N (0,Σ).

(b) For t = 2 to T
i. Draw εt from N (0,Σ).
ii. Compute xi

t = At−1x
i
t−1 + εt.
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This procedure is applied for n ∈ {2, 4, 6, 8, 10, 12, 14, 16}, T ∈ {4, 8} and
N = 10000. Random covariance matrices are generated with p = 1/4 and ran-
dom transition matrices are generated with ω = 1/n. For each combination of n
and T , 10 datasets are sampled, which makes a total of 1.6 × 106 data points.
The evaluation of regularized methods l1-LDS and ST-LDS is carried out with
λ ∈ {10−2, 10−3, 10−4, 10−5}. All models are estimated by the proximal algo-
rithm, described in Sect. 2.2. In case of an unregularized objective, the proximal
algorithm reverts to block-wise gradient descent.

LDS
l1-LDS,λ=10-2

ST-LDS,λ=10-2

l1-LDS,λ=10-3

ST-LDS,λ=10-3

l1-LDS,λ=10-4

ST-LDS,λ=10-4

l1-LDS,λ=10-5

ST-LDS,λ=10-5

Fully Time-Variant

0.000

0.065

0.131

0.196

0.262

 2  3  4  5  6  7  8  9  10  11  12  13  14  15  16
0.000

0.104

0.208

0.312

0.416

 2  3  4  5  6  7  8  9  10  11  12  13  14  15  16

Step-wise time-variant

0.000

0.059

0.117

0.176

0.235

 2  3  4  5  6  7  8  9  10  11  12  13  14  15  16
0.000

0.077

0.153

0.230

0.307

 2  3  4  5  6  7  8  9  10  11  12  13  14  15  16

Time-Invariant

0.000

0.052

0.103

0.155

0.206

 2  3  4  5  6  7  8  9  10  11  12  13  14  15  16
0.000

0.076

0.153

0.229

0.305

 2  3  4  5  6  7  8  9  10  11  12  13  14  15  16

Fig. 5. X-axis: number of variables n. Y-axis: Estimation error of transition matrices,
measured in Frobenius norm ‖A∗ − A‖F . Left: T = 4; Right: T = 8. Lower is better.
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LDS
l1-LDS,λ=10-2

ST-LDS,λ=10-2

l1-LDS,λ=10-3

ST-LDS,λ=10-3

l1-LDS,λ=10-4

ST-LDS,λ=10-4

l1-LDS,λ=10-5

ST-LDS,λ=10-5

Fully Time-Variant

0.000

0.020

0.041

0.061

0.082

 2  3  4  5  6  7  8  9  10  11  12  13  14  15  16
0.000

0.022

0.045

0.067

0.090

 2  3  4  5  6  7  8  9  10  11  12  13  14  15  16

Step-wise time-variant

0.000

0.021

0.043

0.064

0.085

 2  3  4  5  6  7  8  9  10  11  12  13  14  15  16
0.000

0.018

0.037

0.055

0.074

 2  3  4  5  6  7  8  9  10  11  12  13  14  15  16

Time-Invariant

0.000

0.013

0.026

0.040

0.053

 2  3  4  5  6  7  8  9  10  11  12  13  14  15  16
0.000

0.012

0.025

0.037

0.050

 2  3  4  5  6  7  8  9  10  11  12  13  14  15  16

Fig. 6. X-axis: number of variables n. Y-axis: Estimation error of transition matrices,
measured in maximum norm ‖A∗ − A‖∞. Left: T = 4; Right: T = 8. Lower is better.

4.1 Likelihood and Sparsity

Results for the average negative log-likelihood (4) and sparsity of the correspond-
ing transition matrices are depicted in Figs. 3 and 4, where each point is aver-
aged over 10 random data sets. Comparing results among different model sizes
requires normalization of the loss function values by the corresponding number
of variables, hence, Fig. 3 shows �/n. Plots on the left contain results for T = 4
time-steps and plots on the right results for T = 8 time-steps, respectively. In all
cases, a larger value of λ corresponds to more sparsity and a larger loss. Note,
however, that the regularization parameter has a different impact on l1-LDS and
ST-LDS models, i.e., sparsity and loss of ST-LDS models with λ = 10k are in
the range of l1-LDS models with λ = 10k−1. The results suggest the existence of
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a phase transition which is clearly visible for ST-LDS with λ = 10−2 and l1-LDS
λ = 10−3: for small (in terms of n) models, the loss of l1-LDS is larger than the
loss of ST-LDS. However, it can be seen in Fig. 3 that there exists n0 from which
on this relation is interchanged, i.e., the loss of l1-LDS is lower than the loss of
ST-LDS. Remarkably, the sparsity plots (Fig. 4) of the corresponding transition
matrices show a similar behavior. Starting from the same n0, the sparsity of
ST-LDS with λ = 10−2 and the sparsity of l1-LDS with λ = 10−3 converge.
The point of the phase transition and it’s strength depend on the number of
time-steps and the type of transition matrices. In case of ST-LDS models with
λ = 10−5 however, the loss is close to that of plain LDS model and the sparsity
is larger than that of the corresponding l1-LDS models. Moreover, the sparsity
increases with an increasing number of variables.

4.2 Estimation Error and Sparsity

For each random dataset, we store the original transition matrices A∗. This
allows us, to investigate the estimation error in terms of the Frobenius norm
‖A∗ − A‖F and maximum norm ‖A∗ − A‖∞, as shown in Figs. 5 and 6. Again,
each point is averaged over 10 random data sets. The ranking of the meth-
ods in terms of estimation error is coherent with the sparsity results. While
the Frobenius-norm-error increases with an increasing number of variables, the
maximum-norm-error is almost zero for all methods with λ ≤ 10−3. While the
maximum-norm-error of ST-LDS with λ = 10−4 is close to 0, the sparsity of the
corresponding model increases with an increasing number of variables. More-
over, it’s sparsity is higher than the sparsity of the corresponding l1-LDS model.
Finally, the trade-off between sparsity and estimation error is depicted in Fig. 2.
Each error-sparsity pair represents one run of the corresponding method. Tran-
sition matrices which are estimated with the plain LDS model are completely
dense in any case. In general, ST-LDS is able to produce models with a higher
sparsity while incorporating a larger error. Notice, however, that some ST-LDS
models achieve about twice the sparsity as l1-LDS models but with the same
(rather low) estimation error.

5 Conclusion

In this article, we investigated a combined reparametrization and regularization
approach which is designed to detect redundancies in the dynamics of linear
dynamical systems. Based on ordinary linear dynamical systems, the new model,
called ST-LDS, was derived and a proximal parameter optimization procedure
was presented. Expensive line-search techniques or similar step-size adaption
techniques were avoided by deriving the block Lipschitz constants of the cor-
responding objective function w.r.t. the new reparametrization. Differences to
l1-regularization-based approaches were discussed and an evaluation on synthetic
data was carried out. The results show, that with an increasing size of an ST-
LDS, the estimation error is close to that of an ordinary LDS while achieving
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more sparsity than l1-regularization-based models. An investigation of spatio-
temporal regression models with non-Gaussian noise is an appealing direction
for future research, since many real world phenomena might be explained better
by other probability distributions.
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