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1 | Introduction

Recent advances in Machine Learning have made it possible that more and more
people have access to data mining tools and less and less expert knowledge is required
to solve Machine Learning tasks. For instance, the most-recent version of the popular
data-mining platform RapidMiner1 can automatically design data-mining processes
given a spreadsheet of data. For classification tasks, many solutions including Google
Prediction API2 and Amazon ML3 provide web-based services where a user can train
prediction models by upload a spreadsheet of labeled training data. This model is
then accessible via a simple web API.

However, spreadsheets are not the most convenient form of representation for
all types of data. There are tasks where we want to classify structured objects like
texts, time series, graphs or images. If we want to use the same prediction models
as above, we have to find a set of features that describes the interesting properties
of particular structures. We speak of a feature map, a function that returns for a
given structure a fixed-size, real-valued vector of features. It should hold that similar
structures are mapped to similar vectors. Finding a suitable feature map is not a
trivial task: How can we describe structures that can vary in size in a fixed-size
feature vector?

Let us consider one example, where the structures are texts. We can define fea-
tures based on global statistics like the number of words or the number of characters.
Obviously, those features do not carry a lot of semantic information about the text.
A popular feature map is the bag-of-words that has a feature for every possible word
that indicates the number of occurrences of a particular word in the given text. A
bag-of-words feature map can express similarities of two texts via the dot-product
of two bag-of-words vectors; the larger the dot product is the more words occur in
both texts. But this feature map does not capture the order of words, an important

1https://rapidminer.com/news-posts/rapidminer-v6-0/
2https://cloud.google.com/prediction/
3http://aws.amazon.com/machine-learning/
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2 Chapter 1. Introduction

aspect of language. We could construct a feature map that indicates for each possi-
ble position in the text and each possible word in the dictionary whether the word
appears at the position in the given text. While this feature map unambiguously
describes a text, it cannot capture similarities of two texts using the dot product of
two feature vectors. If we take a sentence and compute its feature map and then
take the same sentence but insert a single word at the beginning, we get two feature
maps that differ in all components. It seems we need something in between, a fea-
ture map that captures more information about the structure than just its atomic
components but still captures similarities in the vector space.

Kernel Methods fill this void. We can define a function that, given two structures,
computes some similarity, e.g., by matching all substructures that appear in both
given structures. In many cases, for instance for strings or trees, these matches can
be computed efficiently. If the function is positive-definite, it is a member of the
class of kernel-functions. Thus it implicitly defines a feature map and computes the
dot product. Thus for algorithms that compute a model based on the dot product of
feature maps, we can apply the so-called Kernel Trick and replace the dot-product
by our kernel function. Kernels for structured objects have been successfully applied
to classification tasks with structured inputs. They circumvent the need for expert-
designed feature maps.

The research in machine learning has progressed from studying isolated classi-
fication tasks to the study of tasks where both inputs and outputs are structured
objects [14]. Examples for these Structured Prediction tasks include Sequence Tag-
ging, Natural Language Parsing or Object Localization. In sequence tagging, we are
given a sequence of tokens and predict the label for each of those tokens. We know
that there are dependencies between labels, thus we do not want to predict each
label of the sequence independently. In Natural Language Parsing, we predict the
syntactical structure in form of a parse tree of a given sentence. Object Localization
involves finding the bounding boxes and types of objects in a given image.

The state-of-the art methods, including the Structural Support Vector Machine,
require the definition of a joint feature map for input and output pairs. These fea-
ture maps need to be designed by experts and usually incorporate domain-specific
knowledge. For instance, if we want to predict the part-of-speech tags for English
sentences, domain experts could suggest that prefixes and suffixes are a good indi-
cator for word classes. For instance, adverbs usually end on -ly, prefixes like re-, ex-
or in- are good indicators for verbs, or capitalized words are most-likely named en-
tities. However, this strong dependence on expert-designed features makes methods
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for Structured Output prediction hard to use. I hypothesize that we can also use
feature maps implicitly defined by kernels for Structured Output learning.

1.1 Contribution of this Thesis

In this thesis I use joint kernels instead of explicitly defined joint feature maps for
Structured Output prediction. More precisely, I will use the Tensor Joint kernel that
combines a kernel for the input structures with a kernel for the output structures.
This allows me to reuse kernels defined for classification tasks to solve Structured
Output learning tasks. The joint kernel implicitly defines a joint feature map and
thereby reduces the amount of feature-engineering required in previous approaches.

I will demonstrate that, when using kernels instead of explicit feature maps,
the inference problem of predicting a structured output given an input becomes a
pre-image problem. I propose to use a simple output kernel, such that solving this
pre-image problem is tractable. As this work focuses on discrete structures, this pre-
image problem will be a combinatorial optimization problem. The exact structure
of this problem will depend on the output domain.

The algorithm I present is based on the Cutting Plane optimization for Structural
Support Vector Machines [60, 26]. Model learning requires a lot of computationally-
expensive kernel computations. To make training more efficient, I propose an index
structure that exploits sparsity in the outputs. This approach decreases learning
time substantially.

I will demonstrate the usefulness of this approach on a problem from Natural
Language Processing, Dependency Parsing. The machine-learning task is to predict
the inner syntactic structure of a given sentence. These syntactic structures are
modeled by directed edges between the words of the given sentence. I will present
a data-driven approach that uses only one handcrafted feature, whereas standard
methods apply 60 or more templates to generate features. Experiments based on
annotated German data will show that the performance of my kernelized prediction
model is comparable to the performance of a model based on expert features.

1.2 Structure of this Thesis

I begin by introducing the task of Structured Output Prediction in Chapter 2, fo-
cusing on discrete and structured output domains, which I will define precisely. I
present the most-frequently used approach for learning prediction models for struc-
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tured outputs, the Structural Support Vector Machine [60, 26]. To illustrate the
work that has to be done to apply this method, I present two example tasks with
structured output from the field of Natural Language Processing.

In Chapter 3, I present the class of kernel functions, which compute the dot prod-
uct of two implicitly defined feature maps. I introduce two different mathematical
justifications for kernels, Mercer’s theorem and Reproducing Kernel Hilbert spaces.
These results provide characterizations of the class of kernel functions, without the
need to specify the feature map used by the kernel. I show three popular kernels
and characterize the feature maps they use.

The main contribution of this thesis is presented in Chapter 4. First, I demon-
strate how the Dual Program of the Structural SVM optimization problem allows us
to use kernels instead of explicitly defined feature maps and show that the inference
problem becomes a pre-image problem. Second, I introduce the Tensor kernel that
combines two kernels into a joint kernel. I propose a class of kernels for output
structures and show the corresponding structure of the pre-image problem. Third,
I propose a general loss function that can be used to train a prediction model. Fi-
nally, I present an algorithm that efficiently trains a kernelized Structured Prediction
model using a Tensor kernel.

In Chapter 5, I present additional research on Structural SVMs as well as other
approaches to Structured Output Prediction and relate them to the results in Chap-
ter 4.

I test the algorithm proposed on the Dependency Parsing task in Chapter 6.
I begin by introducing the task and presenting different approaches to solve it.
One approach by McDonald et al. [38, 42] that won the CoNLL shared task on
multilingual dependency parsing [2] will be presented greater detail. This approach
involves defining a joint feature map, thus in this I apply the Structural SVM to
the learning problem utilizing the feature map proposed by the authors. I compare
it to my approach that uses a Tensor kernel with the output kernel proposed in
Chapter 4.

Finally, Chapter 7 concludes this thesis and gives an outlook to future research.
I want to also mention the glossary in Appendix A which summarizes commonly
used definitions, terms and equations.



2 | Support Vector Machines for
Structured Output Predic-
tion

This chapter will first introduce the Machine Learning task of discrete Structured
Output Prediction. Then, in Section 2.2, I will introduce the Structural Support
Vector Machine (SVM), a method for tackling that learning task and present the
algorithm for learning the prediction model. Furthermore I will show two examples
of how the Structural Support Vector Machine has been used successfully to solve
prediction problems.

2.1 Learning Task

In this section I present the class of learning tasks with structured outputs. In these
tasks we are interested in finding a function ŷ(x) that maps inputs from a set of
structured objects X to elements of another set of structured objects Y. We call
ŷ a prediction model. The Machine Learning task of Structured Output Learning
is learning a model that best fits given training data D = [(x1, y1), ..., (xn, yn)]
where xi ∈ X and yi ∈ Y. In contrast to Structured Output Regression, where the
outputs are structured and continuous, this work will focus on prediction tasks with
discrete-structured output. Thus I will first define those sets of discrete structures
precisely. Looking at known prediction problems with discrete structured output
we will discover a similarity that motivates a modified definition for discrete output
structures. Then, we introduce a common framework for solving the learning task
of structured output prediction – Empirical Risk Minimization.

5
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2.1.1 Discrete Structures

Let us first define, what a set of discrete structures is. The following definition builds
on an idea by Gärtner and Vembu[19] who describe a set of discrete structures using
a finite alphabet.

Definition 2.1.1 We call X a set of discrete structures if and only if X ⊆ P(Σ)
where Σ is a finite or enumerable infinite alphabet.

Consequently, any discrete structure x ∈ X can be constructed by selecting a number
of atomic units from an alphabet Σ in an arbitrary order. Consider the following
examples of discrete structures:

Example 2.1.1 The set of all token sequences can be expressed using Σ = (N×V)
where V is the dictionary of possible tokens. For instance, if

V = {atom, ..., serious, so, why, ..., zombie}

the sequence ’why so serious’ can be unambiguously represented by the set
{(2, so), (1, why), (3, serious)} ∈ P(Σ).

Note that it is not sufficient to set Σ = V as that would result in a bag-of-words
representation that does not describe the order of tokens. While theoretically the
cardinality of the alphabet is infinite, in practice there will be a longest possible
sequence.

The simplest example of discrete structures is probably the set of atomic labels
used in multiclass classification tasks. Thus traditional prediction tasks fit in the
framework of discrete structured prediction.

Example 2.1.2 The set of labels X can be expressed using Σ = L where L is the
finite set of all possible labels. Now, X = {{l} | l ∈ L} ⊆ P(L).

The extension to multilabel classification is trivial.

2.1.2 Discrete Output Structures

Many prediction tasks with discrete structured outputs show strong dependencies
between input and output. Often, the input already constrains the set of possible
outputs to only a subset of all possible structures. For instance many prediction
tasks in Natural Language Processing are merely annotation tasks, i.e., the output
contains the input plus a new layer of annotation like part-of-speech tags, chunks or
syntactic structures.
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Figure 1: Two representations of a binary parse tree: (a) nested tree structure, and (b) grid of labeled spans.

symbol. For example figure 1(a) shows a tree
in this form.

We will represent each parse as a set of two
types of parts. Parts of the first type are sin-
gle constituent tuples ⟨A, s, e, i⟩, consisting of
a non-terminal A, start-point s and end-point
e, and sentence i, such as r in figure 1(b). In
this representation, indices s and e refer to po-
sitions between words, rather than to words
themselves. These parts correspond to the tra-
ditional notion of an edge in a tabular parser.

Parts of the second type consist of CF-rule-
tuples ⟨A → B C, s,m, e, i⟩. The tuple specifies
a particular rule A → B C, and its position,
including split point m, within the sentence i,
such as q in figure 1(b), and corresponds to the
traditional notion of a traversal in a tabular
parser. Note that parts for a basic PCFG model
are not just rewrites (which can occur multiple
times), but rather anchored items.

Formally, we assume some countable set of
parts, R. We also assume a function R which
maps each object (x, y) ∈ X × Y to a finite
subset of R. Thus R(x, y) is the set of parts be-
longing to a particular parse. Equivalently, the
function R(x, y) maps a derivation y to the set
of parts which it includes. Because all rules are
in binary-branching form, |R(x, y)| is constant
across different derivations y for the same input
sentence x. We assume that the feature vector
for a sentence and parse tree (x, y) decomposes

into a sum of the feature vectors for its parts:

Φ(x, y) =
∑

r∈R(x,y)

φ(x, r).

In CFGs, the function φ(x, r) can be any func-
tion mapping a rule production and its posi-
tion in the sentence x, to some feature vector
representation. For example, φ could include
features which identify the rule used in the pro-
duction, or features which track the rule iden-
tity together with features of the words at po-
sitions s,m, e, and neighboring positions in the
sentence x.

In addition, we assume that the loss function
L(x, y, ŷ) also decomposes into a sum of local
loss functions l(x, y, r) over parts, as follows:

L(x, y, ŷ) =
∑

r∈R(x,ŷ)

l(x, y, r).

One approach would be to define l(x, y, r) to
be 0 only if the non-terminal A spans words
s . . . e in the derivation y and 1 otherwise. This
would lead to L(x, y, ŷ) tracking the number of
“constituent errors” in ŷ, where a constituent is
a tuple such as ⟨A, s, e, i⟩. Another, more strict
definition would be to define l(x, y, r) to be 0
if r of the type ⟨A → B C, s,m, e, i⟩ is in the
derivation y and 1 otherwise. This definition
would lead to L(x, y, ŷ) being the number of CF-

  a    sea  of

The screen was

red

(e) Parsetree (f) Bounding Boxes

Figure 2.1: Inputs and Output Structures: The top row shows the inputs, the bottom row
the annotated outputs. We see that the outputs add a layer of annotation to the inputs.

Similar tasks arise in bioinformatics: e.g. for the protein structure prediction
task we are given a sequence of amino acids and want to predict its three-dimensional
structure. Often this is done by solving a intermediate prediction steps first: 1-D
Structure Prediction, which predicts the secondary structure of the molecule by
assigning one of three possible labels – α-helix, β-field or random coil – to each
amino acid [5]. As implied above, this intermediate problem can be viewed as an
annotation tasks. While the previous examples all have discrete structured inputs,
the same annotation-idea also applies to problems with non-discrete inputs. E.g., in
computer vision tasks like face detection or more general object detection, the input
is a continuous matrix of image data. We can, however, characterize the output
as an image with an additional layer of discrete annotation like bounding boxes or
position-label pairs (See Figure 2.1).

To account for this property, we also define the set of discrete output sets that
adds a layer of discrete structured annotation to an input:

Definition 2.1.2 We call Y : X → P(P(Σ)×X) a set of discrete output structures
for a set of inputs X if the alphabet Σ is a finite or countably infinite set, ∀x ∈ X
|Y(x)| <∞ and ∀x ∀(σ, x′) ∈ Y(x) it holds that x = x′ and σ ∈ P(Σ).
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Note that Y(x) is the set of all possible outputs for an input x, including wrong
outputs. It should hold that the correct, hand-labeled output y is a member of
Y(x).

This definition specifies that the input x is a part of the output (σ, x). However,
an opposing view is also possible; we could define that only the discrete annotation
σ is output. But a meaningful comparison of two outputs often requires to not only
look at the annotation, but also at the input. For now, this work will use the above
definition as it also offers the possibility to just ignore the input x.

Now we consider an example of a set of discrete output structures using that
definition from natural language processing: Part-of-Speech Tagging.

Example 2.1.3 The set of tagged sequences can be expressed using an alphabet
Σ = (N× T ) where T is the dictionary of possible tags.

For instance if T = {N,V, P,DET,ADJ} the output for the input sequence
x =’Computers are the future’ might be

Computers:N are:V the:DET future:N

This can be unambiguously represented by the pair

({(1, N), (3, DET ), (2, V ), (4, N)}, x) ∈ Y(x) ⊆ (P(Σ)×X).

The input x poses strong constraints toward the possible outputs Y(x), e.g. tag
sequence and original sequence must have the same length.

Definition 2.1.3 If X is a set of inputs and Y(·) is a set of discrete output structures
we define Y :=

⋃
x∈X
Y(x).

2.1.3 Empirical Risk Minimization

We have seen that algorithms for Structured Output Learning try to find a prediction
model that best fits the data. How do we specify what model fits ‘best’? The
most common approach is Empirical Risk Minimization. We associate with every
prediction ŷ(x) a loss L(x, y; ŷ(·)) ∈ R+, that quantifies how much error we make
predicting the example (x, y) using the model ŷ(·). The simplest choice of a loss
function L is the 0/1 loss, that is 1 if prediction and true output y differ and 0 if
the correct output was predicted.
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We call the loss we expect over all possible pairs of inputs and outputs for our
predictor ŷ Risk

R(ŷ) :=
∫
X×Y

L(x, y; ŷ(·))dp(x, y)

where p(x, y) is the fixed distribution that generates the input/output pairs. We
want to choose the prediction model that minimizes the risk. However normally the
distribution p is unknown, thus instead we minimize the Empirical Risk for the data
D

Remp(ŷ) := 1
n

n∑
i=1

L(xi, yi; ŷ(·))

under the assumption known from other supervised learning tasks that D is a suffi-
ciently large sample generated i.i.d. from the distribution p.

Directly minimizing the empirical risk over a family of possible models

min
ŷ
Remp(ŷ)

promotes overfitting to the data; imagine a model that remembers all input-output
pair of the data which consequently has an empirical risk of zero. Thus we commonly
add a regularizing term that penalizes model complexity to prevent overfitting [54,
61].

min
ŷ
Remp(ŷ) + λΩ(ŷ)

where λ > 0 controls the influence of the regularizer Ω(·).

2.2 Structural Support Vector Machines and the Infer-

ence Problem

In the previous section, I introduced the learning task of structured output predic-
tion as well as a technique for training predictors – the regularized empirical risk
minimization. In this section I introduce the Structural Support Vector Machine, a
machine learning method for solving that task. I start by introducing the so-called
n-Slack formulation of Structural SVMs [60] and show that it fits the framework
of empirical risk minimization. Then I present the cutting-plane optimization al-
gorithm for training Structural SVMS [26]. Finally, I show two examples of how
Structural SVMs can be used to solve Structured Output Prediction tasks from
Natural Language Processing.

Throughout this chapter, readers familiar with binary SVMs will recognize sim-
ilarities with SVMs, e.g. in the motivation of the optimization problem via margin
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maximization. However, I do not introduce the Structural SVM as an extension
of the binary SVM, but try to motivate it from scratch. Thus no prior knowledge
about SVMs is required.

2.2.1 Primal n-Slack Formulation

We are given a multiset of training data {(xi, yi)} such that for each training example
(xi, yi), i = 1, ..., n it holds that yi ∈ Y(xi) is the annotated, true output for the input
xi ∈ X . For prediction, we want to learn a discriminant function f : X ×Y → R that
measures compatibility between an input and an output and assigns a real-valued
score. To compute a prediction for an input we find the structure that maximizes
the discriminant function:

ŷ(x) = arg max
y∈Y(x)

f(x, y).

The key idea to Structural Support Vector Machines is to rely on a linear discrim-
inant function that uses a joint feature map φ : X × Y → Rd and a weight vector
w ∈ Rd:

f(x, y) = 〈w, φ(x, y)〉.

Under these assumptions, a first learning task is to estimate w such that the correct
label has the highest score for each example i = 1, . . . , n:

∀i = 1, . . . , n ∀y′i ∈ Y(xi), y′i 6= yi : 〈w, φ(xi, yi)〉 > 〈w, φ(xi, y′i)〉. (2.1)

If there is a feasible solution, there are infinitely many possible solutions w. Now
we apply an idea usually referred to as Margin Maximization to further specify which
solution is optimal. As depicted in Figure 2.2, we call

δi(y′) := 〈w, φ(xi, yi)− φ(xi, y′)〉
||w||

the margin between the right output yi and a wrong outputs y′ for input xi. The
margin induced by w is defined as the smallest margin in the training data

δ := min
i=1,...,n
y′i∈Y(xi)
y′i 6=yi

δi(y′i) = 1
||w||

 min
i=1,...,n
y′i∈Y(xi)
y′i 6=yi

〈w, φ(xi, yi)− φ(xi, y′i)〉

 .

Thus δ describes the smallest buffer zone between right output and wrong outputs.
The key idea in margin maximization is to maximize this buffer zone to have a more
robust separation between the true output and a wrong output.
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φ2

φ1

〈~w, φ〉 = 0

φ(x, y)

φ(x, y′)

δ(
y
′ )

~w

Figure 2.2: Illustration of max-margin learning for structured outputs: The idea is to find
~w that maximizes the margins δ between the correct output y and the wrong outputs y′.

Combining these ideas we are going to derive the so-called n-Slack formulation
of Structural Support Vector Machines. We start by maximizing the margin such
that all training data is classified correctly:

max
w

1
||w||

min
i=1,...,n
y′i∈Y(xi)
y′i 6=yi

〈w, φ(xi, yi)− φ(xi, y′i)〉 (2.2)

s.t. ∀i = 1, . . . , n ∀y′i ∈ Y(xi), y′i 6= yi : 〈w, φ(xi, yi)〉 > 〈w, φ(xi, y′i)〉 (2.3)

Without loss of generality, we set min
i,y′
〈w, φ(xi, yi)− φ(xi, y′i)〉 = 1. This is possible,

because for every solution w∗ we can construct, by rescaling w∗, an equally good so-
lution that fulfills that assumption. Note that this new constraint covers all previous
constraints.

max
w

1
||w||

(2.4)

s.t. min
i=1,...,n
y′i∈Y(xi)
y′i 6=yi

〈w, φ(xi, yi)− φ(xi, y′i)〉 = 1 (2.5)

= max
w

1
||w||

(2.6)

s.t. ∀i = 1, . . . , n ∀y′i ∈ Y(xi) \ yi : 〈w, φ(xi, yi)− φ(xi, y′i)〉 ≥ 1 (2.7)

The nonlinear constraint (2.5) can be replaced by a set of linear constraints (2.7).
We can show, by contradiction, that the minimum over all the left-hand sides of
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(2.7) will be 1 at the maximum, thus the equality holds: Let w∗ be the optimal
solution of problem (2.7). Assume ∃b > 1 s.t. ∀i, y′i〈w, φ(xi, yi) − φ(xi, y′i)〉 ≥ b.
Then, w∗

b is a feasible solution, too. However its objective value is b
||w∗|| >

1
||w∗|| ,

thus w∗ is not optimal. This contradicts the assumption.
Tsochantaridis et al.[60] propose three refinements to this optimization problem:

• Instead of maximizing 1
||w|| we can minimize 1

2 ||w||
2, which is simpler as its

partial derivative is simply ∇w 1
2 ||w||

2 = w.

• Instead of forcing the margin between the correct and all incorrect outputs to
be larger than 1, they introduce a general loss function L : Y × Y → R+ and
only require the margin to be larger than the loss:

∀y′i ∈ Y(xi) : 〈w, φ(xi, yi)− φ(xi, y′i)〉 ≥ L(yi, y′i).

Thus the loss induces an ordering from best outputs to worst outputs in the
feature space, along the direction of the normal vector w.

• To cope with infeasible training data, we introduce slack variables ξi for every
example i = 1, . . . , n. This allows the constraints of an example i to be violated
by a positive amount ξi:

∀y′i ∈ Y(xi) : 〈w, φ(xi, yi)− φ(xi, y′i)〉 ≥ L(yi, y′i)− ξi.

However, we want to minimize the amount by which the constraints are vio-
lated, thus the objective becomes min

w,ξ

1
2 ||w||

2 + C
n∑
i=1

ξi where C > 0 controls
the trade-of between model-complexity and exact separation.

Putting it all together we get the n-Slack formulation of the Structural Support
Vector Machine optimization problem:

min
w,ξ

1
2 ||w||

2 + C
n∑
i=1

ξi

s.t. ∀y′1 ∈ Y(x1) : 〈w, φ(x1, y1)− φ(x1, y
′
1)〉 ≥ L(y1, y

′
1)− ξ1

...

s.t. ∀y′n ∈ Y(xn) : 〈w, φ(xn, yn)− φ(xn, y′n)〉 ≥ L(yn, y′n)− ξn

(2.8)

We can view this in the framework of regularized empirical risk minimization [60].
We use a regularizer Ω(w) = 1

2 ||w||
2
2 and summing the slack variables is equivalent

with summing up the losses
∑
i l(xi, yi;w) with the so-called soft-margin loss for

Structured Prediction [57, 59, 60]

l(x, y;w) = max
y′∈Y(x)

[
L(y, y′) + 〈w, φ(x, y′)− φ(x, y)〉

]
. (2.9)
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Thus we can rewrite the n-Slack formulation as

min
w

1
n

n∑
i=1

l(xi, yi;w) + λ||w||22, (2.10)

with λ > 0. Note that for each C > 0 in the n-Slack formulation we can choose λ
so that the problems have the same minimizer.

We can check that the soft-margin loss l(x, y;w) is an upper bound for the loss
L(y, ŷ(x)) that we are really interested in: If ŷ(x) = y, then

0 = L(y, ŷ(x)) ≤ l(x, y;w)︸ ︷︷ ︸
≥0

.

If ŷ 6= y, then 〈w, φ(x, ŷ(x))− φ(x, y)〉 ≥ 0. Thus

L(y, ŷ(x)) + 〈w, φ(x, ŷ(x))− φ(x, y)〉 ≥ L(y, ŷ(x))

and thus L(y, ŷ(x)) ≤ l(x, y;w).
You can interpret l(x, y;w) as a stricter version of L(y, ŷ(x)), that not only

penalizes wrong outputs, but also violations of separation margins.

2.2.2 Cutting Plane Optimization

We have seen two equivalent formulations of Structural Support Vector Machine
training – the n-Slack formulation (2.8) and the regularized empirical risk mini-
mization (2.10). Unfortunately, it is not feasible to directly optimize these problems
because of the vast size of |Y|. The n-Slack formulation is a quadratic program that
we could solve using standard solvers. However, we have O(n|Y|) linear constraints
which makes that approach infeasible. The regularized empirical risk is a convex
function over an unconstrained domain. But computing the loss function as well as
the subgradient involves maximizing over all members of Y(xi) for i = 1, ..., n, which
is infeasible if done naively. Still, if we have an efficient subroutine for computing
the soft margin loss for Structured Prediction, we can apply subgradient-descent
methods to compute the optimal model [55]. Joachims et al. [26] present a different
approach, using so-called Cutting Plane Optimization.

Following the cutting plane optimization framework of Teo et al. [59], we can
understand the algorithm as a method that incrementally builds an approximation
of the empirical risk and minimizes only this approximation.

First we note that the soft-margin loss is a convex function of w and thus the
empirical risk is also a convex function. A convex function f is always bounded
below by its first order Taylor approximation

f(w) ≥ f(w0) + 〈(w − w0),∇wf(w0)〉.
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Figure 2.3: A convex function lower bounded by three first order approximations.

The same holds if f is not differentiable; we can use any subgradient of f(w0).
We can combine a number of Taylor approximations at locations w0, ..., wk to

get a tighter approximation

f(w) ≥ max
i=0,...,k

[f(wi) + 〈(w − wi),∇wf(wi)〉]

as depicted in Figure 2.3.
This implies Algorithm 1 which iterates two steps: Find the optimal, regularized

model

wi := arg min
w
R̃emp(w) + λ||w||22 = arg min

w
max
j<i

[〈ai, w〉+ bj ] + λ||w||22

using the current approximation of the empirical risk R̃emp and then update the
approximation. We refine the approximation using the first order Taylor approxi-
mation gi(w) = 〈ai, w〉 + bi with ai = ∇wRemp(wi) and bi := Remp(w − i) − 〈a,wi〉
developed at wi. Intuitively, wi will converge when R̃emp converges to Remp in a
neighborhood of the true minimizer w∗.

Algorithm 1 Cuttingplane Optimization

Choose initial w ∈ Rd, initialize approximation R̃emp(w) := 0
for i = 1, ...,∞ do

wi := arg min
w
R̃emp(w) + λ||w||22 = arg min

w
max
j<i

[〈ai, w〉+ bj ] + λ||w||22
ai := ∇wRemp(wi), bi := Remp(w − i)− 〈a,wi〉
Add Taylor approximation gi(w) = 〈ai, w〉+ bi to R̃emp
if converged then return w
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Now, let us investigate the convergence of this schema in more detail. Let
J(w) := Remp(w) + λ||w||2 denote the regularized empirical risk for a model w.
We denote by w∗ and J∗ the true minimizer and the corresponding objective value
of J(w∗). Let

Ji(w) := R̃(i)
emp(w) + λ||w||22 = max

j≤i
[〈ai, w〉+ bj ] + λ||w||22

denote the approximation of the regularized empirical risk that uses all aj , bj , j ≤ i.
In the ith iteration, we first compute wi = arg minw Ji−1(w) and then update

the new approximation Ji(w) by computing ai, bi.
The Taylor expansion is exact for all wi, thus J(wj) = Jj(wj) ∀j ≤ i. Conse-

quently, we obtain an upper bound on the true minimizer

J∗ ≤ min
j≤i

Jj(wj) =: J+
i .

The series J+
i is monotonically decreasing, as we minimizer over a larger set with

each iteration.
Furthermore J−i := Ji−1(wi) ≤ J∗ lower bounds the optimal solution, as Ji−1(w) ≤

J(w) for all w and thus the inequality particularly holds for the respective minimums.
Additionally, J−i is a monotonically increasing series, as Ji(w) ≥ Ji−1(w) for all w.

Hence, the expression J+ − J− quantifies the largest approximation error we
could produce. We can upper bound this error by J+− J− ≤ Ji(wi)− Ji−1(wi) and
stop, once this upper bound is below a user-specified tolerance ε > 0.

Now we can write down the algorithm presented by Joachims et al. [26]. Instead
of weighting the regularizer ||w||2 with λ as in [59, 55], we stay in the traditional
notation for Support Vector Machines as in [26] and weight the empirical risk with C
and the regularizer with 1

2 . We will begin by investigating the specific Taylor approx-
imations that arise in Structural SVM training: for the first order approximation
we have to compute the subgradient of the empirical risk Remp = 1

n

n∑
i=1

l(xi, yi;w)

at wi with l(x, y;w) defined according to (2.9). The soft-margin loss is a piecewise
linear function of w, the subgradient depends only on the largest element of the
maximization, thus it holds that ai = 1

n

n∑
i=1

φ(xi, ŷi)− φ(xi, yi) with

ŷi := arg max
y′∈Y(xi)

[
L(yi, y′) + 〈wi, φ(xi, y′)− φ(xi, yi)〉

]
. (2.11)

Consequently we see that bi = 1
n

n∑
i=1

L(yi, ŷi). In order to store a new first order

approximation we just have to remember ŷ = (ŷ1, ..., ŷn). Thus we can store R̃emp
by storing in a set W ⊆ Yn all ŷ that we have computed so far. The size of W will
be incremented by 1 each iteration.
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Algorithm 2 Cuttingplane Optimization For Structural SVMs
Require: Data Set D, C > 0, ε > 0,
W := ∅
repeat

w, ξ := arg minw,ξ≥0
1
2 ||w||

2
2 + Cξ

s.t. 1
n

n∑
i=1
〈w, φ(xi, yi)− φ(xi, ȳi)〉 ≥ 1

n

n∑
i=1

L(yi, ȳi)− ξ ∀ȳ ∈ W

for i = 1, ..., n do
ŷi := arg max

y′∈Y(xi)
L(yi, y′) + 〈wi, φ(xi, y′)〉 // Oracle Call

W :=W ∪ {ŷ}
until 1

n

n∑
i=1
〈w, φ(xi, yi)− φ(xi, ŷi)〉 ≥ 1

n

n∑
i=1

L(yi, ŷi)− (ξ + ε)

As hinted above we need to have an efficient subroutine to compute the ŷi, which
we will refer to as the most violated constraints. We call the subroutine computing
the most-violated constraints Separation Oracle.

Instead of solving the problem min
w

1
2 ||w||

2
2 + C · R̃emp(w) as an unconstrained

optimization problem, we can solve a quadratic program [59], given the current
working set W:

min
w,ξ≥0

1
2 ||w||

2
2 + Cξ

s.t. 1
n

n∑
i=1
〈w, φ(xi, yi)− φ(xi, ȳi)〉 ≥

1
n

n∑
i=1

L(yi, ȳi)− ξ ∀ȳ ∈ W.
(2.12)

Notice the similarities with the n-Slack formulation (2.8). In contrast there is only
one slack variable, which is why Joachims et al. call this formulation the 1-Slack
formulation [26]. We call each ȳ ∈ W a cutting plane, as in Equation (2.12), the ȳ
is responsible for one linear inequality constraint, that cuts the space into a feasible
and an infeasible halfspace. The complete algorithm can be found in Algorithm 2.

In order to apply the Structural SVM to a specific learning problem, one has to

• define a joint feature mapping φ(x, y) suitable for the given problem.

• define a suitable loss function L(y, y′) : Y × Y → R+
0 .

• find a method to solve the inference problem

ŷ(x) = arg max
y∈Y(x)

〈w, φ(x, y)〉.
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This is generally not trivial when we cannot just iterate all members of Y
for the given problem of interest. However, for many formulations of φ one
can find polynomial time algorithms that solve the problem by incorporating
knowledge on the structure of Y(x) and φ [60, 26, 57].

• find a separation oracle, i.e. a method to find the most violated constraint for
an example (x, y):

ŷ = arg max
y′∈Y(x)

〈w, φ(x, y′)〉+ L(y, y′).

Similar to finding a prediction, this problem is generally not trivial for large
|Y|. To find an efficient algorithm for a given problem, one has to incorpo-
rate knowledge on the structure of Y, the structure of φ and the structure of
L. Ideally, one can use the same optimization routine used for the inference
problem. To do so, the loss function needs to fulfill certain requirements.

In the next section we will see examples of how to specify instances of Structural
Support Vector Machines for different problems.

2.3 Two Example Instances of Structural Support Vec-

tor Machines

In this section we will see two examples of structured outputs tasks that can be
solved using the Structural Support Vector Machine. Both tasks arise in Natural
Language Processing, have token sequences as inputs (c.f. Example 2.1.1) and have
outputs that can be represented by discrete output structures.

2.3.1 Sequence Tagging

The first task is sequence tagging which was already briefly introduced in Exam-
ple 2.1.3. Given an input sequence x we want to assign each token a label or tag
from the set of tags T . Thus y is a sequence of tags of same length as x.

A naive approach is to assign the tags for each token individually. But Joachims
et al. [26] propose to not only model the dependencies between each token xi and
tag yi, but also the dependencies between each yi and yi−1. They assign a feature
vector φ(xi) ∈ Rd to each token that has binary features that describe the whole
token, its prefixes and suffixes etc. Then the features that model the dependencies
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between input and output

φ1(x, y) =



0
...
0

φ(x)
0
...
0


∈ Rd×|T |

are created by stacking the features of x into a position according to y.
The features that model the dependencies between two consecutive tags yi and

yi−1, φ2(yi, yi−1) ∈ R|T |2 , are defined according to

[φ2(yi, yi−1)]s,t = 1(yi=s)1(yi−1=t) ∀s, t ∈ T .

Thus each possible transition from one tag to the other has a binary feature. The φ
used for the Structural SVM is

φ([x1, ..., xl], [y1, ..., yl]) =

φ1(x1, y1)
0

+
l∑

i=2

 φ1(xi, yi)
φ2(yi, yi−1)

 .
Thus the score 〈w, φ(x, y)〉 gives weight to both the compatibility of a token and a
tag and the compatibility of the transitions between tags.

To compute the highest scored sequence ŷ(x) = arg maxy∈Y(x)〈w, φ(x, y)〉 out
of the |T |l possible sequences, we rely on Viterbi’s algorithm, which is a dynamic
programming algorithm that needs O(|T |2 ∗ l) runtime.

Joachims et al. propose to use the number of misclassified tokens L(y, y′) =
l∑

i=1
1(yi 6=y′i) for the loss function. Since the loss function is also decomposable over

the transitions in y, we can also use the Viterbi algorithm in the separation oracle.
Experiments show, that the Structural SVM outperforms a generative Hidden

Markov Model and has a performance insignificantly better than discriminative Con-
ditional Random Fields at Named Entity Recognition tasks [60]. Tsochantaridis et
al. claim that this demonstrates the benefit of a large margin approach, particularly
regarding the ability to generalize from training to test data.

2.3.2 Constituency Parsing

The second task is constituency parsing, where given a token sequence x = [x1, ..., xn]
we want to predict its inner syntactical structure using a context free grammar and
return the corresponding parse tree.
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Figure 1: Two representations of a binary parse tree: (a) nested tree structure, and (b) grid of labeled spans.

symbol. For example figure 1(a) shows a tree
in this form.

We will represent each parse as a set of two
types of parts. Parts of the first type are sin-
gle constituent tuples ⟨A, s, e, i⟩, consisting of
a non-terminal A, start-point s and end-point
e, and sentence i, such as r in figure 1(b). In
this representation, indices s and e refer to po-
sitions between words, rather than to words
themselves. These parts correspond to the tra-
ditional notion of an edge in a tabular parser.

Parts of the second type consist of CF-rule-
tuples ⟨A → B C, s,m, e, i⟩. The tuple specifies
a particular rule A → B C, and its position,
including split point m, within the sentence i,
such as q in figure 1(b), and corresponds to the
traditional notion of a traversal in a tabular
parser. Note that parts for a basic PCFG model
are not just rewrites (which can occur multiple
times), but rather anchored items.

Formally, we assume some countable set of
parts, R. We also assume a function R which
maps each object (x, y) ∈ X × Y to a finite
subset of R. Thus R(x, y) is the set of parts be-
longing to a particular parse. Equivalently, the
function R(x, y) maps a derivation y to the set
of parts which it includes. Because all rules are
in binary-branching form, |R(x, y)| is constant
across different derivations y for the same input
sentence x. We assume that the feature vector
for a sentence and parse tree (x, y) decomposes

into a sum of the feature vectors for its parts:

Φ(x, y) =
∑

r∈R(x,y)

φ(x, r).

In CFGs, the function φ(x, r) can be any func-
tion mapping a rule production and its posi-
tion in the sentence x, to some feature vector
representation. For example, φ could include
features which identify the rule used in the pro-
duction, or features which track the rule iden-
tity together with features of the words at po-
sitions s,m, e, and neighboring positions in the
sentence x.

In addition, we assume that the loss function
L(x, y, ŷ) also decomposes into a sum of local
loss functions l(x, y, r) over parts, as follows:

L(x, y, ŷ) =
∑

r∈R(x,ŷ)

l(x, y, r).

One approach would be to define l(x, y, r) to
be 0 only if the non-terminal A spans words
s . . . e in the derivation y and 1 otherwise. This
would lead to L(x, y, ŷ) tracking the number of
“constituent errors” in ŷ, where a constituent is
a tuple such as ⟨A, s, e, i⟩. Another, more strict
definition would be to define l(x, y, r) to be 0
if r of the type ⟨A → B C, s,m, e, i⟩ is in the
derivation y and 1 otherwise. This definition
would lead to L(x, y, ŷ) being the number of CF-

  a    sea  of

The screen was

red

φ(x, y) =



... : 0
S ← NP V P : 1
NP ← DT NN : 2
V P ← V BD NP : 1
NP ← NP PP : 1
PP ← IN NP : 1
NP ← NN : 1
DT ← ‘The′ : 1
DT ← ‘a′ : 1

NN ← ‘screen′ : 1
NN ← ‘sea′ : 1
NN ← ‘red′ : 1
V BD ← ‘was′ : 1
IN ← ‘of ′ : 1

... : 0


Figure 2.4: An example constituency parse tree with corresponding feature vector

In Figure 2.4 we see an example on a constituency parse tree. Notice how the
input is part of the output, since the leafs of the parse tree are the tokens of the
input. I will not give a formal definition of the corresponding output space. It
suffices to note that the discrete symbols that form the parse tree describe which
rules of the context-free grammar were used to generate which spans of the token
sequence. E.g. in Figure 2.4 the rule S ← NP V P was used to generate the whole
sequence and the rule NP ← DT NN was used to generated the subsequence “a
sea”.

In Natural Language Parsing, there are two kinds of rules: On the one hand,
there are rules that generate a non-terminal symbol from one or many non-terminal
symbols. On the other hand, there are rules that generate a non-terminal symbol
from one terminal symbol, i.e., token from the input. This separates NL parsing from
general context-free parsing, where other kinds of rules would be possible. The hard
separation of rules into two categories is due to the conventions used for annotating
the corpus, i.e. creating the treebank: Particularly, each token is generated from a
part-of-speech non-terminal symbol.

Joachims et al. [26, 60] as well as Taskar et al. [57] propose to solve the problem
using Structural Support Vector Machines. To obtain a context-free grammar they
rely on annotated data, in this case a treebank, and simply use all rules observed
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in the data [26]. They propose a φ(x, y) that has one feature for every rule in the
context free grammar. For a rule r the value of [φ(x, y)]r is the number of times the
rule was used in the tree y to generate x.

Thus, the prediction problem ŷ(x) = arg maxy∈Y(X)〈w, φ(x, y)〉 has to construct,
using rules from the grammar, the parse tree that has the highest score. Each rule r
that is used adds an amount according to the corresponding weight wr to the total
score. The arg-max can be computed in polynomial time using the CYK algorithm
for weighted context-free grammars. The CYK algorithm is a dynamic programming
approach that computes the best parse tree in O(n3) where n is the length of the
input sequence.

The simplest choice of a loss function is L(y, y′) = 1y 6=y′ . In order to solve
the separation oracle problem efficiently, they rely on a modified CYK parser that
returns the output with the second largest score value. This can still be done in
polynomial time [24]. Other loss functions like the F1-measure [60] or F1-related
measures [57] are possible, but I will not discuss them here.

Experiments show that the max-margin approach outperforms a probabilistic
context free grammar, a generative approach [60]. While the train error is similar,
the test error for Structural SVM training is significantly better. We should note that
the Structural SVM particularly outperforms the generative model with respect to
the loss function used for training: If we choose the 0/1 loss, the accuracy is superior,
if we choose the F1-loss, the F1-score is superior. This speaks for the ability to adopt
to a particular use case or application domain.



3 | Kernels for Implicit Feature
Maps

In the previous chapter we have seen that Structural Support Vector Machines re-
quire you to explicitly define a feature map φ(x, y) for an input-output pair. In
this section we discover a class of functions, the so-called kernel functions, that
allows us to use feature maps that are only implicitly defined. We will look into
the mathematical foundation of kernels and lay the theoretical justification for the
next chapter of this work which will use kernel-induced feature maps for structural
prediction with the Structural Support Vector Machine.

3.1 Kernels and Implicit Feature Maps

Let us first define what a kernel function is.
Definition 3.1.1 We call a function k : X ×X → R a kernel, if k can be expressed
as k(x, x′) = 〈φ(x), φ(x′)〉H for a feature map φ : X → H where H is a Hilbert
space.

Example 3.1.1 Let X = Rn. Then k(x, x′) = 〈x, x′〉p is the so-called polynomial
kernel. We set φ : Rn → R(np) where [φ(x)]s =

p∏
i=1

xsi with s ∈ {1, ..., n}p has one
feature for every possible product of p features of x.

Using kernels is a popular technique in Machine Learning: Many ML algorithms
rely on linear dot products of feature vectors of the data. Whenever the raw fea-
tures do not yield good results, one way to make the algorithm work is to apply a
transformation of features. E.g. the Support Vector Machine tries to find a linear
separation of two classes in the feature space. When the problem is not linearly
separable, a transformation into a different feature space might make the problem
linearly separable. The reason that kernels are popular in Machine Learning is that
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a kernel implicitly performs this feature transformation and applies the dot product
in the transformed feature space, all in one step. Considering Example 3.1.1, it is
obvious that computing the kernel is less computationally expensive than computing
the transformation φ(x) and then the dot product of the transformed vectors. Par-
ticularly with respect to memory usage, which grows exponentially with the degree
p when we apply the transformation. This also demonstrates the strength of kernel
methods: We can implicitly transform into higher dimensional or even infinitely di-
mensional Hilbert spaces, while the runtime of the learner does not depend on the
target dimensionality, but only on the complexity of the kernel.

On first sight, the class of functions that are kernels seem restricted. However
there are results that show that a large group of functions are kernels.

3.1.1 Mercer’s Theorem

Let us first consider the class of Mercer kernels, following the definitions and theo-
rems given in [53, 66]. Mercer’s Theorem states:
Theorem: Let X ⊆ Rn be a compact set and (X , µ) be a finite measure space with
a measure1 µ. Let k : X ×X → R be a symmetrical function, i.e. k(x, x′) = k(x′, x).
If the integral operator Tk : L2(X )→ L2(X )

Tkf(x) =
∫
X
k(x, y)f(y)dµ(y) (3.1)

is positive for all f ∈ L2, i.e.∫
X

∫
X
k(x, y)f(y)f(x)dµ(y)dµ(x) ≥ 0,

then for the normalized eigenfunctions2 of Tk, ψj ∈ L2(X ) with eigenvalues λj > 0,
sorted in non-increasing order it holds that

k(x, y) =
N∑
j=1

λjψj(x)ψj(y)

with either N ∈ N or N =∞. In the latter case, the series converges absolutely and
uniformly for all x, y with µ(x) > 0 and µ(y) > 0.

The consequence of this theorem is that every function that fulfills Mercer’s condi-
tion, i.e. the condition of the theorem, is a kernel function with an implicit mapping

[φ(x)]j =
√
λjψj(x), j = 1, ..., N

1We can think of measures as unnormalized probability density functions µ : X → R+

2An eigenfunction is a function ψj(x) such that Tkψj(x) = λjψj(x) for the corresponding eigen-
value λj .
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This holds also if N = ∞. But uniform convergence also implies that given ε > 0
there exists Ñ ∈ N such that k can be approximated within ε accuracy as a dot
product using only the first Ñ eigenfunctions [53].

3.1.2 Reproducing Kernel Hilbert Spaces

Mercer Kernels, i.e. kernel functions that obey Mercer’s condition, are a large sub-
group of kernels. However, in the context of this work we want to consider discrete
structured input spaces X 6⊆ Rn. Thus we have to consider another class of kernels:
The class of positive definite kernels [23].
Theorem: A symmetric function k : X × X → R is a kernel, if for each n ∈ N, for
all xi ∈ X for i = 1, ..., n the Gram matrix Kij = k(xi, xj) is positive definite.

To see that this theorem holds, first, we define a feature mapping φ : X → RX

that maps each x ∈ X to a function from X → R such that φ(x) = k(x, ·) or
[φ(x)](x′) = k(x, x′) respectively.

For the vector space H = span{φ(x) | x ∈ X}, the completed linear span, we

define a dot product for two f, g ∈ H, f :=
m∑
i=1

αik(xi, ·) and g :=
m′∑
i=1

βik(x′i, ·) with

αi, βi ∈ R and xi ∈ X , i = 1, ...,m, as well as x′i ∈ X for i = 1, ...,m′ as

〈f, g〉H =
m∑
i=1

m′∑
j=1

αiβjk(xi, x′j).

Let us check that 〈·, ·〉H is a dot product: Since k is a symmetric function, 〈·, ·〉H
is symmetric. It is obviously linear. It is also positive definite, since the positive
definiteness of k implies that 〈f, f〉H =

m∑
i=1

m∑
h=1

αiαjk(xi, xj) ≥ 0.

Thus we have shown that it fulfills all the requirements for a dot product. One
can show, that H is indeed a Hilbert space, i.e. a real vector space with an inner
product, for details see [18]. We call the space Reproducing Hilbert Space, as for
each x ∈ X, f ∈ H the reproducing property 〈k(x, ·), f〉H = f(x) holds.

3.2 Some Important Kernels

In this section I want to present some important kernels that are widely used for
Machine Learning tasks.
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3.2.1 Gaussian Kernel

First I want to discuss the Gaussian kernel, or RBF kernel, since it is very widely
used and demonstrates how powerful implicit feature maps induced by kernels really
are.

For a compact subset X ⊆ Rd the kernel is defined as k(x, x′) = e−γ||x−x
′||22 .

First we have to verify that the RBF kernel is indeed a kernel. We rewrite

e−γ||x−x
′||22 = e−γ||x||

2
e−2γ〈x,x′〉e−γ||x

′||22 .

We use, without proof, the property that for arbitrary real-valued functions f a
function f(x)k(x, x′)f(x′) is a kernel if k is a kernel. Thus we have to show that
e−γ〈x,x

′〉 is a kernel. We can apply the power series and see that

e−γ〈x,x
′〉 =

∞∑
i=0

(−γ)i〈x, x′〉i

i! (3.2)

We use, without proof, the property that (infinite) linear combinations of kernels
are kernels. We have seen that the polynomial dot product is a kernel, thus the
Gaussian kernel is indeed a kernel. We even see one possible, infinite dimensional
feature mapping. For each i in (3.2) we can define

φi(x) =

√
2(−γ)i
i! φ

(i)
poly(x)

where φ(i)
poly(x) is the implicit feature map of the polynomial kernel of degree i dis-

cussed in Example 3.1.1. Now we can write down the infinite feature map

φ(x) = e−γ||x||
2
2 · [φ0(x)t, φ1(x)t, φ2(x)t, ...]t

Now let us consider the dimensionality of the implicit feature map φ in the
framework of Reproducing Kernel Hilbert spaces: We see that the completed linear
span H = span

{(
x′ 7→ e−γ||x−x

′||22
)
| x ∈ X

}
is infinitely dimensional since X is a

compact subspace of Rd and we cannot express a member of φ(x) ∈ H as a linear
combination of members φ(xi) ∈ H with xi 6= x.

If we apply Mercer’s theorem we gain more insight into the feature space H.
Rahimi and Recht [50, 48, 49] show that the kernel k can be written as

k(x, x′) =
∫
Rd

∫ π

−π
φz,b(x)φz,b(x′)λz,bdb dz

with φz,b(x) = cos(〈z, x〉 + b) and λb,z = 1
2π

1√
(2πγ)d

e−γ||z||. Thus we see that we
again have a infinite dimensional feature map defined indexed by all elements of



Chapter 3. Kernels for Implicit Feature Maps 25

Rd × [−π, π]. While this does not seem useful at first sight, it lends itself to sam-
pling. Rahimi and Recht demonstrate that sampling these features according to the
probability density p(z, b) 7→ λz,b approximates the RBF-feature map well using less
than 1,000 of the infinitely many features [48].

3.2.2 String Kernel

Now I want to introduce a kernel for discrete structures, token sequences with a
dictionary of possible tokens Σ to be more precise. Lohdi et al. propose the use of a
string subsequence kernel [34], that compares all substrings up to a specified length
n in two sequences. That is why I will call this kernel n-Gram kernel from now on.

For a token sequence x let xi denote the ith token for i = 1, ..., |x| where |x|
is the number of tokens in the token sequence. Let x[i : j] denote the substring
[xi xi+1 ... xj ] of size j − i + 1. A first idea is to use a kernel with features for
each possible substring s ∈ Σn such that [φ(x)]s specifies the number of occurrences
of s in x. The authors go one step further and allow matching even when gaps
are present in the subsequence. For I = (i1, ..., il) with ik < ik+1 we denote by
x[I] := xi1 xi2 ... xil a subsequence of length |x[I]| = il− i1 + 1. For a specified decay
factor λ ∈ [0, 1] they define

[φ(x)]s =
∑

I s.t. x[I]=s
λ|x[I]|.

Thus a exact matching of a subsequence contributes more than an inexact matching
where gaps are present in x.

Lohdi et al. present a Dynamic Programming algorithm that computes the value
of the kernel k(x, x′) = 〈φ(x), φ(x′)〉 for two sequences x,x′ in O(n · |x| · |x′|). Also
they propose to normalize the kernel k′(x, x′) = k(x,x′)√

k(x,x)k(x′,x′)
.

The authors demonstrate the usefulness of their approach for a text classification
task where classification using their kernel outperformed standard linear models with
n-gram features for the right choice of n and λ [34].

3.2.3 Tree Kernel

Duffy and Collins [7] propose to use a kernel for natural language parse trees like
the ones discussed in Section 2.3.2. They propose to compare two parse trees x and
x′ by comparing all possible tree fragments or subtrees. A subtree is a connected
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subgraph with more than one node, such that for each selected node, either all
productions3 or none of the productions are included.

Let N(x) denote the set of nodes in x respectively. For a subtree i we define the
indicator function Ii(x, n) that indicates whether the tree x has the subtree i rooted
in node n ∈ N . Then we define a kernel by its feature map

[φ(x)]i =
∑

n∈N(x)
Ii(x, n)

Duffy and Collins show, that the kernel k(x, x′) = 〈φ(x), φ(x′)〉 can be computed in
O(|x| |x′|) via the following equation

k(x, x′) =
∑

n∈N(x)

∑
n′∈N(x′)

∑
i

I(x, n) · I(x′, n′) =
∑

n∈N(x)

∑
n′∈N(x′)

C(n, n′)

where C(n, n′) =
∑
i
I(x, n) · I(x′, n′). C(n, n′) can be computed recursively:

• C(n, n′) = 0 if the productions at n and n′ differ

• C(n, n′) = 1 if the non-terminal symbols at n and n′ are the same and both
n and n′ are pre-terminal symbols, i.e. non-terminal symbols that produce
exactly one terminal symbol.

• otherwise the non-terminal symbols at n and n′ are the same and n and n′ are
not both pre-terminal symbols. We denote by nc(n) the number of children of
node n and by ch(n, j) the jth child of node n. Then

C(n, n′) =
nc(n)∏
j=1

[
1 + C(ch(n, j), ch(n′, j))

]
Duffy and Collins also propose to normalize the kernel such that larger kernels do

not produce larger kernel values. Also, they observe that the kernel value between
two copies of the same tree is extremely large while, in comparison, the kernel value
between two different trees is much smaller. This is due to the exponential number
of subtrees in a tree. They propose to down-weight larger subtree matches for the
kernel computation using a parameter λ ∈ [0, 1], such that

[φ(x)]i =
∑

n∈N(x)

√
λ|i|Ii(x, n)

where |i| is the size of a subtree i. We can compute this kernel using a modified
definition of C(n, n′):

3A production is a set of non-terminal or terminal symbols produced by a rule of the context
free grammar. Thus the production of a node correspond to the respective children in the tree.
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• C(n, n′) = 0 if the productions at n and n′ differ

• C(n, n′) = λ if the non-terminal symbols at n and n′ are the same and both
n and n′ are pre-terminal symbols, i.e. non-terminal symbols that produce
exactly one terminal symbol.

• C(n, n′) = λ
nc(n)∏
j=1

[1 + C(ch(n, j), ch(n′, j))] otherwise

The authors demonstrate the use of this kernel for both Natural Language Parsing
and Sequence Tagging. In their experiments, they use a Structured Perceptron,
a learning algorithm related to the Structural SVM, to identify the best possible
output structure from a set of candidate structures generated by a generative parse
model or tagging model [7, 9]. Using this kernel-based reranking approach they were
able to increase the performance of the generative models substantially.
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4 | Towards Hassle-Free
Structured Prediction

Structural Prediction as we have seen it in Chapter 2 requires a lot of algorithmic
work. One has to design feature maps, find compatible inference algorithms and
efficient separation oracle algorithms.

In this chapter I present a method that eliminates some of these challenges, while
– to be fair – also creating some new challenges. To do so, I will combine the things
discussed in the previous chapters: We are going to build on Structural Support
Vector Machines, but instead of using explicit, hand-designed feature maps we will
use implicit feature maps induced by kernel functions. Using kernels changes the
inference problem and the separation oracle problem: these problems will become
so-called Pre–Image problems, which are generally tricky to solve.

I tackle the pre–image problem by defining a class of kernels for discrete output
structures for which the pre-image problem can be solved. Thus I obtain an algo-
rithm for discrete structured output prediction that requires less engineering than
the Structural SVM.

4.1 Kernelized Structural Support Vector

Machines

In this section I will introduce the Kernelized Structural Support Vector Machine
that uses implicit features. In order to see how kernels can be applied we have to
derive the Lagrangian dual program of the Structural SVM optimization problem.
Solving the dual instead of the primal changes the way we store learned model,
i.e. the optimal solution of the dual problem. Instead of one weight vector we will
store a linear combination of constraints. This affects the inference problem and the
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separation oracle computations: In order to obtain a prediction or a most-violated
constraint, one has to solve a so-called pre-image problem for the kernel used.

4.1.1 Dual Program

Like with Support Vector Machines, we can also derive and solve the dual problem.
First let us consider the properties of the primal optimization problem (2.12). The
objective is a quadratic function that is convex. The inequalitiy constraints are
affine functions. Thus the primal problem is a convex optimization problem. We
can construct a feasible solution w = ~0 and ξ = ∆ for ∆ = maxi,ȳ L(yi, ȳi). Thus
we can apply Slater’s theorem that guarantees that a) the Karush-Kuhn-Tucker
(KKT) conditions provide a necessary and sufficient optimality criterion and b)
strong duality holds for the Lagrangian dual program.

First, let us write out the KKT conditions for the primal problem. The La-
grangian

L(w, ξ, α, β) = 1
2 ||w||

2
2 + Cξ

+
∑
ȳ∈W

αȳ

[
1
n

n∑
i=1

L(yi, ȳi)− ξ −
1
n

n∑
i=1
〈w, φ(xi, yi)− φ(xi, ȳi)〉

]
− βξ (4.1)

has Lagrangian multipliers αȳ for each constraint and one multiplier1 β for the
constraint ξ ≥ 0. As noted above, the KKT conditions provide a sufficient and
necessary condition for optimality: A solution (w∗, ξ∗) is optimal if and only if there
exist Lagrangian multipliers αȳ and β such that the following Karush-Kuhn-Tucker
conditions hold:

• Stationarity: ∇wL(w∗, ξ∗, α, β) = 0. Consequently we have

w∗ =
∑
ȳ∈W

αȳ
1
n

n∑
i=1

φ(xi, yi)− φ(xi, ȳi). (4.2)

Following the terminology familiar from Support Vector Machines, we call
every ȳ ∈ W with αȳ 6= 0 Support Vector. In contrast to SVMs, a support
vector is not a single structure, but a linear combination of multiple structures.

• Stationarity II: ∇ξL(w∗, ξ∗, α, β) = 0. Thus

C −
∑
ȳ∈W

αȳ − β = 0. (4.3)

1This multiplier is missing in [26]
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• Primal Feasibility: ∀ȳ ∈ W : gȳ(w∗, ξ∗) ≤ 0 with

gȳ(w∗, ξ∗) := 1
n

n∑
i=1

L(yi, ȳi)− ξ∗ −
1
n

n∑
i=1
〈w∗, φ(xi, yi)− φ(xi, ȳi)〉

• Primal Feasibility II: ξ∗ ≥ 0

• Dual Feasibility: αȳ ≥ 0 ∀ȳ ∈ W and β ≥ 0.

• Complementary Slackness: αȳ · gȳ(w∗, ξ∗) = 0 ∀ȳ ∈ W. Thus if αȳ > 0 we
know that gȳ(w∗, ξ∗) = 0. Consequently we have that

αȳ > 0⇒ ξ∗ = 1
n

n∑
i=1

L(yi, ȳi)−
1
n

n∑
i=1
〈w∗, φ(xi, yi)− φ(xi, ȳi)〉. (4.4)

• Complementary Slackness II: β · ξ∗ = 0. Thus if β > 0 we have zero slack
ξ∗ = 0 and if we have positive slack ξ∗ > 0 we have β = 0.

Now we can begin obtaining the dual problem by formulating the Lagrangian dual
problem:

max
α≥0,β≥0

inf
w,ξ
L(w, ξ, α, β). (4.5)

Slater’s condition holds, thus strong duality holds i.e., the solutions of problem (2.12)
and (4.5) have zero duality gap i.e., are equal. Plugging w∗ from Equation (4.2) into
the Lagrangian dual and plugging in

∑
ȳ∈W

αȳ + β −C = 0 from Equation (4.3) while

adding constraints on α yields

max
α,β
− 1

2
∑
ȳ∈W

∑
ȳ′∈W

αȳαȳ′

n2

〈
n∑
i=1

(φ(xi, yi)− φ(xi, ȳi)) ,
n∑
i=1

(
φ(xi, yi)− φ(xi, ȳ′i)

)〉

+
∑
ȳ∈W

αȳ
1
n

n∑
i=1

L(yi, ȳi)

s.t.
∑
ȳ∈W

αȳ + β − C = 0 and αȳ ≥ 0 ∀ȳ ∈ W, β ≥ 0.

(4.6)

For notational brevity we define

H(ȳ, ȳ′) = 1
n2

〈
n∑
i=1

(φ(xi, yi)− φ(xi, ȳi)) ,
n∑
i=1

(
φ(xi, yi)− φ(xi, ȳ′i)

)〉

= 1
n2

n∑
i=1

n∑
j=1

[
〈φ(xi, yi), φ(xj , yj)〉 − 〈φ(xi, yi), φ(xj , ȳ′j)〉

− 〈φ(xi, ȳi), φ(xj , yj)〉+ 〈φ(xi, ȳi), φ(xj , ȳ′j)〉
]
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for the inner product of two constraints ȳ and ȳ′, and

L(ȳ) = 1
n

n∑
i=1

L(yi, ȳi)

for the averaged loss of a constraint. Since β > 0 and β = C −
∑
ȳ∈W

αȳ we can omit

β from the optimization and write the final dual program

max
α
− 1

2
∑
ȳ∈W

∑
ȳ′∈W

αȳαȳ′H(ȳ, ȳ′) +
∑
ȳ∈W

αȳL(ȳ).

s.t.
∑
ȳ∈W

αȳ ≤ C and αȳ ≥ 0 ∀ȳ ∈ W.
(4.7)

Because strong duality holds, we can obtain an optimal primal solution (w∗, ξ∗) from
an optimal dual solution α∗ using the stationary point condition in Equation (4.2)

w∗ =
∑
ȳ∈W

α∗ȳ
1
n

n∑
i=1

[φ(xi, yi)− φ(xi, ȳi)] .

Thus the product 〈w∗, φ(x, y)〉 can be solved by computing

〈w∗, φ(x, y)〉 =
∑
ȳ∈W

α∗ȳ
1
n

n∑
i=1

[〈φ(xi, yi), φ(x, y)〉 − 〈φ(xi, ȳi), φ(x, y)〉] .

The complementary slackness conditions yields

ξ∗ =


0 if

∑
ȳ∈W

α∗ȳ < C

L(ȳ)−
∑̄
y′
α∗ȳ′H(ȳ, ȳ′) otherwise with one α∗ȳ > 0.

The important property of the dual reformulation is that optimizing the Dual prob-
lem and computing 〈w∗, φ(x, y)〉 only requires us to compute dot products of feature
vectors. Since we have seen that a kernel function k : (X × Y) × (X × Y) → R

computes the dot product of two feature vectors, we can apply what is commonly
referred to as the Kernel Trick. We can replace all the dot products of feature
vectors with kernel applications and rewrite

H(ȳ, ȳ′) = 1
n2

n∑
i=1

n∑
j=1

[
k((xi, yi), (xj , yj))− k((xi, yi), (xj , ȳ′j))

− k((xi, ȳi), (xj , yj)) + k((xi, ȳi), (xj , ȳ′j))
] (4.8)

as well as
〈w∗, ·〉 =

∑
ȳ∈W

α∗ȳ
1
n

n∑
i=1

[k((xi, yi), ·)− k((xi, ȳi), ·)] .
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4.1.2 Inference: A Pre-Image Problem

Now let us consider the inference problem

ŷ(x) = arg max
y∈Y(x)

∑
ȳ∈W

α∗ȳ
1
n

n∑
i=1

[k((xi, yi), (x, y))− k((xi, ȳi), (x, y))] . (4.9)

This problem is closely related to a problem well-known from kernel methods: the
Pre-Image problem[31].

Say we have a kernel k : X × X → R, which implicitly maps to a Hilbert Space
Hk. Assume we are given an element g ∈ Hk, not in its explicit feature structure,
but as a linear combination g :

∑
i
αik(xi, ·). Now the challenge is to find an element

x ∈ X , such that φ−1
k (g) = x or φk(x) = g respectively. There are some problems: φ

is only implicitly given, φ−1
k is unknown and might not be unique, and when g is the

output of a numerical prediction algorithm, there is likely no exact match x ∈ X .
Thus we solve an approximation instead:

x̃ = arg min
x∈X
||φ(x)− g||2 (4.10)

= arg min
x∈X

k(x, x)− 2
∑
i

αik(xi, x). (4.11)

Notice that Equation(4.9) does not require knowledge about φ, but relies solely on
the kernel k. However, depending on the structure of X and k, the problem is
generally hard to solve.

For continuous spaces X ⊆ Rn several approaches to solve the problem are
known: For RBF-kernels a fixed-point iteration scheme can be applied to solve
the non-convex optimization problem and calculate an approximate pre-image[43].
Kwok and Tsang propose a method that exploits the relationship between the dis-
tances in feature space Hk and output space X for isotropic and dot-product kernels
to directly compute an approximate solution for the pre-image problem[31].

For discrete structured spaces the pre-image problem becomes a combinatorial
optimization problem. For string outputs and the special case of n-gram kernels,
Cortes et al.[11] proposed a method to solve the pre-image problem by transforming
it into a graph-problem that involves finding Euler circuits. While the pre-image
problem can be expressed using only implicit feature mappings via kernel compu-
tations, their method requires to explicitly compute the feature map φl. Recently
Giguère et al.[22, 20] investigated the pre-image problem for the Generic String
Kernel[21], a kernel that generalizes five string kernels commonly used in bioinfor-
matics. They show that for some parametrization of the General String Kernel and
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when the kernel is not normalized, pre-image computation is tractable. When nor-
malization is applied, the combinatorial optimization is intractable, however a upper
bound can be computed efficiently.

Looking back to the inference problem (4.9) we see that it has essentially the
same structure as problem (4.11): We maximize over the argument of a linear com-
bination of kernel functions. The main difference is that the kernel functions in (4.9)
have a x and a y part and we only maximize over y while x is fixed. When Y(X )
is a discrete output structure, the pre-image problem (4.9) is a combinatorial opti-
mization problem where the solver has to select the elements of the alphabet that
maximize the kernel expressions while taking into account the constraints posed by
Y(x).

The same applies to finding the maximally-violated constraints in the separation
oracle calls

arg max
y′∈Y(x)

〈w, φ(x, y′)〉+ L(y, y′) (4.12)

= arg max
y∈Y(x)

∑
ȳ∈W

α∗ȳ
1
n

n∑
i=1

[k((xi, yi), (x, y))− k((xi, ȳi), (x, y))] + L(y, y′). (4.13)

We maximize a sum of kernel expressions, however there is an additional term for
maximizing the loss L(y, y′). The loss term might change the structure of the pre-
image problem. Thus it is important to choose loss functions that still allow us to
solve the pre-image problem.

4.2 Discrete Output Structures and Simple Kernels

We have seen, that a kernel function that is defined for pairs of input and output
structures k : (X ×Y)×(X ×Y)→ R can be used instead of defining explicit feature
mappings. In this section we will investigate how we can define such kernels.

4.2.1 Joint Kernels

It is not immediately clear how we can define a kernel over the product of two
spaces X and Y. However people have already proposed kernels for discrete spaces
like sequences or trees. Thus a straight forward way to define kernels for joint
product spaces is to combine known kernels for the individual spaces X and Y.

We will use the most popular joint kernel used[26, 64, 21]: the tensor product
kernel

k((x, y), (x′, y′)) = kX (x, x′) · kY(y, y′),
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where kX : X ×X → R is the input kernel and kY : Y ×Y → R is the output kernel.
The reason this kernel is called tensor product kernel is that its implicit feature
map is the tensor product of the implicit feature maps corresponding to kX and kY .
Say that kX (x, x′) = 〈φX (x), φX (x′)〉 and kY(y, y′) = 〈φY(y), φY(y′)〉 with mappings
φX : X → Rc and φY : Y → Rd. Then k((x, y), (x′, y′)) = 〈φ(x, y), φ(x′, y′) with

φ(x, y) = φX (x)� φY(y)

where the tensor product is defined as

[φX (x)� φY(y)]j·c+i := [φX (x)]i · [φY(y)]j for i = 1, ...c, j = 1, ...d.

We can easily verify the correctness of the feature map:

〈φ(x, y), φ(x′, y′)〉 =
c∑
i=1

d∑
j=1

([φX (x)]i · [φY(y)]j) · ([φX (x)]i · [φY(y)]j)

=
c∑
i=1

([φX (x)]i · [φX (x)]i)
d∑
j=1

([φY(y)]j) · [φY(y)]j)

= kY(y, y′)
c∑
i=1

([φX (x)]i · [φX (x)]i)

= kY(y, y′)kX (x, x′) = kX (x, x′)kY(y, y′)

When we use the tensor product kernel in pre-image problem (4.9), the solution
depends only on kY :

ŷ(x) = arg max
y∈Y(x)

∑
ȳ∈W

α∗ȳ
1
n

n∑
i=1

kX (xi, x) [kY(yi, y)− kY(ȳi, y)] . (4.14)

Thus kX can have arbitrary complexity that induces intractable pre-image problems.
As long as kY has a pre-image problem that can be solved efficiently, we can efficiently
perform inference.

4.2.2 A Class of Kernels for Discrete Output Structures

In this section I will design a class of kernels specifically for discrete output struc-
tures. Remember that every discrete output structure y ∈ Y is a pair (S, x). For
notation brevity I will denote by σ ∈ y the access to the atomic symbols from S ⊆ Σ
that describe y. Also, whenever there is no risk of confusion, x will denote the
corresponding input structure. Furthermore we write |y| := |S|.

According to Gärtner [18] a common choice for kernels for discrete structures is
the intersection kernel

k(y, y′) =
∑
σ∈y

∑
σ′∈y′

1σ=σ′
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that counts the number of symbols that two structures have in common. However
for many problems this exact matching of symbols is too strict. When you think
of σ and σ′ as symbols in a layer of annotation, then whether the symbols express
the same fact or not depends on the underlying inputs x and x′. For instance in
Part-of-Speech tagging, comparing two symbols (3, N) and (2, N) has little value
without knowing the tokens of the underlying inputs. Thus I propose a kernel that
utilizes a hash function h : Σ×X → N that determines if two symbols are equivalent
given the corresponding input structures:

Definition 4.2.1 A kernel k : Y × Y → R is called atomic, if Y is a set of discrete
output structures and k is of form

k(y, y′) =
∑
σ∈y

∑
σ′∈y′

1h(σ,x)=h(σ′,x′)

for a hash function h : Σ×X → N.

Example 4.2.1 Consider the set of token sequences Y as in Example 2.1.1 with the
hash function h : (N×V)×X → N for which it holds that h((i, t), x) = h((i′, t′), x′)
if and only if t and t′ are the same tokens. This results in the bag-of-words kernel
that for both sequences counts the number of occurrences of tokens and multiplies
the corresponding counts.

Example 4.2.2 Now let h′ = g ◦ h for a function g : N 7→ Zn. Applying h′ instead
of h leads to a hash kernel that maps the tokens to one of n buckets depending
on the hash function h′. This leads to a compressed bag-of-word representation.

Lemma 4.2.1 An atomic kernel k : Y×Y → R with a hash function h : Σ×X → N

can be expressed explicitly as k(y, y′) = 〈φ(y), φ(y′)〉 with φi(y) = |{σ ∈ y |
h(σ, x) = i}|.

Proof. We can simply verify that

〈φ(y), φ(y′)〉 =
∞∑
i=0
|{σ ∈ y | h(σ, x) = i}| · |{σ ∈ y′ | h(σ, x′) = i}|

=
∞∑
i=0

∑
σ∈y

1h(σ′,x)=i

 ·
∑
σ′∈y′

1h(σ′,x)=i


=
∑
σ∈y

∑
σ′∈y′

1h(σ,x)=h(σ′,x′) = k(y, y′).
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4.2.3 Solving the Pre–Image Problem

Now we can examine the pre-image problem for atomic kernels. When the image is
given by a linear combination

∑
i
αik(yi, ·) the following optimization problem arises:

min
y∈Y(x)

∑
i

αik(yi, y) = min
y∈Y(x)

∑
i

αi
∑
σ′∈yi

∑
σ∈y

1h(σ′,xi)=h(σ,x) (4.15)

= min
y∈Y(x)

∑
σ∈y

∑
i

αi
∑
σ′∈yi

1h(σ′,xi)=h(σ,x) (4.16)

= min
λ

∑
σ∈Σ

λσ
∑
i

αi
∑
σ′∈yi

1h(σ′,xi)=h(σ,x) (4.17)

s.t. λσ ∈ {0, 1} ∀σ ∈ Σ (4.18)

and ({σ ∈ Σ | λσ = 1}, x) ∈ Y(x) (4.19)

We call wσ :=
∑
i
αi

∑
σ′∈yi

1h(σ′,xi)=h(σ,x) sufficient weights for σ, as it is sufficient to

know all these weights to construct the optimal output. This construction problem
obviously is a combinatorial optimization problem, which is in general hard to solve.
However, depending the constraint ({σ ∈ Σ | λσ = 1}, x) ∈ Y(x) efficient solving is
possible:

For some instances of Y(·), efficient, i.e. polynomial time, algorithms that com-
pute exact solutions are known. Particularly when σ ∈ Σ describe edges in a graph
and Y(·) describes a subset of graphs like paths, trees or matchings we know efficient
algortihms to compute the optimal structure given the sufficient weights [10, 15, 56].

For other instances of Y(·) a set of linear constraints that characterizes the
constraint exists [37, 52]. Then, the pre-image problem becomes an Integer Linear
Program (ILP). Although ILPs are known to be NP-complete, efficient optimization
routines exist [27].

In cases where we neither know an polynomial algorithm to construct the struc-
ture from sufficient weights nor know a linear set of constraints, it is possible to use
heuristic approximations. For instance, we might specify the number of symbols we
want to select and always select the symbols with the highest weights. Another pos-
sibility seems to be selecting all the symbols with positive weight. In cases where we
have an oracle function that decides, whether a λ describes a valid output structure,
we could apply a black-box optimization routine or evolutionary algorithm that tries
to solve the pre-image problem.

When we have the pre-image problem that arises in the Structural Support
Vector Machine inference problem (4.14), the image is given in a slightly different
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form. We can easily verify that the sufficient weights are now defined as

wσ :=
∑
ȳ∈W

α∗ȳ
n

n∑
i=1

kX (xi, x)

 ∑
σ′∈yi

1h(σ′,xi)=h(σ,x) −
∑
σ′∈ȳi

1h(σ′,xi)=h(σ,x)

 . (4.20)

4.3 Discrete Output Structures and Loss Functions

Now let us think about a general loss function for discrete output structures L :
Y × Y → R+. Ideally, a loss function should be normalized, i.e. it should map to
[0, 1] such that a loss of 1 is the biggest possible loss. Furthermore, it should be
symmetric. And most importantly, a loss function should be compatible with the
inference pre-image problem

arg min
y′∈Y(x)

∑
i

αik(y′, yi)

in a sense that we can apply the same optimization routine to solve the separation
oracle pre image problem

arg min
y′∈Y(x)

∑
i

αik(y′, yi) + L(y′, y).

Trivially, we could use the 1/0 loss L(y, y′) = 1y 6=y′ . However, it cannot express sim-
ilarities sufficiently. Furthermore, solving the separation oracle pre-image problem
now is finding the structure with the second-largest discriminant score. There is no
universally valid way to generalize an combinatorial optimization problem solver to
not compute the largest value, but the second largest. Thus the 1/0 loss does not
fulfill our requirement of compatibility with the inference problem.

When we have defined an output kernel k : Y×Y → R, one possible loss function
is the squared Euclidean distance of the implicit feature maps

LH(y, y′) = ||φk(y)− φk(y′)||2 = k(y, y)− 2k(y, y′) + k(y′, y′).

When we consider the separation oracle pre-image problem, it is obvious that the
term −2k(y, y′) is just another term in the the linear combination that is given. The
term k(y, y) is constant, however the term k(y′, y′) is different. Let us investigate
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the effect of optimizing over a kernel computation k(y′, y′) for atomic kernels k:

arg min
y′∈Y(x)

LH(y′, y)

= arg min
y′∈Y(x)

k(y′, y′)− 2k(y, y′)

= arg min
y′∈Y(x)

∑
σ∈y′

∑
σ′∈y′

1h(σ,x)=h(σ′,x) − 2
∑
σ′∈y

1h(σ,x)=h(σ′,x)


= arg min

λ

∑
σ∈Σ

λσ

∑
σ′∈Σ

(λσ′ · 1h(σ,x)=h(σ′,x))− 2
∑
σ′∈y

1h(σ,x)=h(σ′,x)


s.t. λσ ∈ {0, 1} ∀σ ∈ Σ and ({σ ∈ Σ | λσ = 1}, x) ∈ Y(x)

Obviously the objective is no longer linear in λ, thus we cannot necessarily use the
same optimization algorithm for solving the separation-oracle pre-image problem
as we can use for the inference problem. Thus, LH does not fulfill our central
requirement for a suitable loss function.

When k(y′, y′) were constant, i.e. ∀x ∈ X∃c∀y ∈ Y(x) : k(y, y) = c, we could
also omit that term and directly use the loss function LH. One possibility seems
to be normalizing the kernel k′(y, y′) = k(y,y′)√

k(y,y)k(y′,y′)
. However, as also stated by

Giguere et al.[22], this will also make the pre-image problem harder, as the term
k(y′, y′)−

1
2 will now appear in every element of the linear combination

arg min
y′∈Y(x)

∑
i

αik
′(y′, yi) + LH(y′, y)

= arg min
y′∈Y(x)

∑
i

αik
′(y′, yi)− 2k′(y′, y) + 2

= arg min
y′∈Y(x)

∑
i

αik(y′, yi)√
k(y′, y′)k(yi, yi)

− 2k(y′, y)√
k(y′, y′)k(y, y)

.

Thus normalizing is not an option for a loss function and LH does not seem an
appropriate choice.

A straightforward alternative to LH is a generalization to the hamming loss, that
basically measures how many symbols of the alphabet of y′ were selected correctly
with respect to the true y:

Lh(y, y′) = |y|+ |y
′| − 2|y ∩ y′|
|Σ| =

|y|+ |y′| − 2
∑
σ∈y

∑
σ′∈y′

1σ=σ′

|Σ|

While optimizing miny′∈Y Lh(y, y′) is compatible with the separation-oracle pre-
image problem for atomic kernels, because as above we also minimize an linear
objective of binary variables λ over a set of constraints

({σ ∈ Σ | λσ = 1}, x) ∈ Y(x),
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there are two major problems: First |Σ| might be infinite. Second, even for finite Σ,
Lh puts lots of weight on the symbols σ that have not not been selected in either
y or y′. Thus the resulting loss values are hard to interpret, particularly for large
|Σ|. A quick fix is to just eliminate the denominator, thus the loss counts how many
symbols have to be swapped in order to get the correct output:

Lh(y, y′) = |y|+ |y′| − 2
∑
σ∈y

∑
σ′∈y′

1σ=σ′ .

One drawback of this is that larger structures will always produce larger losses than
smaller structures. Thus the loss should be normalized with respect to the size of
the structure. One nice normalization would be scaling the loss with (|y| + |y′|)−1

or (2
√
|y| · |y′|)−1. However, both these normalization term yield to a loss that is no

longer linear in λ whenever |y′| is not known prior to the optimization. One quick
approximation is just to assume |y′| = |y| and neglecting symmetry. This yields a
loss that is 0 when y = y′. If |y′| ≤ |y| the loss maps to the interval [0, 1], if |y′| > |y|
the loss can also be greater 1.

In conclusion I propose the use of the approximately normalized, generalized
hamming loss

L(y′, y) =
|y|+ |y′| − 2

∑
σ∈y

∑
σ′∈y′

1σ=σ′

2 · |y| .

It is apparent that the loss function is compatible with the inference pre-image
problem: If wσ are the sufficient weights for the inference problem, the sufficient
weights w̃σ for the corresponding seperation oracle problem are

w̃σ := wσ + 1
|y|

1
2 −

∑
σ′∈y

1σ=σ′

 . (4.21)

Finally we should note that, depending on the application, the exact matching of
alphabet symbols may be to strict. For instance, when the alphabet symbols describe
bounding boxes in object recognition tasks, exact comparison is ill-suited. Instead,
one should apply another loss function that measures the similarity of two alphabet
symbols that is more appropriate than the proposed 0/1 loss function 1σ=σ′ . On the
other hand, many NLP tasks like tagging, chunking or parsing usually rely on the
proposed 0/1 loss, which justifies the use in this setting.



Chapter 4. Towards Hassle-Free Structured Prediction 41

4.4 The Algorithm

Now we have seen all the elements required to formulate our algorithm for discrete
structured output prediction using implicit feature maps based on the Structural
Support Vector Machine and Kernels.

4.4.1 Putting All Together

To train a prediction model that uses joint tensor kernels, we use the Cutting Plane
optimization algorithm presented in Section 2.2.2. Instead of using explicit feature
maps φ(x, y) and computing a weight vector w, we use a joint kernel k((x, y), (x′, y′)) =
kX (x, x′) ·kY(y, y′) and compute a model represented by a linear combination kernel
computations. To compute the model using kernels, we solve the Dual program seen
in Section 4.1.1.

While the input kernel kX can be chosen arbitrarily, the output kernel kY will
be an atomic kernel specified by an arbitrary hash function h : Σ×X → N. We use
a generic loss function, the approximately normalized, generalized Hamming loss,
that is valid for all kinds of discrete output structures.

As seen above, the inference or prediction problem now becomes a pre-image
problem:

max
y′∈Y(x)

∑
ȳ∈W

αȳ
n

n∑
j=1

kX (xj , x)
[
k(yj , y′)− k(ȳj , y′)

]
= max

λ

∑
σ∈Σ

λσwσ

s.t. λσ ∈ {0, 1} ∀σ ∈ Σ and ({σ ∈ Σ | λσ = 1}, xi) ∈ Y(x)

with sufficient weights w defined according to (4.20).
In order to solve this, we have to either (a) know an algorithm that constructs

the optimal structure in a set of constraints y ∈ Y(x) from the sufficient weights or
(b) represent the constraints that describe the set of valid discrete output structures
as linear inequalities and apply a generic solver for Integer programs. From the
optimal λ∗ we can then construct the predicted output as

ŷ(x) = ({σ ∈ Σ | λ∗σ = 1}, x) .

The separation oracle problems are pre-image problems, too. Since we chose
our loss function to be compatible with the inference problem, we can use the same
optimization routine with modified sufficient weights, according to (4.20) and (4.21),
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for the example (xi, yi):

w̃σ :=
∑
ȳ∈W

α∗ȳ
n

n∑
j=1

kX (xj , xi)

 ∑
σ′∈yj

1h(σ′,xj)=h(σ,xi) −
∑
σ′∈ȳj

1h(σ′,xj)=h(σ,xi)


+ 1
|yi|

1
2 −

∑
σ′∈yi

1σ=σ′

 .

To train the model, the algorithm repeats the following steps until convergence, as
depicted in Algorithm 3: Solve the Dual program, compute a new cutting plane by
solving the separation oracle pre-image problems and compute the inner products
of all cutting planes according to (4.8) to formulate the new Dual program that
includes the new cutting plane. As proposed by Joachims et al. [26] we prune
cutting planes ȳ that have not been used in 50 iterations. A cutting plane it not
used, when the corresponding αȳ = 0.

The algorithm terminates, when the most-violated constraint returned by the
separation oracle is violated by less than ξ + ε. This guarantees, that our solution
has a duality gap upper bounded by ε, as seen in Section 2.2.2.

Algorithm 3 Atomic Kernel Structured SVM
Require: Data Set D, C > 0, ε > 0, Input Kernel kX , Hash Function h

W := ∅, H := [ ]
k :=AtomicKernel(h)
repeat

α, ξ = arg max
α≥0,β≥0∑

αȳ=C

−1
2
∑
ȳ∈W

∑
ȳ′∈W

αȳαȳ′H(ȳ, ȳ′) +
∑

ȳ′∈W
αȳL(ȳ)

for i = 1, ..., n do
ŷi := arg max

y′∈Y(xi)

∑
ȳ∈W

αȳ

n

n∑
j=1

kX (xj , xi) [k(yj , y′)− k(ȳj , y′)] + L(yi, y′)

W :=W ∪ {ŷ}
Prune W
Update H matrix

until L(ŷ) −
∑

ȳ∈W,ȳ 6=ŷ
αȳH(ȳ, ŷ) < ξ + ε

4.4.2 Runtime Analysis and Efficiency Improvements

While in the case of explicit feature maps, a cutting plane can be represented as just
one high dimensional vector, in the case of implicit feature maps, a cutting plane is
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a sum of kernel computations of size n where n is the number of training examples.
This means that computing the dot product of an example with a cutting plane has
O(n) kernel computations. Recall that the model is a linear combination of cutting
planes, which means that calculating the discriminant function for an input output
pair (x, y) takes O(n · s) kernel computations, where s is the number of support
vectors, i.e. cuttingplanes with αi > 0. The same applies for the separation oracle
pre-image problems, where the pre-image is given as a linear combination of size
O(n · s). Each iteration, we have to solve n of these pre-image problems, adding up
to a total size of O(n2 · s) summands. If the algorithm finishes in I iterations, this
adds up to pre-image computations with a total of O(n2 ·sI) ⊆ O(n2 ·I2) summands.

In addition, computing the inner product of two cutting planes – as required
in formulating the Dual program – involves O(n2) kernel computations. In the jth
iteration, we have to compute j of these inner products. Thus, if the algorithm
finishes in I iterations, the number of kernel computations required to formulate the
Dual programs is O(n2 · I2).

For datasets with larger2 n, we should spend some thoughts on an efficient im-
plementation. Obviously we should cache kernel computations as much as possible.
Particularly the input kernel lends itself to caching; whenever enough memory is
available we should precompute the full n × n matrix of input kernel values. The
output kernel is harder to precompute, as each iteration another n× n values need
to be stored.

We choose the output kernel to be an atomic kernel. This lends itself to optimiza-
tions specifically for atomic output kernels. Recall that the biggest speed advantage
of explicit features is the fact that cutting planes can be compressed into a single
vector. While we cannot make the feature map explicit for the joint kernel, we can
make the feature map for atomic output kernels explicit.

Naively implemented, the product of a cutting plane ȳ and an input output pair
x, y

1
n

n∑
i=1

kX (xi, x) [kY(yi, y)− kY(ȳi, y)]

takes O(n) input kernel computations as well as O(n) output kernel computations.
A naive implementation with atomic kernels is depicted in Algorithm 4.

Obviously computing the atomic kernels using two loops results in quadratic
runtime. Inspired by Hash Joins [45] known from the database community we can

2on personal computers built in 2015, n > 1000 can be large, on multi-core machines for high
performance computing, n > 10000 can be large.
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Algorithm 4 Naive Product
Require: Cutting Plane ȳ, Input/Output pair (x, y)
s := 0
for i = 1, ..., n do

κ := kX (xi, x)
for σ ∈ y do

for σ′ ∈ yi do
if h(σ, x) = h(σ′, xi) then s := s+ κ

for σ′ ∈ ȳi do
if h(σ, x) = h(σ′, xi) then s := s− κ

return s

implement this nearly linear using a hash table as depicted in Algorithm 5. First,
we compute the counts of all the hashed symbols h(σ, x) for σ ∈ y in a hash table.
Note that we only need to do this once. Then for each output yi and ȳi from data
and ȳ respectively, we can compute the number of matches in linear time by looking
it up in the hash table.

Algorithm 5 Hash Table Product
Require: Cutting Plane ȳ, Input/Output pair (x, y)

Initialize empty hash table C : N 7→ N, s := 0
for σ ∈ y do

C[h(σ, x)] = C[h(σ, x)] + 1

for i = 1, ..., n do
κ := kX (xi, x)
for σ′ ∈ yi do

s := s+ κ · C[h(σ′, xi)]

for σ′ ∈ ȳi do
s := s− κ · C[h(σ′, xi)]

return s

This is a good way to compute the product, whenever the cost of computing the
input kernel dominates the cost of computing the product, because we have to make
sure that we compute the input kernel at most once for each xi. This is why, in
Algorithms 4 and 5, we decided to sum over i in the outer loop.

However, when we have precomputed the input kernel or can cache at least n
values, we can rearrange the computations in a way that might need more input
kernel computations without running into speed issues. Note that we iterate over
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all symbols of all the 2n structures of in the data and ȳ. Large portions of these
symbols will be irrelevant to y. Thus I propose an algorithm that changes the order
of the summations and loops first over the symbols of y and second over i = 1, ..., n.
To make this more efficient, I propose to use an indexing scheme that stores for each
hashed symbol all i where yi or ȳi contains the symbol as well as the factor of the
corresponding summand. This allows us to not sum over all data items, but only
the relevant ones.

Algorithm 6 Index Cuttingplane
Require: Cutting Plane ȳ

Initialize empty hash table C̄ : N 7→ (N 7→ R)
for i = 1, ..., n do

for σ ∈ yi do
C̄[h(σ, xi)][i] := C̄[h(σ, xi)][i] + 1

for σ ∈ ȳi do
C̄[h(σ, xi)][i] := C̄[h(σ, xi)][i]− 1

return C̄

We have to compute this index for each cutting plane; this is done by Algorithm 6.
We see that for each i = 1, ..., n we aggregate the input kernel computations by
hashvalues of symbols in a two-dimensional hash table. If the input kernel is a
linear dot product, we can also aggregate the inputs x for each hashed symbol into
a single vector and our index reduces to the explicit representation of the feature
vector of our joint tensor kernel.

Algorithm 7 Indexed Cuttingplane Product
Require: Index C̄ of Cutting Plane ȳ, Input/Output pair (x, y)

Initialize empty hash table C : N 7→ N, s := 0
for σ ∈ y do

C[h(σ, x)] = C[h(σ, x)] + 1

for (h, n) ∈ C do //loop all hashed symbols in y

for (i, α) ∈ C̄[h] do //all entries in C̄[h]
κ := kX (xi, x) //input kernel computation or cache lookup.
s := s+ n · α · κ

return s

Now using these aggregated index C̄ of ȳ we can compute the product more
efficiently as depicted in Algorithm 7. Running this algorithm results in at most
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|y| · n lookups of input kernel values from cache, which, in turn, will result in at
most n input kernel computations for cache sizes larger than n. Thus the worst-case
running time of Algorithm 5 and Algorithm 7 are equal. However for a good choice
of h, the feature maps of the atomic kernel will be extremely sparse. Thus we never
have to loop over all n examples but only a small fraction. This results in a better
running time.

Once we have indexed all constraints, we can go one step further and apply the
same indexing to the complete model

∑
ȳ∈W

αȳ
1
n

n∑
i=1

kX (xi, x) [kY(yi, y)− kY(ȳi, y)] .

All we have to do is merge all indexes with αȳ > 0 into a single index structure by
aggregating all entries with the same σ and x. This results in a more compact form
of the model, where we have to loop over less entries in order to compute the score
function for an input/output pair.

Moreover, we can directly get the sufficient weights for the pre-image problems
(4.20) from the model index structure: For each possible σ in the output structure,
we can query the examples i that contribute to the corresponding sufficient weights
and perform only the necessary kernel computations.

Representing constraints as aggregated indexes has more benefits: When the
input kernel kX is cached we can apply the algorithm to compute the inner product
H(ȳ, ȳ′) of two cutting planes. We gain speed improvements because we only need to
sum up input kernel values for hashed symbols that appear in both cutting planes.
Thus we can prune large parts of the computation.

In conclusion, we see that the title of this thesis is actually very appropriate, as
we use both implicit feature maps in the input kernel and an output kernel that has
been made explicit by the indexing scheme proposed in this section. It is possible to
apply the same ideas to arbitrary output kernel that have a sparse, explicit feature
map.



5 | Related Methods for Struc-
tured Prediction

In this chapter, I want to give an overview over other research on Structured Output
Prediction and draw connections to the approach proposed in Chapter 4. In the first
section I present work that focuses on the linear models of the Structural SVM. In
the second section I present kernel methods for structured outputs. In the third
section I present a different approach to Structured Output Prediction that casts
the inference problem as a search problem in the space of all possible outputs. Lastly,
I want to present other models that are neither linear nor apply kernels.

5.1 More on Structural Support Vector Machines

In Chapter 2, I presented the Structural Support Vector Machine developed by
Tsochantaridis et al. [60]. However, the authors presented two different variants,
Margin-Rescaling and Slack-Rescaling, of which I only presented Margin-Rescaling.
The Slack-Rescaling variant has a slightly different optimization problem where we
minimize 1

2 ||w||
2
2+C

∑
i ξi such that 〈w, φ(xi, y′)〉 ≥ 1− ξi

L(y′,yi) for all y′ ∈ Y(xi), y′ 6=
yi, i = 1, ..., n. This changes the separation oracle which becomes

arg max
y′∈Y(x)

[
L(y′, y)(1− 〈w, φ(x, y′)〉)

]
.

As we can see the loss is no longer added to the linear score function, but multiplied.
If both loss and score function decompose over the discrete symbols of the alphabet
Σ, as proposed in Chapter 4, this multiplication makes the separation oracle non-
linear. This is why I chose to present the Margin-Rescaling variant and use it for
Algorithm 3. The authors demonstrate in their experiments, that the prediction
performance of both variants is essentially equally good.

When applying the cutting plane optimization presented in Section 2.2.2, a sub-
stantial amount of time is spent on computing the next cutting plane. Yu and
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Joachims [68] show that it is possible to compute a new cutting plane by only
solving the separation oracle problem for a sample of the training data. This is
particularly helpful in settings where the runtime complexity of solving the problem
is very high.

Since the Cutting Plane algorithm was proposed in 2009, different optimiza-
tion routines for solving the Structural SVM training objective have been proposed.
Most notably is an approach presented by Lacoste-Julien et al. [32] which applies
a randomized block-coordinate Frank-Wolfe algorithm. It only needs a number of
separation oracle calls that is independent of n – in case of the cutting plane algo-
rithm this number is linear in n – however it does not guarantee a solution that has
a duality gap smaller than ε, but only a guarantee that in expectation the duality
gap is smaller ε.

We should also mention the Pegasos algorithm [55] which directly optimizes
the primal objective in form of the regularized empirical risk functional in an online
fashion. It computes a solution whose objective value is close to the optimal objective
value with high probability, while only needing a number of oracle calls independent
of n [32]. Pegasos can also be used with kernels by expressing the model w as a
linear combination of kernel computations, however the model grows by one kernel
computation and structure yt every iteration.

Choosing a good joint feature map is essential to linear models. Often, we fac-
torize φ(x, y) =

∑
σ∈y

φ(x, σ). However, it can be useful to define mappings for larger

subsets or cliques of symbols, which, unfortunately, makes the inference problem
harder. Weiss and Taskar [63] propose an algorithm that iteratively solves the in-
ference problem for clique-factorized feature maps by using increasingly complex
factorizations. We could think about output kernels that also compare larger sub-
sets of symbols and use a similar scheme to solve the resulting pre-image problem.

5.2 Kernel-Based Methods

In this section we will see three different methods for Structured Output Prediction
that involve kernels.

5.2.1 Kernel Dependency Estimation

Weston et al. [65] propose kernel dependency estimation (KDE) for structured
output learning with kernels. Given a set of input output pairs (xi, yi) ∈ X ×Y, they
choose an input kernel kX (·, ·) : X×X → R and an output kernel kY(·, ·) : Y×Y → R.
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As shown in Chapter 3 the kernels kX , kY implicitly map into Hilbert spaces HX
and HY respectively. They propose to learn a function f : X → Y that best fits the
given training data by decomposing it into functions g : X → HY and φ−1

Y : HY → Y
as illustrated in Figure 5.1.

To learn a prediction function g : X → HY , they first map the given output
structures y into the Hilbert space Hl. Weston et al. propose to apply kernel-
PCA for this problem [65], which yields real-valued coefficients for all principal
components of only implicitly known spaceHY . Then they can learn a mapping from
X to the principal components of HY that best fits the given training data using
the kernel kX and techniques for real-valued regression like kernel-ridge-regression
or Support Vector Regression. Cortes et al. [11] solve both steps in one by directly
learning a linear mapping g(x) =WφX (x) from X to HY using the kernels kX and
kY . They propose to learn W using kernel ridge regression, i.e. solving

arg min
W

∑
i

||WφX (xi)− φY(yi)||22 + γ||W||2F

where γ > 0 is a regularization coefficient. The optimization problem has a closed
form solution

W∗ = MY(K + γI)−1MT
X

where Kij = kX (xi, xj), MX = [φX (x1), ..., φX (xn)] and MY = [φY(y1), ..., φY(yn)].

When we have learned a function g : X → Hl and want to perform a prediction
for a given x ∈ X we have to find an y ∈ Y whose feature map φl(y) best fits the
computed feature map g(x). This problem is another instance of the Pre-Image
problem introduced in Section 4.2.3:

arg min
y∈Y
||φY(y)− g(x)||22.

X Y

HX HY

f

φX g
φY φ−1

Y

Figure 5.1: The kernel dependency estimation framework
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When g(x) =WφX (x) and W is learned using kernel ridge regression, the problem
can be rewritten using only kernel computations

arg min
y∈Y

= kY(y, y)− 2LTy (K + γI)−1Kx

where [Ly]i = kY(y, yi) and [Kx]i = kX (x, xi).
Similar to my proposed approach in Chapter 4 we can choose kX to be an ar-

bitrary kernel, but kY has to be a kernel for which the pre-image problem can be
solved. The pre-image problem differs from the problem in Section 4.2.3 because of
the term kY(y, y) which is not present in the Structural SVM. As discussed in Sec-
tion 4.3 we thus cannot directly use Atomic output kernels. There are two possible
solutions: Either we assume k(y, y) to be constant and omit the term or we adapt
the pre-image problem solvers to the modified problem.

5.2.2 Joint Kernel Support Estimation

Lampert and Blaschko [33] propose a generative model for Structured Output Pre-
diction based on Joint kernels k : (X ×Y)× (X ×Y)→ R. They model probabilities
of an output y appearing with an input x as

p(x, y) = 1
Z
e〈w,φ(x,y)〉

where Z is a normalizing constant. We predict by selecting

ŷ(x) = arg max
y∈Y(x)

p(x, y).

Instead of using the explicit feature map φ(x, y) they propose to use a joint kernel
as presented in Section 4.2.1. The authors demonstrate that the model becomes

ŷ(x) = arg max
y∈Y(x)

n∑
i=1

αik
(
(x, y), (x′, y′)

)
thus when we use a tensor kernel with Atomic Output kernel as proposed in Sec-
tions 4.2.1 and 4.2.2 the inference problem is a pre-image as discussed in Sec-
tion 4.2.3.

The authors show that αi ∈ R can be trained using the one-class Support Vec-
tor Machine. This implies that we do not have to solve inference problems ŷ(xi)
during training, but work solely on the data in the training set, which is a huge
benefit in terms of runtime. In comparison, approaches based on Structural SVMs
have to solve n separation oracle problems maxy〈w, φ(x, y)〉+L(y, y′) in every iter-
ation, which is computationally expensive. However, experiments by Lampert and
Blaschko demonstrate that for tasks other than object localization using RBF-kernels
the model cannot compete with Structured SVMs [33].
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5.2.3 Multiple Kernel Learning

Martins et al. [36, 35] presented an approach for Structured Prediction based
on Multiple Kernel Learning (MKL). For a number M of different feature maps
φi(x, y), i = 1, ...,M , we perform inference by minimizing

ŷ(x) = arg min
y∈Y(x)

M∑
i=1
〈wi, φi(x, y)〉

for the model w = [wT1 , ..., wM1 ]T . We want to learn the model w by minimizing the
regularized empirical risk functional

min
w
λΩ(w) + 1

n
L(xi, yi;w)

where the loss function is the structured soft margin introduced in Section 2.2.1 and

Ω(w) =
M∑
i=1
||wi||22

is a block-structured regularizer, which promotes sparsity in the number of feature
maps φi used in the final model. If we choose M = 1, the optimization problem
is equivalent to the problem presented in Chapter 2. Thus we can view the MKL-
approach as another way of solving the training optimization problem.

The authors give an online proximal algorithm that optimizes the regularized
empirical risk function. Online proximal algorithms optimize the objective functional
by repeating two steps for a specified number of epochs for each example of the
training data: First, they take a stochastic subgradient descent step according to
the subgradient ∂L(xi, yi;w) of the loss function for the example (xi, yi) considered.
As discussed in Section 2.2.2 this requires a computation of the separation oracle.
Then they take a proximinal step proxΩ(w) = arg minw′ 1

2 ||w − w
′||22 + Ω(w′) that

applies regularization.
Martins et al. present variants that work for explicit feature maps and for

implicit feature maps based on M different joint kernels. The kernelized variant
has to remember all results to the separation oracle performed during execution of
the algorithm as the model w becomes a linear combination of kernel computations
similar to the case of kernelized Structural SVMs. Thus each iteration, one has to
store one additional structure.

We can directly apply the joint tensor kernel introduced in Sections 4.2.1 and 4.2.2.
If we have identified a set of suitable input kernels and a set of suitable Atomic out-
put kernels via a set of different hash functions, we can directly optimize over M
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different joint kernels. The regularization penalizes the selection of unnecessary ker-
nel functions which yields more compact and efficient models than a model based
on all M kernels.

5.3 Structured Prediction – a Search Problem

Daumé et al. [13] propose a totally different approach of Structured Output Learning
where we model the inference problem as a search problem in the space of (partial)
output structures and guide this search using a machine-learned model.

First one has to define a search space S where each state s ∈ S is either a terminal
state or it has a number of successor states succ : S → P(S). Each successor is
associated with an action a that transitions a state to the respective successor. Every
search space has an initial state denoted by ∅. The authors distinguish between two
kinds of search spaces: concrete search spaces are defined directly over the alphabet
of the discrete output space Σ such that S = P(Σ), while abstract search spaces are
defined independently of Σ and apply a function f : S → Y to obtain the prediction.
In case of concrete search spaces we just define f(y) = y and use the same notation
for both cases. Obviously for concrete spaces, the actions correspond to selections
of atomic symbols σ ∈ Σ and all states s ∈ Y ⊆ P(Σ) are terminal.

We assume that for each y ∈ Y(x) there is a way to obtain a sequence of actions
a1, ..., aT or equivalently a sequence of states s0, ..., sT that, starting from the initial
state s0 = ∅ describe a transition into the state f−1(y).

For prediction we assume that we have a model, that given the input x and
a non-terminal state s ∈ S picks an action or successor state. Then we perform
inference by performing a greedy search that, starting at ∅, queries the model for
the next action and takes that action until we end up in a terminal state. We denote
the result of this greedy search by g(x) ∈ S and predict by returning ŷ(x) = f(g(x)).

Now I will briefly present a simple algorithm for learning the model that guides
the greedy search.

The exact Imitation Learning approach learns a model that tries to imitate the
actions needed to produce the training data (x1, y1), ..., (xn, yn) exactly [14]. For
each example (xi, yi) we take the sequence of actions a1, ..., aTi that constructs the
output yi. For each aj of this sequence, we create classification examples based on a
feature vector φ(xi, a1, ..., aj−1) and the action aj which takes the role of the label.
We collect these examples (φ(xi, a1, ..., aj−1), aj) for each example i and each action
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j and train a classifier based on this labeled data. Then we can use this classifier to
guide the search g(x) and hence to predict ŷ(x) = f(g(x)).

Models trained in this fashion have one shortcoming: As they are only trained on
optimal outputs, they cannot necessarily recover from wrong decision in early states
of the prediction, since there is no training data for states that contain errors. Thus
more advances approaches interleave policy execution and learning [51, 62, 13]. One
example for an algorithm is SEARN proposed by Daumé et al. [13]; I will describe
only the essential idea. For each example xi, yi we generate a prediction ŷ(x) that
is based on a sequence of states s0, ..., sT . For each state sj we can compute the
loss that results in taking an action a and then continuing the prediction according
to the current prediction model; we denote this loss by la. We generate a training
example

(φ(xi, s0, ..., sj), arg min
a
la)

and use these training examples to train a classifier that guides the search. This
process is repeated for a specified number of iterations. This way we learn a model
that is not just based on the transitions observed in the data, but also on wrong
transitions that are evaluated by a general loss function.

More advanced methods apply more complex search strategies than greedy search
and apply ranking models to choose between a number of terminal states, similar
to the idea described by Collins and Duffy [8]. One idea by Doppa et al. [14] is
to create another search space of complete outputs. The initial state is the output
by a search-based structured prediction algorithm. The succeeding states of a state
s result from changing one decision in the search process that lead to the output
f(s). We can guide the search in this second search space of complete outputs with
another machine-learned model presented by Doppa et al. [14].

5.4 Other Non-Linear Models

Currently non-linear models like Neural Networks or Deep Neural Networks are
very popular. Their design allows them to combine features in a non-linear matter
and thus generate new features in a data-driven approach. One can also apply
these networks to structured prediction. Neural Networks are mostly engineered
to solve specific structured learning tasks like object detection or sequence tagging.
Pei et al. [47] present an approach that solves the same large-margin empirical
loss minimization problem as introduced in Section 2.2.1, however instead of using
a linear score 〈w, φ(x, y)〉 they propose to use a score function computed by an
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Neural Network. They assume that the score is factorized according to the atomic
components

score(x, y) =
∑
σ∈y

NN(x, σ)

where NN(x, σ) is a value computed by the Neural Network. Thus inference

ŷ(x) = arg max
y∈Y(x)

∑
σ∈y

NN(x, σ)

can be done using the same construction algorithms as in the linear or kernelized
models, the only difference being that the sufficient weights are not computed by a
Neural Network. The network can be trained by stochastic gradient descent using
Back Propagation.

We see that methods for Structured Predictions vary mostly on two fronts: How
inference is performed – exact or by greedy search – and what function determines
the compatibility of an input and an output – a linear, kernelized or neural network
function.



6 | A Study on
Dependency Parsing

In this chapter, I will investigate the use of explicit and implicit features for Struc-
tured Output Prediction for a particular prediction problem that arises in Natural
Language Processing: Dependency Parsing. First, I will introduce the task as a
Structured Prediction problem using the definitions from Chapter 2. Then I will
briefly present related work on Dependency Parsing. I will learn a prediction model
based on explicit features designed by domain experts McDonald et al. [39] and the
Structural SVM presented in Chapter 2. Then, I will learn another prediction model
using implicit features utilizing the Kernelized Structural SVM and an atomic out-
put kernel as presented in Chapter 4. I will present experiments on parsing German
newspaper text using both models.

6.1 Dependency Parsing and Related Work

In this section the Structured Output learning task of Dependency Parser Training
will be introduces. I will show different methods to solve the tasks and relate them
to the methods presented in Chapters 2 and 5.

6.1.1 The Task

Dependency parsing is a method of automatic syntactic analysis of natural language
based on ideas from traditional dependency grammars that have a long history
in theoretical linguistics. Dependency Parsing is popular in the natural language
community, e.g., for information extraction or machine translation, because it helps
uncovering predicate-argument structure within sentences [30].

In dependency parsing, we model the syntactic structure of a sentence by binary
relations between the words of a sentence. Dependency relations hold between the
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Seit einer Woche legen Eisenbahner den Schienenverkehr lahm .

DET
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Figure 6.1: Example dependency tree from the TüBa-D/Z tree bank.

dependent and the word which it depends on, the head. Each relation has a depen-
dency type. We model head-dependent dependencies as labeled, directed edges in a
tree, as you can see in Figure 6.1 [30]. Take for instance the German language: Foth
proposed a dependency grammar that relies on 34 different syntactical dependency
types [17]. He groups the dependency types into two categories: complementary and
modifying: Complementary dependents are all words who appear frequently with
their respective head. This group includes subjects, objects, determiners, auxiliary
verbs, etc. Modifying dependents are all other relations, including adverbial modi-
fiers, attributes, etc. Modifying dependents are never mandatory. Foth also provides
annotation guidelines that formally specify how to annotate a sentence with depen-
dency relations. He claims that almost all structures that occur frequently in the
German language can be modeled by this dependency grammar.

A common restriction of the set of valid dependency trees is the restriction to
the class of projective dependency trees: A dependency tree is projective, if for
each edge (h, d) there is a path from h to each token between h and d. Intuitively
this means that we can draw the edges annotating the sentence without crossings.
From a linguistic view point, projectivity is an invalid restriction, as many languages
require non-projective dependency trees for accurate syntax analysis. However, for
instance for the English, non-projective constructions appear with little frequency
[30].

The problem we want to solve in this study and in Dependency Parsing in general
is: Given a sentence or sequence of tokens, compute the best fitting dependency parse
tree for that sequence. Usually dependency parsing is performed after other layers
of annotation have already been added. Particularly, part-of-speech (POS) tags are
assumed to be available for each token. Furthermore, we assume that for each token
the corresponding lemma, i.e. the corresponding canonical form, is available. Thus
we can define the input space of annotated token sequences by a set of discrete
structures. The following definition extends Example 2.1.1.
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Definition 6.1.1 The set of all annotated token sequences is set of discrete struc-
tures Xseq ⊆ P(Σ) with Σ := N ×T ×P ×L where T is the dictionary of tokens,
P is the set of part-of-speech tags and L is the dictionary of lemmas if

x ∈ Xseq ⇔ ∀i = 1, ..., |x| ∃ t ∈ T ∃ p ∈ P ∃ l ∈ L s.t. (i, t, p, l) ∈ x.

Now we can formally define the set of discrete output structures of (unlabeled)
dependency parse trees, that adds another layer of annotation on the syntactical
structure of annotated token sequences.

Definition 6.1.2 Given a set of annotated input sequences Xseq the discrete output
structure set of unlabeled dependency trees Ydep is constructed by an alphabet of
edges e ∈ (N× N) such that

Ydep ⊆ (P(N× N)×X ).

A structure (E, x) ∈ (P(N × N) × Xseq) is an unlabeled dependency tree for an
input sequence x ∈ Xseq if and only if the set of edges E describes a spanning
arborescence with nodes {0, ..., |x|} where the node 0 corresponds to the root of
the arborescence and the nodes 1, ..., |x| correspond to the annotated tokens of
the input sequence x.

6.1.2 Existing Approaches and Related Work

In this section we will see a brief overview of the work on Dependency Parsing.

Traditional methods for building parser f : Xseq → Ydep rely on hand-crafted
grammars. That can be either context-free grammars, so that one can parse using
the CYK-algorithm briefly mentioned in Section 2.3.2 or constraint grammars that
model parsing as a constraint-satisfaction problem [30].

Recent approaches apply Machine Learning to automatically train parsers from
annotated training data, so-called dependency-treebanks. Kübler et al. [30] identify
two classes of data-driven dependency parser learners, transition- and graph-based.

In transition-based parsing, we incrementally build parse trees and use machine
learning to determine the next parser decision, as presented in Section 5.3. The
most popular model employs a shift-reduce parser that sequentially constructs a
parse tree. Starting with a sequence n partial trees that contain only one token, the
parser always considers a window two neighboring partial trees, starting with the
left-most pair. It can take one of three possible actions: SHIFT shifts the window
one step to the right. LEFT connects the right tree of the window to the root of
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the left tree. Analogously, RIGHT connects the left tree to the root of the right
tree. After connecting the trees, the window is extended to the left such that the
new tree is on the right position. Yamada and Matsumoto [67] propose to use
Support Vector Machines to decide which action to take given the current state of
the parsing algorithm. Thus the features used for predicting contain information
about the neighboring tree fragments, including tokens and POS-tags. Chen and
Manning [4] propose to use Neural Networks.

In graph-based parsing, we assign scores to possible parse-trees and parse by
selecting the output parse tree with the highest score. We can define the score of a
parse-tree y for a sentence x as a linear function of features for the parse-tree. This
coincides with the general ideas of Structural SVMs seen in chapter 2. Naturally,
the question is how we define the feature map for a parse tree.

McDonald et al. propose to factor the feature map of a full parse tree into a sum
of edge features[39]

φ(x, y) =
∑
σ∈y

φ(x, σ)

and show that then the problem of predicting the best unlabeled parse tree becomes
a Maximum Spanning Tree problem [42] that can be solved in polynomial time[6,
15, 56]. We will look into this idea in greater detail in the following sections.

Later research has focused on more complex ways of factoring the feature map.
McDonald and Pereira [41] propose to factor the feature map into a sum of features
for pairs or neighboring edges. Two edges (i, j), (i′, j′) of a parse tree are neighboring
if i = i′ and j + 1 = j′. Thus they decompose

φ(x, y) =
∑

(i,j)∈y and (i,j+1)∈y
φ(x, (i, j), (i, j + 1)).

They call this decomposition a second order factorization and show that inference is
feasible for projective parsing using Eisner’s algorithm [16]. Also, they show if the
feature map is decomposed into sums of features of m neighboring edges, a m-th
order factorization, an adapted version of Eisner’s algorithm that runs in O(nm)
can be used. However, for non-projective second-order parsing exact inference is
NP-hard. Thus, they propose an approximative algorithm that runs in O(n3).

Koo and Collins [29] propose a number of different factorizations that include
up to three edges. Possible factorizations can score dependencies (i, j), siblings
(i, j), (i, j + 1), as mentioned above, tri-siblings (i, j), (i, j + 1), (i, j + 2), grand-
children (i, j), (j, k), grand-siblings (i, j), (j, k), (j, k + 1). They show that inference
for factorizations over parts of three edges for projective parsing can be done in
O(n4) runtime.
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Martins et al. [37] demonstrate that the inference problem of dependency parsing
can be reformulated as an Integer Linear Program. This allows us to define linear
cost functions that can score arbitrary subsets of edges, including but not limited
to the factorizations introduced above. This approach is not limited to projective
parsing, however solving ILPs is known to be NP-hard. Still solvers are available
that are able to find good solutions to the inference problem, as demonstrated in
the experiments performed by Martins et al. [37].

Furthermore one should mention the work of Bonet [1], who tries to make parser
learning more efficient by reducing the size of the feature maps computed. He
proposes to use a hash kernel that hashes the features into a smaller number of
buckets. Thus the model becomes smaller, inference is faster and thus training is
faster, too.

6.1.3 The Experiments

The experiments and comparisons presented in this chapter all rely on training data
from the TüBa-D/Z treebank [58]. It contains 65,524 sentences annotated with
dependency relations. The sentences are taken from German newspaper articles
published in the ‘taz’ newspaper. The average length of sentences in the treebank
is 17.8 words and the total number of tokens is to 1,164,766. While it is originally
annotated using a constituency grammar, it was converted to dependency grammar
annotation using the annotation guidelines by Foth [17].

The loss function used in all experiments and comparisons will be the unlabeled
attachment score (UAS), i.e., the fraction of tokens that have been assigned the
wrong head, as my study will only be on unlabeled dependency parsing. McDonald
et al. have shown that the dependency labels can be added in a second step using
an additional classifier [40], thus I will not focus on that.

All experiments rely on my own implementation of Algorithms 2 and 3, for more
details see Appendix B. As this implementation was developed during the course of
this thesis, not all experiments were performed with the final version of the software,
but with earlier, work-in-progress versions. I believe that all results are still valid,
meaningful and comparable, as later modifications of the software mostly addressed
performance issues.

For the Chu-Liu/Edmonds algorithm, I gratefully use a publicly available Java
implementation by Sam Thomson1.

1https://github.com/sammthomson/ChuLiuEdmonds

https://github.com/sammthomson/ChuLiuEdmonds
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6.2 Dependency Parsing with Explicit Features

In this section I present my results for Dependency Parsing with explicit features
based on Structural SVMs. The results presented here are based on McDonald’s
work [42, 40, 38].

6.2.1 Explicit Feature Map

McDonald et al. [42, 40, 38] propose to factor the feature map of a pair of token
sequence and dependency parse tree into a sum of edge features:

φ(x, y) =
∑
σ∈y

φ(x, σ).

They define binary edge features for an edge (h, d) ∈ N2 based on a number of
different templates:

• Head-Features: For each possible token, PoS-tag and lemma, we use one
feature that indicates if the head of the edge has that particular token, PoS-
tag or lemma. Additionally, we use features for the combinations of token and
PosTag, as well as lemma and PoS-tag.

• Dependent-Features: Defined analogously for the dependent

• Head-Dependent-Features: We have one feature that indicates that head
and dependent have a particular pair of tokens. Analogously, features for PoS-
tags and lemmas are defined. Additionally, we use features for pairs of pairs
of tokens and PoS-tags, and lemmas and PoS-tags.

• In-Between-Features: For the PoS-tags of head and dependent, we have
one feature for each possible PoS-tag that indicates how often that PoS-tag
appears in between the PoS-tags of the head and the dependent.

• Neighbor-Features: Similar to the In-Between-Features, we use features
that indicate the PoS-tags for the left and right neighbors of head and depen-
dent, respectively.

In Figure 6.2 we see an example of the edge features defined by these templates.
Additionally, we extend each of these feature templates with the so-called attachment
distance, i.e., the distance between head and dependent in the input sequence. For
instance, we have a feature that is set to 1 if head and token have a particular pair of
tokens and the distance of head and dependent in the sentence is k tokens. Negative
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Er erzählt die unendlich lange Geschichte Frankreichs
PP V DET ADV ADJ N NN

(a) Input sequence and Dependency Arc

DT:die
DP:DET
DL:der|die|das
DTP:die:DET
(b) Dependent-Features

HT:Geschichte
HP:N
HL:Geschichte
HTP:Geschichte:N

(c) Head-Features

DHT:die:Geschichte
DHP:DET:N
DHL:der|die|das:Geschichte
DHTP:die:DET:Geschichte:N
DHLP:der|die|das:DET:Geschichte:N

(d) Head-Dependent-Features

DRHL-P:DET:ADV:N:ADJ
DRHR-P:DET:ADV:N:NN
DLHR-P:DET:V:N:NN
DLHL-P:DET:V:N:ADJ

(e) Neighbor-Features

DBHP:DET:ADV:N
DBHP:DET:ADJ:N
(f) In-Between-Features

Figure 6.2: An example token sequence with dependency edge (a) and the features resulting
from the templates presented in this section (b)-(f).

distances indicate that the dependent stands left of the head in the input sequence.
We discretize the possible distance into seven categories: 1, 2, 3, 4, 5, > 5, > 10, as
higher distance are less common and thus aggregation for distances greater 5 gives
us more reliable estimates for the weights.

6.2.2 Inference

Now that we have seen how to define a feature map φ(x, y), we have to think about
an efficient inference algorithm for solving

arg max
y∈Ydep(x)

〈w, φ(x, y)〉.

Plugging in the definition of φ we see that

arg max
y∈Ydep(x)

〈w, φ(x, y)〉 = arg max
y∈Ydep(x)

∑
e∈y
〈w, φ(x, e)〉

= arg max
λ

∑
e∈Σ

λe · 〈w, φ(x, e)〉

s.t. {e | λe = 1} ∈ Ydep and λe ∈ {0, 1}

where λe are binary decision variables that indicate, whether an edge in the full
graph e is selected in the output or not. We know that a parse tree is a con-
nected, cycle-free graph. We know further, that the tree is rooted in the artificial
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root node. Thus our algorithm needs to construct a directed tree, that is rooted in
the root-node and spans all tokens. Consequently, we have identified our inference
problem to be a Maximum Spanning Tree (MST) problem in a directed, weighted
graph [42]. The weights we for an edge e in the complete graphs are defined ac-
cording to we := 〈w, φ(x,w)〉. In order to solve the MST problem, we rely on
Chu-Liu/Edmonds’ algorithm [6, 15]. See [42] for pseudo-code and an example ap-
plication of the algorithm. Tarjan proposed an efficient implementation that returns
the maximum spanning tree in a complete graph in O(n2) runtime, where n is the
number of nodes [56].

6.2.3 Model Training using MIRA

McDonald et al. propose to learn the model w using a modified Margin Infused
Relaxed Algorithm (MIRA) [12] that is closely related to the Structural Perceptron.
It estimates w in an online fashion, i.e. it changes w according to one training
example (x, y) at a time. Starting with an initial choice of w0, it considers an
example (xt, yt) and updates wi+1, such that the change

||wi+1 − wi||22

is minimized subject to correctly parsing xt with a margin at least as great as the
loss of the best prediction ŷt = arg maxy′∈Ydep(xt)〈wi, φ(xt, yt)〉 performed with the
old weights wi. Thus each iteration it has to solve the following Quadratic Program:

min
wi+1
||wi+1 − wi||22

s.t. 〈w, φ(xt, yt)− φ(x, ŷt)〉 ≥ L(yt, ŷt)
(6.1)

Finally, it sets w to be the average of all wi. It has been empirically shown that this
averaging reduces overfitting [39].

6.2.4 Model Training using Structural SVMs

I propose to use the Structural SVM instead, as it offers more control over the
generalization performance via setting C. In order to apply Structural Support
Vector Machines, we have to also provide an algorithm for solving the separation
oracle problem

arg max
y′∈Ydep(x)

〈w, φ(x, y′)〉+ L(y, y′)

for the unlabeled attachment score loss function L(y, y′). Luckily, the UAS Loss is
equivalent to the loss function proposed in Chapter 4 given two parse trees, thus



Chapter 6. A Study on Dependency Parsing 63

C Train Error Test Error ∆
0.1 15.67% 15.92% 0.25%
1 9.44% 9.73% 0.29%
10 7.43% 8.01% 0.48%
100 5.27% 6.32% 1.05%
200 3.48% 5.04% 1.56%

Table 6.1: Empirical loss for different values of C. Training and testing were performed
using 50% of the data respectively. ∆ is the difference of train and test error.

we know that we can apply the same MST algorithm for solving the separation
oracle problem. The only difference is, that now the edge weights we are defined,
analogously to equation (4.21), as

we := 〈w, φ(x, e)〉+ 1
|x|
· 1{e 6∈y}

This definition holds, because both φ and the loss function decompose over the edges
e ∈ y′.

I train the model on 50% of the TüBa-D/Z treebank, which amounts to more
than 37,000 training instances and test on the remaining 50%. I set ε := 0.05 and
analyze the train and test loss for different values of C. From the features described
above I use those that occur more than 5 times. This amounts to a dimensionality of
541,968 different features. Without this pruning step, it would amount to 7,150,021
different features.

In Table 6.6 we see the parsing results using the Structural SVM. The value
reported is the Unlabeled Attachment Score. We see that models trained with
higher values of C perform better both in training and testing. When C increases,
the gap between train and test loss increases. The best test error achieved is 5.04%.

6.3 Dependency Parsing with Implicit Features

In the section before, we have seen that we can train accurate dependency parsers
based on explicit features handcrafted by domain experts. In particular, we have
used 541,968 features based on 60 different templates. In this section I will in-
vestigate the hypothesis that we can train accurate dependency parsers based on
implicit features as proposed in Chapter 4. In order to do run Algorithm 3, we have
to specify a hash function for the atomic kernel, pick an input kernel and then spec-
ify a construction algorithm that builds an output structure based on the sufficient
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weights predicted by the model. We can view the first two choices as parameters of
the algorithm; I will perform a parameter optimization on a small development set
and then validate the parameters on the full data. The hash function will be the
only component of the model that is truly handcrafted to the task. But for the input
kernel, I will rely on available and well-tried kernel functions for token sequences or
strings.

As for the construction algorithm, we can again use the Maximum Spanning
Tree algorithm by Chi-Liu/Edmonds: The alphabet models edges in a graph, we
are provided with sufficient weights for all the edges of the full graph and we know
that the output has to be a directed tree that connects all the tokens. The main
difference in using implicit features is that the sufficient weights are the result of the
kernel computations according to Equation (4.20) on page 38, not of linear products
of a weight vector and a vector of edge features as in section 6.2. Section 6.3.4
also investigates the use of an approximate construction algorithm instead of the
Chi-Liu/Edmonds algorithm.

6.3.1 Picking a Hash Function

We begin by selecting a hash function h : Σ×Xseq. I use a small development set of
10,000 examples, 5,000 for training and 5,000 for testing, to test the usefulness of a
set of candidate hash functions. To keep these comparisons as simple as possible, I
will use no input kernel, i.e., k(x, x′) = 1 ∀x, x′. Thus we will see how appropriate
the pure atomic output kernel is for predicting dependency parse trees.

The hash function has to be capable of comparing two edges e and e′ in two trees
y and y′. Different views of similarity are possible here:

• Tokens: Two edges are equal if the tokens at their respective head and de-
pendent match.

• Lemmas: Two edges are equal if the lemmas at their respective head and
dependent match.

• POS Tags: Two edges are equal if the POS tags at their respective head and
dependent match. Note that there are two sets of POS tags available, a coarse
set (PosTag) and a fine-grained set (PosTag2).

• Neural Word Embeddings: Mikolov et al. [44] recently presented a Neural
Network based approach to project words into Euclidean vector spaces in a
way that captures word similarities or analogies [3]. I cluster these so-called
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Figure 6.3: A comparison for different hash functions. On the left we see the hash functions
not using the attachment distance, on the right we see hash functions using the attachment
distance. Points mark the train and test loss of a model for a particular C. Filled points
indicate the best model I was able to find by optimizing C. This Figure is based on Table 6.2
and Table 6.3.

word-embeddings into around 1250 clusters of similar words using k-Means.
Now two edges are equal if the tokens of their respective head and dependent
fall into the same cluster.

From the experiments with explicit feature we know that the attachment direction
and distance between two tokens and the direction of the edges are important fea-
tures for parsing. Thus for each of the hash functions h presented above I propose
another hash function that only matches two edges e, e′ for sequences x, x′ if the dis-
tance of the tokens and the direction of the edge are the same and h(e, x) = h(e′, x′).

For each candidate hash function, I run a small grid search over increasing values
for C, until the training loss does not improve any longer. In Figure 6.3 we see, that
overall, hash functions that incorporate the distance between head and dependent
perform better. Furthermore, the only two hash functions that achieve a decent test
error are based on POS tags using the distance of head and dependent. What is
particularly notable is that both the hash function using the PosTag and PosTag2
achieve perfect generalization, i.e. the training loss is the same as the test loss.
Unfortunately this comes at the cost of not being able to model the data very well;
the smallest train error we can achieve with PosTag and PosTag2 is 17.91% and
14.72% respectively. (c.f. Table 6.3). In comparison a hash function based on
tokens and the distance of head and dependent can fit the data nearly perfectly
with a training loss of 3.40%. Of course such a hash function does not generalize
well, the test loss is 34.74%, more than 10 times the training loss.

Using PosTag2 instead of PosTag results not only in less test error, but also in a
faster runtime. The reason is that PosTag2 has more different possible tags and thus
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C = 0.1 C = 1 C = 10
Hash Function h train test train test train test

tokens 27.82% 48.79% 21.89% 45.85% 18.61% 43.76%
tokens::dir 5.56% 36.65% 3.79% 35.40% 3.40% 34.74%

lemmas 32.94% 50.15% 33.18% 51.90% 22.39% 45.05%
lemmas::dir 7.99% 35.84% 5.23% 33.84% 4.33% 33.10%

posTags 72.37% 71.57% 68.58% 67.87% 69.36% 68.70%
posTags::dir 22.87% 22.58% 21.65% 21.22% 19.07% 18.80%

posTags2 69.96% 69.03% 60.04% 59.26% 61.16% 60.32%
posTags2::dir 22.08% 21.71% 19.01% 18.84% 16.44% 16.39%

wordVecs 71.86% 75.41% 71.47% 76.71% 71.14% 76.77%
wordVecs::dir 45.01% 53.23% 36.31% 47.32% 36.23% 48.15%

Table 6.2: A comparison of empirical losses achieved with different hash functions h for
different C using no input kernel. Training and testing was performed using 5,000 samples,
respectively.

the resulting feature vectors are more sparse. Hence the optimizations presented in
section 4.4.2 are more effective.

I conclude that a hash function based on the PosTag2 and the distance between
head and dependent is the best choice for dependency parsing. I conjecture that
using a joint kernel for a suitable choice of input kernel will overcome the shortcoming
that the output kernel cannot adapt to the data more closely.

6.3.2 Picking an Input Kernel

After selecting a suitable hash function, we have to select an input kernel for our
joint tensor kernel. I want to consider only kernels that are widely used and are not
tailored specifically to the task of dependency parsing. I came up with the following
selection of kernels for token sequences or strings.

• Bag-of-Words Kernel: Joachims has shown that the Bag-of-Word kernel
performs great for text classification [25]. It creates a vector with the number
of occurrences of each token for both token sequences x and x′ respectively.
Then it takes the linear dot product of these bag-of-words vectors:

kbow(x, x′) = 〈bow(x), bow(x′)〉.
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C = 50 C = 100 C = 200
Hash Function h train test train test train test

posTags 71.48% 70.78% 70.27% 69.66%
posTags::dir 18.45% 18.29% 17.91% 17.69% 18.32% 18.04%

posTags2 63.34% 62.68% 63.77% 62.92%
posTags2::dir 15.32% 15.46% 14.72% 14.79% 14.96% 15.09%

Table 6.3: A comparison of empirical losses achieved with PosTag based hash functions h
higher values of C using no input kernel. Training and testing was performed using 5,000
samples, respectively.

Obviously, it does not give us any benefits to use this kernel as a “black
box” rather than using the explicit feature vectors bow(x) and a linear kernel.
On the contrary we have seen in Chapter 4 that this decreases the efficiency
massively since some computations are no longer linear but quadratic in the
number of training examples.

A joint kernel using the bag-of-words input-kernel and the Atomic output-
kernel discussed in the last section seems appropriate in the context of depen-
dency parsing: Some edges will be more likely when particular tokens occur
in the input. We implicitly have features for each combination of occurring
token and occurring edge hashed according to the respective PoS-tags.

• Polynomial Bag-of-Words Kernel: We have seen in Chapter 3 that a
polynomial kernel of degree d has implicit features for all combinations or
products of d features. While the implicit feature space grows exponentially
with d, but the expense of the kernel computation does not grow. Thus a
polynomial bag-of-words kernel

k
(d)
poly(x, x

′) = (kbow(x, x′) + 1)d

can match subsets of words that occur in both inputs x and x′ and the com-
putation cost is independent of d.

In the context of dependency parsing, I suspect that the polynomial kernel of
degree d ≥ 2 is more powerful than d = 1. We can now use implicit features
that combine subsets of tokens with edge features.

• N-Gram Kernel: We can apply the n-Gram kernel proposed by Lodhi et
al. [34] presented in Chapter 3. It matches subsequences up to a specified
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length l while also allowing inexact matching via a specified discount factor
λ ∈ [0, 1]. It can be computed in a Dynamic Programming fashion and I rely
on the Mallet2 implementation available online. Using the n-Gram kernel in a
joint kernel creates dependencies between substrings of the input and edges in
the output. This way particular phrases can be used as evidence for particular
edges.

• N-Gram Kernel for Annotated Sequences: The n-Gram Kernel matches
only the tokens of the input, however we have more layers of annotations
available. I propose to modify the n-Gram kernel in a fashion that also matches
PoS-tags and lemmas.

Now I compare the prediction performance for four different input kernels: The
Bag-of-Words kernel, the polynomial Bag-of-Words kernel of degree d = 2, the N-
Gram Kernel and the N-Gram Kernel modified for Annotated Sequences. Both
N-Gram kernels have the maximum length of matched sequences set to 6 and use
the default decay factor λ = 0.5 provided by the Mallet implementation used for
these experiments.

I use the same development set as in the section above. The model is optimized
for increasing values of C, until the training error does not improve anymore. The
cutting plane optimization threshold is set as ε = 0.05. In Figure 6.4 we see the
results of this comparison: For different hash functions, the train/test error of differ-
ent models is plotted against the model complexity, i.e. the regularizing term ||w||22.
The small numbers indicate which value of C was used for a particular model.

First of all, we notice that using an input kernel improves the prediction in
comparison to using solely the output kernel. Also, we see that the test loss is
always higher than the train loss. I attribute this to overfitting. However, it is not
particularly dangerous, as both train and test loss are monotonically decreasing.
The test error converges at some point, but does not increase again. Thus in the
context of dependency parsing, a high model complexity is not necessarily a bad
thing. Apparently, a more complex model memorizes more edges, that appeared in
the training data and can benefit from a small fraction of these memorized facts
when applied to new, unseen data. Still, for completely unseen inputs, where none
of these apply, it can still use more general features. Thus, we should generally use
high values for C. However, Joachims et al. show that the number of iterations

2http://mallet.cs.umass.edu/

http://mallet.cs.umass.edu/


Chapter 6. A Study on Dependency Parsing 69

0 2 4 6 8 10 12

0.
00

0.
10

0.
20

||w||

Lo
ss

 in
 %

Train
Test

0.1

1
2

4
6 8 10

15 20
50 >100

(a) Bag-of-Words Kernel
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(c) Token Sequence N-Gram Kernel
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(d) Annotated Sequence N-Gram Kernel

Figure 6.4: Test/Train loss are plotted against the model complexity for different input
kernels. The horizontal dotted line shows the loss achieved using no input kernel. The
numbers next to the points indicate the value of C used for the respective model.

needed to converge depends linearly on C, thus models with higher complexity need
longer to train [26].

The best model for the Bag-of-Words input kernel achieves a train loss of 1.16%
and a test loss of 7.68%. This verifies the hypothesis that the tokens occurring
anywhere in the input sequence influence the local likelihood of edges in the output
tree.

The polynomial BoW input kernel peaks at a train loss of 0.98% and a test loss
of 8.04%. While this is a smaller train loss than the BoW kernel, the test loss is
higher and the gap between train and test loss is larger. The kernel uses pairs of
tokens as implicit features which allows to fit to the training data more closely. This
explains the danger to start overfitting.

Using an n-Gram kernel for token sequences results in a training loss of 1.07%
with a test loss of 7.73%. This validates our intuition, that the occurrence of certain
sub-sequences somewhere in the input gives evidence to the generation of edges.

When we use a modified n-Gram kernel that also compares the annotation layers
of the input, we get a training loss of 1.11% and test loss of 7.64%. We see that
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C Train Loss Test Loss ∆

10 15.72% 16.25% 0.53%
100 13.15% 14.34% 1.19%
500 8.53% 11.54% 3.01%
1000 4.92% 9.53% 4.61%

C Train Loss Test Loss ∆

0.1 11.71% 13.63% 2.92%
1 6.39% 10.17% 3.78%
10 2.04% 9.52% 7.50%

Table 6.4: Training and Testing the model on the Full Treebank, N-Gram Kernel on the
left, Polynomial BoW Kernel on the right

this is insignificantly better than using only the tokens. We should however note
that adding the necessary layers of annotations to new, unobserved sequences is
computationally expensive. Thus this small advantage comes at high cost.

This experiment suggests that implicit features defined by the input kernel in a
joint kernel make better, handcrafted features obsolete. In contrast to the explicit
features introduced above, which are defined locally on particular edges, the joint
kernel extends very simple local features specified on edges with complex, implicit
features defined globally, i.e. on the whole inputs. The input kernel allows us to use
implicit feature maps of arbitrary complexity; particularly the n-Gram kernel has
a feature space that is very high dimensional. In the next section, I will evaluate
its performance on a large treebank. To the best of my knowledge, the approach of
using complex, global features has never been used for dependency parsing.

6.3.3 Testing the Model on the Full Treebank

In this section I want to evaluate the performance of a parser based on joint tensor
kernels on the full TüBa-D/Z treebank. Of the four kernels discussed in the last
section, I choose the N-Gram kernel, as it is less expensive to compute than the
Annotated n-Gram kernel, and the Polynomial Bag-of-Words kernel, as it takes
greater advantage of the implicit feature map than the Bag-of-Words kernel. I use
a hash function based on the PoS2-tag and the attachment distance.

I train a parser on 50% of the TüBa-DZ treebank and test on the remaining
50%. As before, I set ε = 0.05 and test the performance for increasing values of C.
As we see in Table 6.4, both input kernels can achieve a test loss of around 9.5%.
The loss decrease with increasing values of C, as seen in earlier experiments. Thus
the results reported for the small development set of 10,000 examples carries over to
the full treebank. The test error is not as low as achieved on the development set,
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I believe that it may improve for higher values of C. However, training with higher
C is too time-demanding.

6.3.4 Approximate Reconstruction Algorithm

For inference and for finding the most-violated constraint we rely on the Chu-
Liu/Edmonds algorithm that finds the best tree structure that connects all tokens
with directed edges from the sufficient weights. In Section 4.2.3 I briefly mentioned
that it might be possible to use approximate construction algorithms, whenever no
efficient exact algorithm is at hand.

In this section, I want to evaluate the effects of using an approximate construction
algorithm. More specifically, I will use an algorithm, that for each token selects
the highest scored incoming edge. Thus each token has exactly one head, but the
resulting output structure is not necessarily a tree; it might not be connected and it
might contain cycles. Obviously this algorithm is not computationally challenging:
In the matrix of sufficient weights w(head,dependent), we have to find the largest entry
in each row.

For this experiment, I use a subset of 10k examples, 5k for training and 5k
for testing. I rely on the hash function using PoS2-tags and attachment distance
proposed above and a polynomial Bag-of-Words input kernel of degree 2. I set
ε = 0.05 and optimize C in a grid search, until the training error does not improve
anymore.

Interestingly, as we can see in Figure 6.5, the test loss suffers very little from this
approximation. Particularly for models with larger C, we gain only 0.21% less loss
by using an exact algorithm is, which is less than 3% better.

Next we check whether the predicted outputs are valid trees or not despite the
approximate algorithm. We achieve this by checking using depth-first search, if the
graph returned is connected and cycle-free. As we can see in Table 6.5, for larger
values of C, more than 92% of the outputs are valid tree structures.

In conclusion, I believe that approximate construction is a valid alternative to
exact construction. The proposed learner is capable of learning what valid out-
put structures are from the trees provided for training. Only in scenarios, where
the annotation layer of dependency grammar structure is used as input for a next
processing step that strictly relies on a valid tree structures, we have to use exact
construction.
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Figure 6.5: A comparison of exact construction and approximate construction.

C % of valid trees

0.001 93.99%
0.01 85.83%
0.1 91.50%
1.0 92.54%
2.0 92.59%
10.0 92.14%

Table 6.5: Percentage of valid tree structures for different C.
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6.3.5 Analyzing Efficiency Gains

In Section 4.4.2 I proposed optimizations that exploit the sparsity of the Atomic
output kernel that should result in learning times whenever the input kernel can be
cached.

In this experiment I use datasets D of different sizes. We test the total runtime
of training a model on 50% of the data and testing on the other 50%. I report
runtimes on my 2014 laptop. The hash function used in the Atomic kernel is the
one proposed above based on PoS2-tags and attachment distance. The input kernel
used is the n-Gram kernel for annotated sequences. I set C = 10 and ε = 0.05. Note
that Joachims et al. showed that training time is linear in C and inversely linear
in ε [26]. Thus these results do not need to be empirically verified with different
settings for those parameters.

In Figure 6.6 we see, that the runtimes for executing the optimized code is only
a fraction of the runtime of the code not optimized for Atomic output kernels. I
want to emphasize that the optimizations do not compute an approximation but
are a more efficient way to compute the same, exact model. The biggest portion
of the computation is spent on updating the matrix of inner products of cutting
planes H(ŷ, ŷ′). The other components, namely solving the Quadratic Program and
computing the separation oracle, are a lot faster.

6.3.6 Presenting my Best Kernel Parser

In this section I want to present the best model that I was able to train using
the approaches presented above. It relies on the most complex input kernel, the
Annotated N-Gram kernel for n-grams up to size 6 and a decay factor λ = 0.5. For
the output kernel, I use the sum of two Atomic output kernels, the first one uses
a hash function based on PoS2-tags and attachment distance, and the second one
uses a hash function based on tokens. Obviously, using two hash functions does not
alter the inference problem substantially, the sufficient weights are merely the sum
of the two individual sufficient weights.

I train the model on the first 50% of the TüBa-D/Z and test on the remaining
50%. The optimization accuracy was set to ε = 0.05. In Table 6.6 we can see the
train- and test-loss for increasing values of C. We can see that it achieves a test error
of 6.65%, which is comparable to the errors achieved by the dependency parser using
explicit features that I have presented in Section 6.2. The train error is substantially
smaller, as we have also witnessed in the other experiments shown above.
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h
C Train Error Test Error ∆
10 14.29% 15.16% 0.87%
50 11.90% 13.43% 1.53%
75 10.34% 12.33% 1.99%
100 9.40% 11.72% 2.32%
200 6.32% 9.85% 3.53%
500 1.86% 7.40% 5.54%
1000 0.61% 6.65% 6.04%

Table 6.6: Empirical loss for different values of C. Training and testing were performed
using 50% of the data respectively. ε = 0.05.
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Figure 6.6: Runtime Comparison of Kernelized SVMs without and with optimizations for
atomic kernels.



7 | Discussion and Outlook

In this thesis I have addressed the Machine Learning task of Structured Output
Learning. I have focused on discrete structures, which first have been defined pre-
cisely. Based on the Structural Support Vector Machine which uses expert-defined,
explicit feature maps, I have investigated the use of implicit feature maps defined
by a Joint Tensor Kernel. Joint kernels combine a kernel for the input structures
with a kernel for the output structures. This way I can utilize kernels previously
proposed for Machine Learning tasks with structured inputs and can thereby re-
duce the amount of feature engineering required for Structured Output Prediction.
When using a joint kernel, the inference problem becomes a Pre-Image problem. I
have shown that the structure of this inference problem depends only on the out-
put kernel. Thus we can say that the output kernel determines how hard it is to
solve the inference problem. In turn, this means that we can choose an arbitrarily
‘complicated’ input kernel. I have proposed the Atomic Output Kernel which makes
this problem tractable for a number of different output spaces. The Atomic Output
Kernel implicitly uses a sparse feature map. By exploiting this sparseness I was able
to achieve large decreases in training time.

I have applied Structured Output Learning with Joint Kernels to the learning
task of Dependency Parser Training. My method achieves parsing performances
comparable to state of the art methods based on millions of explicitly-defined fea-
tures measured on the TüBa-D/Z treebank for dependency parsing in the German
language. I have demonstrated that using Joint Tensor Kernels substantially reduces
the amount of feature engineering. Instead of defining a high dimensional feature
map φ(x, y) we specify only one hash-function and an input kernel. However, in or-
der to solve the inference problem, we still have to provide a construction algorithm
that returns valid output structured for the output domain. One small experiment
suggests that approximate construction might be feasible.

I believe that the prediction performance can be improved by using more complex
output kernels that go beyond the comparison of single atomic symbols but also

75
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consider larger substructures. In the case of trees, such substructures could be
limited to paths, e.g. all paths from root to leaf, or sets of neighboring edges.
One might even consider all substructures that two trees share, as done by the
convolution tree kernel introduced in Chapter 3. Obviously the question is: How
can we still solve the pre-image problem efficiently? I leave this question open for
future research.
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A | Glossary

Expression Notation Description

Atomic Kernel See Section 4.2.2
Construction algorithm Algorithm that computes an output structure

from given sufficient weights
Cutting Plane ȳ ∈ W A tuple of n output structures, See (2.12) in

Section 2.2.2.
Discrete Output Structure See Definition 2.1.2 on page 7
Discrete Structure See Definition 2.1.1 on page 6
Feature Map φ(x, y) See Joint Feature Map
Indicator Function 1expr, e.g. 1x=x′ Function that is 1 if expr is true and 0 other-

wise
Inference Problem ŷ(x) The problem of computing a prediction

given a model. In the explicit case:
arg maxy〈w, φ(x, y)〉, for the implicit case see
(4.9) and (4.14)

Input Kernel kX (x, x′) A kernel kX : X × X → R
Joint Feature Map φ(x, y) A function φ : X × Y → Rd that maps an

input/output pair to a feature vector, see Sec-
tion 2.2.1.

Joint Tensor Kernel k((x, y), (x′, y′)) Kernel k((x, y), (x′, y′)) = kX (x, x′) · kY(y, y′)
that combines an Input Kernel with an Out-
put Kernel, see Section 4.2.1.

Loss Function l(x, y; ŷ(·)) or
l(x, y;w)

Loss function used for risk minimization that
quantifies the error a model ŷ(·) or w produces
given an input x with true output y, see Sec-
tion 2.1.3

Loss Function L(y, y′) Function L : Y × Y → R+ that computes the
difference of two output structures, see Sec-
tion 2.2.1

Most-violated constraint Structure returned by Separation Oracle.

87



88 Chapter A. Glossary

Output Kernel kY(y, y′) A kernel kY : Y × Y → R
Pre-Image Problem The inference problem for kernelized models,

see Sections 4.1.2 and 4.2.3
Separation Oracle Explicit case: Function that computes

arg max′
y〈w, φ(x, y′)〉+L(y, y′) where y is the

true, annotated output for x. Implicit case see
Section 4.3.

Sufficient Weights wσ See Section 4.2.3.



B | Implementation Details

As part of this thesis, a Java 8 implementation of Structural Support Vector Machines with
explicit features –Algorithms 2 – and with implicit features – Algorithm 3 – was developed.
The source code is available at

https://bitbucket.org/Whadup/structuredoutputprediction/,

a jar file is available at http://www-ai.cs.uni-dortmund.de/auto?expr=Software. This
section describes how it can be adapted and used for structured output learning tasks.

B.1 Java Library

Both the algorithm for explicit and implicit features have been implemented in Java 8. It can
use two different Quadratic Program solvers, the commercial solver Gurobi1 which offers free
licenses for academic use, and the free solver available in the oj! Algorithms Java library2.

The implementation is heavily parallelized using the new Java 8 stream processing API3

that allows to process data in parallel in a map-reduce-like fashion. This way, critical parts
of the algorithm like computing the separation oracle and updating the inner product matrix
H are divided into a number of threads equal to the number of available processors.

We have seen that both algorithms require the user to further specify parts of the
algorithm like the φ(x, y) mapping used in the explicit version or the kernels used in the
implicit version. In the following sections, I will discuss the interfaces used to specify the
learning tasks. First, I will introduce some common types used. Most importantly, all input
and output types must implement the empty Structure interface. An input/output pair is
stored in an object of the class Example. All sparse feature vectors have type SparseVector,
which extends a HashMap<String,Double> with some algebraic operations. Dense vectors
like the model are stored in a object of type DenseVector which extends a double array
with algebraic operations.

1http://gurobi.com/
2http://ojalgo.org/
3http://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.

html
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B.1.1 Explicit Features

The class SVMStruct implements Algorithm 2, which learns a model for structured output
prediction. As seen in Section 2.2, we have to provide a feature mapping, a loss function,
an inference algorithm and a separation oracle. To do so, we must extend the abstract class
AbstractSVMStructInstance. We have to implement the methods

• public SparseVector phi(X x, Y y)
which returns the feature mapping of an input/output pair

• public Y predict(X x, SVMStruct svm)
which solves the inference problem for an input using the current model svm. The
current weight vector can be accessed via svm.w.

• public Y marginRescaling(X x, Y y, SVMStruct svm)
which solves the separation oracle problem for an input using the current model.

• public double loss(Y y, Y predY)
which computes a positive loss for a pair of outputs.

where X and Y both implement the Structure interface. When we have implemented this
interface, we can create a new instance of SVMStruct svm, specify which C and ε to use and
train a model using the svm.train(List<Example> data) method. The train algorithm
solves the QP problem in its dual form, as recommended by Joachims et al. [26]. This
reduces the size of the problem, as we only have one variable per cutting plane and only one
constraint. Also, the method applies a pruning heuristic that deletes cutting planes that
have not been used in 50 iterations.

B.1.2 Implicit Features

The class SVMStructKernel implements Algorithm 3. Similar to the implicit case, we have
to supply a SVMStructKernelInstance that specifies which input kernel, output kernel and
loss function to use. Recall that we can use an arbitrary input kernel that implements the
interface Kernel. The output kernel has to implement the interface OutputKernel, which
provides methods that solve the inference and separation oracle problem:

• public Y preImage(Map<Y,Double> alphaY,X x)
solves the inference pre-image problem given a linear combination of kernel computa-
tions alphaY and an input x.

• public Y preImagePenelized(Map<Y,Double> alphaY,Y y,X x)
Solves the separation oracle pre-image problem that also takes into account the loss
induced by y.

We can specify an arbitrary loss function, as long as it fits the separation oracle pre-
image problem specified by the output kernel. I encourage to implement the loss function
discussed in Section 4.3.
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If we want to benefit from the speedup techniques discussed in Section 4.4.2, the output
kernel has to implement the interface AtomicKernel. This means that it has to provide a
method public SparseVector featureMap(X x, Y y) that makes the feature map used
in the output kernel explicit.

In order to train a model, we have to create a new instance of the SVMStructKernel
svm, specify C and ε, set the kernel instance and train the model using the train method
as discussed above.

B.2 RapidMiner Integration for Dependency Parsing

To demonstrate how the Structural SVM could be integrated into the RapidMiner4 envi-
ronment, I developed a small extension that offers Dependency Parser training discussed as
in Chapter 6 in RapidMiner. At its core is the Train Parser operator, which allows to
train a parser with different parameters for the Structural SVM. Furthermore I have imple-
mented operators for loading dependency treebanks in the .conll format and for measuring
the performance of a dependency parser using the unlabeled attachment score (UAS) loss
function.

Figure B.1: RapidMiner Process for Training and Testing Dependency Parsers

4http://rapidminer.com

http://rapidminer.com
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