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1 Introduction

When presented with the task of analyzing a dataset, the modern data scientist has

a plethora of different methods and algorithms at their dispoal, ranging from simple

linear models all the way up to sophisticated neural networks. In most cases, the actual

implementation of said algorithms is only a minor concern for the data scientist, as

there is an abundance of ready to use software packages available, where even the most

advanced models can be defined in only a few lines of code. As long as the data fits

nicely into the main memory of the data scientist’s machine, everything is well and most

algorithms perform as expected, delivering their solutions within a reasonable amount

of time.

However, there is an increasing number of situations, where reality gets more and more

complicated, especially when the datasets drastically outgrow the storage capabilities of

the data scientist’s machine. The authors of [Feldman et al., 2020] present a list of such

scenarios, including for example the vast amounts of data delivered by the sensors of

mobile devices, cameras, internet logs or the financial markets. In such situations, the

data scientist is faced with a problem: The tried and tested algorithms of his arsenal

become inefficient. There is simply too much data!

Now, the question arises if all is lost and we have to reinvent every existing algorithm

from scratch to deal with the scalability problems that come along with big data. Luck-

ily, a recent line of research has started to emerge from these questions, showing an

alternative way of dealing with the problem, that doesn’t require us to throw away all

the established algorithms of data analysis, which have been so carefully constructed.

One of the main ideas behind this new research is the sketch-and-solve paradigm (see

for example [Woodruff, 2014]): Instead of changing and adapting each of our existing

algorithms, we find ways to reduce the data first, so that in a second step, the existing

algorithms can be applied to the resulting much smaller datasets more efficiently. The

advantages of this approach are clear: We only need to focus on the data reduction

problem and don’t need to change any of the existing algorithms. However, this also

brings with it new challenges: How can such algorithms for data reduction be designed?

And perhaps most importantly: Are there any provable guarantees that can be formu-

lated regarding the outcome of sketch-and-solve? After all, we obviously want that the

algorithms applied to the reduced data deliver approximately the same results as if the

algorithms were applied to the original data.

In this work, we tackle the challenge of finding efficient data reduction algorithms with
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provable guarantees in the domain of probit regression, one of the most important linear

models for binary response data with broad areas of application, including biostatistics

[Varin and Czado, 2009] and econometrics [Gu et al., 2009]. One advantage of the probit

model over similar models such as logistic regression, which makes the probit model par-

ticularly interesting for the use in Bayesian data analysis, is that there exists an efficient

Gibbs sampling algorithm [Albert and Chib, 1993] for obtaining samples of the posterior

distribution. Gibbs sampling is another notoriously costly computational procedure on

large datasets, and we will see in this work, how it can also benefit from applying a data

reduction algorithm beforehand in order to cut down on its computational demands.

In order to move towards constructing our data reduction algorithms, we follow a

similar roadmap as the authors of [Munteanu et al., 2018], who derived similar algorithms

in the context of logistic regression as well. Inspired by their success, we make use of the

theory of the sensitivity framework [Feldman et al., 2020], a theorem that helps us to

design a sampling distribution, according to which we can sample a small subset of the

original data, also known as a coreset (see for example [Munteanu and Schwiegelshohn,

2018]), that admits strong theoretical guarantees regarding its representativeness of the

original dataset.

We use these results as a basis to construct two efficient data reduction algorithms, one

of them requiring two passes over the data and the other one being an online algorithm

and requiring only one pass. Finally, we demonstrate the practical relevance of our

algorithms by carrying out a variety of experiments on three real world datasets, both

in the context of maximum likelihood estimation of the probit model as well as in the

realm of Bayesian probit analysis.

2 The Probit Model

The probit model is a special case of the generalized linear model (GLM) described

in [McCullagh and Nelder, 1989]. It is a statistical method for analyzing binary datasets,

which we introduce in the following definition.

Definition 1 (Dataset). Let D = {(xi, yi)}ni=1 be a set containing n ∈ N pairs of

observations xi ∈ R
d, yi ∈ {0, 1}. We call D a d-dimensional (binary) dataset.

We can use this definition of a dataset (we will omit the term binary from now on since

we will only be dealing with binary datasets in this work), to describe a whole range

of possible scenarios that can be subjected to statistical analysis. For example, the xi
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could represent some information of a patient, such as blood pressure or weight, and the

yi could indicate the presence or the absence of a heart disease.

In situations like this, we are often interested in modeling the relationship between

the explanatory quantities xi and the outcomes yi. We need models, that can help

us to answer questions about the data such as "Which factors increase/decrease the

risk of suffering from a heart disease?", or "How likely is it, that a given patient will

suffer from a heart disease?". The probit model is one of many approaches to model

such a relationship in a probabilistic manner. It is described in detail in references

like [McCullagh and Nelder, 1989], [Agresti, 2015] or [Fahrmeir et al., 2013].

We outline the core assumptions of the probit model below, but instead of directly

starting with its GLM formulation, we introduce it as a so-called latent variable model,

which enables us to naturally arrive not only at its GLM specification, but also at the

powerful Gibbs sampling algorithm, that enables us to efficiently apply the probit model

in the realm of Bayesian data analysis.

2.1 Introduction as a Latent Variable Model

When using a probit model to analyze a d-dimensional dataset D = {(xi, yi)}ni=1, we

implicitly make a set of assumptions about how the data was generated. Since it is rea-

sonable to assume, that there is a degree of randomness involved in the data generating

process, we model the yi as realizations of independent random variables Yi, which is

the first assumption of the probit model.

The second assumption is that there is a hidden random quantity Y ∗
i that is associated

with each Yi, such that it directly determines its outcome:

Yi =




1, if Y ∗

i > 0

0, if Y ∗
i ≤ 0

(1)

The Y ∗
i are also assumed to be independent from each other and, as already noted,

unobservable, which is the reason why the Y ∗
i are also called latent variables and why

the probit model can also be thought of as a latent variable model.

The third and final assumption of the probit model defines the distribution of the

latent variables and its part of the relationship between the non-random explanatory

quantities xi and the outcomes yi. In order to describe this relationship more concisely,

we put all the observations xi inside of a matrix X ∈ R
n×d in such a way, that the i-th

row of X corresponds to xi. In the literature, this matrix X is often called the model
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matrix (see for example [Agresti, 2015]). We do the same with the Y ∗
i and put them in

a random vector Y ∗ as well, such that Y ∗
i constitutes the i-th element of Y ∗.

We are now ready for the third assumption of the probit model: The explanatory

variables xi influence Y ∗
i in the form of a classical linear model:

Y ∗ = Xβ + ǫ, ǫ ∼ N (0, σ2I), (2)

where β ∈ R
d is the parameter vector of the linear model, ǫ is a normal distributed

vector with independent components of mean zero and variance σ2, and I ∈ R
n×n is the

n× n identity matrix. It follows directly, that Y ∗ is also normal distributed:

Y ∗ ∼ N (Xβ, σ2I). (3)

These three assumptions are already a complete specification of the probit model and

are summarized in the following definition as a brief recapitulation:

Definition 2 (Probit Model). A d-dimensional binary dataset D = {(xi, yi)}ni=1 with

model matrix X ∈ R
n×d was generated by a probit model with parameters β ∈ R

d and

σ ∈ R>0, if the following three assumptions are true:

1. The observations y1, ..., yn are realizations of independent binary random variables

Y1, ..., Yn.

2. The outcomes of Y1, ..., Yn are determined by hidden continuous random variables

Y ∗
1 , ..., Y

∗
n by thresholding: If Y ∗

i > 0, then Yi = 1, and if Y ∗
i ≤ 0, then Yi = 0.

3. The vector of latent variables Y ∗ follows a multivariate normal distribution:

Y ∗ ∼ N (Xβ, σ2I),

where β ∈ R
d and σ ∈ R>0 are the model parameters.

Based on this definition, it is straight forward to determine the distribution of the

response variables Yi. We can calculate the probability P (Yi = 1) like this:

P (Yi = 1) = P (Y ∗
i > 0) = 1− P (Y ∗

i ≤ 0) = 1− P

(
Y ∗
i − xT

i β

σ
≤ −xT

i β

σ

)
= Φ

(
xT
i β

σ

)
,
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where Φ(·) is the cumulative distribution function of the standard normal distribution:

Φ(x) =

∫ x

−∞

1√
2π

e−
1
2
z2dz.

The result P (Yi = 1) = Φ
(

xT
i β

σ

)
leads us to an interesting observation: Both parameters

β and σ are unknown model parameters and every value of σ can be compensated by a

corresponding scaling of β. This means, because we can’t observe the hidden variables

Y ∗
i , that it is impossible to determine which β and which σ generated the data without

any prior knowledge. We can only draw conclusions with regard to the scaled parameter
1
σ
β. In this situation, we say that β and σ are not identifiable.

For this reason, in literature like [Fahrmeir et al., 2013] or [Agresti, 2015], it is often

argued, that without the loss of generality, we can assume that σ = 1 and arrive at

P (Yi = 1) = Φ(xT
i β).

Conversely, since Yi is binary, it follows that

P (Yi = 0) = 1− P (Yi = 1) = 1− Φ(xT
i β) = Φ(−xT

i β),

and we arrive at the model equations:

Yi ∼ Bin(1, πi), πi = Φ(xT
i β), (4)

where Bin(1, πi) is a Bernoulli distribution with success probability πi = Φ(xT
i β).

2.2 A Special Case of the Generalized Linear Model

The final equations of the probit model that we arrived at in Equation 4 are a special

case of a more general model concept, the generalized linear model (see for example

[McCullagh and Nelder, 1989]), that we briefly touch on below.

Generalized linear models (GLMs) consist of three components. The first one is the

so called random component, a set of n ∈ N independent random variables {Yi}ni=1. In

GLMs, the distribution of these random variables is assumed to be a member of the

exponential family, a broad family of probability distributions that encompasses the

normal distribution, the binomial distribution and many others. It is characterized in

more detail in [Agresti, 2015].

5



The second component of a GLM is the linear predictor. Just like in the probit

model, we also assume that we are presented with some fixed observations {xi ∈ R
d}ni=1,

that are assumed to have some explanatory power with regard to the Yi. We thus call

these observations the explanatory quantities. The linear predictor is used to relate

the explanatory quantities to the distribution of the Yi by linearly combining them as

follows:

ηi = xT
i β,

where ηi ∈ R denotes the linear predictor related to observation xi and β ∈ R
d is the

unknown parameter vector of the GLM that has to be estimated when fitting the model.

The third component of a GLM is the so called link function. This is a monotonous,

differentiable and invertible function g, that connects the linear predictor ηi to the

distribution of the Yi like this:

g(E[Yi]) = ηi.

We are thus using the link function g to transform the expected value E[Yi] in such

a way, that it can be predicted by a linear model, hence the name generalized linear

models.

Equivalently, we can also characterize this relationsthip by using the inverse function

h = g−1, which is also called the response function:

E[Yi] = h(ηi).

We are now ready to establish the connection between our definition of the probit

model and the generalized linear model. As we saw in Equation 4, the assumptions

of the probit model imply that the Yi follow independent Bernoulli distributions with

a success probability of πi = Φ(xT
i β). The Bernoulli distribution is a member of the

exponential family, and thus we can also think of the Yi as the random component of a

GLM.

It also follows directly from the Bernoulli distribution that E[Yi] = πi, and thus we

have from the probit model equations that πi = E[Yi] = Φ(xT
i β), and equivalently

Φ−1(E[Yi]) = xT
i β. It follows, that we can think of Φ as the response function of a GLM

and Φ−1, the quantile function of the standard normal distribution, as the link function.

The function Φ−1 is also known as the probit function, hence the name probit model.
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2.3 Parameter Estimation

The parameters of generalized linear models and therefore the parameters of the probit

model are usually estimated by using the maximum likelihood method. This method seeks

to maximize the likelihood that some observed dataset D = {(xi, yi)}ni=1 was generated

under the assumptions of the model, given some parameter vector β ∈ R
d.

To make the notation a little easier, we also put the outcomes yi in a vector y ∈ {0, 1}n,
such that yi is the i-th component of y. In the same way, we also put the random variables

Yi inside of a random vector Y .

In the probit model, the likelihood function for a dataset D is given as

LD(β) = P (Y = y|β) =
n∏

i=1

P (Yi = yi|β), (5)

because the Yi are independent. By using a little trick, we can write P (Yi = yi|β) as

a single expression by combining the equations P (Yi = 1) = Φ(xT
i β) and P (Yi = 0) =

Φ(−xT
i β) from Section 2.1 like this:

P (Yi = yi|β) = Φ[(2yi − 1)xT
i β],

which works because 2yi − 1 = 1 for yi = 1 and 2yi − 1 = −1 for yi = 0. This enables

us to arrive at the likelihood

LD(β) =
n∏

i=1

P (Yi = yi|β) =
n∏

i=1

Φ[(2yi − 1)xT
i β] =

n∏

i=1

Φ(−zTi β), (6)

where, we introduced the new vector zi = −(2yi − 1)xi, which will simplify the notation

later on.

The maximum likelihood estimate for β is then given by

β̂ ∈ argmax
β∈Rd

LD(β), (7)

and for n → ∞ it holds that E[β̂] = β [Fahrmeir et al., 2013].

However, for finite sample sizes, the existence and uniqueness of β̂ cannot be guar-

anteed and is dependent on the observed data. An overview of the conditions for the

existence and uniqueness of β̂ is given in [Demidenko, 2001]. In particular, there is

one important condition shown in [Lesaffre and Kaufmann, 1992], that is related to the
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concept of linear separability, which we introduce in the following definition.

Definition 3 (Linear separability). Let D = {(xi, yi)}ni=1 be a d-dimensional binary

dataset. Let S0 = {i ∈ [n] : yi = 0} and S1 = {i ∈ [n] : yi = 1}. If there exists a

β ∈ R
d \ {0}, such that

∀i ∈ S0 : xT
i β ≤ 0 and ∀i ∈ S1 : xT

i β ≥ 0,

then we call D linearly separable.

Intuitively speaking, a dataset is linearly separable, if there exists a hyperplane that

perfectly separates the datapoints labeled with 1 from the datapoints labeled with 0.

Another situation, that might not be intuitive but is also encompassed by this definition

of linear separability, is the case when the model matrix X doesn’t have full column

rank, i.e. rank(X) < d. In such a case, all the datapoints are located in a subspace of

R
d and by choosing β to be orthogonal to the subspace, we can see that by Definition 3,

all the products xT
i β evaluate to zero and the data is considered linearly separable.

It was shown in [Lesaffre and Kaufmann, 1992], that this definition of linear separabil-

ity can be used to formulate a both sufficient and necessary condition for the existence

and the uniqueness of the maximum likelihood estimate β̂ as stated in the following

theorem, which is the reason why we rely on this definition in the remainder of this

work.

Theorem 1 ([Lesaffre and Kaufmann, 1992]). Let D = {(xi, yi)}ni=1 be a d-dimensional

binary dataset. The maximum likelihood estimate β̂ for the parameter β of the probit

model exists and is unique if and only if D is not linearly separable.

Having established the conditions of the existence and uniqueness of the maximum

likelihood estimate of the probit model, it now remains to explore, how the related

optimization problem can be solved under these conditions.

2.3.1 Finding the Maximum Likelihood Estimate

Because the likelihood function LD(β) is numerically inconvenient to maximize, the nat-

ural logarithm is often applied as a transformation to simplify the optimization problem:

ℓD(β) = lnLD(β) =
n∑

i=1

ln Φ(−zTi β). (8)
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Since we later wish to interpret ℓD as a loss function, we prefer to minimize the negative

value of ℓD rather than maximizing:

f(β) = −ℓD(β) =
n∑

i=1

ln

(
1

1− Φ(zTi β)

)
=

n∑

i=1

g(zTi β). (9)

Here, we define g(x) = ln
(

1
1−Φ(x)

)
and call it the probit loss, i.e. the loss-function that

determines how much each zi contributes to the total loss f(β) for a given value of β.

At this point, we could already elaborate on the minimization of f(β), but there is

one more generalization that we have to make, which will later be needed when applying

the theory of data reduction to the probit model: We have to introduce positive sample

weights w1, ...wn, alternatively specified by the weight vector w ∈ R
n
>0, that give a

positive weight to each datapoint in the objective function:

fw
Z (β) =

n∑

i=1

wig(z
T
i β). (10)

Here, we also introduced the subscript Z, which refers to the matrix Z ∈ R
n×d, where

the i-th row of Z is given by zi, but if Z and w are clear from the context, we will usually

omit it and simply refer to fw
Z by f . For lack of a better word, we will be referring to Z

as the scaled model matrix in the remainder of this work.

The optimization of f is usually done by applying the Newton-Raphson algorithm, an

iterative procedure that starts at some initial guess β(0) and successively updates it like

this:

β(t) = β(t−1) −
(
∂2f(β(t−1))

∂β∂βT

)−1

· ∂f(β
(t−1))

∂β
, (11)

where
(

∂2f(β(t−1))
∂β∂βT

)−1

refers to the inverse of the Hessian matrix of f , evaluated at β(t−1),

and ∂f(β(t−1))
∂β

refers to the gradient of f , evaluated at β(t−1). The idea behind this

procedure is, broadly speaking, to approximate f locally around β(t) as a second degree

Taylor-polynomial and then to analytically find the minimum of this polynomial. The

minimum of this local polynomial approximation of f is then iteratively used as the

basis for the next step of the Newton-Raphson algorithm.

It remains to find the gradient as well as the Hessian matrix of f . Because f is a

sum of the function g evaluated at different points, it makes sense to first determine the
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derivative of g. This can be accomplished by using the chain rule as follows:

d

dx
g(x) =

d

dx
ln

(
1

1− Φ(x)

)

= (1− Φ(x)) · d

dx

(
1

1− Φ(x)

)

= (1− Φ(x)) · (−1)

(1− Φ(x))2
· d

dx
(1− Φ(x))

=
(−1)

1− Φ(x)
· (−1) · φ(x)

=
φ(x)

1− Φ(x)
,

(12)

where φ(x) is the density function of the standard normal distribution function:

φ(x) =
1√
2π

e−
1
2
x2

.

We can use this result to calculate the gradient of f :

∂

∂β
f(β) =

∂

∂β

n∑

i=1

wig(z
T
i β)

=
n∑

i=1

wizig
′(zTi β)

=
n∑

i=1

wizi
φ(zTi β)

1− Φ(zTi β)
.

(13)

Next, we need to determine the Hessian matrix of f . In order to do this, we again start

10



by finding the second derivative of g, this time by using the quotient rule:

d2

dx2
g(x) =

d

dx

φ(x)

1− Φ(x)

=
φ′(x)(1− Φ(x))− φ(x) · (−1) · φ(x)

(1− Φ(x))2

=
(−1) · x · φ(x)(1− Φ(x))− φ(x) · (−1) · φ(x)

(1− Φ(x))2

=
[φ(x)]2 − x · φ(x) · (1− Φ(x))

(1− Φ(x))2

=

(
φ(x)

1− Φ(x)

)2

− x · φ(x)

1− Φ(x)

=
φ(x)

1− Φ(x)

(
φ(x)

1− Φ(x)
− x

)

= g′(x) · (g′(x)− x)

(14)

We can now use this result to find the Hessian matrix of f :

∂2

∂β∂βT
f(β) =

n∑

i=1

∂2

∂β∂βT
wig(z

T
i β)

=
n∑

i=1

wiziz
T
i g

′(zTi β)(g
′(zTi β)− zTi β)

=
n∑

i=1

wiziz
T
i

φ(zTi β)

1− Φ(zTi β)

(
φ(zTi β)

1− Φ(zTi β)
− zTi β

)
.

(15)

Because it can be shown, that f(β) is a convex function [Wedderburn, 1976], and that

the Newton-Raphson algorithm converges to a global optimum when applied to a convex

function [Nocedal and Wright, 2006], the optimization procedure converges to the max-

imum likelihood estimate β̂ under the condition that the data is not linearly separable,

i.e. the maximum likelihood estimate exists and is unique.

2.4 The Bayesian Perspective

The most fundamental difference between the Bayesian approach to the probit model

and the frequentist approach that was discussed above, is the assumption, that the model

parameter β is not a fixed value, but a random variable with a probability distribution.

The goal of Bayesian data analysis is to draw conclusions about the distribution of the

model parameter and to update these conclusions after observing more and more data.
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A detailed overview of the principles of Bayesian data analysis would certainly go

beyond the scope of this work, but the interested reader will find a comprehensive

reference in [Gelman et al., 2013]. In this section, we will merely touch on the most

essential concepts, which are required in order to understand the Bayesian view on the

probit model.

2.4.1 Prior and Posterior Distributions

The first step of a Bayesian data analysis is to specify the prior beliefs regarding the

distribution of the model parameter β by defining a so called prior distribution. In the

probit model, one common choice that is also described in [Fahrmeir et al., 2013] is to

assume that

β ∼ N (m,M), (16)

i.e. β follows a normal distribution with mean m ∈ R
d and covariance matrix M ∈ R

d×d.

We can think of m and M as a way to include prior knowledge into the model. If such

knowledge is not present, we can choose m and M in a more general fashion, perhaps we

decide to set m = 0 and M = σ · I for a large value of σ, which would be an example of

an uninformative prior distribution, because of the relatively unrestrictive assumptions.

In the limit, we can even consider distributions where σ → ∞, and thus not including

any prior information into the model at all. On the other hand, we might be interested

in choosing a small value of σ if we have a higher degree of prior information about the

problem.

The next step in the process of Bayesian data analysis is to determine how we should

update our initial prior assumptions about β after we observed some new data rep-

resented by the dataset D = {(xi, yi)}ni=1. Ultimately, the goal is to determine the

posterior distribution of β given the new data, represented by the probability density

function p(β|Y = y), where y is the vector of observations and Y is the random vector

that we assumed to have generated these observations in the probit model.

We can find the posterior distribution by making use of the Bayes rule:

p(β|Y = y) =
p(Y = y|β)p(β)

p(Y = y)
. (17)

This relationship tells us, that in order to arrive at the posterior distribution, there are

three different parts that we have to combine.

The first part is the likelihood function p(Y = y|β), which we already dealt with in
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Section 2.3, and the second part is the prior density function p(β), that we assumed to

be normal.

The third and most challenging part to compute is the quantity p(Y = y). We can

see why it is so challenging by writing it out:

p(Y = y) =

∫
p(Y = y|β)p(β)dβ

=

∫ n∏

i=1

Φ(−zTi β)
1√

(2π)d det(M)
exp

(
−1

2
(β −m)TM−1(β −m)

)
dβ

(18)

This indefinite integral over all possible values of β is impossible to solve analytically,

which means that it’s impossible to exactly compute the posterior distribution for the

probit model. But luckily, encountering an intractable integral like this is quite common

in Bayesian data analysis, so there are numerical workarounds that still allow us to

analyze the posterior distribution, even though we are unable to determine it exactly.

The first consideration is, that we could also analyze the posterior distribution, if we

had a large enough sample of it available instead. When the sample size is big enough,

the Glivenko-Cantelli theorem tells us that the empirical posterior distribution converges

to the true posterior distribution [Vaart, 1998]. This allows us to analyze the posterior

distribution by analyzing a large enough sample of it, but the problem of how to obtain

such a sample still remains.

In practice, instead of directly sampling from p(β|Y = y), the posterior distribution

can be approximated by so called Markov chain Monte Carlo (MCMC) methods. One

such method that works particularly well for the probit model is the Gibbs sampler,

which is described in the next section.

2.4.2 Gibbs Sampling in the Probit Model

Gibbs sampling is an iterative tool for drawing samples from probability distributions,

that was first applied in the context of Bayesian inference by [Gelfand and Smith, 1990]

and has been adapted to the probit model by [Albert and Chib, 1993] using the idea of

data augmentation, which was first introduced in [Tanner and Wong, 1987]. We describe

this idea in the following section, as it yields an efficient algorithm for sampling from

the posterior distribution of the probit model.

Remember, that the probit model has the following components: The vector of latent

variables Y ∗ that follows a linear model Y ∗ | β ∼ N (Xβ, 1), where we assume that σ = 1

for reasons of identifiability (see Section 2.1) and the random vector Y that produces
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the observed outcomes y by thresholding: If Y ∗
i > 0, then Yi = 1 and Yi = 0 otherwise.

We also assumed a normal prior distribution: β ∼ N (m,M).

Now, imagine that we knew the outcomes of the latent variable vector Y ∗. The

conditional distribution of β given the realization y∗ of the latent variables can be shown

to be normal [Albert and Chib, 1993]:

β | Y ∗ = y∗ ∼ N (b, B), (19)

where b = (M−1 + XTX)−1(M−1m + XTy∗) and B = (M−1 + XTX)−1. From this

distribution, it is possible to sample efficiently.

The problem is, that in reality we can’t observe the latent variables and therefore we

don’t know the realizations y∗. Here, an important finding by [Albert and Chib, 1993]

comes into play: If we could observe β and see the realization β̃, then we could determine

the conditional distribution of the latent variable vector Y ∗:

Y ∗
i | β = β̃, Yi = yi ∼




N (xT

i β̃, 1) truncated at the left by 0, if yi = 1

N (xT
i β̃, 1) truncated at the right by 0, if yi = 0

(20)

This means, that given a realization β̃ and the observed values in y, the latent variables

follow a truncated normal distribution, from which it is also possible to sample efficiently.

These two observations bring us directly to the Gibbs sampling algorithm for the

probit model. The first step of this procedure is to determine a starting value β̃(0).

[Albert and Chib, 1993] suggest that this could for example be the maximum likelihood

estimate, that we already discussed in Section 2.3.

The next step of the Gibbs sampling algorithm is to use this value β̃(0) to sample a

realization y∗(1) from the latent variable vector Y ∗, by using the conditional distribution

in Equation 20. Given y∗(1), it is then possible to sample a new value β̃(1) from the normal

distribution in Equation 19, which starts a new cycle. These two sampling steps, which

can both be carried out efficiently, are repeated until the desired amount of samples is

reached.

The idea of incorporating the latent variables to construct an efficient Gibbs sampler is

also known as data augmentation and was first introduced in [Tanner and Wong, 1987].

We conclude this section by presenting the full algorithm in Algorithm 1.
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Algorithm 1: Gibbs Sampler for the Probit Model

Input: Dataset D = {(xi, yi)}ni=1 with model matrix X, prior mean m ∈ R
d,

prior covariance matrix M ∈ R
d×d, sample size k ∈ N

Output: A sample β1, ..., βk from the posterior distribution
1 Set B = (M−1 +XTX)−1

2 Initialize β0 = β̂, where β̂ is the MLE for β computed on D
3 for j = 1, ..., k do
4 for i = 1, ..., n do
5 if yi = 1 then

6 Sample y∗i
(j) from N (xT

i βj−1, 1) truncated at the left by 0

7 else if yi = 0 then

8 Sample y∗i
(j) from N (xT

i βj−1, 1) truncated at the right by 0

9 Set y∗(j) =
(
y∗1

(j), ..., y∗n
(j)
)T

10 Set b(j) = B
(
M−1m+XTy∗(j)

)

11 Sample βj from N
(
b(j), B

)

12 return β1, ..., βk

3 Coresets and Sensitivity Sampling

The Newton-Raphson algorithm for optimizing the objective function of the probit

model, as well as the Gibbs sampler, are reasonably efficient when the datasets are

of small to moderate size. Usually, this is the case when it’s possible to store the model

matrix X into the main memory. But problems arise, when the datasets are getting so

big, that this is no longer possible. What should we do in such a case?

One idea to deal with this issue is that we could select a smaller subset C of our initial

dataset D, that represents the characteristics of the original data well in some sense. We

hope, that when we execute the computationally expensive optimization algorithms on

the smaller subset, we still get similar results as if we executed the algorithms on the

original dataset. But what does it mean for a subset C to be representative of D? And

how could we come up with an algorithm, that selects such a subset efficiently? The

method of coresets (see for example [Munteanu and Schwiegelshohn, 2018]) is one way

of dealing with these questions, which we will explore in this chapter.

So, what is a coreset? As the name suggests, we are talking about a subset C ⊆ D
of our initial dataset, that fulfills some very special requirements which ensure that the

original dataset is well represented for our problem. To be more specific, we want the

objective function f(β) evaluated on the coreset to be as close to the objective function
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on the original dataset as possible, for all β ∈ R
d. Mathematically speaking, what we

are interested in is a so-called (1 ± ǫ) approximation of the objective function on the

original dataset.

To understand what is meant by that, assume for a moment that we are given a

function f(β) and an approximation f̃(β). If f̃(β) is a (1 ± ǫ) approximation of f(β),

it will never deviate from f(β) more than a factor (1 ± ǫ), i.e. we have for all β ∈ R
d,

that:

(1− ǫ)f(β) ≤ f̃(β) ≤ (1 + ǫ)f(β).

This kind of approximation would then allow us to run an optimization algorithm on

f̃(β) and guarantee, that our solution is close to the optimal solution on f(β).

As we already hinted at, a coreset is simply a subset C ⊆ D of our original dataset,

that provides us with a (1± ǫ) approximation of the original loss function. We formalize

this concept in the following definition.

Definition 4 (Coreset). Let D = {(xi, yi)}ni=1 be a d-dimensional dataset with scaled

model matrix Z ∈ R
n×d, i.e. zi = −(2yi − 1)xi constitutes the i-th row of Z, and let

w ∈ R
n
>0 be a vector of positive sample weights. Let C ⊆ D be a subset of D of size

|C| = k with scaled model matrix C ∈ R
k×d and a vector of positive sample weights

u ∈ R
k
>0. Let ǫ > 0. We call C a (1± ǫ)-coreset of D for probit regression, if

∀β ∈ R
d : (1− ǫ)fw

Z (β) ≤ fu
C(β) ≤ (1 + ǫ)fw

Z (β),

where fw
Z (β) =

∑n

i=1 wig(z
T
i β) is the weighted objective function of the probit model and

g(x) = ln
(

1
1−Φ(x)

)
is the probit loss.

One thing to note here is that we do not only need to select the subset C ⊆ D, but

we also have to come up with some new sample weights u. Intuitively speaking, this

makes sense because when reducing the amount of data points in the objective function,

which is achieved by selecting the subset C, we are also naturally lowering its overall

value, since g, the probit loss, is a positive function. The reweighting by u accounts for

that by keeping the approximated loss function unbiased, so we can still get a (1 ± ǫ)

approximation of the original loss function.

Let us now consider perhaps the most important aspect of this definition, which

will determine the usefullness of any work in the domain of coresets: The coreset size

k = |C|, which generally depends on specific problem characteristics, such as the amount

of datapoints n, the dimensionality d of the dataset, or the desired approximation factor
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ǫ. It can easily be verified, that we can always come up with a coreset when k = n, i.e.

the so-called trivial coreset, where we simply select C = D. But such a coreset doesn’t

help us at all with our goal of reducing the computational burden of the optimization

and Gibbs sampling algorithms. Informally speaking, we want k to be small. But how

small is small enough? Usually, we can consider it a success, if we can find coresets

where k ∈ O(log(n)), using the big-O notation to indicate that k is asymptotically not

much larger than the logarithm of the amount of data points. If, for example, we had a

dataset with one billion observations, i.e. n = 1, 000, 000, 000, the natural logarithm of

n would equal to roughly 20 datapoints. That sounds like a decent compression, doesn’t

it?

In the remainder of this work, we will refer to a coreset as small, if k is roughly

logarithmic in n and at most polynomial in d. Our goal is to construct algorithms,

which will enable us to find such small coresets in the context of probit regression.

3.1 Do small coresets always exist?

Before attempting to construct an algorithm, that is able to find small coresets, we first

have to investigate if such a goal is even attainable, i.e. we have to make sure that small

coresets even exist.

Without imposing any restrictions on the datasets, it turns out that it is not difficult

to find a counter example, i.e. to find a dataset D, such that no subset C ⊆ D of

roughly logarithmic size can be a coreset. This negative result has first been proven in

the context of logistic regression by the authors of [Munteanu et al., 2018], but it turns

out that the problematic dataset that admits no small coresets is the same for probit

regression as well.

This finding forces us to make a decision: Do we have to give up our search for small

coresets because we now know that they don’t always exist? Or is there still hope,

perhaps by imposing some (very reasonable) restrictions on the class of datasets that we

consider? Before we can turn to this discussion, we first reproduce the counter example

for the general case in the following theorem.

Theorem 2. There exists a dataset D of size |D| = n, such that any (1 ± ǫ)-coreset C
of D for probit regression has a size k = |C| of at least k ∈ Ω

(
n

logn

)
.

Proof. We can construct such a dataset by showing how coresets can be used in a

communication protocol for the so called INDEX game, a communication game for two

players, Alice and Bob, which works like this:
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Alice is given an arbitrary binary string m ∈ {0, 1}n of n bits and Bob is given an

index i ∈ [n]. The objective of the game is for Alice to send a message to Bob that

allows Bob to obtain the value mi of Alice’s binary string m. It was shown in [Kremer

et al., 1999], that the minimum length of a message sent by Alice that still allows Bob

to obtain mi with a constant probability that the communication protocol doesn’t fail is

in Ω(n) bits. We will now see, how a coreset for probit regression can be used to encode

such a message.

The first step is for Alice to convert her binary string m into a dataset D as follows:

For each entry mj of her binary string where mj = 1, she adds a point

xj =

(
cos

(
2π

j

n

)
, sin

(
2π

j

n

)
, 1

)T

to her set D and labels it with yj = 1, ending up with the dataset

D = {(xj, 1)}j∈{i∈[n]: mi=1},

with all points being on the unit circle.

The next step for her is to construct a (1± ǫ)-coreset C of D for probit regression with

sample weights u ∈ R
k
>0 and to transmit both the coreset and the weight vector to Bob,

which requires O(log(n)) space for each point and weight. We will later see, how large

the size |C| = k of this coreset must be, so that Bob can still use it to infer the value of

mi.

As soon as Alice’s coreset C arrives at Bob, Bob can use it to obtain the value of mi.

To do this, Bob first adds two new points

q1 =

(
cos

(
2π

i− 0.5

n

)
, sin

(
2π

i− 0.5

n

)
, 1

)T

and

q2 =

(
cos

(
2π

i+ 0.5

n

)
, sin

(
2π

i+ 0.5

n

)
, 1

)T

to the set and labels both points with 0 (see Figure 1), i.e. Bob now has the dataset

C ′ = C ∪ {(q1, 0)} ∪ {(q2, 0)}.

Next, he uses this new dataset C ′ with scaled model matrix C ′ to minimize the weighted

objective function fu
C′ of the probit model, by using the Newton-Raphson optimization
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algorithm.

Taking a look at Figure 1, it becomes evident, that Bobs points q1 and q2 are linearly

separable from the other points if and only if Alice didn’t add a point xi, i.e. if mi = 0.

He can use the results of the optimization procedure to make a distinction between the

two cases, which then allows him to determine the value of mi like this:

In the case of mi = 1, Bobs points are not linearly separable from Alices original

points, which means that there must occur at least one misclassification at a cost of

g(0) = log(2) for the original loss function. Because Bobs dataset C ′ allows him to

obtain a (1± ǫ)-approximation of the original cost function, he can check if the Newton-

Raphson algorithm converges to a cost of at least (1− ǫ) log(2). In this case, he knows

that Alice must have added the point xi, which means that mi = 1.

Conversely, if at any point during the optimization procedure the cost function drops

below (1− ǫ) log(2) and approaches zero, Bob knows that Alice didn’t add the point xi,

because his dataset C ′ is linearly separable. This will allow him to conclude that mi = 0.

Let us now see, how large the size k of Alice’s coreset must be for this protocol to

work with constant probability. In [Kremer et al., 1999] it was shown, that the minimum

length of a message that Alice must send in order for the protocol to work is in Ω(n) bits.

Since each of the points that Alice created can be encoded in log(n) space, it follows

from the lower bound that Ω(n) ⊇ Ω(k log(n)), so k must be in Ω
(

n
log(n)

)
.

We can conclude, that if there existed a (1± ǫ)-coreset of Alice’s dataset D for probit

regression with size k ∈ o
(

n
log(n)

)
, it would contradict the minimum message length of

the INDEX communication game, which proves the theorem.

We now have an example of a dataset for which no small coresets exist, which implies

that in the general case, without any restrictions, there are no guarantees that it’s even

possible to find a small coreset. But there is one thing that we have to note: The

counter example from the INDEX proof is by no means a dataset that could ever be

reasonably subjected to a probit analysis. It consists of only positive labels! Further,

it is easy to recognize, that the counter example is linearly separable. As we already

saw in Section 2.3, when estimating the model parameters, the maximum likelihood

estimate only exists and is unique, when the data is not linearly separable. So yes,

we found an example dataset for which no small coresets exist, but does that mean

that this particular "degenerate" example is relevant to the attainment of our goal of

constructing efficient data reduction algorithms for the purpose of probit regression?

Since the maximum likelihood estimate doesn’t even exist for this dataset, it can be

doubted, to say the least.
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Figure 1: Bob places two points q1 and q2 in such a way on the unit circle, that they can be linearly
seperated from the other points if and only if Alice didn’t place a point at xi.

It therefore seems reasonable to impose some restrictions on the datasets under study.

Since we are exclusively dealing with probit regression, it makes sense to restrict the

class of data sets to those, where a probit model can at least be properly estimated,

i.e. where the data is not linearly separable and were the maximum likelihood estimate

exists and is unique.

The authors of [Munteanu et al., 2018] were dealing with similar issues in the context

of logistic regression, so they decided to introduced a measure, which they call µ, that

describes the degree of separability of a dataset. In their work, they were able to not

only use this measure to restrict the class of datasets under study, which they defined as

µ-complex, but also to bound the size of their coresets in terms of µ. We will go down a

similar path in our search for small coresets, so the first step for us is to slightly adapt

this measure for our purposes:

Definition 5. (µ-complexity) Let D be a d-dimensional dataset of size |D| = n with

scaled model matrix Z ∈ R
n×d, where zi ∈ R

d constitutes the i-th row of Z and let

w ∈ R
n
>0 be a vector of positive weights. Let I+β = {i ∈ [n] : wiz

T
i β > 0} and let

I−β = {i ∈ [n] : wiz
T
i β < 0}. Let

µw(D) = sup
β∈Rd\{0}

∑
i∈I+

β
wi(z

T
i β)

2

∑
i∈I−

β
wi(zTi β)

2
.
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We call the dataset D with weight vector w µ-complex, if there exists a µ ∈ R, such that

µw(D) ≤ µ < ∞.

In order to understand, what exactly this measure does, we have to remember that

the parameter vector β that is estimated in the probit model is the orthogonal vector

of a hyperplane that separates the space of data points into two partitions. When using

the probit model for binary classification, the decision to classify a point as positive

or negative is often based on which side of the hyperplane the point is located. If it

is possible to perfectly classify each point such that no errors are made, the dataset is

called linearly separable. If it isn’t linearly separable, there are always two subsets of

datapoints: Those points that are correcly classified and those that are not. It turns out,

that these two subsets are exactly represented by the sets I+β and I−β in the definition of

µ. If we assume without losing generality, that for a given β ∈ R
d, we classify a point

as positive if xT
i β < 0, i.e. it is on the opposite side of the hyperplane where the normal

vector β points to, then zTi β = −(2yi−1)xT
i β > 0 and I+β contains exactly all the indices

of correctly classified points. Conversely, I−β then contains all the indices of incorrectly

classified points. It is thus easy to see, that if every point is correctly classified, i.e. the

dataset is linearly separable, then I−β = ∅ and µ = ∞, so the dataset is not µ-complex.

The relationship between linear separability and µ-complexity is even stronger though.

In the next theorem, we will show that a finite µ, i.e. the µ-complexity of a dataset, is

exactly equivalent to linear separability.

Theorem 3. Let D be a d-dimensional dataset of size |D| = n like in Definition 5 (µ-

complexity) and let w ∈ R
n
>0 be a vector of positive weights. Then, the dataset D with

weight vector w is µ-complex if and only if D is not linearly separable.

Proof. We first prove the "⇒" direction, i.e. we show that if D is µ-complex, then it is

not linearly separable. We do this by proving the equivalent contraposition that if D is

linearly separable, then it is not µ-complex.

Let S0 = {i ∈ [n] : yi = 0} and S1 = {i ∈ [n] : yi = 1} like in Definition 3 (linear

separability). If D is linearly separable, then there exists a β ∈ R
d \ {0}, such that

∀i ∈ S0 : xT
i β ≥ 0 and ∀i ∈ S1 : xT

i β ≤ 0

⇐⇒
∀i ∈ S0 : (−1)xT

i β ≤ 0 and ∀i ∈ S1 : xT
i β ≤ 0

⇐⇒
∀i ∈ S0 : (2yi − 1)xT

i β ≤ 0 and ∀i ∈ S1 : (2yi − 1)xT
i β ≤ 0
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⇐⇒
∀i ∈ S0 : −(2yi − 1)xT

i β ≥ 0 and ∀i ∈ S1 : −(2yi − 1)xT
i β ≥ 0

⇐⇒
∀i ∈ S0 : zTi β ≥ 0 and ∀i ∈ S1 : zTi β ≥ 0

⇐⇒
∀i ∈ [n] : zTi β ≥ 0

⇐⇒
I−β = {i ∈ [n] : wiz

T
i β < 0} = ∅

⇐⇒
∑

i∈I−
β

wi(z
T
i β)

2 = 0

⇒

µw(D) ≥
∑

i∈I+
β
wi(z

T
i β)

2

∑
i∈I−

β
wi(zTi β)

2
= ∞.

We use this notation to indicate, that in this case, when the dataset is not empty and

the denominator of the fraction is zero, we have that µw(D) cannot be bounded by any

finite µ ∈ R, which means that D is not µ-complex.

It now remains to prove the "⇐" direction, i.e. to show that if D is not linearly sepa-

rable, then it is µ-complex. Again, we do this by proving the equivalent contraposition

that if D is not µ-complex, then it is linearly separable.

The first step in order to do so is to show that we can restrict the supremum in µw(D)
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to finite β with ‖β‖ = 1:

µw(D) = sup
β∈Rd\{0}

∑
i∈I+

β
wi(z

T
i β)

2

∑
i∈I−

β
wi(zTi β)

2

= sup
β∈Rd\{0}

∑
i∈I+

β

1
‖β‖2wi(z

T
i β)

2

∑
i∈I−

β

1
‖β‖2wi(zTi β)

2

= sup
β∈Rd\{0}

∑
i∈I+

β
wi

(
zTi

β

‖β‖

)2

∑
i∈I−

β
wi

(
zTi

β

‖β‖

)2

= sup
β̃∈Rd, ‖β̃‖=1

∑
i∈I+

β
wi

(
zTi β̃

)2

∑
i∈I−

β
wi

(
zTi β̃

)2 ,

which lets us conclude that even in the supremum, both expressions
∑

i∈I+
β
wi(z

T
i β)

2 and
∑

i∈I−
β
wi(z

T
i β)

2 are finite. This means that if D is not µ-complex, then the denominator

must be zero, i.e. it must hold that there exists a β ∈ R
d \ {0} such that

∑

i∈I−
β

wi(z
T
i β)

2 = 0.

From here, we can follow the same chain of equivalences that we showed when proving

the "⇒"-direction of the theorem, which leads us directly to the fact, that D in this case

must be linearly separable, which concludes the proof.

Having established the relationship between µ-complexity and linear separability, it

directly follows that µ-complexity is also equivalent to the existence and uniqueness

of the maximum likelihood estimate of the probit model, that we discussed earlier in

Section 2.3.

From now on, we will subject our studies of coresets only to those datasets, that are

µ-complex, i.e. not linearly separable and with existing and unique maximum likelihood

estimate for the probit model.

We conclude this section by proving some simple inequalities regarding µ, which will

later be helpful when constructing the coresets.

Lemma 1. Let D be a d-dimensional and µ-complex dataset of size |D| = n with scaled

model matrix Z ∈ R
n×d and weight vector w ∈ R

n
>0 like in Definition 5. The following

23



relationship holds for all β ∈ R
d:

µ−1
∑

i∈I−
β

wi(z
T
i β)

2 ≤
∑

i∈I+
β

wi(z
T
i β)

2 ≤ µ
∑

i∈I−
β

wi(z
T
i β)

2.

Proof. If D with weights w is µ-complex, then

∑
i∈I+

β
wi(z

T
i β)

2

∑
i∈I−

β
wi(zTi β)

2
≤ µw(D) ≤ µ

⇐⇒
∑

i∈I+
β

wi(z
T
i β)

2 ≤ µ
∑

i∈I−
β

wi(z
T
i β)

2,

which proves the second inequality.

Considering that the labeling of a dataset is arbitrary, i.e. we could always switch the

1 labels for the 0 labels and vice versa (if we flip the sign of β accordingly), the following

relationship is true as well:

∑
i∈I−

β
wi(z

T
i β)

2

∑
i∈I+

β
wi(zTi β)

2
≤ µw(D) ≤ µ

⇐⇒
∑

i∈I−
β

wi(z
T
i β)

2 ≤ µ
∑

i∈I+
β

wi(z
T
i β)

2

⇐⇒ µ−1
∑

i∈I−
β

wi(z
T
i β)

2 ≤
∑

i∈I+
β

wi(z
T
i β)

2,

which proves the first inequality.

3.2 The Sensitivity Framework

After having imposed some reasonable restrictions on the datasets under study, it is now

time to think about how an algorithm that selects a coreset C ⊆ D could be constructed.

One of the first ideas that come to mind to solve such a problem is the process of uniform

random sampling. After all, why don’t we just randomly select a subset of points from

D of the desired size, where each datapoint is assigned an equal probability of being

selected? Wouldn’t that already solve our problem?

The issue with this approach is that it cannot be guaranteed that such a uniform

random sample will yield a coreset, i.e. a subset of D that helps us to obtain a (1± ǫ)-

approximation of the original loss function. As we will later see in the experiments
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section, uniform sampling works reasonably well when the data is well behaved, but

fails terribly when there are a few very important datapoints that it tends to miss.

Intuitively speaking, if there are lots of points in a dataset that don’t influence the loss

function much, but only a few points that have a big impact on the loss function, uniform

sampling fails because it tends to miss the few very important points.

It turns out, that one way to remedy the downsides of uniform sampling is to include a

measure of importance in the sampling distribution. Instead of sampling each datapoint

with equal probability, why don’t we construct our sampling distribution in such a way,

that the impact of each point on the loss function is taken into account? This way,

more important points would be assigned a higher probability of being sampled and

less important points would conversely be assigned a lower sampling probability. This

idea forms the basis of the so called sensitivity framework, an algorithmic framework

introduced in [Feldman and Langberg, 2011] (see also [Feldman et al., 2020]), that aims

to find coresets by randomly sampling points proportional to their importance for the

loss function.

In the sensitivity framework, the importance of a point in a dataset can be thought of

the maximum proportion of the loss function that it can take up in the worst case. To

formalize this intuition, the sensitivity framework shifts the representation of a dataset

as a collection of points towards the representation as a collection of functions, where

each function represents the loss of a point. To explain what that means, consider the

dataset D = {(xi, yi)}ni=1 with scaled model matrix Z, i.e. the rows of Z are given by

the vectors zi = −(2yi − 1)xi and the loss function is given by f(β) =
∑n

i=1 wig(z
T
i β),

where w1, ..., wn are positive weights. From now on, we will assign to each point in the

dataset the function gi(β) = g(zTi β), that represents its individual contribution to the

overall loss function. This way, we can equivalently represent the dataset D as the set

of functions F = {g1, ..., gn}.
Having made this conceptual change of representing a dataset as a set of functions,

we can now use this new representation to formalize the concept of importance for each

point, according to wich we later want to sample. As already hinted at, the importance

of a point will be the maximum fraction of the loss function, that the loss of the specific

point will take up in the worst case. This worst case importance is also called the

sensitivity of a point, and it was first introduced in [Langberg and Schulman, 2010]. A

formal definition of this concept, which forms the basis of the sensitivity framework, is

given below.

Definition 6 ([Langberg and Schulman, 2010]). Let F = {g1, ..., gn} be a set of func-
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tions, gi : Rd → R≥0, i ∈ [n] and let w ∈ R
n
>0 be a vector of positive weights. The

sensitivity of gi for fw(β) =
∑n

i=1 wigi(β) is defined as

ςi = sup
β∈Rd, fw(β)>0

wigi(β)

fw(β)
.

The total sensitivity, i.e. the sum of the sensitivities is S =
∑n

i=1 ςi.

The idea behind the sensitivity framework is to sample from a distribution, where the

sampling probabilities are determined by the sensitivities, i.e. the worst case importance

of each point in the dataset. But there is one issue remaining: The true sensitivities

ς1, ..., ςn are unknown, and as pointed out in [Braverman et al., 2016], their computation

requires solving the original optimization problem, which we wanted to avoid in the first

place. Luckily, there exists a simple workaround: Instead of sampling proportionally

to the true sensitivities, we can instead also sample proportionally to upper bounds si,

where si ≥ ςi, that are potentially easier to compute.

There is one caveat though, that we have to take into account: We will later see, that

in the sensitivity framework, the size of the coreset that we obtain through sampling

proportionally to upper bounds of the sensitivities, is directly influenced by the sum of

said bounds: S =
∑n

i=1 si. It follows, that we have to find bounds that are as tight as

possible, so that our coreset won’t be unnecessarily large.

The way in wich the authors of [Feldman and Langberg, 2011] were able to show, that

sampling proportionally to upper bounds of the sensitivities can lead to provably small

coresets, was to relate the concept of sensitivities to the theory of so-called range spaces

and the VC-dimension (see for example [Kearns and Vazirani, 1994] for an introduction

to the VC-dimension). We introduce these concepts in the following definitions, because

they will also turn out to be of crucial importance to the size of our coresets.

Definition 7 ([Feldman and Langberg, 2011]). A range space is a pair R = (F, ranges),

where F is a set and ranges is a family (set) of subsets of F.

Definition 8 ([Feldman and Langberg, 2011]). The VC-dimension ∆(R) of a range

space R = (F, ranges) is the size |G| of the largest subset G ⊆ F such that

|{G ∩R | R ∈ ranges}| = 2|G|,

i.e. G is shattered by ranges.
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The most important part to understand about the two preceding definitions is the

concept of shattering. Given a set F , a set of subsets of F called ranges and a subset

G ⊆ F , what does it mean if G is shattered by ranges? Definition 8 says, that the set

of intersections between G and ranges must be equal to 2|G|, which is exactly the size of

the set of all subsets of G. It follows, that for G to be shattered by ranges, every subset

of G must be a subset of at least one of the sets in ranges, that isn’t already occupied

by another subset of G. From this it also immediately follows, that if G is shattered by

ranges, then every subset of G is also shattered by ranges. Thus, the VC-dimension of

the range space that is given by F and ranges is simply the size of the largest subset

G ⊆ F , such that every subset of G appears in at least one element of ranges, where

each such element can account for at most one subset of G.

Instead of dealing with arbitrary sets like in Definition 7 and Definition 8, we are

specifically dealing with a set of functions F = {g1, ..., gn}, that represents our dataset.

In the next definition, we will see, how such a set of functions can be used to induce a

range space, which will be of crucial importance when limiting the size of our coresets

later on.

Definition 9 ([Feldman and Langberg, 2011]). Let F be a finite set of functions mapping

from R
d to R≥0. For every β ∈ R

d and r ≥ 0, let

range(F, β, r) = {f ∈ F | f(β) ≥ r}

and let

ranges(F ) =
{
range(F, β, r) | β ∈ R

d, r ≥ 0
}
.

Then we call RF := (F, ranges(F )) the range space induced by F.

To understand what it means for a set of functions F to induce a range space, consider

that we can always partition the set of functions into two disjoint subsets by choosing

a specific β and applying a threshold r: Every element in F with a value of f(β) ≥
r goes to one subset, the remainder goes to the other subset. Considering that our

functions actually represent datapoints, each value of β and r give one way to partition

the datapoints into two disjoint subsets. Thus, the set ranges(F ) in Definition 9 can

be thought of the set of all possible partitions of functions (datapoints), that can be

obtained for all possible β ∈ R
d and r ≥ 0 and the VC-dimension of the induced range

space is the size of the largest set of datapoints, that can be arbitrarily partitioned by

different values of β and r.
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We are now ready for the full theorem that relates sensitivity sampling to the theory

of range spaces and the VC-dimension, which forms the core of the sensitivity frame-

work. Its original version goes back to [Feldman and Langberg, 2011] and it was further

improved in [Braverman et al., 2016]. The version we are presenting here is a slightly

adapted variant introduced in [Feldman et al., 2020]:

Theorem 4 ([Feldman et al., 2020]). Let F = {g1, ..., gn} be a finite set of functions

mapping from R
d to R≥0. Let w ∈ R

n
>0 be a vector of positive weights. Let ǫ, δ ∈ (0, 1

2
).

Let si ≥ ςi be upper bounds of the sensitivities and let S =
∑n

i=1 si. Given si, one can

compute in time O(|F |) a set R ⊆ F of

|R| ∈ O

(
S

ǫ2

(
∆ logS + log

(
1

δ

)))

weighted functions, such that with probability 1−δ we have for all β ∈ R
d simultaneously

(1− ǫ)
∑

gi∈F
wigi(β) ≤

∑

gj∈R
ujgj(β) ≤ (1 + ǫ)

∑

gi∈F
wigi(β).

Each element of R is sampled independently with probability pi =
si
S

from F , uj =
Swi

si|R|
denotes the weight of a function gj ∈ R that corresponds to gi ∈ F and ∆ is an upper

bound on the VC-dimension of the range space RF ∗ induced by F ∗, where F ∗ is the set

of functions gi ∈ F scaled by Swi

si|R| , i.e. F ∗ =
{

Swi

si|R|gi(β) | i ∈ [n]
}
.

The set of functions R ⊆ F with weights u is of course a representation of the coreset

that we are interested in. As Theorem 4 tells us, the size of this coreset depends on

both, the sum of the sensitivity bounds as well as the VC-dimension of the range space

induced by F ∗, a reweighted version of F .

Another thing to note is that Theorem 4 introduces a failure probability δ, which also

influences the size of the coreset. The reason why we need this new parameter becomes

clear when considering, that the coreset is selected by random sampling, i.e. the coreset-

construction process is probabilistic and probabilistic processes can fail. This failure

probability is reflected by the parameter δ.

Equipped with Theorem 4, we now have a clear roadmap to follow in the pursuit of

our goal of finding a coreset construction algorithm. We know, that we have to find small

upper bounds on the sensitivities of our function set F = {g1, ..., gn} for the purpose

of random sampling and at the same time, we also know that we have to control the

VC-dimension of the range space of F ∗. Thus, bounding the sensitivities as well as
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bounding the VC-dimension are the main challenges of the next section.

3.3 Constructing the Coreset

Without any point of reference, the task of finding tight and efficiently computable upper

bounds on the sensitivities seems rather challenging. How are we supposed to find those

ominous bounds and on top of that, how can we make sure that their sum will be small?

It helps to remind ourselves of the original problem that the sensitivities were designed

to solve. Instead of sampling every point with equal probability, the sensitvities were

introduced to include the importance of each point into the sampling process. But what

if similar importance distributions already existed? Could it be possible to choose an

existing importance distribution and relate it to the concept of sensitivities in order to

obtain upper bounds?

It turns out, that there is one importance sampling distribution that is particularly

helpful in the context of our problem: The so-called statistical leverage scores (see for

example [Drineas et al., 2012]). For a dataset D = {(xi, yi)}ni=1 with model matrix

X, the statistical leverage score of the i-th observation is given by ℓi = xT
i (X

TX)−1xi.

Intuitively speaking, ℓi is a measure of the importance of a given observation xi in the

following way: If there aren’t many data points close to xi, i.e. we can consider xi to

be unique, then the leverage score of xi is high. On the other hand, if there are a lot of

other data points close to xi, i.e. xi is not unique, then the leverage score is low. When

using leverage scores as a sampling distribution, we give a higher weight to points that

are unique and different from the other points, compared to points that are surrounded

by a lot of similar other points.

To better understand what that means, a visualization of the statistical leverage scores

of an artificially generated two dimensional dataset is given in Figure 2 as an example.

We can see, that most of the datapoints that are crowding the center of the dataset

have rather low leverage scores, but the further out the points are located relatively to

the center, the higher the leverage scores become. Particularly, there is a small group

of outliers in the top right of the coordinate system, and we can see that their leverage

scores are almost four times as high as the leverage scores of the points in the center.

Thus, when sampling points proportionally to their leverage scores, we are less likely to

miss outliers in the data that could potentially have a high impact on the loss function.

An alternative way of defining the leverage scores, which will be particularly important

to us when mathematically deriving the sensitivity bounds later on, is to specify them

as the squared row norms of an orthonormal basis of the model matrix X ∈ R
n×d.
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Figure 2: Visualization of the statistical leverage scores of an artificial two dimensional dataset. Darker
colors indicate a higher leverage score than lighter colors.

Such an orthonormal basis can for example be obtained by computing a so-called QR-

decomposition of X (see for example [Golub and van Loan, 2013]), where X = QR

is factorized into an orthonormal matrix Q ∈ R
n×d and an invertible upper triangular

matrix R ∈ R
d×d.

Our goal in this section is to adapt the leverage scores in such a way, that we can

obtain tight upper bounds on the sensitivities. But we are not quite ready for that yet.

Before we can get there, we first have to focus our attention back to the probit loss

function g(x), because it turns out that in order to bound the sensitivities by using the

leverage scores, we first have to cover some important properties of g(x).

3.3.1 A Closer Examination of the Probit Loss

In order to find bounds on the sensitivities, we also need bounds on the probit loss

g(x) = ln
(

1
1−Φ(x)

)
. The first bound that we will derive holds for all x ≥ 0 and shows

that g(x) grows at least like a quadratic function. Next, we will show that for all x ≥ 2,

g(x) is upper bounded by a quadratic function, and thus g(x) asymptotically grows like

a quadratic function. Both of these bounds will turn out to be helpful later on. They

are proven in Lemma 2 and Lemma 3.

Lemma 2. Let g(x) = ln
(

1
1−Φ(x)

)
. Then, for all x ≥ 0, it holds that:

1

2
x2 ≤ g(x).
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Proof. We first show the claim for all x ≥ 1, by using the following inequality: 1

Φ(−x) =
1√
2π

∫ −x

−∞
exp

(
−1

2
t2
)
dt

≤ 1√
2π

∫ −x

−∞
−t exp

(
−1

2
t2
)
dt

=
1√
2π

exp

(
−1

2
x2

)

≤ exp

(
−1

2
x2

)
.

In the next step, we use this inequality to show that for x ≥ 1:

eg(x) = eln(
1

1−Φ(x)) =
1

Φ(−x)
≥ e

1
2
x2

⇐⇒

g(x) ≥ 1

2
x2,

which proves the bound for x ≥ 1.

Let us now turn to the case when 0 ≤ x ≤ 1. Both g(x) and 1
2
x2 are monotonically

increasing and continuous functions for 0 ≤ x ≤ 1. Making use of the fact that g(0) =

ln(2) > 1
2
, it follows for all 0 ≤ x ≤ 1, that

g(x) ≥ g(0) >
1

2
= max

0≤x≤1

1

2
x2 ≥ 1

2
x2,

which concludes the proof.

Lemma 3. Let g(x) = ln
(

1
1−Φ(x)

)
. Then, for all x ≥ 2, it holds that:

g(x) ≤ x2.

Proof. In [Gordon, 1941], it was shown that the following inequality holds for all x ≥ 0:

Φ(−x) ≥ 1√
2π

x

x2 + 1
e−

1
2
x2

.

1The idea of how to prove this inequality was inspired by an interesting blog post by Dr. John D.
Cook, which can be found at https://www.johndcook.com/blog/norm-dist-bounds/.
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We can use this inequality to establish that for all x ≥ 2 it holds that:

ex
2 · Φ(−x) ≥ ex

2 1√
2π

x

x2 + 1
e−

1
2
x2

= e
1
2
x2 1√

2π

x

x2 + 1

= e
1
2
x2 1

4
3
(x2 + 1)

4
3
x√
2π

≥ e
1
2
x2

4
3
(x2 + 1)

≥ e
1
2
x2

e
1
2
x2

= 1

⇐⇒

ex
2 ≥ 1

1− Φ(x)

⇐⇒

x2 ≥ ln

(
1

1− Φ(x)

)
= g(x),

where we used the fact that Φ(−x) = 1−Φ(x), which follows from the symmetry of the

normal distribution.

3.3.2 Finding the Sensitivity Bounds

Having successfully established the quadratic bounds on the probit loss g(x), we can

now turn our attention back to the task of finding upper bounds on the sensitivities. As

already mentioned, we will be using the statistical leverage scores in order to do so.

To this end, we will show that the function set F = {g1, ..., gn}, which represents

our dataset, can for every β ∈ R
d be partitioned into two classes of functions for which

we can find upper bounds on the sensitivities. The first class will contain all points,

where the loss funcion surpasses a specific threshold. It turns out, that for a given

β, the threshold zTi β ≥ 2 is a suitable candidate. In the next lemma, we show how

we can relate the loss function of all the points in this class to the statistical leverage

scores, while also incorporating µ into the upper bound. To do this, we use the notion

of leverage scores as the squared row norms of an orthogonal basis, that can be obtained

for example by conducting a QR-factorization.
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Lemma 4. Let D be a d-dimensional and µ-complex dataset of size |D| = n with scaled

model matrix Z ∈ R
n×d and let w ∈ R

n
>0 be a vector of positive weights. Let F =

{g1, ..., gn} be the set of functions with gi(β) = g(zTi β) and let fw(β) =
∑n

i=1 wigi(β).

Then, it holds for all β ∈ R
d, that

∀ j ∈ {i ∈ [n] : zTi β ≥ 2} : wjgj(β) ≤ 2‖Uj‖22(1 + µ)fw(β),

where U ∈ R
n×d is an orthonormal basis for the columnspace of

√
DwZ and

√
Dw ∈ R

n×n

is a diagonal matrix, where the i-th diagonal element is equal to
√
wi and Uj ∈ R

d is the

j-th row of U .

Proof. Let
√
DwZ = UR, where U is an orthonormal basis for the columnspace of√

DwZ. Then, for all j ∈ {i ∈ [n] : zTi β ≥ 2} and a given β ∈ R
d:

wjgj(β) = wjg(z
T
j β) = wjg

(√
wjz

T
j β√

wj

)
= wjg

(
UjRβ
√
wj

)
≤ wjg

(‖Uj‖2‖Rβ‖2√
wj

)
,

where Uj ∈ R
d is the vector that constitutes the j’th row of U and the last inequality

follows from the Cauchy-Schwarz inequality. We continue the proof as follows:

wjg

(‖Uj‖2‖Rβ‖2√
wj

)
= wjg

(‖Uj‖2‖URβ‖2√
wj

)

= wjg

(‖Uj‖2‖
√
DwZβ‖2√
wj

)

≤ ‖Uj‖22‖
√

DwZβ‖22

= ‖Uj‖22
n∑

i=1

wi(z
T
i β)

2.

Here, the first equality follows from the fact that U is orthonormal, i.e. multiplying by U

doesn’t change the norm of a vector. The inequality follows from the bound g(x) ≤ x2,

that holds for all x ≥ 2, which was shown in Lemma 3.

Now, let I+β = {i ∈ [n] : wiz
T
i β > 0} and let I−β = {i ∈ [n] : wiz

T
i β < 0} like in

Definition 5, the definition of µ-complexity. We continue the proof by making use of the
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relationship that was shown in Lemma 1:

‖Uj‖22
n∑

i=1

wi(z
T
i β)

2 = ‖Uj‖22



∑

i∈I+
β

wi(z
T
i β)

2 +
∑

i∈I−
β

wi(z
T
i β)

2




≤ ‖Uj‖22



∑

i∈I+
β

wi(z
T
i β)

2 + µ
∑

i∈I+
β

wi(z
T
i β)

2




= ‖Uj‖22(1 + µ)
∑

i∈I+
β

wi(z
T
i β)

2

≤ 2‖Uj‖22(1 + µ)
∑

i∈I+
β

wig(z
T
i β),

where the last inequality follows from the bound g(x) ≥ 1
2
x2, that holds for all x ≥ 0,

which we proved in Lemma 2.

From here, we can use the fact that g is a strictly positive function to complete the

proof:

2‖Uj‖22(1 + µ)
∑

i∈I+
β

wig(z
T
i β) ≤ 2‖Uj‖22(1 + µ)

n∑

i=1

wig(z
T
i β) = 2‖Uj‖22(1 + µ)fw(β)

In the next lemma, we turn to the remaining class of points where zTi β ≤ 2, and

show how the sensitivity of these points can be bounded by a constant value that only

depends on µ and the weight of the given point.

Lemma 5. Let D be a d-dimensional and µ-complex dataset of size |D| = n with scaled

model matrix Z ∈ R
n×d and let w ∈ R

n
>0 be a vector of positive weights. Let F =

{g1, ..., gn} be a set of functions with gi(β) = g(zTi β) and let fw(β) =
∑n

i=1 wigi(β).

Then, it holds for all β ∈ R
d, that

∀ j ∈ {i ∈ [n] : zTi β ≤ 2} : wjgj(β) ≤
wj

W (80 + 16µ)fw(β),

where W =
∑n

i=1 wi is the sum of all weights.

Proof. We first start by noting that g(−1) > 1
10

and that g(2) < 4. Now, for a given
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β ∈ R
d, we partition the indices into two sets as follows:

K−
β = {i ∈ [n] | zTi β ≤ −1}

K+
β = {i ∈ [n] | zTi β > −1}.

In the case that
∑

j∈K+
β
wj ≥ 1

2
W , the following relationship holds:

fw(β) =
n∑

i=1

wig(z
T
i β) ≥

∑

i∈K+
β

wig(z
T
i β) ≥

∑
i∈K+

β
wi

10
≥ W

20
=

W
20wj

wj ≥
W
80wj

wjg(z
T
j β),

where j ∈ {i ∈ [n] : zTi β ≤ 2}. Thus, we have in this case:

wjg(z
T
j β) ≤

80wj

W fw(β).

If on the other hand
∑

j∈K−

β
wj ≥ 1

2
W , we have that

fw(β) =
n∑

i=1

wig(z
T
i β) ≥

∑

i∈I+
β

wig(z
T
i β) ≥

1

2

∑

i∈I+
β

wi(z
T
i β)

2 ≥ 1

2µ

∑

i∈I−
β

wi(z
T
i β)

2,

where I+β = {i ∈ [n] : wiz
T
i β > 0} and I−β = {i ∈ [n] : wiz

T
i β < 0} like in Definition 5

(µ-complexity). The second inequality is true due to the lower bound g(x) ≥ 1
2
x2 that

holds for all x ≥ 0 (see Lemma 2) and the third inequality is true due to the property

of µ-complexity, that was proved in Lemma 1.

We continue the proof as follows:

1

2µ

∑

i∈I−
β

wi(z
T
i β)

2 ≥ 1

2µ

∑

i∈K−

β

wi(z
T
i β)

2 ≥ 1

2µ

∑

i∈K−

β

wi ≥
W
4µ

≥ W
16µwj

wjg(z
T
j β),

which leads us to the upper bound for the second case:

wjg(z
T
j β) ≤

16µwj

W fw(β).

We can conclude the proof by adding both upper bounds:

wjgj(β) = wjg(z
T
j β) ≤

80wj

W fw(β) +
16µwj

W fw(β) =
wj

W (80 + 16µ)fw(β).
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It is now time to use the results from Lemma 4 and Lemma 5 to derive an upper

bound on the sensitivities. Because we showed, how the dataset can be partitioned in

"high loss points" and "low loss points" for every given β ∈ R
d and how the sensitivities

of these two classes of points can both be upper bounded, it simply suffices to add those

bounds together to bound the sensitivities for any given β. As a final step, we only

have to show that the total sum of the sensitivities remains small. We do both in the

following lemma.

Lemma 6. Let D be a d-dimensional and µ-complex dataset of size |D| = n with scaled

model matrix Z ∈ R
n×d, let w ∈ R

n
>0 be a vector of positive weights and let U ∈ R

n×d

be an orthonormal basis for the columnspace of
√
DwZ. Let F = {g1, ..., gn} be a set of

functions with gi(β) = g(zTi β) and let fw(β) =
∑n

i=1 wigi(β). Then, the sensitivity ςi of

gi (see Definition 6) is upper bounded by

ςi ≤ si = (80 + 16µ)(‖Ui‖22 +
wi

W ),

and the total sensitivity is bounded by

S =
n∑

i=1

ςi ≤ 192µd.

Proof. We can use the bounds that we derived in Lemma 4 and Lemma 5 to bound the

sensitivities:

ςi = sup
β∈Rd, fw(β)>0

wig(ziβ)

fw(β)

≤ sup
β∈Rd, fw(β)>0

2‖Ui‖22(1 + µ)fw(β) +
wi

W (80 + 16µ)fw(β)

fw(β)

= 2‖Ui‖22(1 + µ) +
wi

W (80 + 16µ)

≤ ‖Ui‖22(80 + 16µ) +
wi

W (80 + 16µ)

= (80 + 16µ)(‖Ui‖22 +
wi

W ),

which completes the first part of the proof. For the next part, we use that U is an

orthonormal matrix. The Frobenius norm ‖U‖F of an orthonormal matrix (see for
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example [Golub and van Loan, 2013]) is equal to
√
d, as can easily be verified:

‖U‖F =

√√√√
d∑

k=1

n∑

l=1

|ulk|2 =

√√√√
d∑

k=1

1 =
√
d,

where the second equality follows from the fact that the columns of U have unit norm

due to its orthonormality. We can now conclude the proof as follows:

S =
n∑

i=1

ςi ≤ (80 + 16µ)
n∑

i=1

‖Ui‖22 +
wi

W

= (80 + 16µ)(‖U‖2F + 1)

= (80 + 16µ)(d+ 1)

≤ 96µ(d+ 1)

≤ 192µd.

We now have successfully completed the first task on our list of developing a coreset

construction algorithm by using the sensitivity framework. Not only did we manage

to derive upper bounds on the sensitivities of the function set F = {g1, ..., gn} that

represents our dataset by using the statistical leverage scores, but we also showed that

the sum of those bounds is in O(µd), even independent of the total number of datapoints

n. The final step, before putting everything together, is now to find an upper bound on

the VC-dimension of the range-space induced by F ∗.

3.3.3 Bounding the VC-dimension

Recall, that in the core theorem of the sensitivity framework (see Theorem 4), the

function-set that induces our range space of interest is defined as

F ∗ =

{
Swi

si|R|gi(β) | i ∈ [n]

}
,

where si are upper bounds on the sensitivities, S is the sum of these upper bounds, |R|
is the size of the sample and wi are the initial weights. We are thus dealing with a set

of weighted probit loss functions.

In order to approach the complex problem of bounding the VC-dimension of a set of
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arbitrarily weighted probit loss functions, we first deal with the slightly simpler problem

that arises when the weights only consist of a single positive constant, i.e. we are looking

at the set F c = {cgi(β) | i ∈ [n]}. The authors of [Huggins et al., 2016] showed, that

in the case of the logistic loss, it is possible to relate the VC-dimension of the range

space induced by F c to the VC-dimension of the affine hyperplane classifier, which the

authors of [Kearns and Vazirani, 1994] showed to be bounded by d+1. It turns out, that

a similar case can be made for the probit loss, which we demonstrate in the following

lemma.

Lemma 7 (cf. [Huggins et al., 2016]). Let Z ∈ R
n×d, let zi ∈ R

d be the i-th row of Z

and let c ∈ R>0. Let F = {g1, ..., gn} be a set of functions with gi(β) = g(zTi β), where

g(x) = ln
(

1
1−Φ(x)

)
is the probit loss. The VC-dimension of the range space induced by

F c = {cgi(β) | i ∈ [n]}

is bounded by ∆(RFc) ≤ d+ 1.

Proof. We start by noting that for all G ⊆ F c we have

|{G ∩R | R ∈ ranges(F c)}| =
∣∣{range(G, β, r) | β ∈ R

d, r ≥ 0
}∣∣ .

Since g is invertible and monotonous, we have for all β ∈ R
d and r ≥ 0, that

range(G, β, r) = {gi ∈ G | cgi(β) ≥ r}
=
{
gi ∈ G | cg(zTi β) ≥ r

}

=
{
gi ∈ G | zTi β ≥ g−1

(r
c

)}
.

Note, that
{
gi ∈ G | zTi β ≥ g−1

(
r
c

)}
corresponds to the positively classified points of

the affine hyperplane classifier x 7→ sign
(
xTβ − g−1

(
r
c

))
. Due to the fact, that g−1 is a

surjective function, we thus have for all G ⊆ F c, that

|{G ∩R | R ∈ ranges(F c)}| =
∣∣{{gi ∈ G | zTi β − s ≥ 0

}
| β ∈ R

d, s ∈ R
}∣∣ .

As shown in [Kearns and Vazirani, 1994], the VC-dimension of the set of affine hy-

perplane classifiers is d + 1, so it follows that ∆(RFc) ≤ d + 1, which concludes the

proof.

In the next step, we will generalize the class F c of constantly weighted probit loss
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functions to the class Fw = {wigi(β) | i ∈ [n]} of arbitrarily weighted probit loss

functions for a weight vector w ∈ R
n
>0, which also includes F ∗, our class of interest. The

authors of [Munteanu et al., 2018] presented a proof, that shows how the VC-dimension

of the range space induced by such a set can be bounded by t · (d + 1) in the case of

logistic regression, where t ∈ N is the number of distinct weights in the vector w. We

follow a similar path and adapt their argument to the context of probit regression in the

following lemma.

Lemma 8 (cf. [Munteanu et al., 2018]). Let Z ∈ R
n×d, let zi ∈ R

d be the i-th row of

Z and let w ∈ R
n
>0 be a vector of positive weights, where wi ∈ {v1, ..., vt} for all i ∈ [n].

Let F = {g1, ..., gn} be a set of functions with gi(β) = g(zTi β). The VC-dimension of the

range space induced by

Fw = {wigi(β) | i ∈ [n]}

is bounded by ∆(RFw) ≤ t · (d+ 1).

Proof. We start by partitioning the functions in Fw into t disjoint classes

Fj = {wig(ziβ) ∈ Fw | wi = vj}, j ∈ [t].

The functions in each of these classes have an equal weight, wich means that by Lemma 7,

each of their induced range spaces has a VC-dimension of at most d+ 1.

For the sake of contradiction, assume that ∆(RFw) > t · (d + 1) and let G be the

corresponding set of size |G| > t · (d + 1) that is shattered by ranges(Fw). Since the

sets Fj are disjoint, each intersection Fj ∩ G must be shattered by ranges(Fj) as well.

Further, at least one of the intersections must have at minimum |G|
t

elements, which

means that for at least one j ∈ [t] it holds that |Fj ∩G| ≥ |G|
t
> t·(d+1)

t
= d+ 1. This is

a contradiction to Lemma 7, which concludes the proof.

We have now found a way to bound the VC-dimension of the range space induced by

F ∗ in the number of distinct weights, i.e. the number of distinct values of Swi

si|R| . But

there is one important issue that remains to be dealt with: In the general case, we don’t

know the number of distinct values of Swi

si|R| , and it is even reasonable to assume, that

this value can be equal to the total number of datapoints, n. This would be a problem

for us though, because the core theorem of the sensitivity framework (Theorem 4) tells

us, that the size of our coreset will depend linearly on the VC-dimension of the range

space induced by F ∗. If this VC-dimension is in Ω(n), our coresets won’t be small. It
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follows, that we have to find a way to work around that problem in order to obtain small

coresets.

3.3.4 A First Naïve Algorithm

It now remains to solve the final challenge: How can we limit the number of distinct

weights in F ∗ in order to limit the VC-dimension of the range space induced by F ∗

and obtain small coresets? The authors of [Munteanu et al., 2018] were facing a similar

situation, and it turns out that they managed to come up with a very clever idea: Their

approach to the problem is to slightly increase the upper bounds on the sensitivities si

to a new value s′i ≥ si, such that the fraction
s′i
wi

is exactly a power of two. This way,

the total sum of the sensitivities S ′ =
∑n

i=1 s
′
i is still under control, because as a worst

case bound we have that S ′ ≤ 2S, which doesn’t influence the big-O notation and we

still have S ′ ∈ O(µd). The big advantage of this approach is, that we now have a way

to bound the number of distinct values of S′wi

s′i|R| in a term that is logarithmic in n. To see

why this is the case, we first derive two simple inequalities. The first one goes like this

and holds for all i ∈ [n]:

s′i
wi

≤ 2si
wi

=
2(80 + 16µ)(‖Ui‖22 + wi

W )

wi

≤ 192µ(‖Ui‖22 + wi

W )

wi

≤ 384µ

wi

≤ 384µ

wmin

,

where wmin is the minimum weight and W is the sum of all weights. The third inequality

holds, because it is always true that µ ≥ 1 and the fourth inequality is true because one

property of the statistical leverage scores is that ‖Ui‖22 ≤ 1.

Next, we show how
s′i
wi

can be lower-bounded for all i ∈ [n]:

s′i
wi

≥ si
wi

≥ sup
β∈Rd

gi(β)∑n

i=1 wigi(β)

β=0

≥ 1∑n

i=1 wi

≥ 1

nwmax

,

where wmax is the maximum weight. Putting both of the inequalities together, we thus

have that
1

nwmax

≤ s′i
wi

≤ 384µ

wmin

.

We know, that the values of
s′i
wi

are exactly powers of two, so we can compute the amount

of possible distinct values of
s′i
wi

, which we call t, like this:

t ≤ log2

(
384µ

wmin

)
− log2

(
1

nwmax

)
= log2

(
384µn

wmax

wmin

)
∈ O (log2(µnω)) ,
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where ω = wmax

wmin
. Thus, when sampling according to s′i, our function class of interest

becomes

F ∗′ =

{
S ′wi

s′i|R|gi(β) | i ∈ [n]

}
,

and the weights S′wi

s′i|R| can assume only O(log2(µnω)) distinct values. Plugging this into

Lemma 8, we get that the VC-dimension of the range space induced by F ∗′ is upper

bounded by a term in O(d log2(µnω)).

As a side note, one might ask if the term ω = wmax

wmin
could be a problem in practical

applications. To answer this concern, we remark that generally in most situations, all the

weights are equal to one, which leads to a value of ω = 1 and thus we have O(d log(µn)) as

an asymptotic bound for most practical applications. Even if one encounters a situation,

where ω ∈ O(poly(n)), the logarithm assures that our coreset size is still small.

We now have everything we need to construct our first algorithm. As we already

hinted at, the algorithm will sample the points from our dataset proportionally to the

rounded values values s′i, i.e. each point is assigned a sampling probability

pi =
s′i
S ′
i

=

⌈
ℓi +

wi

W
⌉
2∑n

i=1

⌈
ℓi +

wi

W
⌉
2

, (21)

where ⌈.⌉2 indicates the rounding of si such that
s′i
wi

is a power of two and ℓi is the

statistical leverage score of the i-th datapoint, which can be obtained through a QR

decomposition of the row-wise weighted matrix
√
DwZ. We note, that the factor (80 +

16µ) of the sensitivity bounds doesn’t appear in Equation 21, because it is the same

for all the sensitivity bounds and thus doesn’t influence the sampling probabilities. The

resulting naïve algorithm is given in Algorithm 2.

Although the naïve algorithm is a first proof of concept of how small coresets for

probit regression can in principle be constructed, there are still multiple issues with

this algorithm that we have to deal with. The first and most obvious issue is the QR

decomposition of
√
DwZ, that is needed in order to obtain the statistical leverage scores.

When the dataset is small and fits into the main memory, the QR decomposition is not

an issue, but as soon as the size of the data grows, its computation on the whole dataset

becomes infeasible. Ideally, we would like to compute (or at least approximate) the QR

decomposition in a single pass over the data, i.e. we only want look at each element of D
once. Standard algorithms for computing a QR factorization (see for example the Givens

method described in [Golub and van Loan, 2013]) don’t scale well for large datasets, and

usually require more than one pass over the data. Thus, one of the remaining challenges
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Algorithm 2: Naïve coreset construction algorithm

Input: Dataset D = {(xi, yi)}ni=1 with scaled model matrix Z ∈ R
n×d and weight

vector w ∈ R
n
>0, W =

∑n

i=1 wi, size parameter k ∈ N

Output: A subset C ⊆ D of size |C| = k with weight vector u ∈ R
k
>0

1 Compute the QR-decomposition of
√
DwZ = QR

2 for i = 1, ..., n do
3 ℓi = ‖Qi‖22, where Qi is the i-th row of Q
4 ai = ℓi +

wi

W

5 s′i = wi2

⌈

log2

(

ai
wi

)⌉

6 for i = 1, ..., n do

7 pi =
s′i

∑n
i=1 s

′

i

8 C(0) = ∅
9 for i = 1, ..., k do

10 Randomly sample a point cj from D with probabilities p1, ..., pn
11 C(i) = C(i−1) ∪ {cj}
12 ui =

wj

k·pj

13 return C(k), (u1, ..., uk)
T

is to find a way to adapt the QR decomposition for large datasets in order to efficiently

compute the leverage scores.

The second issue of the naïve algorithm lies in the random sampling procedure. Ideally,

we would also like to perform the sampling according to the distribution defined by

p1, ..., pn in a single pass over the dataset. In the next section, we will further explore

how to solve both of these issues and obtain two algorithms, that only require two

passes or one pass over the data, respectively. But before we get into that, we conclude

this section with a proof, that the naïve algorithm is indeed a correct algorithm for

constructing small coresets for probit regression.

Theorem 5. Algorithm 2 returns a (1 ± ǫ)-coreset for probit regression with success

probability 1− n−c for any absolute constant c > 1, if the size parameter k satisfies

k ∈ O

(
µd2

ǫ2
log(µωn) log(µd)

)
.

Proof. We use the core theorem of the sensitivity framework (see Theorem 4) in order

to prove the claim.

In Lemma 6, we showed that s1, ..., sn are upper bounds on the sensitivities and that

S =
∑n

i=1 si ∈ O(µd). We also saw, that when rounding the si up in such a way that
s′i
wi
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is a power of two,
∑n

i=1 s
′
i ≤ 2S ∈ O(µd). Further, we showed that the VC-dimension

of the range space induced by F ∗′ can be upper bounded by a term ∆ ∈ O(d log(µωn)),

where ω = wmax

wmin
is the ratio of the largest and smallest weight. Setting the failure

probability equal to δ = n−c for any absolute constant c > 1, we can plug everything

into the core theorem of the sensitivity framework and obtain the desired coreset size:

k ∈ O

(
S ′

ǫ2

(
∆ logS ′ + log

(
1

δ

)))

⊆ O

(
µd

ǫ2
(d log(µωn) log(µd) + log(nc))

)

⊆ O

(
µd2

ǫ2
log(µωn) log(µd)

)

4 Efficient Coreset Algorithms

When constructing the naïve algorithm, we encountered two main challenges that have

to be dealt with in order to make the algorithm more efficient and suitable for large

datasets: First, we have to find a way to efficiently compute the leverage scores, prefer-

ably without having to perform a full QR decomposition. Second, after obtaining the

sensitivity bounds, we need a method to sample elements from the dataset with as little

computational overhead as possible, ideally in only one row by row pass over the data.

In this chapter, we will explore ways to deal with both of these challenges and derive

two algorithms, that are suitable for real world application on large datasets.

4.1 A Fast Two-Pass Algorithm

The two-pass algorithm that we derive first is essentially made up of two components:

In the first row-by-row pass over the dataset, a fast approximation of the leverage scores

is computed, which is then used to sample the elements of our coreset in a second pass

over the data. But before we get into the topic of efficiently approximating the leverage

scores, we first cover the sampling component of the two-pass algorithm.

4.1.1 One-Pass Sampling with a Reservoir

Let’s assume for a moment, that we had an oracle available that tells us the sensitivity

bounds s1, ..., sn one by one for each incoming row, and that we are now interested in
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independently sampling k elements from our dataset D = {(x1, yi)}ni=1 in one pass over

the data, such that the i-th element has a probability of pi =
si

∑n
j=1 sj

of being sampled.

Luckily, there already exist multiple different algorithms that solve exactly this problem

in only one pass over the dataset, i.e. by only looking at each element in D once. One

of these algorithms, that we will use as the second component of our efficient two pass

coreset algorithm, is the so-called reservoir sampler by Chao [Chao, 1982].

As the name suggests, the reservoir sampler consists of a reservoir, i.e. a storage

of size k, where the resulting sample will be stored. In the beginning of the sampling

procedure, the reservoir is empty. Next, the algorithm decides for each element of D, if

it is added to the reservoir or not. In the first k steps of the procedure, when there is still

room in the reservoir, every item is added and the reservoir is filled. After that, when

the reservoir is full and there are still elements left in D, the algorithm has to decide

for each new element, if it should be added to the reservoir, and if yes, which element

of the reservoir it should replace. These two decisions are the main ingredients of the

algorithm, but as shown in [Chao, 1982], they turn out to be relatively simple rules.

In order to decide, if a new sample with sampling weight sj should be included in

the reservoir, the algorithm maintains at each step the sum Sj =
∑j

l=1 sl. The decision,

whether the new element is included, is then based on sampling a uniformly distributed

number q ∼ U(0, 1). If q ≤ sj
Sj

, the new element is included, otherwise it is ignored. In

case the element is included, the algorithm still has to decide, which element has to be

released from the reservoir. But this decision also turns out to be simple: It suffices, to

just select an element from the reservoir at random and replace it with the new element.

As shown in [Chao, 1982], both of these rules together ensure, that after one pass over

the entire dataset, the reservoir contains the desired sample.

In order to use this algorithm for our purposes, there is one little adjustment that

we have to make. The reservoir sampler, that we just described, samples the elements

without replacement, but one little subtlety of the sensitivity framework is that the

elements are actually sampled with replacement. It turns out, that this difference can

easily be overcome: Instead of using a single reservoir sampler with a reservoir of size k,

we can use k independent reservoir samplers, where each instance has a reservoir of size

1. Every element of D is then fed into all the k instances, and in the end we obtain our

sample from the k reservoirs. This way, we can simulate sampling with replacement.

Having now found a solution to the problem of efficiently sampling elements from

the dataset in only one pass, we can now turn our attention to the other problem of

efficiently computing the leverage scores.
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4.1.2 Fast Approximation of Statistical Leverage Scores

In order to avoid a full QR decomposition of the matrix
√
DwZ, which is expensive and

needs O(nd2) time, we use a method described in [Drineas et al., 2012] and improved

in [Clarkson and Woodruff, 2017] to obtain approximations of the leverage scores in an

efficient manner.

The idea behind this procedure is, that we first transform
√
DwZ into a much smaller

matrix Z̃ ∈ R
t×d and then obtain the QR decomposition Z̃ = Q̃R̃, which now only takes

O(td2) time, depending on the reduced size t. Using the matrix R̃ of the reduced QR

decomposition, we can approximate the leverage scores by computing the squared row

norms of the matrix
√
DwZR̃

−1 (although we will later see, how we can also speed up

this step). The obvious question about this procedure is, how we can obtain the reduced

matrix Z̃, and which criteria the reduction method must satisfy in order for this idea to

work.

Efficient Subspace Embeddings In order to acquire Z̃, the authors of [Clarkson and

Woodruff, 2017] construct a so-called subspace embedding. In order to understand, what

that means, suppose that we have an arbitrary matrix A ∈ R
n×d. When talking about

a subspace embedding, we are referring to a matrix S ∈ R
t×n, such that

(1− ǫ)‖Ax‖2 ≤ ‖SAx‖2 ≤ (1 + ǫ)‖Ax‖2

for every x ∈ R
d simultaneously and ǫ > 0. This equation has a profound meaning:

When viewing A as a collection of d column-vectors in R
n, each of these vectors gets

mapped into a lower dimensional subspace of R
t, but all the distances between the

original vectors as well as their lengths are preserved. For example, by choosing x =

(1, 0, ..., 0)T ∈ R
d, we can see that the norm of the first column vector of A is preserved

in the t-dimensional subspace up to a factor of (1 ± ǫ). Likewise, by choosing x =

(1,−1, 0, ..., 0)T ∈ R
d, we can also see that the distance between the first two column

vectors is preserved in the lower dimensional space as well. By this logic, we can see

that not only are all the lengths and distances of the original vectors preserved in the

subspace, but also the lengths of every possible linear combination of the original column

vectors. In this sense, the whole column space of A is embedded into a lower dimensional

subspace.

The question now is, how to choose the embedding matrix S in such a way, that

SA can be computed efficiently and that the reduced size t is sufficiently small. As a
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solution to this problem, the authors of [Clarkson and Woodruff, 2017] developed an

efficient procedure, which not only makes it possible to construct subspace embedding

matrices obliviously of the data at hand, but also enables us to compute the product

SA in time of only O(nnz(A)), i.e. the number of non-zero entries in A. Further, the

authors showed that a reduction size of t ∈ O(d2) for a fixed ǫ = 1 is already enough

to obtain a subspace embedding for our purposes of approximating the leverage scores,

which is even independent of the number of data points n.

It is quite a surprise, that the suggested procedure can easily be described in only

two simple steps: First, an all zero matrix Ã ∈ R
d2×d is initialized, where the result of

the multiplication SA will be stored. Next, each row of A is first multiplied by +1 or

−1 with equal probability and then randomly added to one of the rows of Ã, also with

equal probability. It turns out, that this simple procedure already yields the result of

Ã = SA for an embedding matrix S which represents the procedure, and that Ã can

be computed not only in time O(nnz(A)), but also in a single row by row pass over the

matrix A.

Approximating the Leverage Scores The first step of the fast leverage score approx-

imation procedure introduced in [Drineas et al., 2012] is to apply such an embedding

procedure to the matrix of interest, in our case
√
DwZ, which yields a matrix Z̃ ∈ R

d2×d.

This can be done in one row by row pass over the data by using the subspace embedding

of [Clarkson and Woodruff, 2017], that we described above. In the next step, we perform

a QR decomposition Z̃ = Q̃R̃, which now takes O(d4) time. The resulting matrix R̃

can then be used to approximate the leverage scores in a second pass over the data by

computing ℓ̃i = ‖√wiziR̃
−1‖22, where

√
wizi is the i-th row-vector of

√
DwZ.

The computation of ℓ̃i takes time O(d2), but the authors of [Drineas et al., 2012]

suggest another procedure to speed up this time to O(d log(n)), which can be useful if

d > log(n). Their idea is to apply a so-called Johnson-Lindenstrauss transformation

[Johnson and Lindenstrauss, 1984] to R−1, in order to reduce its size to only d × m

elements, where m ∈ O(log(n)). What this means is that the matrix R−1 ∈ R
d×d is

multiplied by a random matrix G ∈ R
d×m, where each entry of G follows a normal

distribution with mean zero and variance 1
m

, i.e. Gij ∼ N (0, 1
m
). The resulting product

R−1G can be computed once in the beginning, and then for every single row it takes only

O(d log(n)) time to compute the approximated leverage score ℓ̃i = ‖√wizi(R
−1G)‖22. It

was shown in [Drineas et al., 2012], that the approximations ℓ̃i of the leverage scores
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satisfy that

(1− ǫ)ℓi ≤ ℓ̃i ≤ (1 + ǫ)ℓi

for ǫ > 0, where ℓi is the true leverage score. We thus have obtained a constant factor

approximation of the true leverage scores, that can be computed efficiently in only two

passes over the data, and we can argue, that the constant factor approximation of the

leverage scores doesn’t affect the asymptotic analysis of the sensitivity framework (see

Theorem 4). Thus, we can replace the true leverage scores with the approximated

leverage scores in our sampling distribution without having any asymptotic impact on

the coreset size.

4.1.3 Putting it all together

We can combine the idea of reservoir sampling with the fast approximation method of

the statistical leverage scores to improve the running time of the naïve algorithm in

Section 3.3.4, so that it now only takes two passes over the data. The resulting new

algorithm is given in Algorithm 3.

In a first pass, the subspace embedding of [Clarkson and Woodruff, 2017] is applied to

the reweighted scaled model matrix
√
DwZ, which takes O(nnz(Z)) computation time.

The subsequent QR decomposition of the reduced d2×d matrix then runs in time O(d4)

and the computation of R̃−1 as well as the Johnson Lindenstrauss transformation take

O(d3) time, because the computation is dominated by the matrix inversion.

In the second pass, every row is fed into each of the k independent reservoir samplers,

which each have a reservoir of size one. This ensures, that the samples are drawn with

replacement. If the Johnson Lindenstrauss transformation was applied, the second pass

runs in time O(nnz(Z) log(n)). The resulting coreset is then simply the content of the

k reservoirs of the independent reservoir samplers and the total running time of the

algorithm is O(nnz(Z) log(n) + poly(d)), which is dominated by the second pass over

the data.

4.2 A One-Pass Online Algorithm

The two-pass algorithm is a fast and practical procedure to construct coresets in the

context of probit regression in most situations. But sometimes, situations arise where

two passes over the dataset are just not feasible. For example, what if the data arrives

in real time, with many thousand samples per second, and we simply don’t have enough

storage to keep all the records? In such situations, we need to make our sampling
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Algorithm 3: Fast two-pass algorithm for coreset construction

Input: Dataset D = {(xi, yi)}ni=1 with weight vector w ∈ R
n
>0, W =

∑n

i=1 wi, size
parameter k ∈ N

Output: A subset C ⊆ D of size |C| = k with weight vector u ∈ R
k
>0

1 Initialize Z̃ = 0 ∈ R
d2×d

2 for i = 1, ..., n do // first pass

3 zi = −√
wi(2yi − 1)xT

i // zi are row vectors of
√
DwZ

4 j = random sample from {1, ..., d2} with equal probability
5 l = random sample from {+1,−1} with equal probability

6 Z̃j = Z̃j + l · zi // update the j’th row of Z̃

7 Compute the QR decomposition of Z̃ = Q̃R̃
8 Initialize G = I ∈ R

d×d

9 if ⌈log(n)⌉ < d then
10 G = 0 ∈ R

d×⌈log(n)⌉

11 Draw Gij ∼ N (0, 1
⌈logn⌉) // draw Johnson-Lindenstrauss matrix

12 Compute M = R̃−1G
13 Initialize u = 0 ∈ R

k // empty weight vector

14 Initialize k independent weighted size-1-reservoir samplers S1, ..., Sk

15 for i = 1, ..., n do // second pass

16 ℓ̃i = ‖ziM‖22 // approximate leverage scores

17 ai = ℓ̃i +
wi

W // sensitiviy bound

18 si = wi2
⌈log( ai

wi
)⌉

// rounding to control VC dimension

19 for j = 1, ..., k do
20 Feed (xi, yi) with sampling weight si to Sj

21 if Sj samples (xi, yi) then
22 uj =

wj

sik
// unnormalized weights

23 C := elements from the k reservoirs
24 u = u ·∑n

i=1 si // normalize weights

25 return C, u

decisions immediately: Do we include a new sample in the coreset, or do we discard it

forever? For these situations, we need to come up with new algorithmic ideas, because

the two-pass sampling of our previous algorithm is simply not up to the task.

The reason, why Algorithm 3 needs two passes, is that it first computes a fast approx-

imation of the leverage scores in the first pass, and then obtains a sample in the second

pass. If we want to do both, approximating the leverage scores as well as obtaining the

sample, we have to find a way to approximate the leverage scores in an online manner,

i.e. when the data arrives row by row and we don’t have any knowledge of the data
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that is about to come in the form of future samples. In this work, we follow a train

of thought by the authors of [Cohen et al., 2020], who investigated how the statistical

leverage scores can be approximated in such an online scenario, where the data arrives

row by row and a sampling decision has to be made immediately.

The first, and most important observation by the authors of [Cohen et al., 2020] is,

that we can easily obtain overestimates of the leverage scores of a matrix, if we remove

some of its rows. To be more specific, consider the matrix A ∈ R
n×d and remember that

the i’th leverage score is given by ℓi = aTi (A
TA)−1ai, where the vector ai ∈ R

d represents

the i’th row of A. Now, imagine that the matrix Aj only contains the first j rows of A,

and that we use Aj to compute the approximation ℓ̂i = aTi (A
T
j Aj)

−1ai. In [Cohen et al.,

2020] it was shown, that in this case we always have that ℓ̂i ≥ ℓi, i.e. our approximation

ℓ̂i that was obtained by only considering the first j rows of A, is an upper bound for the

true leverage score ℓi.

At this point, we have to remind ourselves of the core theorem of the sensitivity

framework (Theorem 4), which forms the basis of all our coreset construction endeavors.

In this theorem, the most critical aspect is to find upper bounds on the sensitivity scores

in order to obtain a sampling distribution that can yield a coreset, and we accomplished

this by showing, that the statistical leverage scores are upper bounds on the sensitivities

for probit regression. Now, consider the overestimates ℓ̂i. Obviously, because ℓ̂i ≥ ℓi,

these overestimates could also be used in our sampling distribution. As long as the sum

of these overestimates is small enough, the resulting sample will also be a small coreset.

4.2.1 A Naïve Online Algorithm

We now have the basis for our first naïve online algorithm. For a d-dimensional dataset

D = {(xi, yi)}ni=1 that arrives in an online manner, we can at every step i maintain a

matrix M (i) = M (i−1) + wixix
T
i , M (0) = 0 ∈ R

d×d that represents the sum of the outer

products of the first i weighted rows, much like the matrix AT
j Aj above. Then, we can

obtain overestimates of the statistical leverage scores by computing ℓ̂i = wix
T
i (M

(i))†xi,

where the † symbol denotes the Moore-Penrose pseudoinverse. After one pass, the

resulting scores ℓ̂1, ..., ℓ̂n are all overestimates of the true scores of the weighted matrix√
DwZ, that we needed for our original sampling distribution. The pseudocode for this

naïve algorithm is given in Algorithm 4.

In order to prove, that the naïve online algorithm does in fact construct small coresets,

we need to show that the sum of the overestimates ℓ̂1, ..., ℓ̂n is small, because this sum

directly impacts the coreset size in the sensitivity framework. Luckily, this work has
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Algorithm 4: Naïve online algorithm for coreset construction

Input: Dataset D = {(xi, yi)}ni=1 with weight vector w ∈ R
n
>0, W =

∑n

i=1 wi, size
parameter k ∈ N

Output: A subset C ⊆ D of size |C| = k with weight vector u ∈ R
k
>0

1 Initialize M (0) = 0 ∈ R
d×d

2 Initialize k independent weighted size-1-reservoir samplers S1, ..., Sk

3 for i = 1, ..., n do
4 zi = −√

wi(2yi − 1)xT
i // zi are row vectors of

√
DwZ

5 M (i) = M (i−1) + zTi zi // rank one update

6 ℓ̂i = min{zi(M (i))†zTi , 1} // approximate leverage scores

7 ai = ℓ̂i +
wi

W // sensitivity bound

8 si = wi2
⌈log( ai

wi
)⌉

// rounding to control VC dimension

9 for j = 1, ..., k do
10 Feed (xi, yi) with sampling weight si to Sj

11 if Sj samples (xi, yi) then
12 uj =

wj

sik
// unnormalized weights

13 C := elements from the k reservoirs
14 u = u ·∑n

i=1 si // normalize weights

15 return C, u

already been done by the authors of [Chhaya et al., 2020] in an effort to build on the

work by [Cohen et al., 2020].

Lemma 9 ([Chhaya et al., 2020]). Let A ∈ R
n×d and let ℓ̂1, ..., ℓ̂n be overestimates of

the statistical leverage scores of A that were obtained by computing ℓ̂i = aTi (A
T
i Ai)

†ai,

where Ai is the matrix that only consists of the first i rows of A and the vector ai ∈ R
d

represents the the i’th row of A. Then, it holds that

n∑

i=1

ℓ̂i ∈ O(d+ d log‖A‖2),

where ‖A‖2 is the spectral norm of A, i.e. ‖A‖2 = σmax(A), where σmax(A) is the largest

singular value of A.

We can directly use this result in order to show that the naïve algorithm is correct

and indeed yields a small coreset by only passing once over the dataset.

Theorem 6. Algorithm 4 returns a (1 ± ǫ)-coreset for probit regression with success
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probability 1− n−c for any absolute constant c > 1, if the size parameter k satisfies

k ∈ O

(
µd2 log(σmax)

ǫ2
log(µωn) log(µd log(σmax))

)
,

where σmax is the largest singular value of
√
DwZ.

Proof. As a result of Lemma 9, the total sum of the sensitivity bounds is now

S ∈ O(µd+ µd log(σmax)) ⊆ O(µd log(σmax)),

where σmax = ‖√DwZ‖2 is the largest singular value of
√
DwZ. We still round our

sampling weights ℓ̂i +
wi

W to keep control of the VC dimension, which thus remains

unchanged at ∆ ∈ O(d log(µωn)), where ω = wmax

wmin
is the ratio of the largest and smallest

weight. We can plug everything into the main theorem of the sensitivity framework by

setting the failure probability equal to δ = n−c for any absolute constant c > 1:

k ∈ O

(
S

ǫ2

(
∆ logS + log

(
1

δ

)))

⊆ O

(
µd log(σmax)

ǫ2
(d log(µωn) log(µd log(σmax)) + log(nc))

)

⊆ O

(
µd2 log(σmax)

ǫ2
log(µωn) log(µd log(σmax))

)

4.2.2 Improving the Naïve Algorithm

There is one issue with the naïve online algorithm, that calls for improvement. Although

it requires only a single pass over the dataset, it needs to compute the pseudoinverse of

M for every new datapoint, which takes O(d3) time. Thus, the overall running time of

the algorithm is O(nd3), which is even slower than conducting a full QR decomposition.

Fortunately, the authors of [Chhaya et al., 2020] came up with a clever idea of how

the running time can be improved. Instead of computing the pseudoinverse over and

over again for each new datapoint, they make use of a variant of the so-called Sherman-

Morrison formula [Sherman and Morrison, 1950], which allows for updating an already

computed pseudoinverse more efficiently.

Lemma 10 ([Chhaya et al., 2020]). Let M ∈ R
d×d and let x ∈ R

d be in the columnspace
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of M . Then,

(M + xxT )† = M † − M †xxTM †

1 + xTM †x
,

where M † denotes the pseudoinverse of M .

If we already have M † available, this formula allows us to compute the pseudoinverse

of M + xxT in only O(d2) time, provided that x is in the column space of M . In order

to check, if x is indeed in the column space of M , the authors of [Chhaya et al., 2020]

suggest to maintain an orthonormal basis Q of the columnspace of M and then to check,

whether ‖Qx‖2 = ‖x‖2. When this is the case, x is in the columnspace of Q, and thus

it is also in the columnspace of M and the adapted Sherman-Morrison formula can be

applied.

We can use these findings to improve our naïve procedure as follows: At every step of

the iteration, we maintain the current values of M , M † and Q. At every time, when x is

in the columnspace of Q, we use the adapted Sherman-Morrison formula to update M †,

which only takes O(d2) time. If x is not in the columnspace of Q, we can just compute

the Moore-Penrose pseudoinverse, which takes O(d3) time, but because M is a d × d

matrix, this case can happen only a maximum of d times. Thus, the total running time

of the procedure reduces to O((n−d)d2+d ·d3) = O(nd2+d4). To conclude this section

on efficient coreset algorithms, we present the improved online algorithm in Algorithm 5.

5 Experiments

It is now time to investigate, how the two efficient algorithms that we derived in the

previous section behave on real world datasets, both in the context of maximum likeli-

hood estimation as well as in a Bayesian setting. In order to do so, we selected three

benchmark datasets in advance that will be used to compare both algorithms to each

other as well as to the baseline uniform sampling procedure, where each sample is simply

selected with equal probability.

It is important to emphasize, that the datasets used in the evaluation are not a result

of cherry picking: We selected the same datasets as [Munteanu et al., 2018] as well as

[Mai et al., 2021] in order to be comparable to other works in the field, without testing

in advance if our algorithms look good on them or not.

Finally, we note that all of the following experiments were implemented in Python

and executed on an AMD Ryzen 7 2700x processor with 8 cores of 3.7GHz clock speed

and 16GB of RAM. The code for all the experiments is open source and can be found
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Algorithm 5: Online algorithm for coreset construction

Input: Dataset D = {(xi, yi)}ni=1 with weight vector w ∈ R
n
>0, W =

∑n

i=1 wi, size
parameter k ∈ N

Output: A subset C ⊆ D of size |C| = k with weight vector u ∈ R
k
>0

1 Initialize M = Minv = Q = 0 ∈ R
d×d

2 Initialize k independent weighted size-1-reservoir samplers S1, ..., Sk

3 for i = 1, ..., n do
4 zi = −√

wi(2yi − 1)xT
i // zi are row vectors of

√
DwZ

5 M = M + zTi zi // rank one update

6 if ‖QzTi ‖2 = ‖zi‖2 then // zTi in column space of Q?

7 Minv = Minv − Minvz
T
i ziMinv

1+ziMinvz
T
i

// adapted Sherman-Morrison formula

8 else
9 Minv = M † // Moore-Penrose pseudoinverse

10 QR = M // QR decomposition of M

11 ℓi = min{ziMinvz
T
i , 1} // approximate leverage scores

12 ai = ℓi +
wi

W // sensitivity bound

13 si = wi2
⌈log( ai

wi
)⌉

// rounding to control VC dimension

14 for j = 1, ..., k do
15 Feed (xi, yi) with sampling weight si to Sj

16 if Sj samples (xi, yi) then
17 uj =

wj

sik
// unnormalized weights

18 C := elements from the k reservoirs
19 u = u ·∑n

i=1 si // normalize weights

20 return C, u

publicly accessible on Github.2

5.1 Datasets

The datasets that are used in the empirical evaluation of our algorithms are called

Covertype3, Kddcup4 and Webspam5 and are all publicly available.

The Covertype dataset consists of n = 581012 observations of 30x30m forest patches

of wilderness areas located in the Roosevelt National Forest of Northern Colorado, USA.

The task is to predict the so called covertype of each of these patches, i.e. the dominant

2https://github.com/cxan96/efficient-probit-regression
3https://archive.ics.uci.edu/ml/datasets/Covertype
4https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
5https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#webspam
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tree species, based on d = 54 observed features. There are seven distinct tree species that

appear in the dataset, so we have a multiclass problem. To transform the problem into a

binary classification problem that can be subjected to a probit analysis, we adapted the

task to distinguish the tree species "Lodgepole Pine" from the other six species, thus

obtaining a balanced problem of 49% positive vs. 51% negative observations. As an

additional preprocessing step, all continuous features of the dataset were scaled to have

a mean of zero as well as unit variance. In addition, an intercept column of all ones was

appended to the data.

The Webspam datasets consists of n = 350000 observations of web pages, that can

either be classified as spam or no spam, based on the occurence of 254 distinct words on

the web page. 61% of the observations in the dataset are labeled as spam and the other

39% are labeled as no spam. The task is to predict, whether a given web page is spam

or not. The features consist of binary 0/1 observations that indicate, if a given word is

present on a web page or not. In a preprocessing step, words that are never present in

the dataset were removed, as well as words that are only present on a single web page.

After preprocessing, the dataset that is subjected to the experiments consists of d = 128

binary features. An intercept column of all ones was appended to the Webspam dataset

as well.

The Kddcup dataset consists of n = 494021 observations of network connections,

where the task is to predict if a connection is "good" or "bad", i.e. to distinguish,

whether a hacker tried to gain unauthorized access to a network or whether someone

tried to establish a normal and authorized connection. 80% of the connections in the

dataset are "bad" and the other 20% are "good" connections. In a preprocessing step,

d = 33 continuous features were retained from the data and scaled to a mean of zero and

unit variance. Just like the other datasets, an intercept column of all ones was appended

to the Kddcup data as well.

5.1.1 A Visual Comparison of the Datasets

Before we evaluate the three competing algorithms on each of the datasets, we first make

an attempt at uncovering some of the structural characteristics of the data, that could

potentially help us to learn more about the situations in which the algorithms perform

well or might fail.

In order to do so, we first project each dataset onto its first two principal components,

which were obtained as a result of a principal component analysis [Jolliffe, 2002]. The

first two principal components are orthogonal vectors that represent the two directions
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Figure 3: The datasets are compared by projecting the datapoints onto the first two principal compo-
nents and then drawing a random sample of 500 points (a) uniformly and (b) proportionally
to the statistical leverage scores of the original data.

of the data, in which the highest variance occurs. By projecting each datapoint onto the

subspace spanned by the first two principal components, we have a way of visualizing the

datasets in a two dimensional space, while still retaining as much variance as possible,

even though we are reducing the dimensionality to only 2.

Next, we draw two distinct samples from the reduced datapoints, each consisting of

500 points. The first one is a uniform sample, where each datapoint is sampled with

equal probability. The second sample is drawn with probabilities that are proportional

to the statistical leverage scores of the observations with respect to the original dataset,

without applying a PCA. Both of these samples are presented for each of the datasets

in Figure 3.

We can see, that the samples reveal some interesting characteristics of the datasets.

Starting with Covertype, we notice that there hardly seems to be any difference between

the uniform sample and the leverage score sample. Taking into consideration, that the

statistical leverage scores assign a higher importance to outliers or "unusual" datapoints,

we can conclude that there don’t seem to be too many unusual observations within the
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Covertype dataset, or else the two samples would differ more substantially. It seems to

be the case, that a uniform sample is already sufficient to capture most of the inherent

structure of the data, without having to put extra weight on unusual datapoints, which

simply appear not to exist in this dataset. Thus, from now on, it seems reasonable to

think of the Covertype dataset as being a representative for such situations, where the

data is already quite uniformly distributed and not a lot of outliers are present, i.e.

where a uniform sample already seems to represent the data well.

In contrast to Covertype, the Kddcup dataset exhibits a different picture. Here, we can

see that the uniform sample and the leverage score sample differ way more substantially

than it was the case for the Covertype dataset. While the uniform sample only seems

to occupy a very limited portion of the feature space, most of it being a cluster of many

points close to the origin, the leverage score sample covers a lot more of the feature space,

indicating that there are a variety of unusual datapoints, or outliers present, which the

uniform sample misses. Thus, it seems that we can think of the Kddcup dataset as an

example of a situation, where on the one hand, we have a lot of similar observations

that are concentrated within a comparatively small proportion of the feature space, but

on the other hand, we also have a considerable amount of unique observations, which

are scattered around the feature space while seemingly not belonging to any particular

cluster.

Lastly, another interesting situation is presented to us when taking a look at the two

samples of the Webspam dataset. What strikes the eye first, is that there seem to be some

truly extreme outliers present in the dataset, that the leverage score sampling picked

up on. Only by zooming in on the more crowded area of the feature space and thereby

ignoring those extreme outliers, we can see the remaining parts of the two samples, which

seem to be rather similar, just like in the situation of the Covertype dataset. It thus

seems to be the case, that the Webspam dataset is an example of a situation, where on

the one hand, the vast majority of the datapoints are concentrated around some region

of the feature space, but on the other hand, there are also a few hard hitting outliers

present, which exhibit enormous differences from the majority of the other observations.

5.2 Coreset-Based Maximum Likelihood Estimation

We are now ready to investigate, how well our three algorithms (two pass coreset con-

struction, online coreset construction and uniform sampling) perform at the task of data

reduction with the goal of estimating the parameter vector of a probit model on the

three datasets that we just introduced via maximum likelihood estimation. In order to
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do so, we present the following experimental setup:

For each of the datasets, we first obtain the objective function f(β) of the original

optimization problem without applying any data reduction and then solve the problem

to find the unique solution βopt. Next, we apply our data reduction algorithms in order

to select a small subset of the original data, yielding the reduced objective function f̃(β).

We solve this smaller optimization problem in order to obtain the solution β̃. Our goal

is to see, if the solution on the reduced dataset, β̃, is also a good solution for the original

problem. In order to evaluate the approximation quality, we compute what we call the

approximation ratio:

approximation ratio =
f(β̃)

f(βopt)
,

which always evaluates to a real number in the interval [1,∞). The closer this value is

to 1, the better is the quality of the approximation.

We run this procedure for each algorithm on each of the datasets for multiple differ-

ent reduction sizes. Because the algorithms are not deterministic, we ran each of the

experiments a total of 51 times. The resulting medians as well as the normalized inter

quartile range can be seen in Figure 4.

5.2.1 Comparison of Approximation Quality

Starting with the Covertype dataset, we can see that each algorithm quickly reaches good

approximation ratios of less than 1.02 for subset sizes of only 15000 datapoints, which

are less than 3% of the original dataset. Both, the uniform sampling as well as the two

pass algorithm, are close to each other in terms of approximation quality, although the

median ratio of the two pass algorithm is always better than that of uniform sampling.

The online algorithm performs worse than the two competing algorithms, but it also

quickly reaches a low approximation ratio of less than 1.02. Interestingly, the fact that

the results of our three algorithms don’t differ much on the Covertype dataset, could

be explained by our earlier findings regarding the characteristics of the data. For the

Covertype dataset, we found that it could be a representative for those situations, where

the datapoints are already quite homogeneously distributed, i.e. there are not a lot of

outliers, heavy hitters or other unusual points to worry about and thus, a uniform sample

can already be sufficient to capture the relevant characteristics of the data. Nevertheless,

our two pass algorithm still outperformed the uniform sampling procedure, albeit by only

a small margin.

For the Webspam dataset, the picture looks a lot different. Here, we can see for the
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Figure 4: The medians as well as the normalized inter quartile ranges of the approximation ratios
of the three algorithms uniform sampling, two pass coreset construction and online coreset
construction on the datasets Covertype, Webspam and Kddcup for different data reduction
sizes. For each reduction size, the experiments were repeated a total of 51 times.

first time, that the uniform sampling algorithm fails, while the two pass algorithm as well

as the one pass algorithm quickly reach low approximation ratios. On top of that, the

approximation ratios of the uniform sampling algorithm exhibit a much higher degree of

variation and thereby show a lot less stability than the competing algorithms two pass

and online. Again, it is interesting to note, that these results could also potentially be

explained by our earlier observations: When visualizing the Webspam dataset by using

the first two principal components, we already noticed that there are a few extreme

outliers present in the data. We also noticed, that the uniform sample was unable to

pick up on those outliers and only concentrated on the bulk of the datapoints at the

center of the feature space. Now, in our maximum likelihood experiments, we can see

that the uniform sampling procedure also exhibits major weaknesses for the Webspam

dataset. It thus seems reasonable to assume, that this is again happening because the

uniform sampling algorithm misses the extreme outliers, which could potentially have a

high impact on the objective function. Both, the two pass algorithm as well as the online
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algorithm, don’t miss those important points thanks to their more adaptive importance

sampling distributions that also take the statistical leverage scores into account, and

therefore show a stable convergence behavior towards low approximation ratios.

The most dramatic differences between uniform sampling and the competing algo-

rithms can be observed when looking at the results for the Kddcup dataset. Here, we

can see that uniform sampling fails terribly and doesn’t even reach approximation ratios

lower than 50. When zooming in, we can see that our other two algorithms perform much

better, although they also seem to show some difficulties. It is especially interesting to

note, that the online algorithm seems to perform better than the two pass algorithm,

even though its approximations of the statistical leverage scores are less accurate. To-

gether with our earlier observations of the structure of the Kddcup dataset, it seems

that Kddcup is a particularly difficult dataset to compress. Even though the sampling

methods that also rely on the leverage scores clearly outperform the uniform sampling

algorithm, they also show difficulties with regards to convergence. We should also note

here, that the maximum size of 30000 points for the Kddcup dataset already takes up

more than 6% of the whole dataset, which is more than double as much as what was

needed for the Covertype dataset to achieve a much better approximation quality. Thus,

the Kddcup dataset seems to be more challenging for all the competing algorithms, al-

though the two pass algorithm and the online algorithm handle the difficult conditions

way better than the uniform sampling algorithm.

5.2.2 Comparison of Running Times

We round off our first experiment with a discussion regarding the runtimes of the al-

gorithms compared to the time it takes to solve the original problem without prior

reduction, as well as a discussion of the tradeoffs between approximation quality and

running time.

It must be noted, that the online coreset algorithm had to be excluded from the

comparison due to its incomparably high running time of O(nd2), which would have

made it impossible to execute a sufficient number of experiments. However, we remark

that the advantage of the online algorithm isn’t necessarily its speed, but that it is

able to construct coresets even when two passes over the data are impossible and every

sampling decision has to be made immediately. Also, it might be possible to drastically

increase the efficiency of the online algorithm, by running mutiple parallel instances of

it on a distributed cluster and then equally balancing the load of the incoming data

records between each of the instances, but these possible adaptations are left open for
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Figure 5: The plots show the tradeoffs between running time and approximation ratio for the uniform
sampling algorithm and the fast two pass algorithm on our datasets. Every point represents
the median in running time, as well as the median in approximation ratio, for a given data
reduction size.

future work.

The total running times for obtaining the maximum likelihood estimate of the probit

model for each of the datasets without applying any data reduction are given in Table 1

to serve as a baseline for further discussions.

Covertype Kddcup Webspam
Total running time 535 seconds 103 seconds 447 seconds

Table 1: The total running times that it takes to obtain the maximum likelihood estimator for each of
the datasets.

In Figure 5, we present the tradeoffs between approximation ratio and running time

for uniform sampling as well as for the fast two pass algorithm. The reported times

include the data reduction step as well as the optimization step, in order to be able to

compare the times to the total running times without data reduction.

When looking at the results for the Covertype dataset, we can see that the uniform

sampling algorithm outperforms the two pass algorithm in terms of speed, but is unable
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to reach the same degree of approximation quality as the two pass algorithm. The run-

ning times of the uniform sampling procedure range roughly between 1 and 10 seconds,

but decent results are only achieved when investing at least 5 seconds. On the other

hand, the running times of the two pass algorithm range between 10 and 20 seconds, thus

taking almost twice as long. But compared to the total running time for the Covertype

dataset without reduction, we can see that even the two pass algorithm reduces the total

running time to obtain the maximum likelihood estimate by more than 96%, from 535

seconds to less than 20 seconds.

Taking a look at the Webspam dataset, we can see an interesting picture: Not only

does the two pass algorithm show better approximation rates than the uniform sampling

algorithm, but it also shows similar running times. Thus, for the Webspam dataset, the

two pass algorithm almost dominates the uniform sampling in the two criterias, since

it has similar running times but achieves a better approximation quality. For running

times of 15 seconds, the fast two pass algorithm already achieves decent results, thus we

can say that the original time for solving the unreduced problem was again reduced by

more than 96%, from 447 seconds to only 15 seconds.

In the case of Kddcup, the comparison is almost pointless, because the uniform sam-

pling fails. We only include these results to show that the running times of the two

pass algorithm consistently range between 10 and 20 seconds, even when the data is

substantially less well behaved, as we showed for the Kddcup dataset. Here, the time

savings are not quite as impressive as for the Covertype and the Webspam dataset: The

total running time was "only" reduced by more than 80%, from 103 seconds to less than

20 seconds. Still, we can consider this a decent win, especially when keeping in mind

that the uniform sampling algorithm failed completely.

To conclude the discussion of our first experiment, we can say that the slightly in-

creased running time of the two pass algorithm compared to the uniform sampling algo-

rithm should be of no concern, because the few seconds in excess runtime were always

well compensated by substantial gains in approximation quality. For each dataset, the

two pass algorithm is able to reduce the total optimization time by more than 80%, even

96% for the Covertype and for the Webspam dataset.

5.3 Coreset-Based Bayesian Inference

The goal of our second experiment is to investigate, if our algorithms can successfully

be applied as a data reduction step to cut down the computational cost of performing a

full Bayesian probit analysis on our three datasets. In order to do so, we use the efficient
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Gibbs sampler described earlier in Section 2.4.2 to generate samples with and without a

preceding data reduction step using our algorithms, and see how they compare to each

other. But before we can get into the full experimental setup, we must note that in order

to use the Gibbs sampler together with our algorithms, it has to be slightly adapted to

account for the sample weights that are an essential component of our coreset algorithms,

which is briefly covered in the next section.

5.3.1 Adapting the Gibbs Sampler for Weighted Coresets

The first part of the Gibbs sampler that has to be slightly adapted is the expression

B = (M−1 +XTX)−1, where M ∈ R
d×d is the prior covariance matrix and X ∈ R

n×d is

the model matrix. When using our algorithms to draw a random sample of k datapoints

according to the distribution p1, ..., pn and arranging them in a matrix C ∈ R
k×d, the

matrix C is now random too, because it is the result of drawing the random sample of

our datapoints. Our goal is now, to find weights u1, ..., un for our data points, such that

when C is a random sample of the reweighted datapoints u1x1, ..., unxn, we have

E[CTC]
!
= XTX,

where X is the model matrix of our original unweighted datapoints. We can accomplish

this by calculating the expected value as follows:

E[CTC] = E

[
k∑

j=1

cjc
T
j

]
=

k∑

j=1

n∑

i=1

u2
i pixix

T
i

= k
n∑

i=1

u2
i pixix

T
i

!
=

n∑

i=1

xix
T
i = XTX.

By comparing the coefficients, we see that ui =
1√
kpi

is the required weight. Thus, when

the Gibbs sampler is applied to a subset C of our initial dataset, we need to multiply

every datapoint of the subset with the weight ui =
1√
kpi

, before we can plug it into the

expression for obtaining B.

Next, we need to adapt the expression XTy∗, where y∗ is the current vector of the

latent variables. We do this in a similar fashion, by asking how we should reweight the

original datapoints as well as the latent variables in order to be unbiased, i.e. we want

that

E
[
CTy∗C

]
= XTy∗,
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where y∗C is the random sample of the latent variables that is associated with the random

sample in C. Luckily, it turns out, that the weights that we obtained earlier are also

correct for adapting this expression:

E
[
CTy∗C

]
= E

[
k∑

j=1

cj(y
∗
C)j

]
=

k∑

j=1

n∑

i=1

u2
i pixiy

∗
i = k

n∑

i=1

(
1√
kpi

)2

pixiy
∗
i = XTy∗.

It follows, that when using the Gibbs sampler in conjunction with our algorithms, we

have to reweight our sample with weights ui =
1√
kpi

both when obtaining XTX as well

as XTy∗.

5.3.2 Experimental Setup

We used a similar experimental setup as in [Huggins et al., 2016] and [Geppert et al.,

2017]: First, we arbitrarily selected a relatively uninformative prior distribution of

β ∼ N (0, 10 · I),

where I is the identity matrix. Next, we used the Gibbs sampler to generate a sample of

the full posterior distribution without applying any data reduction for each of the three

datasets. Each of the three full posterior samples has a size of 10000, and for each of

the datasets, a different burn in value was selected. For Covertype, a burn in of 200 was

sufficient, 2000 was needed for Kddcup and 3000 for Webspam.

Next, we applied our algorithms to each of the datasets for a variety of reduction

sizes and ran the adapted version of the Gibbs sampler (see Section 5.3.1 above) on the

reduced data, obtaining a posterior sample of size 1000 for each data reduction size.

The burn in values for the reduced samples were set to be the same as for the original

unreduced data.

Our goal is now to compare the posterior samples that were obtained by running the

Gibbs sampler on the reduced data to the posterior samples that were obtained from

the original data. In order to do so, we use a total of three different measures.

The first measure of approximation quality that we apply compares the mean of

the original posterior distribution without data reduction to the mean of the posterior

distribution with a prior data reduction step, by evaluating the expression ‖µβ − µ̃β‖2,
where µβ is the mean of the original posterior and µ̃β is the mean of the reduced posterior.

Likewise, our second measure compares the covariance matrices of the two samples by

evaluating the expression ‖Σβ − Σ̃β‖2, where Σβ is the covariance matrix of the original

63



posterior sample without data reduction and Σ̃β is the covariance matrix of the posterior

sample with data reduction. The norm ‖·‖2 refers to the spectral norm, which is equal

to the largest singular value.

Our third measure is the maximum mean discrepancy (MMD, see for example [Gretton

et al., 2007]), which was also applied in [Huggins et al., 2016]. The MMD was originally

intended to be a test statistic for the problem of testing, if two samples come from the

same distribution or not. In order to do so, the idea behind the MMD is to transform

both samples into a higher dimensional space and then to compare the means of the

samples in the new space. The MMD is then the resulting difference of the means in the

higher dimensional space. It follows, that the higher the MMD, the more different the

two samples are. In order to transform the samples into the higher space, the authors of

[Huggins et al., 2016] used a so called polynomial kernel function, and to stay comparable

to them, we use a polynomial kernel as well.

Given two samples A = {a1, ..., am} and B = {b1, ..., bn}, with both ai ∈ R
d and

bj ∈ R
d for i ∈ [m] and j ∈ [n], the authors of [Gretton et al., 2007] present a way to

compute an empirical estimate of the MMD, that we also use in our work, as follows:

MMD(A,B) =

[
1

m2

m∑

i,j=1

k(ai, aj)−
2

m · n

m,n∑

i,j=1

k(ai, bj) +
1

n2

n∑

i,j=1

k(bi, bj)

] 1
2

,

where k(·, ·) is a kernel function, in our case the polynomial kernel k(x, y) = (1+ xTy)2.

5.3.3 Comparison of Approximation Quality

Figure 6 shows the results of our experiment for the measures ‖µβ − µ̃β‖2, which we

from now on call mean distance and ‖Σβ − Σ̃β‖2, which we from now on call covariance

distance. The results for the MMD can be found in Figure 7.

For the Covertype dataset, we can see that our two algorithms substantially out-

perform the uniform sampling algorithm for each of the three measures. The clearest

difference can be seen when looking at the covariance distance. While both of our algo-

rithms approach zero even for reduction sizes of less than 10000, the uniform sampling

has big trouble to even come close to convergence. This finding suggests, that the sam-

ples of the posterior that were generated after running our algorithms are substantially

closer to the original posterior distribution in terms of variance, than the samples gen-

erated by using the uniform sampling procedure. When looking at the other measures

for the Covertype dataset, we can make similar observations: Despite the fact that we
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Figure 6: In the left column, we see the mean distance between the posterior distribution sampled after
running our algorithms and the original posterior distribution sampled without data reduction.
In the right column, we see the covariance distance for our algorithms. Every experiment was
repeated a total of 5 times, and the solid lines represent the medians. The lower and upper
error bars indicate the 25% quantile as well as the 75% quantile, respectively.

characterized the Covertype dataset to be well behaved for uniform sampling earlier on,

we now observe that the uniform sampling seems to fail to capture some of the important

elements of the data, which substantially influence the outcome of the Gibbs sampling

procedure.

For the Kddcup dataset, the differences are particularly apparent when looking at the

covariance distance. Here, the uniform sampling even seems to stagnate, not moving
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Figure 7: The MMD for each dataset and multiple data reduction sizes. Every experiment was repeated
a total of 5 times, and the solid lines represent the medians. The lower and upper error bars
indicate the 25% quantile as well as the 75% quantile, respectively.

towards zero at all. Our two algorithms on the other hand don’t have the same problem:

Their covariance distance decreases and approaches zero without any visible trouble.

When looking at the mean distance for the Kddcup dataset, we can see that our al-

gorithms also outperform, but at least the uniform sampling comes close for reduction

sizes of over 25000. For the MMD, we can see a similar picture: Our algorithms clearly

outperform, but the uniform sampling at least comes closer for the higher reduction

sizes, although the error bars indicate a much higher degree of instability.

When looking at the Webspam dataset, we can see a similar picture like we already

saw for the other two datasets. For each of the three measures, uniform sampling exhibits

substantial problems, while our leverage score based algorithms seem to deliver much

higher quality approximations.

To conclude the discussion on approximation quality, we compare a concrete sample

of the posterior, that was created by using each of the three algorithms with a reduction

size of 15000, to the original posterior sample of the Covertype dataset. In Figure 8 and

Figure 9, we present boxplots to visualize the samples for each of the coefficients.
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Figure 8: The posterior samples obtained after running each of the algorithms for a reduction size of
15000 are compared to the original sample of the posterior distribution of the Covertype
dataset by using boxplots for each of the dimensions of β. Here, we can see β0 to β24, the
remainder can be found in Figure 9.

For the first coefficients, β0 to β8, we can see that the posterior samples generated

by each of the algorithms struggle to approximate the median as well as the variance

of the original posterior distribution. However, for the remainder of the coefficients, the

approximation seems to be very close for our two algorithms as well as for the uniform

sampling procedure, with the exception of β21, β25, β47 and β50, where the uniform

sampling procedure fails. Thus, we can see that for the majority of the coefficients,
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Figure 9: The boxplots comparing the remainder β25 to β54 of the posterior distributions. The intercept
term is denoted by β54.

excluding the coefficient β0 to β8, our algorithms already seem to be delivering decent

approximations that could potentially even be used insead of a full posterior sample.

It remains to be investigated though, why all the algorithms struggle with the first

coefficients β0 to β8. This could perhaps be due to an insufficient reduction size on the

one hand or maybe even an insufficiently small burn in value on the other hand, but we

leave this investigation as an open problem. The most important finding of this section

is, that both of our algorithms outperform the baseline uniform sampling method by a

substantial margin. To conclude our discussion of the experiments, we again compare
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Method Size Dataset
samples / second
(incl. red. time)

samples / second
(excl. red. time)

No reduction 581012 Covertype 1.5 1.5
two pass 15000 Covertype 36 38
uniform 15000 Covertype 46 46
two pass 1000 Covertype 116 153
uniform 1000 Covertype 176 176
No reduction 494021 KDDCup 4 4
two pass 15000 KDDCup 21 21
uniform 15000 KDDCup 107 107
two pass 1000 KDDCup 85 90
uniform 1000 KDDCup 619 619
No reduction 350000 Webspam 2 2
two pass 15000 Webspam 13 14
uniform 15000 Webspam 28 28
two pass 1000 Webspam 60 62
uniform 1000 Webspam 84 84

Table 2: The sampling rates of the Gibb sampler for generating the posterior samples with and without
applying a data reduction method first. The sampling rates are given including and excluding
the reduction time, i.e. the time it takes for the algorithms to reduce the size of the original
dataset. We note, that for the same reasons as in Section 5.2.2, the online algorithm was
excluded from the comparison.

the runtimes of our algorithms, but this time for the Bayesian setting.

5.3.4 Comparison of Running Times

To compare the running times of our algorithms, we take a look at the different sampling

rates, i.e. the samples per second that the Gibbs sampler was able to generate with

and without applying our algorithms first. The corresponding data can be found in

Table 2, we list the sampling rates both including and excluding the time it takes for

the algorithms to reduce the data before running the Gibbs sampler. We note, that for

the same reasons as in Section 5.2.2, the online algorithm had to be excluded from the

comparison.

When looking at the sampling rates for the Covertype dataset, we can see that both,

the uniform sampling algorithm as well as our two pass algorithm, achieve considerable

speed ups for the Gibbs sampler. While the Gibbs sampler can only generate roughly

1.5 samples every second for the full dataset, a prior reduction to 15000 samples leads to

46 samples per second for the uniform sampling algorithm and 36 samples per second for

the two pass algorithm (including the reduction time), which is an increase by a factor
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of 30 and 24, respectively. For reduction sizes of only 1000, we can achieve even higher

boosts of the sampling rate, but we note that the approximation quality might not be

ideal for such low reduction sizes, as discussed in the previous section. We can also see,

that for higher reduction sizes of 15000, the sampling rates including the reduction time

are close to the sampling rates excluding the reduction time for the two pass algorithm,

which indicates that the time it takes to reduce the data amortizes itself the longer the

Gibbs sampler runs.

It is also interesting to note, that the Gibbs sampler can generate samples slightly

quicker, when presented with a subset of the original data that was obtained by uniform

sampling, compared to a subset of the same size that was obtained by the two pass

algorithm. A reason for this could perhaps be, that the leverage score based two pass

algorithm tends to pick up on outliers more frequently, which could potentially slow down

the sampling processes from the truncated normal distribution. In our implementation

of the Gibbs sampler, the truncated normal samples are drawn via rejection sampling, if

the probability of not rejecting a sample is sufficiently large (≥ 5%), and otherwise it falls

back to a slower implementation which works better for outliers. It could be possible,

that when more outliers are present in the reduced sample, the slower implementation

is triggered more frequently, which reduces the sampling rate.

Taking a look at the sampling rates for the Kddcup dataset, we can observe a similar

pattern, but this time the differences between the two pass algorithm and the uniform

sampling algorithm are greater. While the two pass algorithm for a reduction size of

15000 only achieves speed ups of a factor of roughly 5 (including the reduction time),

the uniform sampling method allows the Gibbs sampler to increase the samples per

second by a factor of more than 26. Here, we can see that the increased approximation

quality of the two pass algorithm doesn’t come without a price. Still, what good is

the fast generation of posterior samples, if the quality is lacking? As we saw in the

previous section, the two pass algorithm outperformed the uniform sampling method on

the Kddcup dataset in each of our quality measures.

When comparing the sampling rates of uniform sampling to the two pass algorithm

excluding the time it takes to reduce the data, we can see even greater differences for

the Kddcup dataset, compared to Covertype. Here it seems, that the subsets obtained

by the two pass algorithm are causing the Gibbs sampler to slow down way more than

the subsets obtained by uniform sampling. This could potentially be explained by the

fact that the Kddcup contains a lot more outliers that the leverage score based two

pass algorithm can pick up on, which could slow down the sampling from the truncated
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normal distribution.

Taking a look at the Webspam dataset, we can see the same overall pattern that we

already observed for the other two datasets. Both, the uniform sampling procedure as

well as the two pass algorithm are able to increase the sampling rate of the Gibbs sampler

for reduction sizes of 15000 by a factor of 6 for the two pass algorithm and 14 for uniform

sampling, including the reduction time. However, when excluding the reduction times

from the sampling rates, the differences between uniform sampling and the two pass

algorithm aren’t quite as substantial as for the Kddcup dataset, but still higher as for

the Covertype dataset. This could, again, be due to the fact that the Webspam dataset

contains a few heavy hitters that could potentially slow down the Gibbs sampler. On

the other hand, the Webspam dataset was shown not to be as irregular as the Kddcup

dataset, which would explain why the differences aren’t that extreme.

To sum up the discussion of our experiments on coreset-based Bayesian inference, we

successfully showed that both of our algorithms enable us to achieve a far greater ap-

proximation quality of the posterior distribution than the uniform sampling procedure.

This increased quality comes at a price of course, because both of our leverage score

based algorithms are slower than the uniform sampling counterpart. It follows, that we

are presented with a tradeoff: If we choose the uniform sampling algorithm for data

reduction, we most likely get the highest increases in sampling rate for the Gibbs sam-

pler, but the downside is that we suffer from instability issues and poor approximation

quality. On the other hand, if we choose one of our coreset algorithms, we enjoy the

provable guarantees of the sensitivity framework, which lead us to more reliable and

stable approximations than the uniform sampling procedure, especially for not so well

behaved datasets like Kddcup, while still gaining decent speed ups for the Gibbs sam-

pler, albeit not as impressive as for the uniform sampling. Still, if the practitioner of a

Bayesian probit analysis is faced with the decision which data reduction algorithm to

choose, he or she will pick one of the leverage score based algorithms, if the challenge is

to obtain stable approximations of guaranteeably high quality, while still enjoying some

decent performance gains.

6 Contributions

We conclude this work by recapitulating the contributions we delivered during our anal-

ysis of coreset-based data reduction algorithms for the probit model.

As a first step, we were able to show, that not all dataset allow for obtaining small
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(1 ± ǫ) approximations of the probit loss function, but we managed to overcome this

obstacle by restricting our analysis to only those datasets, where a probit model can

successfully be applied by using the method of maximum likelihood estimation. Further,

we extended the notion of µ-complexity by [Munteanu et al., 2018] to the realm of probit

analysis and showed, how µ-complexity is linked to the existence and uniqueness of the

maximum likelihood estimator of the probit model, making it a necessary precondition

for our subsequent advances in constructing the data reduction algorithms.

In the next step, we introduced the notion of coresets as well as the sensitivity frame-

work and thereby outlined a roadmap, which we would follow towards our ambition of

finding our first coreset construction algorithm. Adhering to the theory of the sensitiv-

ity framework, we first showed that sampling proportionally to the statistical leverage

scores yields small sensitivity bounds and we also managed to control the VC dimension

of our problem by applying the technique of leverage score rounding, thus arriving at

our first provably correct coreset algorithm that can reduce a µ-complex dataset to a

size with a leading term in only O(µd2 log(n)).

Having successfully constructed our first data reduction algorithm, we quickly noticed

that there were some substantial issues regarding its running time and efficiency, that

still needed improvement. In order to do so, we applied the sketching methods outlined

in [Drineas et al., 2012] and [Clarkson and Woodruff, 2017] to obtain our fast two pass

coreset algorithm. In an attempt to adapt the fast two pass algorithm to situations,

where two passes are impossible and each sampling decision has to be made immediately,

we made use of the ideas in [Cohen et al., 2020] and [Chhaya et al., 2020] to obtain an

online coreset algorithm, which only requires a single pass over the dataset.

To round off our work and demonstrate the practical applicability of our algorithms,

we conducted a variety of experiments on three real world datasets, both in the domain

of maximum likelihood estimation as well as in the Bayesian setting. Our experiments

showed, that the algorithms we derived outperform the baseline uniform sampling al-

gorithm with regards to approximation quality in nearly all situations by a significant

margin. Only in terms of running time, the uniform sampling algorithm still reigns su-

perior, although its gains in execution speed are overshadowed by its glaring instabilities

and oftentimes mediocre results in approximation quality. Thus, for the data analysis

practitioner who seeks reliable methods for reducing vast amounts of data with the goal

of efficiently carrying out a probit analysis, our algorithms were demonstrated to be

viable options, both in the frequentist domain of maximum likelihood estimation and in

the Bayesian setting as well.
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