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Abstract

Multivariate count data are pervasive in science in the form
of histograms, contingency tables and others. Previous work
on modeling this type of distributions do not allow for fast
and tractable inference. In this paper we present a novel Pois-
son graphical model, the first based on sum product networks,
called PSPN, allowing for positive as well as negative depen-
dencies. We present algorithms for learning tree PSPNs from
data as well as for tractable inference via symbolic evaluation.
With these, information-theoretic measures such as entropy,
mutual information, and distances among count variables can
be computed without resorting to approximations. Addition-
ally, we show a connection between PSPNs and LDA, link-
ing the structure of tree PSPNs to a hierarchy of topics. The
experimental results on several synthetic and real world data-
sets demonstrate that PSPN often outperform state-of-the-art
while remaining tractable.

Introduction

Count data is at the center of many scientific endeavors -
from citation counts to web page hit counts, from counts of
procedures in medicine to the count of births and deaths in
census, from counts of words in a document to the count
of gamma rays in physics. Count data is omnipresent and
in many cases interconnected. Modeling one event such as
the number of times a certain lab test yields a particular
result can provide an idea of the number of potentially in-
vasive procedures that need to be performed on a patient.
Thus, modeling such data faithfully can yield great insights
into the properties of these domains. However, most prior
learning and modeling methods view these problems using
the lens of univariate distributions. Thus, they essentially
assume that these events are not connected to one another.
More recent approaches on Poisson Graphical Models treat
these as the exponential family of distributions allowing for
modeling the dependencies between the count variables.
More precisely, making the assumption of normality of
count data poses difficulties. In cases of low counts, the
left tail of a Gaussian distribution can become negative al-
lowing for predicting counts with negative values. Also, if
the mean A of a Poisson is small, say less than 5, then
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its probability histogram is markedly asymmetrical, mak-
ing a Normal-approximation ill-suited. If we model the data
using a multinomial assumption, then there are two key
issues. First is that they assume an upper bound on the
count which may not be reasonable in many domains. Sec-
ond, there is not necessarily an order among the different
counts, implying that two very close values can have widely
different probabilities. Poisson Graphical Models (PGMs)
aim at overcoming these limitations. The Poisson MRF dis-
tribution (PMRF) (Yang et al. 2012) assumes that every
conditional distribution is 1D Poisson. Unfortunately, the
original formulation allowed only for negative dependen-
cies between count variables. Consequently several mod-
ifications were proposed to allow for positive dependen-
cies. Consider for instance, the Truncated PMRF (Yang et
al. 2013) and the Fixed-Length PMRF (Inouye, Raviku-
mar, and Dhillon 2015). However, they assume an upper
bound on the counts. Alternatively, one can drop the require-
ment of a consistent joint distribution. The resulting Poisson
Dependency Network (PDN) model (Allen and Liu 2013;
Hadiji et al. 2015) permits an efficient structure learning
approach using gradient tree boosting, which was proven
competitive to other Poisson GMs. Nevertheless, none of
the Poisson GMs naturally provide tractable inference. This
also holds for the recent Square Root GMs (Inouye, Raviku-
mar, and Dhillon 2016), the recent deep models for count
data such as the Deep Exponential Family (Ranganath et al.
2015), Deep Poisson Factor Modeling (Henao et al. 2015),
and Poisson Gamma Belief Networks (Zhou, Cong, and
Chen 2015). The difficulties in achieving tractable inference
arise in modelling, as the number of parameters of log-linear
models (Lauritzen 1996) in the context of contingency tables
grows exponentially with the number of variables. And from
the general problem of inference in graphical models, which
is known to be #P even for binary random variables. We, on
the other hand, propose the first tractable Poisson GM.
Inspired by the successes of deep models, we present
Poisson Sum-Product Networks (PSPNs)!. They allow for
tractable inference based on polynomials of univariate Pois-
sons and symbolic evaluation. They require, however, novel
decomposition and conditioning steps tailored towards Pois-
sons. Overall, we make a few important contributions: (1)
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We present the first tractable, deep multivariate Poisson
model. (2) We derive an algorithm for learning tree PSPNs
efficiently that involves the first mixtures of PDNs and a
novel independency test for Poisson variables. (3) We show
the connection between the more popular LDA models with
PSPNs by employing that the conditionals of the LDA mod-
els are equivalent to the product of independent Poissons.
(4) Finally, we demonstrate empirically the superiority of
PSPNs against standard machine learning models on real
and synthetic data sets.

We begin by presenting background and related work on
SPNs as well as a generic algorithm for learning tree SPNs.
Afterwards, we introduce PSPNs and device a learning ap-
proach for tree PSPNs. Before concluding we present our
experimental results.

Sum-Product Networks

Sum Product Networks (SPNs) (Poon and Domingos 2011)
are deep Graphical Models (GMs) capable of representing
tractable distributions. The key benefit of SPNs over con-
ventional graphical models such as Markov Random Fields
(MRFs) is that common probabilistic inference tasks such
as maximum-a-posteriori (MPE) and posterior marginal
(MAR) estimation scales linearly with the size of the model.
In GMs, these tasks are known to be NP-hard in general. The
caveat is that SPNs can be exponentially larger than other
GMs.

Definition of SPNs: Formally, an SPN as shown in Fig. 1
is a rooted directed acyclic graph model defined recursively
as follows: (1) A tractable univariate distribution is an SPN.
(2) A product of SPNs defined over different variables is
an SPN. And (3), a weighted sum of SPNs with the same
scope variables is an SPN. Thus, an SPN can be constructed
with univariate distributions as leaves, sums and products as
internal nodes, and the edges from a sum node to its children
labeled with the corresponding weights. A valid SPN is an
SPN that encodes a consistent distribution, that is, the scope
or set of variables reachable in the descendants of every node
is identical for sum nodes and disjoint for product nodes.

Tractable Inference in SPNs: To compute probabilities
in an SPN, we compute the values of the nodes starting at
the leaves. Since each leaf is an univariate distribution, we
set the evidence on those distributions, obtain the probabili-
ties and evaluate bottom up. On product nodes, we multiply
the values of the children nodes. On sum nodes, we sum
the weighted values of the children nodes. The value at the
root indicates the probability of the given configuration. To
compute marginals, i.e., the probability of partial configura-
tions, we set the probability at the leaves for those variables
to 1 and then proceed as before. Conditional probabilities
can then be computed as the ratio of partial configurations.
To compute MPE states, we replace sum by max nodes and
then evaluate the graph first with a bottom up pass, but in-
stead of weighted sums we pass along the weighted maxi-
mum value. Finally, in a top down pass, we select the paths
that lead to the maximum value, finding approximate MPE
states (Poon and Domingos 2011). All these operations tra-
verse the tree at most twice and therefore can be achieved in
linear time with respect to the size of the SPN.
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Figure 1: A PSPN over y,z (left) and the correspond-
ing marginalized PSPN for y (right). Tractable infer-
ence can be performed using symbolic evaluation. (left)
P(y,z) = 0.7((3%e™®)/y! (17¢1)/2!) + 0.3((4%™)/
yl(27e ) /21). (right) P(y) = 0.7((3%e3)/ y!) +
0.3 ((4e~*)/y!). Univariate Poissons for y are shown in
black, and for = in gray.

Learning SPNs: One way of learning SPNs is to consider
a valid dense SPN and learn the weights using e.g. back-
propagation (Poon and Domingos 2011). On convergence,
zero weight edges are pruned. To overcome potential gra-
dient diffusion problems (Bengio 2009) one may train in a
discriminative fashion or use “max product” gradients (Gens
and Domingos 2012). One may also learn a Bayesian
resp. Markov network and compile it into an SPN, see
e.g. (Rooshenas and Lowd 2013). Here, we focus on a top-
down approach that directly learns the structure of (tree)
SPNs (Gens and Domingos 2013) using three steps: (1) base
case, (2) decomposition and (3) conditioning. In the base
case, if only one variable remains, the algorithm learns a
univariate distribution and terminates. In the decomposition
step, the algorithm tries to partition the variables into inde-
pendent components V; C V such that P(V) = [[, P (V)
and recurses on each component, inducing a product node.
If the conditions for the base case or for the decomposition
step are not satisfied, then we partition the training instances
into clusters, inducing a sum node, and recurse on each part.

For multinomial and Gaussian distributions, standard ap-
proaches can be used for conditioning and decomposition.
For conditioning, Gens and Domingos (2013) proposed to
use of hard EM. That is, we assume a naive Bayes mixture
model of independent variables conditioned on the cluster:
P (V) =>.P(C)LI; P (Vj|Ce), for a given cluster C..
and variable V. After obtaining the assignments to the clus-
ters, the weights of the sum nodes are given by the mixing
proportions P (C..). For decomposition, they propose to use
a test based on ML scores, the G-test for independency.

From this we can create an undirected graph where there
is an edge between V; and V; if the value G(V;, V) passes
a threshold of significance. We then search for connected
components and reject the feature partition if we find a sin-
gle connected component in the graph.

Poisson Sum-Product Networks

Unfortunately, multivariate binomial, multinomial and
Gaussian distributions—the targets of regular SPNs so
far (Poon and Domingos 2011; Vergari, Di Mauro, and Es-
posito 2015)—are not well suited for modeling count data.
Also, learning a regular SPN on transformed data using
e.g. the element-wise log (z + 1) is likely to result in poor



approximations (O’Hara and Kotze 2010). Consequently,
we now propose conditioning and decomposition techniques
tailored towards Poissons SPNs.

Multivariate Poisson Clustering for Conditioning:
Clusters of multivariate count data may be found in a num-
ber of ways. Here, we propose to cluster multivariate Pois-
son data by mixtures P (V) = > _ P (C.)PDN,(V|C.)
of PDNs with V being the count variables and C. being
the assignment to PDN, representing the c-th cluster as
PDN. More precisely, for learning the mixtures, we follow a
stochastic EM approach?. We fix the cluster PDNs and up-
date the cluster assignments. This follows standard formu-
las for mixtures. Then, we fix the cluster assignments and
apply gradient tree boosting to improve the cluster PDNs.
The boosting formulae are adaptions of the ones for boost-
ing PDNs (Hadiji et al. 2015).

These PDNs can be built using regular regression trees,
however, they just fit empirical averages in each node, hence,
tend to produce large trees and have a variable selection
bias (e.g., towards partitioning variables with many poten-
tial splits). To overcome this, Zeileis et al. (2008) introduced
model trees for generalized linear models (GLMs, McCul-
lagh and Nelder (1989)). They are unbiased and employ a
parameter instability tests for detecting differences in GLMs
across terminal nodes. To learn them for P(V;|V\;), we ini-
tially consider S = V\; as set of partitioning variables and
cycle iteratively through the following steps: (1) Fit an GLM
to the data using maximum likelihood. (2) Test for parame-
ter instability over S: if the (possibly Bonferroni corrected)
significance value for any V' € S falls below some threshold
p, choose the variable S € S associated with the smallest
significance value for partitioning, otherwise stop. (3) Find
the split in S with highest improvement of the model fit.
(4) Split the dataset correspondingly and repeat the steps for
each resulting subgroup.

Here, step (2) employs parameter instability tests (Zeileis
and Hornik 2007). For the Gaussian case they include many
well-established tests from the literature as special cases (in-
cluding tests based on ML scores, F statistics and OLS resid-
uals) but yielded novel tests for Poisson data.

They consider the gradients of the log-likelihood of
P (V;|V\;) for each of the [ training examples, the so called
scores. By definition, the empirical scores of all observations
in a dataset should sum to zero, and when the model is cor-
rectly specified, the expected value of the score for each ob-
servation is also zero. Under the null hypothesis of parame-
ter stability, the scores do not systematically deviate from the
expected value of zero, when the observations are ordered by
the values of V; € V\;. To test whether the scores systemat-
ically deviate from zero, the generalized M-fluctuation pro-

% The approach itself is a contribution and useful for clustering
multivariate count data, independently of PSPNs. Since it re-
lies on GLM model trees only, it can be used for other data
distributions beyond Poisson, even hybrid ones, in contrast to
Poisson-only alternatives such as admixtures of PMRFs (Inouye
et al. (2014)).

Algorithm 1 Tree PSPN Structure Learning. The inputs are
data D, instance indexes I, feature indexes F', minimum
number of instances for splitting m, and strength of depen-
dency p value. The output is a tree PSPN S.

1: procedure LEARNPSPN(D, I, F,p,m)

2 if |F| = 1 then

3 return Pois(\ < (1/[I|) >, D [I;, F)
4: if |I| < m then

5: AN« 1/|I1Y°, DI, F;)
6.

7

8

return ProductNode(Pois(\; ), Pois(Az), .. .)
P « partitionFeat(D, I, F, p) > Instability Test
: if |P| = 1 then
9: C; < clusterInst(D, I, F)

> PDN Clustering
10: S. < LearnPSPN(D, C;, F, p, m)
11: returnSumNode(‘%'Sl, %‘Sg,...>
12: else
13: S; < LearnPSPN(D, I, P;, p, m)
14: return ProductNode(S1, So, . . .)

cess epf; (k/1) is used (Zeileis and Hornik 2007), epf;; (t) =

( M )—0.5<21L:j (vf(kj) _ /\i)vc\ri(kj))

covariance matrix of scores

accumulated permuted scores

where t € [0, 1], v} resp. v{; are the u-th observed value
of V; resp. Wi;, o(kj) is the ordering permutation which
gives the antirank of the observations of Vj, and A; the esti-
mated mean of V. Thus, epf.(t) is the partial sum process
of the scores ordered by V;, scaled by the number of obser-
vations and the covariance. To aggregate it into a scalar test
statistics, the “supLM” statistic (Andrews 1993)

. A k
AsupLM(j) = max _ (ll) epf; (l)

k=k,...k

in the interval [k, k] is used. It is the maximum of the squared
Lo-norm of the fluctuation process scaled by its variance
function. Its limiting distribution is given by the supremum
of a squared, k-dimensional tied-down Bessel process from
which significance values can be computed (Hansen 1997).

Decomposition via Instability Tests: Independence may
be found in a number of ways. Given that we have Poisson
GLM model trees at hand, one sensible idea is to estimate
them for P (V;|Vy;) and P (V;|V\;) and check whether V;
resp. V; is below a significance threshold p in corresponding
trees. If in both cases not, then V; and V;; are independent.

Specifically, the model trees provide significance values
p;|; of how much V; depends on V;. We aggregate them into
pi; = min(p;;, pj‘i) and create an undirected graph with an
edge between V; and Vj if p;; is below a given threshold p.
On the graph, we proceed as when learning regular SPNs.

Structure Learning Tree PSPNs: Using the Poisson
conditioning and decomposition steps result in the struc-
ture learning approach summarized in Alg. 1; it learns valid
PSPNs with normalized weights on the sum nodes. Since
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the clustering algorithm always splits the current set of in-
stances, at every iteration we reduce the amount of data left
to work with and the algorithm always converges. We stop
growing the PSPN, if there are less than m instances left, so
that the univariate distributions have enough data to fit.

PSPNs are Hierarchical Topic Models:

Product nodes provide part-based representations of the
features, sum nodes provide mixtures of these parts, and the
base case typically consist of products of a large number of
independent Poissons. This is not easy to understand visu-
ally. Luckily, the product of independent Poissons is equiv-
alent to a Poisson-Multinomial (Bishop, Fienberg, and Hol-
land 2007),

n -X - | n by vi
(o) =& e 4]
Hj:l PPms(’Uz')\z) = A Hn Uj' Hj:l ( 5\ )

j=1Y"
= Poois (@\X) Paar (v\e = (A1, ) /AN = v)

where A = 377 A\ and & = >7_, v;. Thus we can
compress any terminal product node by a single Poisson-
Multinomial distribution and, in turn, reduce their vi-
sual complexity. More importantly, the Poisson-Multinomial
is nothing else than the conditional distribution of La-
tent Dirichlet Allocation (Inouye, Ravikumar, and Dhillon
2014). In other words, PSPNs are essentially hierarchi-
cal topic models with tractable inference: terminal prod-
uct nodes are basic topics; inner product nodes are together
“with” and sum nodes are mutual exclusive “or” combina-
tions of more refined topics. The expected number of words
per topic is given by the corresponding A\ associated with
edges going out from mutual exclusive “or” nodes. We refer
to Fig. 2 for an illustration.
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Figure 2: Understanding the NIPS PSPN. (left) Mutual in-
formation (MI) between some words (the darker,the higher).
(right) Encoded hierarchical topics (only top words shown).
Papers spend many words on “learning” and less many on
what is learned such as “neural networks” or “motions”.

Tractable Inference via Symbolic Evaluation: By defi-
nition, PSPNs encode polynomials over univariate Poissons
and we can encode it in a symbolic equation to be eval-
uated by a symbolic solver for inference as illustrated in
Fig. 1. This is realized in Alg. 2. These resulting sym-
bolic representation can be optimized an then compiled
to C or CUDA, for even faster inference. They can also
be composed under infinite sums to be evaluated by nu-
merical solvers (Graves-Morris, Roberts, and Salam 2000;

Algorithm 2 Inference via symbolic evaluation. For vari-
ables V it computes recursively a symbolic equation for
P (V) as encoded by the PSPN rooted by node V.

1: procedure MARGINALIZETOEQ(V, N)
2 if N is SumNode then
3 eq <+ 0
4: for all ¢ € children(N), w € weights(N) do
5: eq < eq + w * MARGINALIZETOEQ(V ¢)
6 return eq
7 else if NV is ProductNode then
8: eq+ 1
9: for all ¢ € children(N) do
10: eq < eq * MARGINALIZETOEQ(V, ¢)
11: return eq
12: else if N.variable € V then return 1
13:  else return (e~ N-AN ANvariable) /I variable!

Weniger 2003). This way one can e.g. compute expectations
E[X] = %"° z;P (z;) and information-theoretic measures.

Interpreting and understanding the gist of PSPNs:
While the structure of an induced PSPN may provide inter-
esting insights into the data, the alternation of conditioning
and decomposition is not easy to interpret for non-experts.
So, how can we best extract the gist of PSPNs? Using sym-
bolic evaluation of tree PSPNs this is easy. We can directly
compute information-theoretic measures. This is difficult, if
not impossible, to compute them for previous Poisson GMs.

Experimental Evaluation

We aim to evaluate the benefits of PSPNs compared to other
PGMs by answering the following questions:

(Q1) Is the PSPN distribution a flexible multivariate Pois-
son distribution? (Q2) Can PSPNs find independencies of
count variables well compared to a state-of-the-art Pois-
son graphical model? (Q3) Are there benefits of having
tractable inference for multivariate Poisson distributions?
(Q4) Is there a benefit of having a deep architecture for
learning these distributions? (Q5) Can PSPNs be used for
other machine learning tasks?

We implemented PSPNs in Python for growing Poisson
GLM model trees. All experiments ran on a Linux machine
with 56 cores, 4 GPUs and 512GB RAM.

To speed up decomposition, we grew Poisson GLM
model trees of depth 1 and used the significance values of
all the considered potential tests.

(Q1) Flexible Multivariate Poisson Distribution:
PSPNs are motivated by the need for a flexible multivariate
count distribution. While other Poisson graphical models al-
low flexible dependencies between count variables, they do
not provide tractable inference. So, does the tractability of
PSPNs make them less flexible? Fig. 3 shows that this is
not the case. The PSPN distribution allows flexible depen-
dencies between variables. They can even capture univariate
mixtures of Poissons and, hence, are more flexible than PM-
RFs. We can answer (Q1) affirmatively.

(Q2) Network Discovery from Simulated Data: Do
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Figure 3: PSPNs are flexible multivariate Poisson distributions. Shown are the densities and marginals of six 2D Poisson
SPNs with different dependencies between the two count variables. (a) Positive dependency suggests that two events often
co-occur, (b) negative dependency that two events rarely co-occur, (c) zero dependency that events are not correlated, and (d)
anti dependency that if one event occurs the other one does not occur. Mixture with positive (e) and anti (f) dependencies.

PSPNs recover the network structure well? To investigate
this, we used the "XMRF” R—packag:{e3 for both, the data
generation and comparison. It contains an implementation
of the models described in (Yang et al. 2013). The datasets
were generated as follows: Using XMRF.SIM, multivariate
count data with 100, 500, 1000, 2000, 4000 instances were
sampled using LPGMs with n = 5,10, 20, 50, 100 nodes;
we created 50 graphs of mixed “hub” and “scale-free” struc-
tured models. We then estimated LPGMS and shallow 1-
level PSPNs. The adjacency matrix of the original LPGM
was used to measure the network discovery performance. As
Fig. 4(a) shows, the PSPN decomposition step recovers the
networks well and is not very sensitive to the significance
parameter p. This answers (Q2) affirmatively.

As there was no difference in performance among the sig-
nificance thresholds p, we fixed p = 0.001 in all remaining
experiments, which are 5(b) and 10(c)-fold cross-validated.

(Q3) Predictive Power on Benchmark Datasets: We in-
vestigated the predictive performance on the previous syn-
thetic datasets as well as on the UCI datasets used in (Hadiji
et al. 2015). The Communities & Crime (C&C) dataset
was obtained from 2,215 communities in the United States,
reporting different crime statistics. We focus on instances
with complete data and target count values specifying crimes
such as the number of robberies, burglaries, and others. Our
cleaned dataset contains 1,902 communities with 8 features.
The NIPS bag-of-words dataset contains 1, 500 documents
with a vocabulary above 12k words. We considered the 100
most frequent words. The MSNBC is a count representation
of MSNBC.com dataset from the UCI repository. The data
gives sequences corresponding to a user’s page views for an
entire day, which are grouped into 17 categories. We used
the post-processed version from the SMPF library*, which
removed very short click sequences. In total, this dataset
contains information of about 31,790 users. We analyzed
solely the frequencies of the visited categories. In contrast
to the C&C dataset, the means of the 17 categories have all
low mean values. We also note that the variance in this data
is much lower than in the C&C-dataset.

The predictive performances are summarized in Fig. 4(b).
For Poisson GMs, we compared only to PDNs since (Hadiji
et al. 2015) showed empirically that they are competitive to

3 https://cran.r-project.org/web/ packages/XMRF/index.html
4 http://www.philippe-fournier-viger.com/spmf/index.php ?link=
datasets.php

LPGMs, and in terms of likelihood, LPGMs are competitive
to SPGMs and TPGMs (Yang et al. 2013). PSPNs are com-
petitive to GSPNs and comparable to PDNs. This provides
an affirmative answer to (Q3). In contrast to PDNs, infer-
ence for PSPNs is tractable, and hence more general queries
can be answered more efficiently as considered next.

(Q3) Poisson Mutual Information: In PDNs, (Hadiji et
al. 2015) suggested the use of relative influence to inter-
pret the structure. This is a measure based on the number
of times a variable is selected for splitting in the regression
trees, weighted by the squared improvement to the model
as a result of each split, and averaged over all trees. Un-
fortunately, this has no clear information-theoretic meaning.
Since PSPNs provide tractable inference, we propose to use
mutual information (MI), as a way to interpret the PSPNs
and to focus attention by considering relevant variable as-
sociations only. Fig. 2(left) shows the MI network induced
over the NIPS corpus. There are natural groupings of words.
This provides an affirmative answer to (Q3).

(Q3,4,5) Shallow versus Deep Architectures: Poisson
trees are actually (2-levels) shallow learners. They can be
written as a sum-product network where each product (over
the edges from the root to a leaf) selects a leaf. Boosting
them, as done in PDNs, adds one level of depth, which
may explain the good predication performance of PDNs;
Moreover, a product of independent Poissons (a single prod-
uct node) encodes the conditional distribution of a Latent
Dirichlet Allocation (LDA) model. Thus, LDA is also a
rather shallow learner, and hierarchical variants add some
depth. Since both are popular models for count data, we
compared PSPNs to them in order to gain further insights
into having a benefit of a deep architecture. We computed
the predictive perplexity, which is a decreasing function of
the log-likelihood of unseen examples (the lower, the bet-
ter). Unfortunately, the LDA likelihood of one document is
intractable, which makes the evaluation of the perplexity in-
tractable, too, and one has to resort to approximative infer-
ence. For PSPNGs, this is tractable using symbolic evaluation.
Fig. 4(d) summarizes the results. As one can see, PSPNs out-
perform the shallow LDA models, are competitive to PDNs,
and in contrast to PDNs, provide naturally hierarchical top-
ics as illustrated in Fig. 2(right). Only the run time is consid-
erably higher for PSPNs. Therefore we also evaluated a ran-
domized PSPN learner (RPSPN): the decomposition is per-
formed on a subsample of 2000 examples and the condition-
ing is using a random hyperplane after taking the square root
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Figure 4: Experimental evaluation of PSPNs. (a, top) Comparison of network discovery performance (the lower, the better)
between 1-level PSPN and LPGM. Differences in the recovered graphs from the original ones are measured by the number
of different edges. (a, bottom) The corresponding running times in seconds. n is the number of training instances and d is
the number of nodes. (b) Predictive performance (the lower, the better) of PSPNs (m = 80) on several multivariate count
data benchmarks. MaxP denotes max-product, MaxM maximum-marginal inference, and GSPN, a Gaussian SPN. A Gaussian
treatmeant can result in an order of magnitude large predictive error. The predictive performance of PSPNs is comparable with
PDN . (¢) Deep graph classification using PSPNs (m = 80). Training a PSPN using the explicit feature maps of the Weisfeiler-
Lehman graph kernel is comparable to feeding them into a SVM, the standard approach. Shown are the predictive accuracies
(the higher, the better). (d, top) Predictive perplexities (the lower, the better) of Hierarchical LDA, LDA, PDN, PSPN and
randomized PSPN (RPSPN). Models are getting deeper from left to right as indicated by the numbers next to model names:
(H)LDA numbers of topics; PDNs number of boosting iterations; (R)PSPNs m = (100 — number) - dataset size. As one can
see, PSPNs outperform (Hierarchical) LDA and are competitive to PDNs. (d, bottom) Learning PDNss is faster than learning
PSPN. RPSPNs are competitive in predictive performance and run time. (Best viewed in color)

of the sum-to-1 normalized examples. Fig. 4(d) shows that
the performance drops slightly but training is significantly
faster. Therefore (Q3,4) can be answered affirmatively.

(Q5) Graph classification: To further investigate (Q4),
we considered the task of graph classification. The
Weisfeiler-Lehman graph kernel (Shervashidze et al. 2011)
proceeds in iterations. Starting e.g. with the degree of a node
as its label, it augments the node labels by the sorted set
of node labels of neighbouring nodes, and compresses these
augmented labels into new, short labels. Then, it computes
the histogram of the new labels and repeats the steps for
a pre-specified number of iterations. Typically, these his-
tograms are fed into a SVM for classification. Here we
trained a PSPN per class and merged them with a Sum Node
with weights as priors on the classes. We compared both ap-
proaches on three graph data benchmarks. Mutag (Debnath
et al. 1991) is a dataset of 188 mutagenic aromatic and het-
eroaromatic nitro compounds with 2 class labels. PTC is a
dataset of 344 chemical compounds that reports the carcino-
genicity for male and female rats and it has 2 classes (Toivo-
nen et al. 2003). Enzymes is a data set obtained from (Borg-
wardt et al. 2005) consisting of 600 enzymes. The goal is to
assign each enzyme to one of the 6 EC top-level classes. As
the results summarized in Fig. 4(¢) show, PSPNs are com-
parable to SVMs, which answers (Q5) affirmatively.

Conclusion

Poisson sum-product networks (PSPNs) can be viewed as
a deep combination of multivariate Poisson mixture models
and feature hierarchies. In contrast to other Poisson graph-
ical models (GMs), inference in PSPNs is tractable. As our
experimental results demonstrate, the performance of the es-
timated PSPNs is competitive to other Poisson GMs, also
compared to LDA and graph classification via SVMs.

We aim to explore other learning methods such as ran-
domized and boosted ones, and mixtures of PSPNs along
further applications. Using different types of GLM trees,
PSPNs directly provide a deep and tractable version of
Manichean graphical models (Yang et al. 2014), making
them useful in many other real applications.
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