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ABSTRACT
In mobile networks, moving users generate trails of traversed
cells. For the network, this leads to a constant shift in data
traffic loads when users with active connections switch from
cell to cell. For active load balancing, a prediction of the
next cell a user will move into enables reservation of re-
sources a long time before standard micro-mobility handoff
mechanisms.

The generated paths of the users train machine learning
algorithms and predict the next cells. The learned model
should give an impression of the relationship between ge-
ographical topology (streets, railways etc.) and radio cov-
erage. The experiments presented in this paper have been
able to exceed 80% accuracy for predicting the next cell of
certain users.

1. INTRODUCTION
Network traffic, especially data, is ever increasing in mo-

bile networks, putting a huge burden on the infrastructure.
In parallel, the demand for high-quality, high-bandwidth,
low-latency connections is rising due to widespread availabi-
lity of smartphones and tablets. These devices enable appli-
cations from online gaming up to video streaming and video
calls. A-priori knowledge about the next cell of a mobile
user could deliver an indicator about upcoming changes in
network routing and load. The operator can automatically
and pro-actively react on these changes, e.g. by reserving
capacity in the predicted cell.

The prediction of next cells is performed by training a
model with the historical sequences of mobile user’s tra-
versed base stations. In [1] one of the earliest approaches
to this problem has been described, using a compression al-
gorithm to generate a tree of cell handoffs per user. A good
overview about some basic technologies used for location
predictions can be found in [3]. The methodology there is di-
vided into domain-dependent/independent and user-specific
or global models. In comparison to the methods presented
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there, we concentrate on domain-independent algorithms,
i.e. not specifically implementing mobile network-only func-
tions. This enables applying the same algorithms for differ-
ent mobile networks, from GSM to LTE, and easily adapt-
ing new features like positioning as they become available
by new technology. Typically, most machine learning algo-
rithms provide some robustness against outliers and noisy
data, e.g. during movement along cell borders.

Most other approaches on next cell predictions, even newer
publications than mentioned afore, concentrate on modelling
movement behaviour per user. While this is reasonable, it
may severely impact user privacy. Therefore, we investi-
gate both methods, starting with generating models inde-
pendently of the user.

Often, only simulated cellular networks and movements
have been used to measure the achievable prediction accu-
racy of the investigated algorithm. Here, real world data
gathered by the Nokia Data Collection Campaign in the
Lake Geneva region [6] has been used to validate the pre-
dictability of movements with minimal features and sophis-
ticated algorithms. In [7] we already demonstrated some
of the network optimization capabilities assuming that the
user’s next cell can be predicted. All techniques mentioned
there provide some fallback to guarantee successful handoffs
even if the prediction fails.

2. FEATURE GENERATION FROM MOBI-
LITY TRACES

In-depth data of phone usage, location and seen cells has
been provided in the measurement data. Details about the
data sets can be found in [6]. For the specific task of pre-
dicting a user’s next cell, only a minimal subset of the data
is used, which would be available in many different mobile
networks and observable without alteration of existing radio
protocols.

Optimally, the features are available on the network side
without the need for further information from the user’s mo-
bile phone.

2.1 Features available on network level
The selection of available features as input to the pattern

detection algorithm is an essential parameter for the quality
of the prediction of the next cell.

Figure 1 presents some features ideally being available in
the network: The ID of the cell, the user is currently as-
sociated with and for handoff events the time between the
last two events, i.e. the residence time inside the cell. Addi-



Figure 1: Network level features during user move-
ments

tionally, in some cases the user’s position x, y at the time of
the event (e.g. by triangulation or GPS) and the distance d
from base station to user (e.g. estimated by timing advance
parameters in GSM) may be available. Beside distance es-
timations, all of these features can be extracted from the
provided measurement data.

Therefore, a sample sequence of the last three base sta-
tions and positions to be used in training may appear as BS1,
N51.3◦, E7.6◦, BS2, N51.4◦, E7.6◦, BS3, N51.5◦, E7.7◦.

The maximum length k of the sequences is limited to pre-
vent intense growth of training examples caused by excep-
tionally long usage of the mobile phone. Typically, training
examples do not provide further useful patterns beyond a
certain length. Selecting a good sequence length for obtain-
ing a high prediction accuracy is also a part of the process
optimizing feature selection and algorithm parametrization.

Each sequence provides a windowed view on the user’s his-
torical observations of seen cells. Each point i in a sequence
(this may be a cell ID only or the cell ID in combination
with a position) marks an event in the user’s trace.

Only measurements leading to a change in the observed
cell are inserted into the sequence, as these lead to a shift in
network load. Intermediate measurements for the same cell
as the cell before are not used in a cell sequence.

2.2 Limitations in used measurement data
The data used for the experiments provides an in-depth

view on the mobile phone’s usage and handling. Neverthe-
less, the way the data is gathered complicates the predictions
in some points.

Figure 2 shows an estimated cell coverage plot of one single
user near the Lausanne city center. To calculate the cover-
age, each cell measurement is associated by a GPS position if
available and afterwards the minimal enclosing convex poly-
gon is calculated and plotted. As the cell measurements are
performed following approximately a 60s interval, moving
users may pass by several other cells before the next record.

Additionally, in most cases more than one cell has to be in
range, while the measurements only cover one cell. Our own
measurements in [8] showed, that the position of handoffs
between neighbouring cells strongly depends on the opera-
tor’s implementation of the handoff algorithm, tending to
stay longer in cells during active connections than without.

Finally, only 15% of the cell measurements could be as-

Figure 2: Cell coverage plot based on GPS measure-
ments of one user

sociated with a GPS position, leading to positioning gaps.
GPS data is tracked approximately each 10s and we asso-
ciate a cell measurement with a location measurement, if the
difference in the time stamp is not greater than 15s.

Nevertheless, predictions based on these measurements
can provide the operators with an idea where a user will
arrive next from a network’s point of view.

3. PREDICTING CELL IDS WITH DISCRI-
MINATIVE MODELS

The applied pattern recognition algorithm generating a
discriminative model is based on the Support Vector Ma-
chine (SVM [5]), which provides a powerful solution to non-
linear classification. The flexibility in parametrization en-
ables the model to adapt to nearly any type of function,
with initially high computational requirements for finding
the optimal set of parameters, but fast application to new
data for generating a prediction.

The basic principle lies in separating the data points pro-
vided in the training with a hyper plane. For the classi-
fication task of future cells, the prediction process can be
simplified to detection on which side of the plane the data
can be found.

During the training phase, the SVM calculates the optimal
separating hyper plane maximizing the distance between the
plane and the training examples. In most cases, not all
example points are needed to identify the plane, but just
the nearest points in space. These so-called Support Vectors
typically reduce the influence of outliers far away from the
optimal plane. Two major restrictions are obvious: The
hyper plane provides only a linear separation of the data
and the prediction is reduced to two classes. The latter
restriction can easily be solved by splitting the problem into
a one-versus-all approach (e.g. is it cell A or not, is it cell B
or not,...).

The second restriction of only linear separation of data
can be prevented by transforming the training data into a
different space before training the support vector machine.
If the data transformation is non-linear, the prediction will
also be able to predict non-linear separations, while keeping
the SVM model generation on just calculating the plane.

So-called kernel functions transform the linear separation
into a non-linear space. For finding the optimal separating
hyper plane, several parameters like kernel function, kernel



degree and tolerance values need to be evaluated.
Experiments have been executed using the RapidMiner

Data Mining framework [9], running an evolutionary algo-
rithm for SVM parameter optimization and a ten-fold strati-
fied cross-validation for calculating the prediction accuracy.
As a reference algorithm OneR is used. This algorithms se-
lects only a single attribute (typically the current cell) and
predicts the next cell based on the value of this attribute.
The lower the OneR accuracy, the higher the randomness of
traversing from one cell to another.
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Figure 3: Prediction accuracy for all users based on
sequence length

Figure 3 presents the prediction accuracy for different
maximum sequence lengths k. The SVM has been trained
generating a global model independently of a specific user,
i.e. the user id has been removed from each sequence before
training. This on the one hand improves privacy, as no indi-
vidual user movement model is generated, and on the other
hand reduces storage and computational power needed.

The OneR algorithm delivers a prediction accuracy of just
41%. Using the SVM and longer sequences improves the ac-
curacy by more than 35% up to nearly 78%. Figure 3
additionally shows, that the effect of longer historical se-
quences is minimal beyond the last three seen cells, leading
to lesser storage requirements. Standard deviation for all
accuracies was below 2% each.

Beside using cell IDs only, similar experiments have been
performed with cell ID in combination with residence time,
GPS positions and finally without removing the user id for
each sequence.

Prediction accuracies have been in a similar range com-
pared to cell ID only, resulting in 77.67% with residence
time, 78.00% with GPS and 78.72% including user ids.

Especially for combining cell IDs and GPS positions we
would have expected an increase in accuracy, but as only
15% of seen cells could be associated with a position, this
feature represents not enough additional knowledge.

The results demonstrate the feasibility of predicting user’s
next seen cell, predicting the where a user will go, but lacking
the when a user will be there. While it would be possible to
train separate models for respecting time, the next section
concentrates on generative models inherently building user
profiles with time predictions.

4. INCORPORATING TIME WITH GENER-
ATIVE MODELS

The provided GSM log data contains an inherent tempo-
ral structure which is not used by our SVM approach. In
order to make use of this additional information, we ap-
plied probabilistic graphical models [12] to incorporate the
time explicitly. Such an approach enables us to formulate
probabilistic queries about a users movement behaviour, e.g.
”Given that user A is in cell X at 5:50pm (current measure-
ment), what is the most probable cell the user will visit at
6:10pm?”. Since our model is generative and undirected,
we may incorporate additional knowledge about the future
which allows us to state queries like ”Given that user A will
be in cell X at 6:00pm (extracted from calendar data), what
is the most probable cell the user will visit at 3:00pm?”.

Note that the user A is explicitly mentioned in the above
queries. That is because we build one seperate model per
user and thus, treat all users as independent. A global model
would require connectivity data between users to capture the
structure of user interaction. Such connectivity data could
in principle be extracted from social networks.

Another intuition behind user specific models is, that this
process can be directly implemented into a cellphones soft-
ware and queries like those above could be requested by the
network provider on demand.

As mentioned above, we use undirected graphical models
namely Markov Random Fields (MRF). The temporal struc-
ture is captured by a graph G with T vertices, whereby T
is equal to a fixed number of sampling points per day. Each
vertex represents a sampling point (measurement) and ver-
tices of temporal consecutive sampling points are connected
through edges to build the dependency graph. Addition-
ally, the last and first vertices are connected to encode the
repetitive temporal structure of user behavior. To be more
precise, each vertex vt is indentified with a discrete random
variable xt and the set X of possible realizations of xt con-
tains the cell IDs of all cells that the user has visited so far.
If the value of a vertex is known or observed, e.g. x106 = y
for a cell y, in principle all nodes in the graph are affected.
Figure 4 shows how the probability densities of several cells
change if a node’s value is observed. The model is given by
a multivariate exponential family with density

pθ(x) = exp(〈θ, φ(x)〉 −A(θ)). (1)

Here, φ(x) is a sufficient statstic that transforms a random
vector x ∈ X T into an d-dimensional binary vector space
with d := T · |X |+ T · |X |2 and A(θ) normalizes the distri-
bution. The parameters θ ∈ Rd are obtained by Maximum
Likelihood Estimation, whereby the Likelihood of a partic-
ular θ is given by

L(θ|T ) :=
∏
x∈T

pθ(x). (2)

Here, T is the data set which contains the training instances.
If our model is implemented into a cellphone, we do not
want it to store the users complete history of cell visits.
Therefore, we take the logarithm of the Likelihood (2) and
rearrange, such that it only depends on the average value or
the empirical expectation Ẽ [φ(x)] of our sufficient statistic.

`(θ|T ) :=
1

|T |
∑
x∈T

log pθ(x) =
〈
θ, Ẽ [φ(x)]

〉
−A(θ) (3)
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Figure 4: Temporal dynamics of empirical (I), estimated (II) and conditional (III) marginal probability
densities for a fixed user (A) and all cells that the user has visited. Each color represents the probability for
one cell over time. The densities in the right plot are conditioned on the single event that the green cell is
observed at 5:40pm.

This basicly means that a phone has to store at most d inte-
ger values to represent the training data. Taking derivatives
of (3) it follows that

∂`(θ|T )

∂θα
= Ẽ [φα(x)]− Ê [φα(x)] ,

whereby α may be either a vertex or an edge assignment, e.g.
α = (xt = y) for being in cell y at time t. The estimated

expectation Ê [φvt(x)] is equal to the marginal probability of
the corresponding event, that is

Ê [φα(x)] = p̂θ(α).

This value is computed by Belief Propagation [10] which
reduces to a kind of forward-backward algorithm for this
type of chain structured models. The objective maxθ `(θ|T )
can then be solved by any first-order optimization method.
We ran gradient descent optimization with an elastic net
regularization [13] until convergence to find proper model
parameters.

Our model uses T equidistant sampling points, hence the
data had to be smoothend such that the time of each sam-
pling point is projected onto the nearest multiple of ten min-
utes. Note that this simply moves the probability mass of a
particular cell through time. In general, the model sampling
rate depends on the data quality. If the probability between
two sampling points is required, it is reasonable to apply an
interpolation between sampling points. To generate contin-
uous time density functions (Figure 4, I-III), the first-order
interpolation

p̄θ(xt) = p̂θ(xbtc) + [p̂θ(xdte)− p̂θ(xbtc)](t− btc), (4)

is applied whenever t is not integer. Because of the elastic
net regularization, this interpolation results in smooth esti-
mated density functions over time (II, III) when compared
to the empirical density (I).

MRFs are generative models that use the data to com-
pute the joint density of all sampling points. It is known
that such models require a larger amount of training data
compared to discriminative classifiers like SVMs. Accuracy
strongly depends on the amount of traces covering the day,
with a user A providing the most. Figure 5 shows the result
in terms of accuracy and corresponding standard deviation
of our discriminative SVM and our generative MRF mod-
els with T = 144. The time was ingnored for SVM model

and predictions are performed like described in Section 3.
Although this comparison ignores the benefit of formulating
nearly arbitrary probabilistic queries for MRFs, it reveals
the raw predictive power of both methods. The result was
generated in a 10-fold cross validation on three users of the
preprocessed MDC data (Section 2).
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Figure 5: Prediction accuracy for specific users

Although the discriminative model shows a higher pre-
diction performance, please notice the qualitative difference
between both types of models: If we know that a user, say A,
is in cell y at time t, we may ask the discriminative model
for the most probable cell y′ that follows y but not when
this transition will occur. The generative model instead,
will give us a probability density over all cells that the user
could visit at time t+ 1, but also at t+ 2 and so on. In this
way, we can compute the first time t′ that satisfies y 6= y′

which is an estimate for the time of transition. If one tries
to simulate this behavior with discriminative classifiers, she
will need an infinite number of models. Depending on the
actual task, one may also ask for the top-k most probable
cells. While an answer to this question can be computed
directly by a generative model, the number of discrimina-
tive classifiers required to answer this query is at least k per
user.

The amount of data for user A was about 10 times higher
than for users B and C. The difference in prediction per-
formance of SVM and MRF, especially on users B and C,
is due to the lack of data covering the days only partially.



Nevertheless, if our model is implemented directly into the
device, the data can be continuosly collected to keep the
empirical expectation and the model up-to-date.

There are some straightforward extensions of our gener-
ative approach like introducing higher order dependencys,
e.g. connect vertices vt and vt−2 ∀t, or incorporating future
observations like calendar data. It is also possible to in-
crease the prediction accuracy by building seperate models
for weekdays, weekends and similar natural partitionings of
time [4].

Furthermore, the generative model is able to compute the
expected workload of each cell at each point in time as a
byproduct. Let Uy be the set of all users which ever visited
cell y and Uy(t) the set of all users which will visit cell y at
time t. Hence, we have

Ē[|Uy(t)|] =
∑
u∈Uy

1 · p̄θu(xt = y) + 0 · p̄θu(xt 6= y), (5)

where θu are the model parameters which are learned for
the user u and Ē[|Uy(t)|] is the expected number of users for
cell y at time t. To compute this quantity in a collaborative
manner, all users from the set Uy have to transmit their
probability of being in cell y at time t to a central unit which
performs the summation. Note that we use interpolated
probabilities (4) in (5) to be able to compute an expectation
for any time t. The expectation may also be conditioned on
knowledge about the current locations of users or additional
context information.

5. CONCLUSIONS AND OUTLOOK
Knowledge about the user’s next cell provides a powerful

tool for mobile network operators and manufacturers to ba-
lance load inside the network. Only minimal features, easily
derivable in current mobile networks, are sufficient to train
a machine learner and predict the location.

We demonstrated, that training a global model as well as
for specific users both provides reasonable accuracy, with the
possibility to exceed 80% for user based models. Time as-
pects could be integrated into the predictions via generative
models, impacting the accuracy by only a few percent. The
generative approach may be used to incorporate knowledge
about future events and to estimate other network related
quantities like the expected workload of each cell or the top-
k most probable cells of each user.

Using available hardware in modern smartphones, it is
possible to move nearly all required computations of both
presented methods to many-core Graphics Processing Units
[11, 2] to keep a smartphone’s CPU free for regular phone
related tasks. This enables to calculate and store models
locally. Each smartphone could send, similar to link qual-
ity measurements, hints about the next expected cell to the
network’s base station. This approach still enables access to
user specific models, but respects privacy without the need
to store user profiles centrally, distributes the computation
to each individual phone and saves storage space for the op-
erator. Of course, local calculations performed on the phone
will impact battery consumption. This effect on and opti-
mization of energy will be investigated in future research.
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