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1 Introduction

IceCube is a neutrino detector built into the ice at the South Pole [1]. It has a volume
of approximately one cubic kilometre, and consists of 86 strings of 60 Digital Optical
Modules (DOMs) each, embedded between 1450 and 2450 metres below the surface.
Each DOM is composed of a photomultiplier tube connected to two different analogue-
to-digital converters that digitise the output of the photomultiplier tube over two differ-
ent timescales. Of particular interest to this work is the Analogue Transient Waveform
Digitiser (ATWD), which takes 128 samples with 3.3ns spacing. Since the detector’s
completion in 2010, an astrophysical neutrino flux has been measured [2] and several
high-energy astrophysical neutrinos have been observed [3].

There are two main event topologies for neutrino interactions [4]. The first is made
up of “track-like” events, which occur when a charged current muon neutrino interaction
produces a muon; the muon propagates through the ice and out of the detector, producing
a track of Cherenkov radiation. The second type of event is a “cascade-like” event, which
arises from charged current interactions of electron and tau neutrinos, and neutral current
interactions of all flavours of neutrino. These interactions are characterised by a flood of
particles, dumping their energy over a relatively small area of the detector.

Thus far, observations of astrophysical tau neutrinos have remained elusive [5]. Charged
current tau neutrino interactions have two interaction vertices: at the first, a tau particle
is produced; this tau particle propagates through the detector before decaying to produce
the second vertex. This event profile leads to two cascades, one at each vertex. At low
energies, the two vertices are very closely spaced and are therefore indistinguishable from
other “cascade-like” events. However, at higher energies (>100 TeV), these two interaction
vertices are separated enough such that the two vertices can be resolved, allowing these
CC ντ events to be distinguished from other events — such events are known as “double-
bang” events. This work is concerned with “double-pulse” events, a subset of “double-
bang” events where the interaction vertices are spaced close-enough together that both
interaction vertices are visible from a single DOM, but still far enough apart to be resolved
from simple cascade events. These events are exceedingly rare, therefore identifying them
in amongst the background of all other neutrino interactions and atmospheric muons poses
a technical challenge.

Previous work on identifying double-pulse events has relied upon a series of hard cuts
on waveforms measured by the ATWD [5]; an improved analysis was later carried out
using machine-learning techniques [6]. This analysis applies results from the field of deep
learning to this identification problem, exploring the efficacy of three different neural
network types: convolutional neural networks, self-normalising neural networks and re-
current neural networks. Convolutional neural networks [7, 8], currently favoured for
image classification tasks, are well-suited to identifying features and patterns in data in-
dependent of its position within that data. Self-normalising neural networks [9] are a new
form of feed-forward neural network that have shown promise in astronomical classifica-
tion tasks. Recurrent neural networks [10], and in particular Long Short-Term Memory
networks (LSTMs) [11], are often applied to datasets involving time series or sequential
data, excelling at tasks such as language processing and speech recognition.
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The following section of this work discusses the methods used to create and train the
neural networks; Section 3 characterises the performance of these networks. Section 4
presents a brief discussion of the results attained, before ending with conclusions drawn.

2 Methods

This section begins with a discussion of the training data, including the preprocessing
performed, followed by the different neural network architectures used, and concluding
with the training regime employed.

2.1 Training Data

For the type of neural networks used, it is necessary to have a labelled set of data with
which to train the network. The data consisted of simulated neutrino interactions taken
from Level 2 of the IceCube data processing pipeline. The background of atmospheric
muons had been ignored, as these can be excluded later using other processing methods.
For the same reason, the background of CC νµ interactions had also been excluded. A
series of generous cuts had then been applied on the geometry of the CC ντ interactions
and the derivatives of their resultant waveforms — these waveforms were labelled as
“double-pulse waveforms”, and the remainder of the CC ντ interactions were discarded.
This ensured that only unambiguously “double-pulse-like” waveforms were labelled as
such. The waveforms from CC νe interactions and NC interactions of all flavours had
been labelled as “cascade-like background”. A major drawback of this pre-preparation
method was that there was a severe imbalance between the “double-pulse waveforms”
(∼0.2%) and “cascade-like background” (∼99.8%) — methods for combating the effects
of this are discussed in Section 2.3.

As is often done in machine learning, this dataset was split into three: a training dataset
(80%), used to train each network; a validation dataset (7%), used for assessing the
performance of the networks both during and after training; and a test dataset (13%),
which was only used to quantify the performance of the best network (selected on the
basis of its performance on the validation dataset). The data was then preprocessed by
calculating the transformation that would give the training dataset a mean of 0 and a
variance of 1, and applying it to each dataset.

2.2 Neural Network Architecture

Three different types of neural network were investigated. Particulars of each architecture
and hyperparameters were largely left untouched once set, as the focus was on comparing
the performance of different networks, not on optimising the performance of one type of
network. All networks were used with a categorical cross-entropy loss function.
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Figure 1: The structure of the convolutional neural network, with dimensions of each
layer marked in brackets. Where dropout was used between layers, the arrows have been
annotated to indicate the fraction of inputs dropped. The first convolutional layer used
a filter size of 5; subsequent convolutional layers used a filter size of 3. All convolutional
layers used padding such that the size of the output was preserved.

2.2.1 Convolutional Neural Networks (CNNs)

A convolutional neural network [7, 8] was designed to identify the double-pulse wave-
forms in our dataset; the structure used is noted in Figure 1. ReLU neurons were used
throughout the network. Dropout [12] was used after each layer to reduce overfitting and
increase the robustness of the network. The hyperparameters for the CNN (namely the
architecture used, the filter sizes of each convolutional layer, and the amount of dropout
used) were not optimised.

2.2.2 Self-Normalising Neural Networks (SNNs)

A self-normalising neural network [9] was also applied to this classification problem —
the exact architecture is illustrated in Figure 2. Alpha dropout was used between layers,
as suggested in Klambauer et al. [9]. Once again, hyperparameters were not optimised.

2.2.3 Long Short-Term Memory (LSTM)

The final neural network structure tried was an LSTM [11]. Three layers of 128 LSTM
units were stacked; ReLU neurons were used throughout, and dropout was applied both
to the input to each LSTM and to its hidden state vector with a drop probability of 0.2.
The final layer was a 2-neuron softmax classification layer. As before, no hyperparameter
optimisation was performed.

2.3 Training

Each network was trained on the training data over 10000 epochs; each epoch consisted
of 100 batches of 128 samples, with each batch drawn from a binomial distribution of
the two classes with expected probability pDP for a double-pulse waveform. This was to
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Figure 2: The structure of the self-normalising neural network, with dimensions of each
layer marked in brackets. Alpha dropout was used between layers; the arrows between
layers have been annotated to indicate the fraction of inputs dropped.

counteract the class imbalance in the original dataset – when trained with the original
class balance of 0.2% double-pulse waveforms, the networks tended to predict that all
samples were cascade-like background.

While training each network, the network’s accuracy on the training batches was mon-
itored, as was its accuracy on batches of validation data drawn in the same way as the
training data. Overfitting to the training data was observed when these two accuracies
were compared. This problem was fixed using L2 regularisation applied to the weights
of each layer [13], which adds a term to the loss function weighted by a multiplicative
pre-factor of α. Different levels of regularisation (α = 0, 10−2, 10−3 and 10−4) were tested
on the convolutional neural network. Without regularisation (α = 0), heavy overfitting
was observed; this was partially ameliorated by using α = 10−4, but overfitting was still
observed. When α = 10−2 was used, no overfitting was observed but the performance
of the neural network on the data was found to deteriorate. A regularisation of 10−3

was found to strike an appropriate balance between preventing overfitting and having a
detrimental impact on the neural network performance.

Another method trialled for improving the neural network performance was decaying
pDP after each epoch (henceforth referred to as "balance decay"), using the relationship

pDP(n) =
p0

(1 + βn)n
(1)

where n is the epoch number, p0 is the initial probability of a double-pulse waveform, and
β is a constant parameter that sets the rate of decay. A CNN was trained from scratch
using this method; it was also used with a CNN that had been previously trained without
using balance decay, after which all but the final fully-connected layer and the softmax
layer were frozen, and the network trained for a further 5000 epochs using balance decay.
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3 Results

The network performances were evaluated on the validation dataset. The results of this
evaluation were used to pick a best model, which was then evaluated on the test dataset.

Purity-efficiency plots for each network were generated using the validation dataset — a
selection is shown in Figure 3. In addition, the ντ CC events that had previously been
excluded were reintroduced, and a histogram was made of expected event rate (for ντ
CC events and cascade-like background) for a given confidence level — some of the plots
made can be seen in Figure 4.

Interestingly, it was found that, despite the overfitting exhibited in the CNN that did not
employ regularisation and better train-time accuracy on the validation data when bal-
anced batches were fed into the system for the best-performing regularised CNN (with
α = 10−3), the unregularised CNN performed better on the validation data. This unreg-
ularised CNN (CNN-A) provided the basis for a CNN that was trained using the balance
decay method as described in 2.3; the resultant network (CNN-B) proved to have the
best performance of any of the networks.

The performance of SNNs was consistently worse than either of the other network archi-
tectures (as may be expected, given that SNNs do not account for the continuous nature
of the waveform data). LSTMs showed promise, but ultimately performed worse than
the best-performing CNNs.

On the basis of the plots shown in Figures 3 and 4, CNN-B was chosen as the best-
performing network. The network was then evaluated on the test dataset (using all ντ
CC events), as well as on the previously-discarded νµ CC events and atmospheric muons
(using a dataset previously generated with CORSIKA [6]). The expected number of
events per year at a given confidence threshold were plotted both for the test dataset
alone and for the combined dataset including the νµ CC events and the atmospheric
muons – these plots are illustrated in Figure 5.

While a confidence cut has not been optimised and chosen, it can be seen that if a cut
of, for instance, 0.62 were used, it would be expected that one ντ CC event would be
detected every 1.5 years, with a rate of one cascade-like background event every 83 years.
The rate of νµ CC events is approximately a factor of 3-4 higher than that of ντ events;
the rate of atmospheric muon events is approximately four orders of magnitude higher.

4 Discussion

While further steps need to be taken to remove νµ CC events and atmospheric muon
events, these results compare favourably with previous work done. Aartsen et al. [5]
uses a system of hard cuts on the derivatives of the waveforms, and expects one ντ CC
event every 4.6 years, with a background level of νe events of one every 42 years. The
machine learning approach described in Aartsen et al. [6] reports similar expectations to
the analysis presented here when compared with the same astrophysical flux assumption.

It must be noted that further steps must be taken to remove atmospheric muon and

5



0.0 0.2 0.4 0.6 0.8 1.0
Confidence Cut

0.0

0.2

0.4

0.6

0.8

1.0

Qu
al

ity
 P

ar
am

et
er

Purity Efficiency

0.90 0.95 1.00
0.90

0.95

1.00

(a) CNN-A (no regularisation)
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(d) LSTM

Figure 3: Purity-efficiency plots for the two best-performing CNNs and the best-
performing SNN and LSTM. The performance of CNN-A and CNN-B are comparable.
The LSTM performs better than the SNN but not as well as either CNN-A or CNN-B.
The SNN is the worst-performing network.
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(a) CNN-A (no regularisation)
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(b) CNN-B (no regularisation, with balance de-
cay)

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

10 5

10 4

10 3

10 2

10 1

100

101

Ev
en

ts
 p

er
 y

ea
r

Cascade-like background  CC events

(c) SNN
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(d) LSTM

Figure 4: Event-rate plots for the two best-performing CNNs and the best-performing
SNN and LSTM. In this figure, the performance of CNN-A and CNN-B can be distin-
guished. As in Figure 3, both outperform the LSTM, which in turn outperforms the
SNN.
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(a) Test dataset
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(b) Extended dataset

Figure 5: Plots illustrating expected event rate for a given confidence cut, as calculated
for CNN-B on the test data. For a confidence cut of 0.62, it would be expected that there
would be one ντ CC event every 1.5 years, with a background rate of one cascade-like
event every 83 years. It can also be seen that, using this neural network alone, the rate of
νµ CC events passing this cut would be a factor of 2-3 higher than that of ντ CC events,
and the rate of atmospheric muons would be approximately four orders of magnitude
higher.

muon neutrino events, which contaminate the final performance of the network. Once
these steps have been taken, it would be possible to derive a confidence cut quantita-
tively. Furthermore, no errors have been derived on any of the results because of time
constraints; it would be necessary to place boundaries on some of the values quoted to
allow meaningful comparison. One way of adding errors could include the training of
multiple networks of the same architecture in the same way, and quantifying the spread
of their performance on the data.

In addition, this work has proved the efficacy of neural networks when applied to this
problem, but has not performed detailed optimisation either of the structure of the net-
work or of hyperparameters used during training. In particular, because of the lengthy
training time for the LSTMs, very little in the way of optimisation was able to be done.
It is probable that the performance of all networks could be improved if further time were
available to carry out this optimisation.

Once these improvements have been made, the performance on actual data can be exam-
ined, and an attempt at finding potential candidate ντ events could be made.

5 Conclusion

The performance of convolutional neural networks, self-normalising neural networks, and
long short-term memory networks were assessed for the identification of charged current
tau neutrino events from a background of cascade-like events (charged current electron
neutrino interactions and neutral current neutrino interactions of all flavours).
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Each network was trained using Monte Carlo event simulations. During training, mul-
tiple problems were encountered: class imbalance in the training data was resolved by
generating balanced batches of event types and employing a balance decay method to
progressively decrease the artifical balance generated; overfitting to the training data was
overcome by regularisation techniques such as dropout and weight decay.

It was found that CNNs had the best performance on the validation data, with LSTMs
performing moderately well, and SNNs being the least effective of all three network types.
The performance of the CNN was improved by freezing the top layers of the best network
to that point and retraining using the balance decay method; it was this network that
had the best performance of any of the networks.

This network’s performance on a test dataset of Monte Carlo event simulations was then
quantified. For a confidence cut of 0.62, an event rate of one per 1.5 years for ντ CC
events would be expected. By comparison, the expected cascade-like background event
rate was one event every 83 years.

References

[1] A. Achterberg et al. “First year performance of the IceCube neutrino telescope”. In:
Astroparticle Physics 26.3 (2006), pp. 155–173.

[2] M. G. Aartsen et al. “Observation of High-Energy Astrophysical Neutrinos in Three
Years of IceCube Data”. In: Phys. Rev. Lett. 113 (2014), p. 101101.

[3] M. G. Aartsen et al. “First Observation of PeV-Energy Neutrinos with IceCube”. In:
Phys. Rev. Lett. 111 (2 July 2013), p. 021103. doi: 10.1103/PhysRevLett.111.
021103. url: https://link.aps.org/doi/10.1103/PhysRevLett.111.021103.

[4] Thomas K. Gaisser. Cosmic rays and particle physics / Thomas K. Gaisser, Ralph
Engel, Elisa Resconi. eng. Second edition. Cambridge University Press: Cambridge
University Press, 2016. isbn: 9781139192194.

[5] M. G. Aartsen et al. “Search for Astrophysical Tau Neutrinos in Three Years of
IceCube Data”. In: Physical Review D 93 (2016), p. 022001.

[6] M. G. Aartsen et al. “The IceCube Neutrino Observatory - Contributions to ICRC
2017 Part II: Properties of the Atmospheric and Astrophysical Neutrino Flux”. In:
(2017), pp. 86–93. arXiv: 1710.01191 [astro-ph.HE].

[7] Y. LeCun et al. “Backpropagation Applied to Handwritten Zip Code Recognition”.
In: Neural Computation 1.4 (Winter 1989), pp. 541–551.

[8] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classifica-
tion with Deep Convolutional Neural Networks”. In: Advances in Neural Infor-
mation Processing Systems 25. Ed. by F. Pereira et al. Curran Associates, Inc.,
2012, pp. 1097–1105. url: http://papers.nips.cc/paper/4824-imagenet-
classification-with-deep-convolutional-neural-networks.pdf.

[9] Günter Klambauer et al. “Self-Normalizing Neural Networks”. In: CoRR abs/1706.02515
(2017). url: http://arxiv.org/abs/1706.02515.

9

https://doi.org/10.1103/PhysRevLett.111.021103
https://doi.org/10.1103/PhysRevLett.111.021103
https://link.aps.org/doi/10.1103/PhysRevLett.111.021103
http://arxiv.org/abs/1710.01191
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://arxiv.org/abs/1706.02515


[10] M. C. Mozer. “A Focused Backpropagation Algorithm for Temporal Pattern Recog-
nition”. In: Complex Systems 3 (1989), pp. 349–381. url: http://www.complex-
systems.com/pdf/03-4-4.pdf.

[11] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In: Neural
Comput. 9.8 (Nov. 1997), pp. 1735–1780. issn: 0899-7667. doi: 10.1162/neco.
1997.9.8.1735. url: http://dx.doi.org/10.1162/neco.1997.9.8.1735.

[12] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting”. In: Journal of Machine Learning Research 15 (2014), pp. 1929–1958.
url: http://jmlr.org/papers/v15/srivastava14a.html.

[13] Andrew Y. Ng. “Feature Selection, L1 vs. L2 Regularization, and Rotational In-
variance”. In: Proceedings of the Twenty-first International Conference on Machine
Learning. ICML ’04. Banff, Alberta, Canada: ACM, 2004, pp. 78–. isbn: 1-58113-
838-5. doi: 10.1145/1015330.1015435. url: http://doi.acm.org/10.1145/
1015330.1015435.

[14] François Chollet et al. Keras. https://github.com/fchollet/keras. 2015.

10

http://www.complex-systems.com/pdf/03-4-4.pdf
http://www.complex-systems.com/pdf/03-4-4.pdf
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.1145/1015330.1015435
http://doi.acm.org/10.1145/1015330.1015435
http://doi.acm.org/10.1145/1015330.1015435
https://github.com/fchollet/keras

	Introduction
	Methods
	Training Data
	Neural Network Architecture
	Convolutional Neural Networks (CNNs)
	Self-Normalising Neural Networks (SNNs)
	Long Short-Term Memory (LSTM)

	Training

	Results
	Discussion
	Conclusion

