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Abstract—Due to the recent trend towards building com-
plex real-time cyber-physical systems, system designers need to
develop and choose expressive formal models for representing
such systems, as the model should be adequately expressive such
that it can accurately convey the relevant characteristics of the
system being modeled. Compared to the classical sporadic task
model, there exist a number of real-time task models that are
more expressive. However, such models are often complex and
thus are rather difficult to be analyzed efficiently. Due to this
reason, prior analysis methods for dealing with such complex task
models are pessimistic. In this paper, a novel analysis technique,
namely the bursty-interference analysis, is presented for analyzing
two common expressive real-time task models, the general self-
suspending task model and the deferrable server task model. This
technique is used to derive new uniprocessor utilization-based
schedulability tests and rate-monotonic utilization bounds for
the two considered task models scheduled under rate-monotonic
scheduling. Extensive experiments presented herein show that our
proposed tests improve upon prior tests in all scenarios, in many
cases by a wide margin. To the best of our knowledge, these are
the first techniques that can efficiently analyze the general self-
suspending and deferrable server task models on uniprocessors.

1 Introduction
The emerging trend towards building complex real-time

cyber-physical systems that often integrate external and phys-
ical devices and are expected to handle a variety of workloads
is posing many challenging problems to the real-time systems
community. When developing and choosing a formal model
for representing a real-time system, system designers need to
design a model that is expressive enough to accurately convey
the relevant system characteristics. Meanwhile, the model
must be efficiently analyzable for it to be useful in system
design and analysis. The classical sporadic task model [22],
which has received significant amount of attention over the
past many years, lies at one extreme of this tradeoff: many
efficient algorithms have been designed to analyze this model,
unfortunately, the expressiveness of this model is quite limited
since it cannot express many of the complex runtime behaviors
in practice. Compared to the sporadic task model, there exist
a number of real-time task models that are more expressive.
However, such models are often more complex and thus are
rather difficult to be analyzed efficiently.

Among such expressive models, the self-suspending task
model [12] and the server-base task model [27] are two useful
models that can accurately convey the characteristics of many
real-time embedded systems that are often seen in practice. The
self-suspending task model can be used to represent systems
where tasks may experience suspension delays when being
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Fig. 1: Example RM schedules illustrating a different suspen-
sion pattern may cause the same task system to miss deadlines.

blocked to access external devices and shared resources [13]–
[15], [20]. For example, suspension delays introduced by
accessing devices such as GPUs could range from a few mil-
liseconds to several seconds [7]. The server-based task model
is often used to provide improved aperiodic response time
performance when a system contains both periodic/sporadic
tasks and aperiodic jobs. For example, it can be used to model a
typical multimedia component deployed in an avionics system
that consists of both hard real-time (HRT) periodic control
tasks and soft real-time aperiodic media activities [1], [6].
Specifically, a deferrable server (DS) is defined by its budget
and replenishment period [11] to serve incoming requests/jobs
when the budget is still positive.

Unfortunately, the state-of-the-art schedulability analysis
techniques are not able to analyze these two models efficiently
and effectively. Regarding the self-suspending task model,
negative results have been reported indicating that the prob-
lem of analyzing HRT task systems with suspensions on a
uniprocessor is hard [25]. For instance, if tasks are allowed to
self-suspend just once, then the earliest-deadline-first (EDF),
which is optimal for scheduling sporadic task systems on a
uniprocessor, cannot define a feasible schedule even under a
k-speed processor, where k can be an arbitrarily large constant,
while there exists a feasible schedule under a unit speed
processor. Moreover, for a system as proposed in [11] that
consists of multiple DSs and multiple sporadic real-time tasks,
there exists no efficient utilization-based analysis to provide
sufficient schedulability tests [5], [19], [27].

An intuitive reason behind the cumbersomeness of analyz-
ing these two complex task models is because it is often hard to
accurately analyze the worst-case amount of interference due
to higher-priority tasks on the task that is being analyzed. This
is due to the fact that such task models introduce execution
behaviors that are relatively undeterministic (e.g., compared to
the sporadic task model) and may heavily depend on the actual
runtime execution behavior, i.e., the suspension patterns in the
self-suspending task model and the arrival patterns of aperiodic
events to be served by the deferrable servers. Fig. 1 shows
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two rate-monotonic (RM) schedules of the same task system
containing two suspending tasks: τ1(3, 1, 5) and τ2(2, 2, 6),
where the notation τi(a, b, c) denotes that task τi has a total
computation time of a time units, a total suspension time of
b time units, and a period as well as a relative deadline of c
time units. As seen in Figs. 1(a) and (b), different inputs of
computation and suspension patterns may result in different
schedules where deadlines may or may not be met for the
same task system. The DS task model is similarly difficult
to be analyzed in the sense that it is hard to predict a DS’s
execution pattern because it is hard to predict the aperiodic
job arrival pattern, particularly when there exist multiple DSs
with different assigned priorities.

Upon observing these difficulties, we show in this pa-
per that the situation is not nearly so bleak. We consider
the problem of deriving uniprocessor schedulability tests for
HRT self-suspending task systems and DS task systems. We
focus specifically on the RM scheduling algorithm, but out
analysis could potentially be extended to apply to other
task-level fixed priority scheduling algorithms as well. We
first present a general analysis technique, namely the bursty-
interference analysis, that can be used to analyze the worst-case
scenario due to suspensions and server-based execution and
derive the resulting schedulability tests. We then present novel
transformation techniques that transform any self-suspending
task system and any DS task system into a corresponding
bursty-interference task system. We consider the general self-
suspending task model where no restrictions are placed on the
number of per-job computation and suspension phases and the
phases interleaving pattern, and the DS task model where a
DS task system may contain multiple DS tasks.

Overview of related work. For dealing with the general HRT
self-suspending task model, the most commonly used approach
is to transform a self-suspending task system into an ordinary
sporadic task system by converting all tasks’ suspensions
into computation, called “SC” for brevity. Several approaches
have been proposed to analyze a periodic self-suspending task
model on a uniprocessor where each task is allowed to suspend
for at most once and a fixed computation and suspension
pattern is assumed [8], [10], [23], [24], [28]. Unfortunately,
these tests are rather pessimistic as their techniques involve
straightforward execution control mechanisms, which modify
task deadlines (often known as the end-to-end approach [19]).
For example, a suspending task that suspends once can be
divided into two subtasks with appropriately shorted deadlines
and modified release times. Such techniques inevitably suffer
from significant capacity loss due to the artificial shortening
of deadlines. On multiprocessors, [16] presents the only ex-
isting analysis with pseudo-polynomial time complexity for
periodic self-suspending task systems scheduled under global
schedulers. [17] presents a uniprocessor utilization-base test
under RM and a multiprocessor utilization-based test under
partitioned approach where RM is applied as the per-processor
scheduler. However, the analysis techniques and the tests
presented in [17] only applies to synchronous periodic self-
suspending task systems with harmonic periods.

In another recent work [3], we consider a special (yet
common) case of the self-suspension task model, where any
job of a self-suspending task is allowed to suspend for at most
once. For such a special case, we show that the category of

fixed-relative-deadline (FRD) scheduling algorithms may yield
non-trivial resource-augmentation performance guarantees. We
derive pseudo-polynomial-time and linear-time schedulability
tests for a simple FRD scheduler and provide their resource-
augmentation bounds by referring to different policies. This pa-
per is completely different from the above-mentioned work [3],
w.r.t. the targeted problem, the proposed analysis technique,
and the format of the solution.

The existing schedulability analysis related to DSs can
be categorized into two cases: (1) the feasibility and the
schedulability of a DS task system [11], [27], to provide
schedulability guarantees for the ordinary sporadic real-time
tasks that are executed together with the DSs and the pro-
gressiveness of the deferrable servers, and (2) the worst-case
response time analysis by using a deferrable server to serve
aperiodic/sporadic tasks [4], [5], [9], [26]. When considering
DS execution behaviors, we have to account for the back-to-
back execution phenomena, in which the budget may be used at
the very end before the next replenishment period. The worst-
case response time analysis [4], [5], [9], [26] assumes that the
budget under the given replenishment period of a DS is feasible
and analyzes the worst-case behavior for serving the events by
considering the interference imposed by other tasks/servers.

For the feasibility and the schedulability of a DS task sys-
tem, Strosnider et al. [27] provide the necessary and sufficient
schedulability conditions and a simple utilization-based test.
However, the utilization-based sufficient test only considers a
special case, in which there is only one DS with the highest
priority [27]. To our best knowledge, there is no utilization-
based sufficient schedulability test to validate the feasibility
and the schedulability of the deferrable server system when
there are more than one DS.

Contributions. In this paper, we propose the general bursty-
interference analysis technique, and derive sufficient unipro-
cessor schedulability tests and an RM utilization bound for
any bursty-intereference task system scheduled under RM
(Section 3). We then present transformation techniques that
transform any given self-suspending task system (Section 4)
and any DS task system (Section 5) into a corresponding
bursty-interference task system. We prove that if the trans-
formed bursty-interference task system is schedulable, then the
original task system is also schedulable. This transformation
technique enables us to apply the schedulability tests and the
RM utilization bound derived for bursty-interference task sys-
tems to self-suspending and DS task systems. To further reduce
the pessimism of the derived schedulability tests, in Section 6,
we present a more precise analysis that explores individual
task parameters. As demonstrated by our experimental results
in Section 7, our proposed tests improve upon prior methods
with respect to schedulability, in many cases by a wide
margin. Moreover, the precise analysis exploring individual
task parameters is shown to be most effective in improving
schedulability. We expect that our proposed bursty-interference
analysis framework could be applied to efficiently analyze
other complex task models under which undeterministic task
execution behaviors and bursty interference may occur.

2 System Model
We model a given real-time system as a set Γ = {τ1, ..., τn}

of n real-time tasks on a uniprocessor. In this paper, we

174



consider several real-time task models including the bursty-
interference sporadic task model, the general self-suspending
sporadic task model, and the DS task model. Since all these
task models are based on the classical sporadic task model
[22], we describe this model first.

The sporadic task model. A sporadic task τi is released
repeatedly, with each such an invocation called a job. The
jth job of τi, denoted τi,j , is released at time ri,j and has
a deadline at time di,j . Each job of any task τi is assumed to
have a worst-case execution time Ci. Successive jobs of the
same task are required to execute in sequence. Associated with
each task τi are a period Ti, which specifies the minimum time
between two consecutive job releases of τi,

1 and a deadline
Di, which specifies the relative deadline of each such job,
i.e., di,j = ri,j + Di. The utilization of a task τi is defined
as Ui = Ci/Ti, and the utilization of the task system τ as
Usum =

∑
τi∈τ Ui. We assume that Ui ≤ 1 and Usum ≤ 1;

otherwise, deadlines would be missed. A sporadic task system
τ is said to be an implicit-deadline system if Di = Ti holds
for each τi. We limit attention to implicit-deadline real-time
task systems in this paper.

We focus on RM scheduling, where tasks are prioritized
by their periods. We index tasks such that Ti ≤ Ti+1 for 1 ≤
i ≤ n− 1. We assume that ties are broken arbitrarily.

Bursty-intereference sporadic task set. A sporadic task set
τ is a bursty-interference sporadic task set if the following
property holds: when checking the schedulability of each task
τk ∈ τ under RM, the worst-case execution time of at most
one job in each task τi in {τ1, ..., τk−1} is allowed to increase
from Ci to αi ·Ci where αi ≥ 1. Such a job is called a bursty
job and αi is called the bursty ratio of τi. Note that, during the
analysis of task τk, the value αi·Ci for each τi in {τ1, ..., τk−1}
can be even larger than Ti for accounting the workload due to
the bursty interference. Fig. 2(a) illustrates an example, where
a higher-priority (w.r.t. the task that is being analyzed) task τi
releases a bursty job τi,j with execution time αi · Ci.

The general self-suspending sporadic task model. The gen-
eral self-suspending sporadic task model extends the sporadic
task model by allowing tasks to suspend themselves. Similar
to sporadic tasks, a self-suspending sporadic task releases
jobs sporadically. Jobs alternate between computation and
suspension phases. We assume that each job of τi executes
for at most Ci time units (across all of its execution phases)
and suspends for at most Si time units (across all of its
suspension phases). We assume that Ci + Si ≤ Ti for any
task τi ∈ τ ; for otherwise deadlines would be missed. Our
suspension model is general: we place no restrictions on the
number of phases per-job and how these phases interleave (a
job can even begin or end with a suspension phase). Different
jobs belong to the same task can also have different phase-
interleaving patterns. For many applications, such a general
suspension model is needed due to the unpredictable nature of
I/O operations. Fig. 2(b) illustrates an example self-suspending
task τi. As seen in the figure, jobs of τi may have completely
different phase interleaving patterns.

The DS task model. A deferrable server (DS) σi is defined by
its budget Cσi and replenishment period Tσi [11]. That is, if the

1τi becomes a periodic task if Ti specifies the exact time between two
consecutive job releases.

Timeri,j

τi
ri,j+1 ri,j+2

αCi

Timeri,j
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Timet
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t+Ti t+2Ti

Ci Ci

(a) τi,j is the bursty job of τi

(b) A self-suspending task τi

job release job deadline computation

(c) A DS τi with budget Ci and replenishment period Ti 

budget of Ci

suspension

t+Ci

Fig. 2: Task models considered in this paper.

j-th replenishment time is t, then the next replenishment time
is t+ TSi . Each DS is used to provide services, typically, for
jobs with unknown arrival patterns or to isolate the interference
from the unknown arrival patterns by providing progressive-
ness guarantees. The budget of a DS is consumed while it
is used to serve some jobs. When the budget becomes 0, the
DS cannot serve any further jobs until the next replenishment
time. At the time instant to replenish the budget of DS σi, the
budget is set to Cσi , i.e., any unused execution time budget at
the end of each period is lost.

A task in a DS task system is either a sporadic real-time
task or a DS. For notational brevity, we also denote a DS σi as
τi, in which the budget is denoted by Ci and the replenishment
period is Ti. To distinguish whether a task is a deferrable server
or not, we define δ(τi) = 1 if task τi is a deferrable server
and δ(τi) = 0 if task τi is an ordinary sporadic task. Fig. 2(c)
illustrates an example DS task τi. As seen in the figure, a
DS task may have different execution and budget consumption
patterns within different replenishment periods, depending on
the runtime aperiodic job arrival pattern.

3 Analysis under Bursty-Intereference
We derive in this section schedulability tests and a resulting

RM utilization bound for bursty-interference sporadic task
sets. Our analysis draws inspiration from Liu and Layland’s
seminal work [18] by quantifying the interference from higher-
priority tasks on each analyzed task. For sporadic task systems,
the worst-case releasing pattern is well-defined according to
the well-known critical instant theorem [18]. The following
theorem draws the corresponding critical instant theorem when
considering bursty-interference sporadic task sets.

Theorem 1. Consider a task τk in a bursty-interference
sporadic task set scheduled under a fixed-priority scheduling
policy and its job τk,j . Suppose that every higher-priority
task releases its bursty job at the same time as job τk,j , and
releases its subsequent jobs as early as possible. Let Rk,j be
the response time of job τk,j . If the worst-case response time
of task τk under this fixed-priority scheduling is no more than
Tk, then its worst-case response time is Rk,j .

Proof: This theorem is proved similarly to the well-known
critical instant theorem [18]. It can be proved by applying
the same “minimum phase” argument used in proving the
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critical instant theorem (given on Pages 132-133 in [19]). For
completeness, the detailed proof is given in Appendix.

Let τk denote the task that is being analyzed. Let Γ(k−1)
denote the higher-priority task set {τ1, ..., τk−1}. Let αmax

denote the maximum αi values among tasks in Γ(k− 1). The
following lemma provides the schedulability analysis based
only on given utilizations and the bursty ratio αmax, by enu-
merating all effective settings of periods T1, T2, . . . , Tk−1, Tk

under the given utilizations and αmax. A setting of periods
T1, T2, . . . , Tk−1, Tk is called effective if

∀1 ≤ j ≤ k − 1,

k−1∑
i=1

αmax · Ci + Ck +

j−1∑
i=1

Ci > Tj , (1)

in which Ci is defined as Ui · Ti.

Lemma 1. Given a constant αmax, Tk, and a set of task uti-
lizations U1, ..., Uk−1, task τk in a bursty-interference sporadic
task set is schedulable under RM (i.e., the worst-case response
time of τk is at most Tk), if for all effective settings of periods
under Eq. (1), the following condition holds

k−1∑
i=1

αmax · Ci + Ck +
k−1∑
i=1

Ci ≤ Tk, (2)

in which Ci is defined as Ui · Ti.

Proof: We prove this lemma by contraposition. Suppose
that the worst-case response time of τk is greater than Tk.
Then there exists an invocation sequence of tasks in Γ(k− 1)
with jobs released according to the releasing pattern given in
Theorem 1, where only part of the execution time Ck is granted
in time interval [t, t+ Tk).

Suppose that task τi releases more than 2 jobs in such
an invocation sequence. Therefore, based on Theorem 1,
Tk/Ti > 2 in such a case. Suppose Fi is defined as �Tk/Ti�.
The workload of the jobs released by task τi in time interval
[t, t+ Fi · Ti) is αmax · Ci + (�Tk/Ti� − 1) · Ci, and the job
of task τk released at t cannot finish before t + Fi · Ti. We
can easily convert this invocation sequence by setting a new
period T ′i to �Tk/Ti� ·Ti. In this new invocation sequence for
task τi under the new period,

• due to the fact that αmax ≥ 1, the job released at time t
has execution time αmax · �Tk/Ti� ·Ci, which is no less
than the workload αmax ·Ci+(�Tk/Ti� − 1) ·Ci released
by the original setting in time interval [t, t+Fi ·Ti), and

• the job released at time t + Fi · Ti has execution time
�Tk/Ti� · Ci, which is larger than Ci.

Therefore, if Fi ≥ 2, we can easily convert the sequence
to another one with Fi = 1 such that task τk remains
unschedulable under RM. As a result, we only have to focus on
cases in which Fi = 1; i.e., ∀1 ≤ j ≤ k−1, Tk ≤ 2·Tj ≤ 2·Tk

holds. Moreover, we also reindex the tasks such that after the
above transformation, Ti ≤ Ti+1 for each i ≤ k. Note that this
does not affect the unschedulability of τk.

By Theorem 1 and the above arguments to consider only
the case ∀1 ≤ j ≤ k − 1, Tk ≤ 2 · Tj ≤ 2 · Tk, we know that
each task in Γ(k − 1) releases two jobs in [t, t+ Tk) and the
first job is a bursty job. Let τk,h be the job released by τk at t.
Since τk,h does not complete by t+Tk, we know that Eq. (1)

must hold (for otherwise τk,h would have completed before
t+ Tk). Likewise, we know that

k−1∑
i=1

αmax · Ci + Ck +
k−1∑
i=1

Ci > Tk,

holds, for otherwise τk,h would have completed by t + Tk

under this effective setting of periods. Thus, Eq. (2) does not
hold and the lemma follows by the contrapositive statement.

Lemma 1 indicates that task τk in a bursty-interference
sporadic task set is schedulable under RM if the conditions in
the lemma are verified. Based upon this lemma, the following
lemma gives a utilization-based condition for checking the
schedulability of any task τk in the system.

Lemma 2. Any task τk in a bursty-interference sporadic task
set τ is schedulable under RM if the following condition holds:

Uk ≤ 1− (αmax + 1) ·
(
1− 1∏k−1

i=1 (Ui + 1)

)
. (3)

Proof: We prove this lemma by showing that the condition
in Eq. (3) leads to the satisfactions of the schedulability
conditions listed in Lemma 1 under a given Tk, a given αmax

and a given set of task utilizations {U1, ..., Uk−1}.
By Lemma 1 and Eq. (2), we know that task τk in a bursty-

interference sporadic task set τ is schedulable under RM if

Uk ≤ 1− (αmax + 1) ·∑k−1
i=1 Ci

Tk
(4)

holds for any effective settings of periods T1, T2, . . . , Tk under
Eq. (1).

Therefore, we need to obtain the infimum (minimum) value

of 1− (αmax+1)·∑k−1
i=1 Ci

Tk
among all effective settings of periods

under Eq. (1). In other words, we are looking for the supremum

(maximum) value for
(αmax+1)·∑k−1

i=1 Ci

Tk
under Eq. (1). That

is, if the utilization of task τk is less than or equal to this

supremum value of
(αmax+1)·∑k−1

i=1 Ci

Tk
, there does not exist any

effective setting of periods T1, T2, . . . , Tk−1 to make task τk
unschedulable under RM.

For the rest of the proof, we replace > with ≥ in Eq. (1), as
the infimum and the minimum are the same when presenting
the inequality with ≥. By reorganizing Eq. (1) and using the
fact Ci = Ui · Ti for every task τi in Γ(k − 1), we have

∀1 ≤ j ≤ k−1, Tj ≤
k−1∑
i=1

αmax ·Ui ·Ti+Ck+

j−1∑
i=1

Ui ·Ti. (5)

Moreover, by reorganizing Eq. (2), we have

k−1∑
i=1

αmax · Ui · Ti ≤ Tk − Ck −
k−1∑
i=1

Ui · Ti. (6)

By substituting
∑k−1

i=1 αmax ·Ui · Ti in Eq. (5) by Eq. (6),
we have

∀1 ≤ j ≤ k − 1, Tj ≤ Tk −
k−1∑
i=j

Ui · Ti. (7)
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Fig. 3: The releasing pattern and task parameters that yield the
maximum Uk such that τk is guarantee to be schedulable.

Since Ci = Ui · Ti holds for 1 ≤ i ≤ k and U1, ..., Uk−1,

Tk, and αmax are fixed, maximizing
∑k−1

i=1 Ti implies that
(αmax+1)·∑k−1

i=1 Ci

Tk
is maximized. According to Eq. (7), the

linear objective term
∑k−1

i=1 Ti contains k − 1 variables each
of which has a corresponding linear constraint (given in
Eq. (7)). Thus, according to the extreme point theorem for

linear programming [21],
∑k−1

i=1 Ti reaches its maximum when
all the inequalities in Eqs. (7) become equalities.2

Thus, an effective setting of periods under Eq. (1) can
maximize its interference when the inequalities in Eqs. (1) and
(2) become equality. By treating the inequalities in Eqs. (1) and
(2) as equalities and rearrangements, we have

∀1 ≤ i ≤ k − 1, Ti+1 − Ti = Ci, (8)

which implies that

T1

Tk
=

1∏k−1
i=1 (Ui + 1)

. (9)

These relationships among task periods result in a releasing
pattern as illustrated in Fig. 3.

By Eq. (4), task τk in a bursty-interference sporadic task
set τ is schedulable under RM if

Uk ≤ 1− (αmax + 1) ·∑k−1
i=1 Ci

Tk

{By Eq. (8)}
= 1− (αmax + 1) ·

(
1− T1

Tk

)

{By Eq. (9)}
= 1− (αmax + 1) ·

(
1− 1∏k−1

i=1 (Ui + 1)

)
,(10)

which concludes the proof.

Based upon Lemma 2, the following schedulability test for
bursty-interference sporadic task sets immediately follows.

Theorem 2. Any bursty-interference sporadic task set τ is
schedulable under RM if the following conditions hold:

∀1 ≤ k ≤ n,Uk ≤ 1− (αmax +1) ·
(
1− 1∏k−1

i=1 (Ui + 1)

)
. (11)

The following theorem provides a sufficient RM utilization
bound for any bursty-interference sporadic task set.

2For a linear programming, the linear constraints form a polyhedron of
feasible solutions. The extreme point theorem states that either there is no
feasible solution or one of the extreme points in the polyhedron is an optimal
solution when the objective of the linear programming is finite. In our linear
programming, there is only one extreme point in the polyhedron by setting all
the inequalities in Eqs. (7) to equalities.

Theorem 3. A bursty-interference sporadic task set τ is
schedulable on a uniprocessor under RM if the following
utilization-based condition holds for any 1 ≤ k ≤ n:

U(k) ≤ k ·
((

αmax + 1

αmax

)1/k

− 1

)
(12)

Proof: Our objective is to find the minimum U(k) such
that Eq. (3) always holds. This is equivalent to the following
non-linear programming:

minimize

k∑
i=1

Uk (13)

such that 0 ≤ Uk ≤ 1− (αmax + 1) ·
(
1− 1∏k−1

i=1 (Ui + 1)

)
.

The above non-linear programming can be solved with
Lagrange Multiplier method. We omit the details due to space
constraints. Note that the solving procedure is the same as Step
4 in the proof of Theorem 1 in [18].

By observing Eq. (12), when αmax = 1 (i.e., Γ becomes
an ordinary sporadic task set), the utilization bound shown
in Theorem 3 indeed becomes identical to the RM utilization
bound for ordinary sporadic task systems [18].

4 Suspension-to-Bursty System Transformation
In this section, we derive a utilization-based schedulability

test and a sufficient RM utilization bound for sporadic self-
suspending task systems. Our method is to transform a given
self-suspending sporadic task system Γ into a corresponding
bursty-intereference sporadic task system ΓB , and then apply
Theorems 2 and 3.

This transformation process consists of three stages, where
we show that if a task τk is schedulable in one stage, then it
is also schedulable in the previous stage. We prove these steps
via contraposition, as illustrated in Fig. 4. Thus, by applying
Theorems 2 and 3 to derive schedulability tests for ΓB , we
also obtain sufficient schedulability tests for the original self-
suspending task system Γ.

Our technique checks schedulability of each task in Γ in
order. Let τk denote the task that is being analyzed. Since tasks
τj where j > k do not affect the scheduling of τk, we ignore
such tasks in the schedule. Before defining the corresponding
ΓB , we first convert τk’s suspensions into computation and
then analyze the resulting RM schedule. That is, we treats
τk as an ordinary sporadic task by factoring its suspension
length into the worst-case execution time parameter. Thus, τk
executes just like an ordinary sporadic task (without suspen-
sions) in the corresponding RM schedule, with an execution
time of Ck+Sk. Note that τk’s computation (both the original
computation and the computation converted from suspensions)
will be preempted by higher-priority tasks. Let ΓC denote the
task system after converting τk’s suspension into computation.
For clarity, we do not modify the value of Uk in ΓC , i.e., τk
in ΓC has a utilization of Uk + Sk/Tk.

Lemma 3. If τk in Γ is not schedulable under a fixed-priority
scheduling algorithm, then τk in ΓC is also not schedulable
under the algorithm.

Proof: The proof is given in Appendix.
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τk in Γ is not 
schedulable Lemma 3 τk in ΓC is not 

schedulable
τk in ΓB  is not 
schedulableLemma 5

Fig. 4: The proof logic behind Theorem 4.

We now provide a worst-case releasing pattern for τk in
ΓC , where τk may experience the maximum interference from
each of its higher-priority tasks. Let ΓC(k− 1) denote the set
of tasks in ΓC with higher priorities than τk in ΓC .

Lemma 4. For any 0 ≤ to ≤ Tk, the interference due to a
higher-priority task τi ∈ ΓC(k − 1) within interval [t, t + to]
on any job of τk in ΓC is at most Ci + �to/Ti	 · Ci.

Proof: The proof is given in Appendix.

In the transformation process herein, the goal is to trans-
form a self-suspending task system into a corresponding bursty
task system and apply the schedulability test presented in
Sec. 3. We now define the bursty-interference task system ΓB

that corresponds to ΓC .

Task τk in ΓB is identical to the corresponding task τk
in ΓC . Each task τi with higher priority than τk in ΓB

corresponds to each task τi in ΓC with modified parameters.
Let CB

i and TB
i denote the execution time and period of τi in

ΓB , respectively. We define these parameters as follows. If τi
is a self-suspending task (i.e., Si > 0), then we have

CB
i = �Tk/Ti� · Ci, (14)

TB
i = �Tk/Ti� · Ti, (15)

and

αB
i =

Ci + CB
i

CB
i

= 1 +
1

�Tk/Ti� . (16)

On the other hand, if τi is an ordinary sporadic task (i.e.,
Si = 0), then we have

αB
i = 1. (17)

Note that τk in ΓB has an execution cost of CB
k = Ck + Sk

given that τk’s suspensions have been converted to computation
in ΓC . Also note that according to Eqs. (14) and (15), each
higher-priority task τi in ΓB has the same utilization as the
corresponding τi in ΓC . Moreover, we define

αB
max = max(αB

i ), 1 ≤ i ≤ k − 1. (18)

Note that by Eqs. (16) and (17) and the fact that Tk ≥ Ti

(1 ≤ i ≤ k − 1), 1 ≤ αB
max ≤ 2 holds.

Now we prove the second transformation step of our proof
logic as shown in Fig. 4.

Lemma 5. If τk in ΓC is not schedulable, then τk in ΓB is
also not schedulable.

Proof: We prove by contraposition. Suppose that τk in
ΓB is schedulable. According to Theorem 1, τk must be
schedulable under its worst-case releasing pattern (as defined
in Theorem 1). According to this releasing pattern defined in
Theorem 1, the total interference on τk in ΓB due to any
higher-priority task τi within interval [t, t+ to] (0 ≤ to ≤ Tk)
is:

(αB
max − 1) · CB

i +
⌈
to/T

B
i

⌉ · CB
i

{By Eqs. (14)-(16) and (18)}
≥Ci +

⌈
to

�Tk/Ti� · Ti

⌉
·
⌊
Tk

Ti

⌋
· Ci = Ci + �to/Ti	 · Ci.

Note that the last equality of the above equation holds due to
the nested division property of ceiling functions and the fact
that �Tk/Ti� is a positive integer.

Thus, this total interference is no less than the maximum
interference due to the corresponding task τi in ΓC that τk in
ΓC could experience, which is at most Ci + �to/Ti	 · Ci as
given in Lemma 4. Therefore, if τk in ΓB is schedulable, then
τk in ΓC is also schedulable.

According to our proof logic shown in Fig. 4, we prove
the following schedulability condition on the analyzed task τk.

Theorem 4. Any task τk in the original self-suspending task
set Γ is schedulable under RM if the following condition holds:

Uk +
Sk

Tk
≤ 1− (αB

max + 1) ·
(
1− 1∏k−1

i=1 (Ui + 1)

)
. (19)

Proof: By Theorem 2, τk in ΓB is schedulable if Eq. (19)
holds. Thus, by Lemmas 3 and 5, the theorem follows.

If we apply the above test (Theorem 4) to every task in the
system, then we have the following theorem.

Theorem 5. Any sporadic self-suspending task set is schedu-
lable under RM if the following conditions hold:

∀1 ≤ k ≤ n,Uk +
Sk

Tk
≤ 1− (αB

max +1) ·
(
1− 1∏k−1

i=1 (Ui + 1)

)
.

(20)

By applying Theorem 3 to ΓB , the following utilization
bound on the original self-suspending task system Γ follows.

Theorem 6. A self-suspending sporadic task set Γ is schedula-
ble under RM if the following utilization-based condition holds
for any 1 ≤ k ≤ n:

U(k) +
Sk

Tk
≤ k ·

((
αB
max + 1

αB
max

)1/k

− 1

)
(21)

Corollary 1. A self-suspending sporadic task set Γ is schedu-
lable under RM if the following utilization-based condition
holds for any 1 ≤ k ≤ n:

U(k) +
Sk

Tk
≤ ln

αB
max + 1

αB
max

, (22)

in which ln
αB
max + 1

αB
max

≥ ln 3
2 ≈ 0.405 due to the fact that

αB
max ≤ 2.

Proof: This comes from the fact that((
αB
max + 1

αB
max

)1/k

− 1

)
converges to ln

αB
max + 1

αB
max

when

k →∞.
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5 DS-to-Bursty System Transformation
We now apply the bursty-interference analysis to analyze

DS task systems and obtain a utilization-based schedulability
test and a sufficient RM utilization bound for such systems.
Before describing the analysis, we first elaborate on the
definition of schedulability for any given DS task system.

If task τi is a sporadic real-time task, i.e.,δ(τi) = 0, we
have to provide the schedulability test to verify whether task τi
is going to meet its deadline in the DS task system. However, if
task τi is a deferrable server, i.e., δ(τi) = 1, the terminology
of schedulability is a bit blur. That is, the deferrable server
does not need to guarantee that its budget will always be set
to 0 before the replenishment period. Therefore, even if the
budget is still positive and there are jobs to be served by the
deferrable server, these jobs may not be served before the next
replenishment period (because this deferrable server may be
preempted by other higher-priority deferrable servers or tasks).

However, deferrable servers are usually provided to ensure
the progressiveness. We say that a deferrable server provides
progressiveness guarantee if min{Ck, Xk,t} amount of execu-
tion time is successfully executed by the DS within t + Tk,
where t is any replenishment time of the DS and Xk,t is the
execution time of the unfinished jobs to be served by the DS
at time t. That is, if Xk,t ≥ Ck, then the progressiveness
guarantee (defined above) ensures that the budget Ck of the
deferrable server is consumed; if Xk,t < Ck, all of these jobs
will be finished before t + Tk. A DS task system τ is said
schedulable under RM when

• if task τk is a sporadic real-time task, i.e., δ(τk) = 0, the
worst-case response time of task τk is no more than its
period Tk, and

• if task τk is a deferrable server, i.e., δ(τk) = 1, the
progressiveness guarantee (defined above) to consume
min{Ck, Xk,t} budget is ensured.

The above definition provides a unified view while testing
whether task τk is schedulable or with progressiveness guar-
antee. When Xk,t < Ck, this can be considered as early
completion in sporadic real-time tasks. When Xk,t ≥ Ck, only
Ck is considered to be executed before the next replenishment
period. Therefore, according to the above definitions, we do
not have to distinguish the test to verify the schedulability
guarantee or progressiveness guarantee for testing τk.

We now provide the analysis of the workload from the
higher-priority tasks τ1, τ2, . . . , τk−1. When a deferrable sever
τi, with i < k, has a positive budget but does not have
any job to serve, this is equivalent to the self-suspension
behavior. One can imagine that a DS suspends itself for such
cases. Therefore, the execution behavior of a DS τi is a self-
suspending task with Si ≤ Ti. Note that the above observation
is only used for analyzing the maximum workload of task
τi while analyzing task τk. This is independent upon the
schedulability or progressiveness guarantee of task τi.

Therefore, similar to the argument given in Section 4, we
can consider task τi with a bursty ratio αB

i = 1 + 1
�Tk/Ti�

(like in Eq. (16)) if δ(τi) = 1 or αB
i = 1 if δ(τi) = 0 (like

in Eq. (17)). Moreover, αB
max is defined as in Eq. (18). As a

result, (with the same arguments in Lemma 5 and Theorem

4), we know that τk is schedulable if δ(τk) = 0 or has
progressiveness guarantee if δ(τk) = 1 under RM if

Uk ≤ 1− (αB
max + 1) ·

(
1− 1∏k−1

i=1 (Ui + 1)

)
. (23)

Similar to Theorems 5 and 6, we conclude this section with
the following theorems.

Theorem 7. A DS task system is schedulable for its sporadic
real-time tasks and has progressiveness guarantee for its DSs
under RM if the following condition holds:

Uk ≤ 1− (αB
max + 1) ·

(
1− 1∏k−1

i=1 (Ui + 1)

)
. (24)

Theorem 8. A DS system is schedulable for its sporadic real-
time tasks and has progressiveness guarantee for its DSs under
RM if the following utilization-based condition holds for any
1 ≤ k ≤ n:

U(k) ≤ k ·
((

αB
max + 1

αB
max

)1/k

− 1

)
(25)

6 Analysis by Using Different Bursty Ratios
In Sec. 3, we derive the schedulability tests for bursty-

interference task systems using a single αmax to replace
all the individual αi values. This may result in unnecessary
pessimism. In particular, such pessimism may become sig-
nificant when we test schedulability of self-suspending task
systems and DS task systems (as described in Secs. 4 and 5,
respectively). In practice, a self-suspending task system often
contains (sometimes a large number of) ordinary sporadic tasks
with no suspensions. In this case, assuming a large αmax for
any non-suspending task is pessimistic because αi = 1 for any
of such tasks. Therefore, in this section, we intend to derive
more precise analysis using individual αi values, which results
in improved schedulability tests.

Similar to Lemma 1, the following lemma provides the
schedulability analysis based only on given utilizations and
individual bursty ratios αi (1 ≤ i ≤ k − 1), by enumerating
all effective settings of periods T1, T2, . . . , Tk−1, Tk under the
given utilizations and αi values (1 ≤ i ≤ k − 1). A setting of
periods T1, T2, . . . , Tk−1, Tk is called effective with individual
bursty ratios if

∀1 ≤ j ≤ k − 1,

k−1∑
i=1

αi · Ci + Ck +

j−1∑
i=1

Ci > Tj , (26)

in which Ci is defined as Ui ·Ti and the k−1 tasks are indexed
such that T1 ≤ T2 ≤ · · · ≤ Tk−1 ≤ Tk.

Lemma 6. We are given constants αi (1 ≤ i ≤ k − 1),
Tk, and a set of task utilizations U1, ..., Uk−1. The worst-
case response time of τk is at most Tk, and τk in a bursty-
interference sporadic task set is schedulable under RM if for
all effective settings of periods under Eq. (26), the following
condition holds

k−1∑
i=1

αi · Ci + Ck +
k−1∑
i=1

Ci ≤ Tk, (27)
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in which Ci is defined as Ui · Ti.

Proof: The proof is identical to the proof of Lemma 1 by
replacing the αmax term with individual αi terms.

For the schedulability analysis of task τk, the indexing of
the first k−1 tasks does not matter if we do not constrain their
periods. However, as we have focused our discussions on set-
ting T1 ≤ T2 ≤ ... ≤ Tk−1, the indexing will further constrain
the possible assignments of the periods. To evaluate all possible
cases, we have to evaluate all permutations of indexing the first
k-1 tasks. Fortunately, the following lemma gives a utilization-
based condition for checking the schedulability of any task τk
in the system, and shows that a specific indexing of the first
k − 1 tasks yields the maximum interference that affects the
schedulability of τk.

Lemma 7. Given a set of higher-task utilizations U1, ..., Uk−1

with corresponding bursty ratios α1, α2, . . . , αk−1, in which
α1 ≤ α2 ≤ · · · ≤ αk−1, bursty-interference sporadic task τk
is schedulable under RM if the following conditions hold:

Uk ≤ 1−
k−1∑
i=1

(
(αi + 1) · Ui · 1∏k−1

j=i (Uj + 1)

)
. (28)

Proof: We prove this lemma by showing that the condition
in Eq. (28) leads to the satisfactions of the schedulability
conditions listed in Lemma 6 under a given Tk, a given set of
αi values (1 ≤ i ≤ k − 1) and a given set of task utilizations
{U1, ..., Uk−1}.

First we need to identify the relationships among task
periods under which Uk reaches its maximum value that
guarantees τk to be schedulable. Since this part of the proof is
identical to the corresponding part of the proof of Lemma 2 by
replacing the αmax value with individual αi values, we move
this part of the proof to Appendix.

Uk reaches its maximum value when the following equa-
tions hold:

∀1 ≤ i ≤ k − 1, Ti+1 − Ti = Cj , (29)

which implies that

∀1 ≤ i ≤ k − 1, Ti+1 = Ti · (1 + Ui), (30)

and ∀1 ≤ i ≤ k − 1,
Ti

Tk
=

1∏k−1
j=i (Uj + 1)

. (31)

These relationships among task periods result in the same
releasing pattern as illustrated in Fig. 3.

Our goal now is to identify a maximum value for Uk that
guarantees to satisfy the schedulability conditions given in
Lemma 6. Similar to the derivation of Eq. (10), by Eq. (33)
and rearranging Eq. (27), we have

Uk ≤ 1−
k−1∑
i=1

(
(αi + 1) · Ui · 1∏k−1

j=i (Uj + 1)

)
. (32)

We observe from Eq. (32) that the value of the term∑k−1
i=1

(
(αi + 1) · Ui · 1

∏k−1
j=i (Uj+1)

)
varies when tasks in

Γ(k − 1) are indexed differently. Note that this is different

from the case as seen in Eq. (10), where αmax is assumed for
all tasks in Γ(k−1). Eq. (10) shows that the indexing scheme
for tasks in Γ(k − 1) does not affect the maximum feasible

Uk value because the term
∏k−1

i=1 (Ui + 1) remains the same
regardless of the specific task indexing scheme.

Thus, in order to obtain the maximum value for Uk that
guarantees to satisfy the schedulability conditions given in
Lemma 6, we need to first determine the task indexing rule

that yields the maximum value of
∑k−1

i=1 (αi+1) ·Ci as seen in
Eq. (32), which represents the total amount of workload due
to tasks in Γ(k − 1) on τk,j in interval [t, t+ Tk).

We now prove that this total amount of workload reaches
maximum when tasks are indexed by smallest-bursty-ratio-
first. That is, τi in Γ(k − 1) has the ith smallest bursty ratio
among tasks in Γ(k−1). This can be proved by using an index
swapping argument. Suppose that there are two bursty tasks
τi and τi+1 in Γ(k − 1) with αi ≤ αi+1. We calculate the
workload difference between two indexing schemes: assigning
τi a smaller index than τi+1 and vice versa.

If we assign τi a smaller index (according to smallest-
bursty-ratio-first), then we have Ti+1 = Ti · (1+Ui) according
to Eq. (30). On the other hand, if we assign τi+1 a smaller
index, then we obtain the new period T ′i+1 = Ti for τi+1 and
T ′i = Ti · (1 + Ui+1) for τi (again according to Eq. (30)).
By accounting the difference of the workload due to these
two tasks within [t, t + T1) under these two indexing rules,
we have (note that in the following equation we use the
workload obtained under smallest-bursty-ratio-first to minus
the workload obtained under the opposite indexing rule)

((αi + 1) · Ui · Ti + (αi+1 + 1) · Ui+1 · Ti+1)

− ((αi+1 + 1) · Ui+1 · T ′i+1 + (αi + 1) · Ui · T ′i
)

=((αi + 1) · Ui · Ti + (αi+1 + 1) · Ui+1 · Ti · (1 + Ui))

− ((αi+1 + 1) · Ui+1 · Ti + (αi + 1) · Ui · Ti · (1 + Ui+1))

=Ui · Ui+1 · Ti · (αi+1 − αi) ≥ 0.

Thus, by applying this priority swapping argument on all
adjacent pairs of tasks in Γ(k − 1), we know that indexing
tasks in Γ(k − 1) by smallest-bursty-ratio-first yields the
maximum higher-priority workload in [t, t + Tk), which is

given by
∑k−1

i=1 (αi + 1) · Ci. According to Eq. (32), Uk is
minimized under this task indexing scheme as well. We want
to emphasize that this specific indexing scheme is applied only
to analytically obtain the maximum workload in [t, t+Tk) due
to tasks in Γ(k−1), such that the resulting maximum value of
Uk guarantees τk to be schedulable. It does not imply that we
must index tasks according to this scheme. At runtime, tasks
can be indexed according to different schemes.

According to the above discussion, we thus re-index tasks
τ1, ..., τk−1 such that αi ≤ αi+1 for 1 ≤ i ≤ k − 1. Ties are
broken arbitrarily. By Eq. (32), the lemma follows.

Lemma 7 presents a tighter test by using individual bursty
ratios when checking schedulability for each task. It is clear
that we can directly apply this test to both self-suspending
task systems and DS task systems (similar to the way of
applying Lemma 2 to Theorems 4 and 5). For conciseness,
we present the following general corollary instead of rewriting
Theorems 4, 5, and 7 in detail.

180



Corollary 2. Theorems 4, 5, and 7 are valid by replacing the
right-hand side of Eqs. (19), (20), and (24) by the right-hand
side of Eq. (28) by indexing the higher priority tasks using
smallest-bursty-ratio-first when calculating Eq. (28).

7 Experiment
In this section, we describe experiments conducted using

randomly-generated task sets to evaluate the applicability of
our proposed schedulability tests. Since the schedulability
tests for DS task systems are derived by transforming DSs
to suspending tasks (as discussed in Sec. 5), we focused on
evaluating the schedulability tests that handle suspending task
systems in the experiments.

Specifically, we evaluated our derived RM utilization
bound (Theorem 6), utilization-based test using a single
maximum bursty ratio (Theorem 5), and the more precise
utilization-based test for suspending tasks using individ-
ual bursty ratios (Corollary 2), denoted by “Sum-U-Test”,
“Hyperbolic-U-Test”, and “Individual-Bursty-U-Test”, respec-
tively. We compare these three tests against the common
approach of treating suspensions as computation combined
with the RM and the EDF utilization bound [19], denoted by
“SC-RM” and “SC-EDF”, respectively. Specifically, a task set
is schedulable under SC-RM (SC-EDF) if

∑n
i=1(Ui+Si/Ti) ≤

0.693 (
∑n

i=1(Ui + Si/Ti) ≤ 1). Note that SC-RM and SC-
EDF are the only existing approaches that can handle the
general HRT suspending task model on uniprocessors.

Experimental setup. In our experiments, suspending task
sets were generated in a similar manner to the method used
in [2], [12]. Task periods were uniformly distributed over
[20ms,200ms]. Task utilizations were distributed uniformly in
[0.005,0.2]. Task execution costs were calculated from periods
and utilizations. Suspension lengths of tasks were distributed
using three uniform distributions: [0.005 ·Ti, 0.1 ·Ti] (suspen-
sions are short), [0.1 ·Ti, 0.3 ·Ti] (suspensions are moderate),
and [0.3 · Ti, 0.5 · Ti] (suspensions are long). The percentage
of suspending tasks in each generated task set was set using
three values: 0.6 · n (moderate number of suspending tasks),
0.8 · n (large number of suspending tasks), 1 · n (all tasks are
suspending tasks). We varied the total system utilization Usum

within {0.01, 0.02, ..., 1}. For each combination of suspension
length distribution, suspending task percentage, and Usum,
10,000 task sets were generated. Each such task set was
generated by creating tasks until total utilization exceeded
the corresponding utilization cap, and by then reducing the
last task’s utilization so that the total utilization equalled the
utilization cap. For each generated system, HRT schedulability
was checked for SC-RM, SC-EDF, Sum-U-Test, Hyperbolic-
U-Test, and Individual-Bursty-U-Test.

Results. The obtained schedulability results are shown in
Fig. 5 (the organization of which is explained in the figure’s
caption). Each curve plots the fraction of the generated task
sets the corresponding approach successfully scheduled, as
a function of total utilization. As seen, in all tested scenar-
ios, Individual-Bursty-U-Test achieves the best performance,
in many cases improving upon SC-RM and SC-EDF by a
substantial margin. For example, as seen in Fig. 5(b), when
suspension lengths are moderate and suspending task percent-
age is moderate, Individual-Bursty-U-Test can achieve 100%
schedulability when Usum equals 0.36, while SC-RM and

SC-EDF fail to do so when Usum merely exceeds 0.03 and
0.1, respectively. Compared to Hyperbolic-U-Test, Individual-
Bursty-U-Test is able to achieve better schedulability because
using individual bursty ratios enables tighter tests, particularly
when the generated tasks contain ordinary sporadic tasks.

Moreover, in most tested scenarios, Hyperbolic-U-Test
achieves better performance than SC-RM and SC-EDF, par-
ticularly when suspending task percentage becomes larger and
suspension lengths become longer, as seen in Figs. 5(h) for
instance. Furthermore, Sum-U-Test achieves better schedula-
bility than SC-RM in many cases, particularly when suspension
lengths become longer and/or the suspending task percentage
becomes larger, as seen in Figs. 5(e), (f), (h), and (i). However,
when suspension lengthes are short or moderate, SC-RM
achieves similar and sometimes better performance than SC-
RM. This is because when suspension lengths are short, the
utilization loss caused by converting suspensions into compu-
tation becomes smaller under SC-RM. Due to this same reason
and the fact that EDF is an optimal uniprocessor scheduler, in
many cases SC-EDF achieves better performance than Sum-
U-Test, particularly when suspension lengths are short, as seen
in Figs. 5(a), (d), and (g). Another interesting observation is
that when suspension lengths increase and/or suspending task
percentages increase, the improvement margins by Individual-
Bursty-U-Test and Hyperbolic-U-Test over SC-RM and SC-
EDF increase. This is because in these cases, the utilization
loss caused by treating suspensions as computation increases
under the SC approach. On the other hand, the suspension-
related utilization loss under Individual-Bursty-U-Test and
Hyperbolic-U-Test is due to the single Sk/Tk term when
testing each task τk in the system (as seen on the left hand
side of Eqs. (20) and (28)), and thus is not similarly affected.

8 Conclusion
We have presented a novel bursty-interference analysis

technique for analyzing HRT self-suspending task systems
and DS task systems scheduled under RM on uniprocessors.
The resulting utilization-based schedulability tests improve
upon prior methods, in many cases by a wide margin, as
demonstrated by experiments presented herein. We expect that
this analysis framework could be applied to analyze other
complex real-time task models under which undeterministic
task execution behaviors and bursty interference may occur.
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Appendix
Proof of Theorem 1.

Proof: We first prove that if a job τk,j is released at the
same time with a job of every high-priority task and all tasks
release jobs as early as possible, then the response time of
τk,j is the largest among all jobs of τk. This can be proved by
applying the same “minimum phase” argument used in proving
the critical instant theorem (given on Pages 132-133 in [19]).

Consider another job of task τk, which arrives the system
at time t′. Let τk,j′ denote this job released at t′. Due to the
assumption, that the worst-case response time of task τk is no
more than Tk, we know that the response time of job τk,j′ is
to finish the workload of job τk,j′ and the jobs which have
higher priority than job τk,j′ .

Let to be the latest time instant at or before t′ where no
task with higher priority than τk executes. If we (artificially)
redefine the release time of τk,j′ to be to, then the completion
time of τk,j′ remains unchanged but the response time of
τk,j′ may increase. Moreover, for tasks with higher priorities
than τk (i.e., τ1, ..., τk−1), if starting with τ1, we left-shift its
first job that may be released after to such that its first job
is released at to, then τk’s response time does not decrease.
This is because of the definition of to and the fact that the
resulting interference from higher priority tasks on τk,j could
only increase after such left-shiftings. By applying this left-
shifting argument to all higher-priority tasks τ1, ..., τk−1, we
have constructed a portion of the RM schedule where all τ1,
..., τk release jobs together at time to.

Furthermore, in this reconstructed RM schedule, if the
job of any higher-priority task released at time to is not a
bursty job, we switch this job with the bursty job of the
corresponding task in the schedule. Clearly this switching
step cannot decrease τk,j’s response time because it can only
increase the amount of workload contributed by τi within
[rk,j , rk,j +Rk,j ] that may preempt τk,j .

Therefore, we have successfully constructed a portion of
the RM schedule that is identical to that which occurs at the
arrival time defined for job τk,j . Moreover, the response time
Rk,j of job τk,j is at least that of τk,j′ released at to, which
concludes the theorem.

The proof of Lemma 3

Proof: Since task τk in Γ is not schedulable under a fixed-
priority scheduling algorithm, there exists a job τk,� of task τk
in which its execution cannot be finished before t+Tk, where
t is the released time rk,� of job τk,�. In the interval (t, t+Tk],
the system can idle or execute tasks with lower priority than
τk by at most Sk amount of time; otherwise, job τk,� has to
suspend more than Sk amount of time in this interval. In the
setting of ΓC , we can consider the same pattern for the other
jobs, but only convert the self-suspension of task τk in Γ to
computation time. The additional Sk amount of computation
time of τk,� in ΓC can only be granted when the processor is
idle or executes tasks with lower priority than τk, which is in
total at most Sk as explained above. Therefore, τk in ΓC is
also not schedulable.

The proof of Lemma 4

Proof: Within [t, t+ to], the work done by task τi in the
worst case can be divided into three parts: (i) body jobs: jobs
of τi with both release time and deadline in [t, t + to], (ii)
carry-in job: a job of τi with release time earlier than t and
deadline in [t, t+ to], and (iii) carry-out job: a job of τi with
release time in [t, t + to] and deadline after t + to. Since the
carry-in and the carry-out job can each contribute at most Ci

workload in [t, t+ to], a safe upper bound of the interference
due to task τi in [t, t + to] is obtained by assuming that the
carry-in and carry-out jobs of τi both contribute Ci each in
[t, t+ to]. The lemma thus follows.

The first part of the proof of Lemma 7.

Proof: For an effective setting of periods T1, T2, . . . , Tk

under Eq. (26), by Lemma 6 and Eq. (27), we know that task
τk in a bursty-interference sporadic task set τ is schedulable
under RM if

Uk ≤ 1− (αi + 1) ·∑k−1
i=1 Ci

Tk
. (33)

Therefore, we need to obtain the minimum value of 1 −
(αi+1)·∑k−1

i=1 Ci

Tk
among all effective settings of periods under

Eq. (26). In other words, we are looking for the maximum

value for
(αi+1)·∑k−1

i=1 Ci

Tk
under Eq. (26).

By reorganizing Eq. (26) and using the fact that Ci = Ui·Ti

holds for every task τi in Γ(k − 1), we have

∀1 ≤ j ≤ k−1, Cj

Uj
≤

k−1∑
i=1

αi ·Ui ·Ti+Ck+

j−1∑
i=1

Ui ·Ti. (34)

Moreover, by reorganizing Eq. (27), we have

k−1∑
i=1

αi · Ui · Ti ≤ Tk − Ck −
k−1∑
i=1

Ui · Ti. (35)

Thus, by substituting
∑k−1

i=1 αi · Ui · Ti in Eq. (34) by
Eq. (35), we have

∀1 ≤ j ≤ k − 1,
Cj

Uj
≤ Tk −

k−1∑
i=j

Ui · Ti. (36)

Since Ci = Ui · Ti holds for 1 ≤ i ≤ k and U1, ..., Uk−1,

and Tk are fixed, maximizing
∑k−1

i=1 (αi + 1) · Ti implies that
∑k−1

i=1 (αi+1)·Ci

Tk
is maximized. According to Eq. (36) and the

fact that αi (1 ≤ αi ≤ k − 1) values are constants, the linear
objective term

∑k−1
i=1 (αi+1)·Ti contains k−1 variables each of

which has a corresponding constraint (given in Eq. 36). Thus,

according to the extreme point theory [21],
∑k−1

i=1 (αi+1) ·Ti

reaches its maximum when all the inequalities in Eqs. (36)
become equalities. Since Eq. (36) is derived by reorganizing
Eqs. (26) and (27), it implies that in this case all the inequal-
ities inEqs. (26) and (27) become equalities.

Thus, Uk reaches its maximum value that guarantees τk
to be schedulable when the inequalities in Eqs. (26) and (27)
become equality. By treating the inequalities in Eqs. (26) and
(27) as equalities and rearrangements, we obtain Eqs. (29)-
(31).
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