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Abstract This work presents a novel approach for au-

tomatically determining the most power- or energy-

efficient Graphics Processing Units (GPUs) with re-
spect to given parallel computation problems.
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1 Introduction

In the last years Graphics Processing Units (GPUs)
have become increasingly important in the field of high

performance computing (HPC). This is due to the grow-

ing possibilities of general-purpose computing on graph-
ics processing units (GPGPU). With GPUs getting more
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and more powerful and the number of transistors in

GPUs exponentially rising in accordance with Moore’s

Law [10], reducing their energy consumption becomes
increasingly crucial [6,9].

If a GPU for a given GPGPU task is to be selected,

it would be beneficial to know ahead, which type of

GPU is the most power- or energy-efficient for the task

to be solved. This knowledge is not only advantageous
in high performance computing, but also in conserving

energy for mobile computing and for green computing.

In this paper a novel approach is presented, which

automatically determines the most power- or energy-
efficient GPU for a given GPGPU task. It can opti-

mize the power- and energy-consumption of OpenCL

(Open Computing Language) [5] and CUDA (Compute
Unified Device Architecture) [11] code with respect to

diversely configurable simulated GPUs. The main pur-

pose of the presented approach is to identify the most

power- or energy-efficient GPU for a given task by means
of simulation, that is without the need to switch hard-

ware. However, it is not restricted to the examination

of existing GPUs: It can be used to conduct a design
space exploration for future GPUs and to automati-

cally find optimal hardware parameters like the num-

ber of streaming multiprocessors, core clock and DRAM
clock. Furthermore, it can be generalized to objective

functions other than power or energy, for example to

identify the fastest GPU for a given task.

2 Related Work

The state of the art in the context of energy-aware com-
puting can be divided into two main methodologies, dif-

fering in their approach to measuring energy consump-

tion: On the one hand, energy consumption can be mea-
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Fig. 1 Scheme of the evolutionary process

sured using hardware, restricting this type of approach

to existing GPUs. On the other hand, hardware may be

simulated, while an energy-model provides estimated

energy consumption. A survey on both methodologies
can be found in [1]. Cebrian et al. [3] use hardware to

determine power consumption. This gives accurate re-

sults but constrains the number of GPUs that can be
examined. In [2] the GPGPU-Sim simulator is used to

examine GPUs with different design parameters, but

this was not done in the context of energy consump-
tion.

A comparison of the energy consumption of a GPU
in contrast to a CPU-only setting has been done for

example in [8] and [13]. The latter paper concludes that

the use of GPUs can result in less energy consumption

for some problems and that there is “a huge potential of
research in the field of energy-aware high performance

computing with GPUs”.

In [12] a framework to estimate the power consump-

tion of non-existing GPUs with respect to a finite set of

typical GPU access patterns has been presented. In con-
trast to the cited papers, the presented work explores

the GPU design space with respect to a given software.

The design space encompasses but is not limited to ex-
isting GPUs. It is traversed by minimizing power- or

energy-consumption as the objective function. To this

end, a simulator provides estimates of these quantities.

The final result is a vector containing the hardware pa-
rameters of most efficient platform for the task at hand.

The task is defined in terms of its OpenCL [5] or CUDA

[11] code.

The paper is structured as follows: Section 3 presents

the methods for design space exploration of GPUs. Sec-

tion 4 describes the experimental setup and the results.

Finally, sections 5 and 6 provide discussion and future
work.

3 Design Space Exploration of GPUs

This section describes a novel method for power- or

energy-aware design space exploration of GPUs with

respect to given GPGPU tasks. For a selectable soft-
ware S, the best GPU hardware is to be found using an

evolutionary algorithm to solve the following optimiza-

tion problem O:

O = minimize
︸ ︷︷ ︸

(p1...pn)∈Pn

f(S, (p1 . . . pn)). (1)

Here f is a function estimating the average power- or

energy-consumption for the given GPGPU task S, when
S is executed on a hardware platform with parame-

ters as given in the parameter vector (p1 . . . pn). Hence

the parameter vector describes the examined GPU plat-

form: Each pi describes one hardware feature, e.g. the
number of cores or the clock speed. Pn is the overall

configuration set, i.e. it represents the set of all possi-

ble configurations, defined by all possible combinations
of parameters pi:

Pn =

m⋃

a=1

pa with pa = (p1 . . . pn), (2)
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Table 1 Examined architectures

Architecture SMs Core Clock Speed (MHz) DRAM Clock Speed (MHz) Number of Registers |Search Space|

GF-108 1-2 700-810 1600-1800 16k-32k 1296
GF-106 3-4 590-790 1800-4000 16k-32k 21168
GF-104 6-7 650-675 3400-3600 32k-64k 350
GF-100 11-15 610-780 3200-4000 32k-64k 28800

where all pi are valid values for the respective parame-

ter.

As the size m of the overall configuration set Pn

grows multiplicatively with in the number of examined

parameter values and because only reasonable GPUs

should be examined, Pn is confined and divided into
different classes, Cn

j . Each class Cn
j may correspond

to a single GPU or to a set of GPUs or to an entire

GPU architecture. For example a class may consist of
GPUs with four to six streaming multiprocessor cores

and a RAM size of 512 to 2048 megabytes. A class Cn
j

is defined by a minimum possible value pmin
i,j , a maxi-

mum possible value pmax
i,j and a sample spacing p

samp
i,j

for each of the n parameters pi in equation (2). Hence

within a class Cn
j , valid parameters pi,j fulfill the fol-

lowing condition:

pi,j = pmin
i,j + k · p

samp
i,j ≤ pmax

i,j , k ∈ N0 (3)

In other words: A single parameter pi,j is valid in class

Cn
j , if its value is between the corresponding class limits

pmin
i,j and pmax

i,j and its distance to pmin
i,j is a positive

integer multiple of the sample spacing p
samp
i,j . If all pa-

rameters pi in a parameter vector pa fulfill the condi-

tion in equation (3), the parameter vector is valid and
belongs to class Cn

j . Finally, the confined configuration

space Cn in which the search is carried out is defined

as the union of all k classes Cn
j :

Cn =
k⋃

j=1

Cn
j . (4)

This limitation of the search space to a set of classes is
very flexible and can easily be adapted to the research

needs. For example only existing GPUs without mod-

ification of the clock speeds can be examined, or the

search space can be extended to also examine GPUs
that do not yet exist.

To summarize the process: For a given software S an
optimization problem is solved to find the most power-

or energy-efficient parameter vector pe ∈ Cn. This vec-

tor consists of n parameters which represent one GPU

in the confined configuration space Cn. The confine-
ment is obtained from the overall configuration space

Pn by limiting the latter to k different classes Cn
j of

sampled parameter intervals. With the confinement, the

search space can be chosen according to the research

goal. Finally, the objective function f is optimized with

respect to parameters (p1 . . . pn), which involves evalu-
ating f by means of estimating the power- or energy-

consumption of the program through simulation.

4 Results

To verify that the proposed method generalizes to dif-

ferent types of problems, the evaluation has been con-
ducted for a set of benchmark programs and a set of

different GPU architectures. The experimental setup is

described in section 4.1, followed by the evaluation in

section 4.2.

4.1 Experimental Setup

For the calculation of the objective function f in equa-
tion (1), an extended version of the research simula-

tor GPGPU-Sim [2] is used to simulate the GPUs with

cycle accuracy. In combination with the power-model
GPUWattch [6], which is based on McPAT [7], the power

consumed by the GPU can be estimated. However, other

methods than GPGPU-Sim and GPUWattch can also
be integrated into the presented framework. Further-

more, objective functions other than power can be used,

e.g. energy consumption or the number of cycles.

To solve the optimization problem O in equation

(1), a heavily extended version of ECJ (Java-based Evo-

lutionary Computation Research System) [?] is used.

The extensions to ECJ encompass limiting the search
space, thus preventing non-reasonable GPUs to be eval-

uated and distributing the workload among heteroge-

neous PCs within a compute cloud. The limitation to
classes was realized by mapping the parameter vectors

pa of equation (2) to the nearest neighbor in the set Cn

of equation (4).

For evaluation purposes, a subset of the OpenCL

programs in the benchmark set Rodinia [4] was used as

the parameter S in the equation (1). A physics simu-

lation named HotSpot, two common data mining algo-
rithms (k-Means and k-Nearest Neighbors (k-NN)) and

the bioinformatics algorithm by Needleman-Wunsch were

selected. The selection was made to demonstrate the
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Table 2 Evaluation of the average power consumption

Benchmark Avg. Power Consumption SMs Core Clock DRAM Clock Registers Architecture

HotSpot 11.5 Watt 1 700 MHz 1800 MHz 18k GF-108
k-Means 7.5 Watt 3 610 MHz 1800 MHz 32k GF-106
k-Nearest Neighbors 13.4 Watt 1 700 MHz 1600 MHz 32k GF-106
Needleman-Wunsch 41.3 Watt 12 690 MHz 3200 MHz 32k GF-100

generality of the method, there is no claim for complete-

ness. For each algorithm the proposed method was used

to optimize the estimated average power consumption.
The resulting estimates are normalized to the run of a

single OpenCL kernel program.

In figure 1 the overall process can be seen. One mas-
ter PC is used to breed new individuals in an evolu-

tionary process. A variable number of heterogeneous

computer systems constitute a compute cloud to eval-
uate the fitness of the individuals. The fitness eval-

uations are independent of each other, and each one

uses GPGPU-Sim and GPUWattch for estimating the
consumed power of one individual in the population.

One remote computer is used to provide the necessary

PTX (Parallel Thread Execution) input for GPGPU-

Sim, thus ensuring optimization of the same PTX code
on every node, even in the presence of differing driver

versions among the nodes. If all individuals in one gen-

eration have been evaluated on the cloud nodes, the
master PC recombines and mutates the individuals and

makes a selection to form the next generation of indi-

viduals.

For the master PC a PC with four Intel(R) Xeon(R)

E5-2690 (each with 8 cores) and 64 GB RAM operating

on Windows 7 was used. This machine was running the

evolution and was also used to contribute 32 nodes to
the compute cloud for the fitness evaluation. This was

done by running an Ubuntu Linux operating system in

a virtual machine.

To show that the system can utilize a number of

heterogeneous systems, an Intel(R) Core(TM) Q9550

running Windows 7 and an Intel(R) Atom(TM) D510
with Ubuntu Linux were used to contribute six more

nodes to the cloud. As the Intel Atom PC has a GPU

driver capable of compiling OpenCL (Open Computing
Language) code to PTX (Parallel Thread Execution)

code, it was used as the remote compiler for all the

other nodes in the cloud.

Summing up the experimental setup, one 32 core

PC was used as the master, while at the same time

providing 32 nodes in the compute cloud. A second PC

added 4 more nodes to the cloud and a third PC delivers
2 more nodes, while simultaneously serving as a remote

OpenCL compiler. It is not necessary for the master PC

to also provide nodes to the cloud but as the breeding

and evolution of the individuals are sequential steps,

this can be done without losing performance.

4.2 Evaluation

To validate the presented method, the search space was

chosen to consist of four different significant parameters

p1 to p4 in equation (2), as can be seen in Table 1. The
chosen parameters were the number of streaming mul-

tiprocessors (p1), the core (p2) and DRAM clock speed

(p3) and the number of registers (p4). The streaming
multiprocessor cores (SMs) form a group of many single

compute units. Each compute unit can host a lightweight

GPU thread and threads within one SM can share one
fast local memory which can not be accessed from an-

other SM. The more SMs there are in a GPU, the more

thread groups can be run in parallel. The core clock

speed and the DRAM clock speed define how fast the
computations can be done, respectively how fast the

access to the GPU main memory is. The number of

registers can be a limiting factor for the evaluated pro-
gram S if it uses more than 32k of registers. Other

parameters like the cache size or the bus width can also

be taken into account but were not considered in this
preliminary study.

Four different NVidia architectures were used to de-

fine the classes C4
1–C

4
4 in equation (4). The architec-

tures are GF-100, GF-104, GF-106 and GF-108, span-

ning a wide variety of GPUs. Their major difference
is the number of streaming multiprocessor cores (SMs).

Each architecture can be uniquely identified by the num-

ber of SMs. The core clock speed is typically higher on
the GPUs with fewer SMs but this is not always the

case. The same applies for the DRAM clock speed. The

number of registers is 16384 to 32768 for the GF-106
and GF-108 and 32768 to 65536 for the GF-104 and

GF-100.

The sample spacing p
samp
i,j in equation (3) was cho-

sen to be 10 MHz for the core speed. The DDR DRAM

speed was sampled with a 40 MHz spacing, and the
number of registers was sampled at spacing 2048. This

results in an overall search space of 51614 possible GPUs

as can be seen in the last column of Table 1.
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Table 3 Simulated power consumption of fastest GPU compared to the optimized results

Benchmark Avg. Power Cons. GTX 480 Avg. Power Cons. Proposed Power Saved

HotSpot 49.7 Watt 11.5 Watt 77%
k-Means 26.0 Watt 7.5 Watt 71%
k-Nearest Neighbors 91.6 Watt 13.4 Watt 85%
Needleman-Wunsch 50.1 Watt 41.3 Watt 18%

The evaluation results for the different benchmark

programs are shown in Table 2. For every benchmark,

the table shows the average power consumption inWatt,
the number of used streaming multiprocessor cores, the

core and DRAM clock speed in MHz and the number

of used registers.

For the HotSpot benchmark, a GF-108 architecture

was found to be optimal, resulting in an average power

consumption of 11.5 Watt. The architecture uses only
one streaming multiprocessor and runs at 700 MHz core

clock speed and 1800 MHz DRAM clock speed. With

the k-Means benchmark, a GF-106 architecture results
in optimized power consumption of 7.5 Watt with three

streaming multiprocessor cores. For k-Nearest Neigh-

bors, again a GF-106 architecture was identified with an
average power consumption of 13.4Watt. The Needleman-

Wunsch algorithm performed most power-efficiently on

the GF-100 architecture, using 41.3 Watt with twelve

cores.

As a result, the overall variation of cores is from one

to twelve. The core clock speed does not vary strongly,

ranging from 610 MHz up to 700 MHz. The DRAM
clock speed has more variation, spanning from 1600

MHz up to 3200 MHz. The number of registers does

not seem to have much impact on power consumption
for the given programs as it varied in a wide range dur-

ing simulations, without affecting the result.

Table 3 shows a comparison of the simulated con-
sumed power for the GTX 480 against the proposed

method. The HotSpot benchmark consumes 23 percent

of the power if it is run on a GF-108 architecture, in-
stead of a GTX 480 GPU. The k-Means algorithm is

most efficient on a GF-106 architecture, with power

consumption reduced to 29 percent. The optimized pa-
rameters correspond to a GTS 450 GPU. The k-Nearest

Neighbors algorithm consumes 15 percent of the power

in comparison to running it on a GTX 480. For the

Needleman-Wunsch algorithm a GF-100 architecture
performs best, with a GTX 465 or GTX 470 as the

most power-efficient existing GPU. In this case, power

consumption was reduced to 82 percent.

5 Discussion

In the face of increasing costs for energy and the need
for green solutions it has been shown that the proposed

framework can be used to identify power- or energy-

efficient GPUs for various given problems. The search
space has been reasonably confined to reduce the num-

ber of evaluations of the objective function in evolution-

ary optimization. Depending on the research goal, the
reduced search space can be used to search for existing

or non-existing GPUs.

The attained power-savings vary from 18 percent up

to 85 percent when comparing the proposed method to
using a GTX 480 GPU. It should be made clear that the

power savings are to be taken as a proof of concept for

the methodology. The validity of these results depends
on the validity of the underlying power-model, which

has been evaluated in [7] for CPUs and in [6] for GPUs.

As the presented method does not depend on one spe-
cific power-model, the model can be replaced. Using a

performance- or energy-model instead of a power-model

is also possible and results in the most time- or energy-

efficient GPU instead of the most power-efficient one.
To determine the fastest GPU, the number of cycles

provided by GPGPU-Sim can be used as the objective.

For the most energy-efficient GPU, the average power
consumption calculated by GPUWattch has to be mul-

tiplied by the number of cycles and normalized to one

second depending on the known clock speed of the eval-
uated GPU.

6 Future Work

The presented approach is the basis for further research:

If the most efficient results are wanted, GPUs should
not be optimized for fixed code, but the software pa-

rameters should be taken into account simultaneously.

This points towards hardware/software co-design and
an optimization process that makes use of this poten-

tial. One way to do this, is to include the size of the

work groups that are formed by cooperating threads on

the GPU as a further parameter to be optimized. This
size has a major impact on speed and energy consump-

tion because it influences the utilization of the stream-

ing multiprocessors, the local memory and the speed in
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which data can be transferred from and to the DRAM.

It thus has to be chosen carefully to match the under-
lying GPU architecture.

Another vital point to be considered is the runtime

of the parallel programs, especially if deadlines have to
be met, like in real-time applications. Further research

can take runtime into account as either a constraint to

be met, or as a further objective function in minimiza-
tion, naturally leading to multi-objective optimization.

Another aspect to consider is finding the optimal GPU

for a set of n different problems to be executed on the

same high performance system.
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