
Multi-Objective Computation Offloading
for Mobile Biosensors via LTE

Pascal Libuschewski∗, Dennis Kaulbars†, Björn Dusza†, Dominic Siedhoff‡, Frank Weichert‡,
Heinrich Müller‡, Christian Wietfeld† and Peter Marwedel∗

∗TU Dortmund University, Department of Computer Science XII, Dortmund, Germany
†TU Dortmund University, Communication Networks Institute, Dortmund, Germany

‡TU Dortmund University, Department of Computer Science VII, Dortmund, Germany

Abstract—For a rapid identification of viral epidemics a
mobile virus detection is needed, which can process samples
without a laboratory. The application of medical biosensors, at
key positions with a high passenger volume (e.g. airports) became
increasingly important as epidemic early warning systems. As
mobile biosensors have to fulfill various demands, like a rapid
analysis and a long battery lifetime, in this study we present a
multi-objective computation offloading for mobile sensors. The
decision whether it is beneficial to offload work to a server,
using the Long Term Evolution (LTE) wireless network, can be
made automatically and dynamically on the basis of conflicting
objectives and several constraints.

I. I NTRODUCTION

In the face of diseases spreading fast all over the world
from airport to airport, a rapid mobile virus detection is needed
for a successful containment of epidemics [1]. A medical
biosensor which can detect viruses, is the PAMONO (Plasmon-
Assisted Microscopy of Nano-Objects) sensor [2]. It is a
modified SPR (Surface Plasmon Resonance) sensor, which is
able to detect individual viruses within less than three minutes.
As is shown in Figure 1, viruses are detected while a liquid or
air sample is passed through a flow cell and the viruses attach
to the antibodies on the sensor surface, resulting in a small
increase in brightness on the processed camera images. An
automatic detection software [3] is used to count the number
of viruses.

These sensors can be used in different places, like airports,
railway stations or in areas far away from urban areas for a
rapid virus test. The mobile application of the sensor assumes
an even distribution of resources between the devices and a
central server, as can be seen in Figure 2. The distributed sen-
sors form a network, where single devices can cooperate with
other devices in the network to provide a reliable and rapid
detection of viruses. With this new paradigm of cooperative
(virus-) detection, the concept of offloading becomes important
for energy consumption and to improve the performance -
retaining a constant quality of the detection [4], [5]. In the
context of offloading, processing time is important, particularly
the adherence of strict time limits, if several samples haveto
be analyzed in a short period of time. The presented study
focuses on an evaluation of the trade-off between different
resources (e.g. energy, time) for a sustainable, cooperative
use of biosensors. Therefore a novel approach for an energy
efficient offloading for mobile biosensors is presented.

The computation to count the viruses can either be done
on the mobile device with a mobile Graphics Processing Unit

Sample

Fig. 1. PAMONO biosensor. A sample with viruses is inserted into a flow
cell. A laser illuminates a gold layer with antibodies on top and a camera
records the reflected light. The viruses individually attach to the antibodies,
and the attached viruses are counted automatically.

(GPU) or offloaded by using the Long Term Evolution (LTE)
wireless network to transfer all sensor images or partial results
of the local computation to a server. The server executes the
remaining calculation and transfers the final result back tothe
mobile device. The decision, whether and at what point the
computation should be offloaded, is based on a multi-objective
optimization. Within the optimization, two different simulators
are used to calculate the energy consumption and run time of
the GPU and the energy consumption and transfer time of the
LTE device.

II. RELATED WORK

Several approaches for computation offloading on mobile
devices exist. Kumar and Lu [6] have shown that cloud
computing can save energy on handheld devices, but not all
applications lend themselves saving energy using the cloud.
Li et al. [7] have shown how computation offloading can be
used on handheld devices which are connected via WLAN to a
server. An adaptive computation offloading for battery powered
devices has been shown by Xian et al. [8]. Toma and Chen
[9] have shown computation offloading for real-time tasks.
Rudenko et al. [10] describe a framework to automatically
migrate tasks to a server to receive the results.

In contrast to the existing approaches, here a multi-
objective design-space exploration is conducted, which can
be used for different hardware and software configurations.



Multiple and possibly conflicting objectives can be chosen,
such as energy consumption, power consumption, number
of core cycles, run time or the energy delay product. The
presented optimization is done in a hardware/software co-
design to identify the hardware and software configurations
which meet the constraints.

The structure of the paper is as follows: Section III presents
the automatic offloading method. In Section IV the results and
discussion of the multi-objective evaluation are given. Finally,
the Section V provides the conclusion and future work.

III. M ETHODS

In order to decide whether a computation should be exe-
cuted locally on the mobile device or offloaded to a server,
the expected energy consumption of the mobile device has
to be determined. This includes the energy costs for a local
computation, as well as the energy costs for transferring data
to the server and back to the device. The presented framework
consists of three main parts: The computation of the energy
consumption and run time of the GPU, the energy consumption
and transfer time of the LTE device, and optionally, a genetic
algorithm to explore larger design spaces, for which exhaustive
sampling would require prohibitive computational effort.

The mobile processing device, that is used in conjunction
with the mobile biosensor, is in this setup a laptop equipped
with a mobile GPU and a LTE modem. Later on this setup
will be replaced by a small handheld device, e.g. a tablet with
an embedded GPU and an embedded LTE modem.

A. Determining Energy Consumption of the GPU

To calculate energy consumption and run time of the GPU,
a modified version of GPUSimPow [11] is used, which is based
on the (well known) simulator GPGPU-Sim [12] and gives
accurate results for the energy consumption and run time.

The simulator can be configured with various parameters
like number of streaming processors (SPs), core clock rate,
DRAM type, number of raster operation processors (ROPs),
different task schedulers and different mixing networks, to
model the configuration of the desired architecture.

Any given GPU program, like the automatic virus detec-
tion, can be simulated in a cycle accurate manner. This gives
accurate results of the actual utilization of the differentparts
of the GPU and the average power consumptionPGPU. As the
number of simulated cycles and the core clock rate of the GPU
are known, the run timeTGPU can be calculated. The energy
consumptionEGPU can then be calculated by multiplying the
average power consumptionPGPU, that was consumed for
processing, with the run time.

B. Determining the Energy Consumption of the LTE Device

To model the energy that is consumed for transferring the
full sensor data or partial results of the calculation via the LTE
network to the server the Context-Aware Power Consumption
Model (CoPoMo) [13] is used. CoPoMo is a highly accurate
Markovian energy consumption model for LTE devices.

The model is based on the assumption that an end device
enters different power states while transferring data to the base

Fig. 2. Scenario of a network with several biosensors in different locations.

station. Within each state, the device has different valuesfor
its average power consumption, which depend on a number of
system parameters like the specific device characteristic,the
carrier frequency and the number of physical resource blocks
allocated to the device. The actual device characteristicshave
been determined by extensive measurements.

These power states can be used in a Markovian model,
where each power state is mapped to a corresponding state
within the Markov chain. The probability that the LTE device
is within a specific state, as well as the transition probabilities
between different states, depend on various context parameters
like current radio channel conditions and traffic characteristics
of the applications running on the device.

Therefore the Markovian model can be configured with
context and system parameters. System parameters are for
example the number of physical resource blocks used for a data
transmission, as well as the assigned carrier frequency andthe
used modulation and coding scheme. The context parameters
describe the cell environment, the file size of the data which
has to be transmitted and the arrival rate of the data packets.

As result the average power consumptionPLTE, the average
energy consumptionELTE and the transmission timeTLTE can
be determined for the LTE device.

C. Automatic Design Space Exploration

By combining the results from the different energy models,
an overall energy consumption, run time and battery lifetime
can be calculated. The overall energy consumptionE is defined
as

E = PGPU · TGPU+ PCPU · TCPU+ PLTE · TLTE (1)

wherePGPU, PCPU andPLTE are the average power consump-
tions of the GPU, CPU (Central Processing Unit) and the LTE
communication. The run time of the GPU and CPU and the
communication time of the LTE device are given asTGPU,
TCPU andTLTE. The energy consumption of the server is not
part of this model, as the objective is an energy efficient
mobile device and not an energy efficient overall system. The
energy consumption of the mobile CPU is also not part of
this optimization, as the processing is either done on the GPU
or on the server, hence this has no major effect on energy
consumption.



The overall run timeT is defined as

T = TGPU+ TCPU+ TLTE + TServer− TParallel (2)

whereTGPU, TCPU andTLTE is the run time of the GPU and the
CPU and the transfer time of the LTE device. The termTParallel
is the time that can be saved by transferring data in parallel.
In contrast to Equation 1, the run time of the calculation
on the serverTServer is included, as the objective is the run
time until the final result is calculated. The time to record the
images (approximately two minutes) is not included, because
no energy and run time can be saved on this task.

The corresponding expected battery lifetimeB can be
determined as

B =
CBatt

P
(3)

whereasCBatt is the capacity of the battery andP the combined
average power consumption of all parts of the device.

To show the generality of the method, four different
mobile GPUs were simulated, which cover a wide range of
performance levels. The evaluated GPUs are shown in Table I.
The Geforce 520M GPU is the slowest of the four. It has 48
streaming processors (SPs), a core clock rate of 740 MHz and
a GDDR-3 memory. The Geforce 580M GPU is the fastest. It
has 384 streaming processors and a GDDR-5 memory, but has
the slowest core clock rate with 620 MHz.

For reasons of simplicity, the LTE network was configured
to use a fixed bandwidth and a fixed environment. If needed,
the values for the LTE network can be modified easily, such
that the design space exploration also takes into account a
varying bandwidth or the environment.

The streaming algorithm [3], which automatically detects
and counts viruses that appear in the sensor images was
modified to cut off the calculation at several different steps
in the pipeline. For example noise reduction and background
elimination is done on the local device. Then the enhanced
images, which can be compressed to a smaller size than the
unmodified sensor images, are transferred to the server were
the actual detection of the viruses is done.

A second possible scenario is the local device conducting
the major part of the calculations until a text file with virus
candidates and features is calculated. Only this text file is
transferred to the server where the classification of the virus
candidates is done. Afterward the result is transferred back to
the device.

For each of the possible cut off points, the corresponding
energy consumption and run time is calculated on all the
considered GPUs. As a result, for each GPU a Pareto front
with the trade-offs is received, which is used to decide whether
and at which cut off point the calculation should be offloaded.
The decision can be based on the current demands for run time
and energy consumption on each individual mobile device.

To explore larger parameter spaces than the presented
ones, an extensively modified version of ECJ (A Java-based
Evolutionary Computation Research System) [14] can be used
to optimize the parameters with an evolutionary algorithm.The
multi-objective evaluation is done with SPEA2 [15], which is
included in ECJ. Details of this approach can be found in [16].

TABLE I. EVALUATED MOBILE GPUS.

GPU #SPs Core clock DRAM DRAM clock #ROPs

520M 48 740 MHz GDDR-3 800 MHz 4

540M 96 670 MHz GDDR-3 900 MHz 8

560M 192 760 MHz GDDR-5 1250 MHz 16

580M 384 620 MHz GDDR-5 1500 MHz 32

Energy consumption in Joule
R

u
n

 t
im

e
 i
n

 s
e

c
o

n
d

s
0 10 20 30 40 50 60 70

10
-1

10
0

10
1

10
2

Geforce 520M

Geforce 540M

Geforce 560M

Geforce 580M

Fig. 3. Results of the multi-objective evaluation. Energy consumption versus
the run time for four different GPUs, plotted as Pareto fronts. The overall
Pareto front is plotted as a dotted line.

IV. RESULTS

The results for the multi-objective evaluation are presented
in Figure 3 and Table II. The figure shows four Pareto fronts
for the evaluated GPUs and the table shows the corresponding
cut off points and values for energy consumption and run time.
The overall Pareto front is indicated by the dotted line in the
figure and by an italic font in the table.

The points of the overall Pareto front are the point where
no mobile GPU is used with3.5 Joule and a run time of27.8
seconds, the three points of the Geforce 560M with an energy
consumption of9.5 Joule and24.6 seconds,15.2 Joule and
0.87 seconds and35.7 Joule and0.51 seconds, and the point
of the Geforce 580M with an energy consumption of23.2 Joule
and a run time of0.85 seconds. Accuracy of the simulators
has already been shown in [11] and [13] and is therefore not
within the scope of this paper.

Offloading all the processing and not using the mobile GPU
is part of all Pareto fronts and is shown as the top left points
in Figure 3 and the last line in Table II. This configuration has
the lowest energy consumption but also the highest run time.
Doing all the calculation on the mobile GPU and not using the
server, was part of the Pareto fronts for the 560M and 580M
but not for the 520M and 540M. These configurations result in
a low run time, but also a high energy consumption as shown
in the first two lines in Table II and the two bottom points in
the figure.

Intermediate cut off points were identified for all GPUs
as well. These correspond to the configurations where partial
results are calculated locally, and the server is used to calculate
the final result. The intermediate cut off points are of particular



TABLE II. E NERGY CONSUMPTION AND RUN TIME FOR DIFFERENT

CUT OFF POINTS AND DIFFERENTGPUS. THE OVERALL PARETO FRONT IS

HIGHLIGHTED IN ITALIC FONT.

Cut off point GPU Energy consumption Run time

None, no offloading 560M 35.72 Joule 0.51 s

580M 65.18 Joule 0.56 s

After pixel candidates 520M 58.0 Joule 2.82 s

are calculated 540M 35.54 Joule 1.49 s

560M 15.22 Joule 0.87 s

580M 23.21 Joule 0.85 s

After background and 520M 34.76 Joule 25.67 s

noise elimination is 540M 21.89 Joule 24.94 s

calculated 560M 9.47 Joule 24.59 s

580M 15.66 Joule 24.6 s

Full offloading None 3.51 Joule 27.82 s

interest, as energy can be saved with only a slight increase in
run time and vice versa.

V. CONCLUSION AND FUTURE WORK

Using mobile biosensors for fast and reliable measure-
ments, several conflicting hardware and software demands
have to be met. The presented automatic design space ex-
ploration can be used to identify different efficient hard-
ware/software configurations for the selected objectives.In the
evaluated biosensor setup with energy consumption as the main
objective,90% energy could be saved compared to the fastest
calculation. With overall time as the main objective, a speedup
of 55 could be achieved compared to the most energy efficient
configuration.

In other offloading approaches [6], [7], [8], [9], offloading
tasks is only a binary decision. The task is either offloaded or
not. Here multiple cut off points were inspected and it could
be shown that it can be beneficial to offload only parts of the
calculation. Of particular interest is the case, where a slight
increase in run time from0.51 to 0.87 seconds, by transferring
a small amount of data, can reduce the energy consumption by
57% for the 560M GPU and with a similarly small increase
in run time by64% for the 580M GPU.

A somehow surprising result is, that the most power
efficient GPUs in the example are not on the Pareto front
at all. Although the faster GPUs use more power, the result
is calculated faster and thus they need less energy. Another
interesting result is, that the fastest GPU only provides one
point to the overall Pareto front. This indicates that the program
can not fully utilize the 384 cores of this GPU. By inspecting
the calculated utilization of the GPU, the application designer
can easily identify and remedy bottlenecks.

As future work, the offloading will be extended to use also
other devices in the local area or devices in other areas to
process data. If one device has low battery power, insufficient
computing capacity or the server is currently unavailable,
the work can be offloaded to another mobile device, which
has more battery power and sufficient computing capacities.
Finally, different data rates and location scenarios for the LTE
communication will be evaluated, such that the offloading
automatically adapts to the environment.

ACKNOWLEDGMENT

Part of the work on this paper has been supported by
Deutsche Forschungsgemeinschaft (DFG) within the Collab-
orative Research Center SFB 876 “Providing Information by
Resource-Constrained Analysis”, projects A4 and B2. URL:
http://sfb876.tu-dortmund.de

REFERENCES

[1] L. Baril, Need for Biosensors in Infectious Disease Epidemiology. John
Wiley & Sons, Ltd, 2008.

[2] A. Zybin and et al., “Real-time detection of single immobilized nanopar-
ticles by surface plasmon resonance imaging,”Plasmonics, vol. 5, pp.
31–35, 2010.

[3] P. Libuschewski, D. Siedhoff, C. Timm, A. Gelenberg, and F.Weichert,
“Fuzzy-enhanced, real-time capable detection of biological viruses
using a portable biosensor,” inBiomedical Engineering Systems and
Technologies, 2013. Proceedings of the International Joint Conference
on, February 2013.

[4] S. Ou, K. Yang, and A. Liotta, “An adaptive multi-constraint partitioning
algorithm for offloading in pervasive systems,” inPervasive Computing
and Communications, 2006. Fourth Annual IEEE International Confer-
ence on, March 2006, pp. 1–10.

[5] K. Yang, S. Ou, and H.-H. Chen, “On effective offloading services
for resource-constrained mobile devices running heavier mobile internet
applications,”Comm. Mag., vol. 46, no. 1, pp. 56–63, 2008.

[6] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can
offloading computation save energy?”Computer, vol. 43, no. 4, pp.
51–56, April 2010.

[7] Z. Li, C. Wang, and R. Xu, “Computation offloading to save energy
on handheld devices: A partition scheme,” inProceedings of the 2001
International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems. ACM, 2001, pp. 238–246.

[8] C. Xian, Y.-H. Lu, and Z. Li, “Adaptive computation offloading for
energy conservation on battery-powered systems,” inParallel and
Distributed Systems, 2007 International Conference on, vol. 2, Dec
2007, pp. 1–8.

[9] A. Toma and J.-J. Chen, “Computation offloading for frame-based real-
time tasks with resource reservation servers,” inReal-Time Systems,
2013. 25th Euromicro Conference on. IEEE, 2013, pp. 103–112.

[10] A. Rudenko, P. Reiher, G. J. Popek, and G. H. Kuenning, “The remote
processing framework for portable computer power saving,” inApplied
Computing. Proceedings of the 1999 ACM Symposium on, 1999, pp.
365–372.

[11] J. Lucas, S. Lal, M. Andersch, M. Alvarez-Mesa, and B. Juurlink, “How
a single chip causes massive power bills GPUSimPow: A GPGPU power
simulator,” in Performance Analysis of Systems and Software, 2013.
IEEE International Symposium on. IEEE, 2013, pp. 97–106.

[12] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt, “Analyzing
CUDA workloads using a detailed GPU simulator,” inPerformance
Analysis of Systems and Software, 2009. IEEE International Symposium
on, 2009, pp. 163–174.

[13] B. Dusza, C. Ide, L. Cheng, and C. Wietfeld, “CoPoMo: a context-
aware power consumption model for LTE user equipment,”Emerging
Telecommunications Technologies. Transactions on, vol. 24, no. 6, pp.
615–632, 2013. [Online]. Available: http://dx.doi.org/10.1002/ett.2702

[14] S. Luke and L. Panait, “A survey and comparison of tree generation al-
gorithms,” inProceedings of the Genetic and Evolutionary Computation
Conference, 2001, pp. 81–88.

[15] E. Zitzler, K. Giannakoglou, D. Tsahalis, J. Periaux, K. Papailiou,
T. Fogarty, E. Z. Ler, M. Laumanns, and L. Thiele, “SPEA2: Im-
proving the strength pareto evolutionary algorithm for multiobjective
optimization,” in Evolutionary and Deterministic Methods for Design,
Optimization and Control with Applications to Industrial and Societal
Problems, 2001. Proceedings of the International Conference on, 2001.

[16] P. Libuschewski, D. Siedhoff, and F. Weichert, “Energy-aware design
space exploration for GPGPUs,”Computer Science - Research and
Development, pp. 1–6, 2013.

http://sfb876.tu-dortmund.de
http://dx.doi.org/10.1002/ett.2702

	Introduction
	Related Work
	Methods
	Determining Energy Consumption of the GPU
	Determining the Energy Consumption of the LTE Device
	Automatic Design Space Exploration

	Results
	Conclusion and Future Work
	References

