
mmapcopy: Efficient Memory Footprint Reduction using
Application Knowledge

Ingo Korb
Department of Computer

Science 12
TU Dortmund University
ingo.korb@udo.edu

Helena Kotthaus
Department of Computer

Science 12
TU Dortmund University

helena.kotthaus@udo.edu

Peter Marwedel
Department of Computer

Science 12
TU Dortmund University

peter.marwedel@udo.edu

ABSTRACT
Memory requirements can be a limiting factor for programs
dealing with large data structures. Especially interpreted
programming languages that are used to deal with large vec-
tors like R suffer from memory overhead when copying such
data structures. Avoiding data duplication directly in the
application can reduce the memory requirements. Alterna-
tively, generic kernel-level memory reduction functionality
like deduplication and compression can lower the amount of
memory required, but they need to compensate for missing
application knowledge by utilizing more CPU time, leading
to excessive overhead. To allow new optimizations based
on the application’s knowledge about its own memory uti-
lization, we propose to introduce a new system call. This
system call uses the existing copy-on-write functionality of
the Linux kernel to avoid duplicating memory when data is
copied. Our experiments using real-world benchmarks writ-
ten in the R language show that our approach can yield
significant improvement in CPU time compared to Kernel
Samepage Merging without compromising the amount of
memory saved.

CCS Concepts
•Software and its engineering → Virtual memory;
•Information systems→ Deduplication; •Applied com-
puting → Mathematics and statistics;

Keywords
virtual memory, deduplication, memory optimization, dupli-
cation avoidance, system call, R interpreter

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from permis-
sions@acm.org.
SAC 2016,April 04 - 08, 2016, Pisa, Italy
Copyright 2016 ACM 978-1-4503-3739-7/16/04. . . $15.00
http://dx.doi.org/10.1145/2851613.2851736

1. INTRODUCTION
The size of the main memory can be an important factor
limiting the size of a problem that can be solved. Therefore,
it is desirable to use the available memory as efficiently as
possible. There are cases though where the semantics of
a programming language can lead to needless copying of
memory – for example when the language specifies pass-by-
value semantics, a single function call may require copying
huge data structures. In this paper we propose to use the
existing copy-on-write functionality of the kernel using a new
system call to copy a block of virtual address space.

One current solution that also uses copy-on-write to reduce
memory requirements is to use a deduplication system like
Linux’ Kernel Samepage Merging (KSM) [6], which scans
for identical memory pages and combines them into a single
copy. This approach is commonly used when running many
virtual machines on the same system. Such optimizations
are not limited to virtual machines, but can also be applied
to programs with large memory requirements. Interpreters
for programming languages can be seen as another kind of
virtual machine which can benefit from memory optimiza-
tions. The R language [3] is an example of a programming
language with pass-by-value semantics which is commonly
used for statistical analysis and bioinformatics. It is com-
monly used for processing large vector data structures [1]
and the memory pressure is further increased due to R’s use
of garbage collection, which delays the deallocation.

Although a deduplication system like KSM can be used to
reduce the memory footprint for memory-hungry programs,
it does not address the underlying problem: The duplicated
memory content can only be identified and merged after the
duplication has occurred, requiring a large runtime overhead
for identifying the duplicated pages. The knowledge of the
application about content that needs to be copied can be
used to avoid the creation of duplicated pages and thus the
overhead for identifying it is avoided. One solution that is
applied for example in the R interpreter is the use of ref-
erence counting to determine if an object can be modified
without copying it. If a copy is needed, the entire object
must still be copied. Another solution that avoids large-
scale changes in the application is to apply the application’s
knowledge to memory management. Instead of making un-
necessary copies, a copy-on-write mapping of an already ex-
isting block of memory can be created to share the memory
between the original and copy, utilizing the kernel’s func-
tionality to copy only the pages that are modified. Direct

control over this capability is not available to the user space
though. In [10], a pure user-space system for this purpose
has been described, but it had to replicate some key kernel
data structures for virtual memory management.

In this paper, we will present a dynamic page sharing opti-
mization that is implemented in kernel space. For our ap-
proach, we developed a system call named mmapcopy that
avoids unnecessary memory copies by forwarding application
knowledge to the existing copy-on-write functionality of the
kernel. We demonstrate the benefits of our new system call
by comparing the memory savings and runtime overhead
against KSM on a set of real-world benchmarks written in
the R language [2], showing up to 11.7 percentage points in-
creased memory savings compared to KSM and a geometric
mean runtime overhead of just 6.5% when compared to an
unmodified R interpreter.

2. RELATED WORK
There are two commonly-used approaches to use RAM more
efficiently, deduplication and compression. An evaluation
of both approaches based on real memory traces was made
by Deng et al. [9], showing that deduplication yields bet-
ter results than memory compression. A commonly used
deduplication scheme on Linux systems is KSM by Arcan-
geli et al. [6] which also has been the subject of multiple
improvements. For example, Miller et al. [7] use I/O based
hints to prioritize the scanning of pages that were recently
read from disk, reducing the time needed to detect share-
able pages. Chen et al. [5] introduce a classification scheme
based on access characteristics, comparing only pages within
the same class. The Difference Engine [12] attempts to re-
duce memory by compression and sharing of similar pages,
but this requires de-sharing even for read accesses.

All of these improvements are still reactive though, they
can only eliminate duplicates after they have occurred. Al-
though some information is used to improve the time needed
to detect duplicates, the knowledge of an application about
data that is copied is ignored.

Sharing memory pages within a single process appears to be
a rarely-used concept: On Linux, it is automatically used
to map just a single page filled with null-bytes into new
memory allocations which is replaced with as many new
pages as needed. This can cause performance issues in high-
performance environments, prompting an enhancement by
Valat et al. [4] which avoids clearing memory when the ap-
plication knows that it will overwrite it in the near future.
Furthermore, by using memory-mapped file access multiple
times on the same file, an application can create shared page
mappings itself.

A more restricted version of copy-on-write that operates on
whole objects instead of memory pages is sometimes imple-
mented using reference counters. Tozawa et al. have ana-
lyzed the details of PHP’s copy-on-write scheme and pro-
posed improvements in [8]. R [3] also implements a copy-
on-write scheme. Generally, the complete object is copied
on modification, resulting in duplicated content for partial
modifications. A specific modification to the R interpreter
that manipulates the virtual memory mapping from user
space to use copy-on-write for partial object modification

has been shown in [10]. In addition to copy-on-write, the ap-
proach demonstrated there also implements a content-based
deduplication similar to KSM.

None of the mechanisms described above can be used to gen-
erate a shared, copy-on-write mapping of an already existing
block of anonymous (not file-backed) memory, which is the
main functionality of the mmapcopy system call we describe
in this paper. This enables sharing with low runtime over-
head by utilizing the application’s knowledge about the data
to be copied.

3. DEDUPLICATION AND COPY-ON-WRITE
In this section we will describe the operation of memory
deduplication as implemented by KSM, used for our evalua-
tion and the concept of copy-on-write which is an important
basis for our new system call.

KSM [6] is a subsystem in the Linux kernel that is able to op-
timize memory usage by merging identical content. It works
by comparing the contents of pages with each other and
merges duplicates to save memory. To avoid the overhead
of scanning every page, KSM only checks those pages that
applications have explicitly marked as potentially mergeable
using the mprotect system call.

This is for example beneficial on systems that run multi-
ple virtual machines for merging the RAM of these virtual
machines, but KSM can be useful for any memory-intensive
application. Since the same physical page frame must be
made visible in multiple virtual locations after merging, it
utilizes the memory management unit of the CPU and is
thus restricted to memory blocks that are aligned to page
boundaries. KSM runs as a kernel thread, so it can be sched-
uled independently from applications that utilize it. It offers
two tunable parameters to control the overhead of scanning
pages for identical content: The number of pages to scan per
run and the number of milliseconds to sleep in between. By
increasing the number of pages, the sharing efficiency can
be increased at the cost of runtime overhead.

Since writing to a shared page should only result in a modifi-
cation of the instance that was written to and not any other
shared instance, KSM uses a copy-on-write scheme to ensure
that the application’s view on memory stays consistent.

Copy-on-write is an optimization for memory allocation that
allows a system to reduce memory requirements for identi-
cal pages by mapping the same physical page in multiple
virtual locations. Copies are made when data is written to
one of the virtual locations, thus delaying the memory al-
location until it becomes unavoidable. A situation where
the same physical page is mapped to multiple virtual loca-
tions is not just created by deduplication systems like KSM,
but can also occur with other functions of the kernel. One
example is memory allocation by an application where the
kernel supplies the application with a block of memory that
references a single global zeroed-out page.

On the application level, copy-on-write is used when copies
of an object may be needed to preserve semantics, but these
copies are not always modified. In this case, a reference
counting scheme can be used to determine if a given ob-
ject in memory can be safely modified or if a copy needs to

be made first. Unlike the deduplication schemes mentioned
previously, the resulting copy is usually made at object-level
granularity instead of page-level, which can result in a signif-
icant overhead when partial modifications are made to large
objects. Examples of this can be found in PHP and R (see
[10] for more details about copy-on-write in R).

In the next section we will present a new system call called
mmapcopy which makes the copy-on-write functionality of the
kernel available to an application and allows it to modify
copies of large objects with reduced memory overhead.

4. OPTIMIZING MEMORY FOOTPRINT
To allow an application to optimize its memory footprint by
forwarding its knowledge about memory allocation and ob-
ject modification to the kernel, we have implemented a new
system call in the Linux kernel. The following subsections
will explain how this system call is used in the application
and how it is implemented.

4.1 Utilizing Application Knowledge
Our basic goal is to allow an application to leverage its own
knowledge about its memory usage for reducing the memory
footprint by utilizing the kernel’s copy-on-write capabilities.
Therefore, instead of allocating new memory for a copy op-
eration, the application needs to tell the kernel to create
additional virtual mappings with copy-on-write.

Due to the nature of the system call, it is best suited for
applications that handle objects consisting of many pages.
Savings can be realized if an application creates full copies
of these objects and makes only partial modifications, so
they can still share some of their content with the original.
Such patterns can for example occur in programming lan-
guage interpreters when the language requires pass-by-value
semantics even for large array objects. We chose to focus
on the R interpreter for our evaluation because its memory
usage fits these conditions.

In the case of the R interpreter, we modified the object al-
location and duplication functions. Ordinarily, these func-
tions would request memory using the malloc function and
copy data with memcpy. Since the kernel’s copy-on-write sys-
tem utilizes the memory management unit, copies must be
aligned at page boundaries. To ensure this, we modified the
interpreter with an additional option for allocating memory
directly from the kernel using mmap instead of malloc and
releasing it with munmap instead of free. Similar to [10],
we have limited the application of our optimizations to ob-
jects that have a size of at least two pages to avoid wasting
memory when small objects are allocated. The standard al-
location function is used for smaller objects instead, as we
expect that any possible savings would be negated by the
overhead they would incur. The standard memory allocator
in the GNU C library uses a similar scheme, but its threshold
for allocating memory using mmap is larger, with a default
of 128KB. Our system marks objects that are allocated di-
rectly from the kernel in a spare bit in R’s object header
to ensure that the correct function is used when they are
freed. Bypassing the C library’s allocation features instead
of lowering their threshold for direct kernel allocation en-
sures that we do not accidentally corrupt the internal state

of the standard memory allocator when we create additional
mappings of an already-existing memory block.

When the interpreter needs to copy an object, it checks if
it has been marked as allocated directly from the kernel. If
so, it is possible to create a copy-on-write mapping using
our mmapcopy system call to delay the copy; otherwise the
interpreter uses the standard allocate-and-copy code path.
Since the copy-on-write mechanism is transparent to the ap-
plication, no further changes are required for the correct op-
eration of the R interpreter.

4.2 The mmapcopy System Call
The mmapcopy system call has an interface similar to the
memcpy memory copy function. Both functions expect point-
ers to the source and target addresses and a parameter giving
the length of the memory area to be copied. memcpy simply
copies the specified block of memory from the source address
to the target, but mmapcopy utilizes paged virtual memory to
generate a virtual copy without requiring additional physical
memory. Therefore, both the source and destination address
must be aligned to page boundaries when mmapcopy is used.
The system call can also choose a suitable target address
itself when a null pointer is supplied as target pointer.

Our envisioned use case for the system call starts with the
allocation of memory using the mmap system call, using its
MAP_ANONYMOUS flag. Such memory is guaranteed to be page-
aligned and only managed by kernel data structures. If an
application now needs to create a partial or full copy of such
a memory block, it calls mmapcopy with a pointer to this
memory as source, a suitable (or null) target pointer and
the length of the area to be copied.

In the kernel, the mmapcopy system call first removes any
mapping that might already exist at the target address. It
then iterates over the source memory area and creates a
new mapping to the same physical memory pages at the
target memory area. Both the source and target memory
areas are marked as read-only, which triggers the copy-on-
write mechanism of the kernel when the application tries
to modify data in either memory area. Finally, it adds the
target memory area to the list of mapped memory areas of
the process that called mmapcopy to ensure that the memory
is correctly accounted for and can be freed using munmap.

5. EVALUATION
Since interpreted programming languages with pass-by-value
semantics that are used to deal with large vectors like the
R language suffer from memory overhead, we have chosen
the R interpreter to show the benefits of our optimizations.
To demonstrate the advantages of our application-guided
memory deduplication scheme we compare our system to
the generic, but unguided deduplication in KSM. Five dif-
ferent configurations of the R interpreter have been evalu-
ated: A completely unmodified version, one that only uses
the direct kernel memory allocation, two that utilize KSM
and one with our optimizations. The R interpreter and the
benchmarks we used are single-threaded.

5.1 Experimental Setup
The experiments were run on a system equipped with 4GB
of RAM and a 2.67GHz Intel Core i5 M480 CPU which has
two CPU cores. The page size on this system is 4096 bytes.
To avoid influences caused by dynamic CPU frequency scal-
ing, we disabled all power management and turbo functions
in the BIOS. The system was running the 64 bit version
of Debian 7 as its operating system, using Linux 3.13.0 as
the kernel with an extension of about 400 SLOC that im-
plements our mmapcopy system call. The R interpreter used
for our measurements is R version 3.1.0, compiled with the
default optimization flags and GCC 4.7.2.

Since we compare our system against KSM, we chose two set-
tings for it: The default which scans 100 pages per run and
sleeps 20 milliseconds between runs and a more aggressive
setting that scans 1000 pages per run with the same sleep
time. The more aggressive setting was included since our
initial measurements had shown only small memory savings
for KSM in some benchmarks. This setting has drastically
higher CPU time requirements than the default though and
is probably not realistic unless a CPU core can be completely
dedicated to memory deduplication. Settings between the
two presented in this paper could be used to find a better
balance between memory savings and CPU usage of KSM,
but we did not see any particular sweet spot in our initial
measurements and chose the 1000 page setting to approxi-
mate a system where a large amount of CPU time can be
dedicated to memory deduplication.

Both KSM and our optimization can only work on mem-
ory blocks that are page-aligned. This requirement is not
met by the original memory allocation functions in the R
interpreter, so we added an alternative code path for allo-
cations with a size of at least two pages (see 4.1 for details)
and used this as base for both of the KSM configurations
as well as our optimizations. In the configurations used for
KSM measurements, this memory is marked as mergeable
and we apply no further optimizations. In the configuration
used for evaluating mmapcopy, our optimizations including
the use of this new system call are enabled. We have also
included a configuration that uses only this changed mem-
ory allocation, but does not apply any further optimizations
to evaluate the impact of these modifications. A completely
unmodified R interpreter is used as the baseline.

We have selected two different sets of benchmarks. One was
a subset extracted from the R benchmark 2.5 suite [11] which
is a commonly used benchmark suite to evaluate the perfor-
mance of the R interpreter. For accurate measurements, the
scaling parameters were chosen to ensure a runtime of about
60 seconds. The second benchmark set applies a number
of real-world machine learning algorithms used for classifi-
cation [2] to a synthetic data set. The run times for the
benchmarks in this set vary between 70 and 10000 seconds.
Each combination of benchmark and configuration has been
measured 10 times, the reported values are the arithmetic
average of these 10 runs.

5.2 Memory and Time Measurement
Although the Linux kernel offers many different memory
measurements for processes, to our knowledge none of them

accounts for physical pages that are mapped multiple times
in the same process. For example, the resident set size re-
ported by the Linux kernel is calculated using the num-
ber of pages in a process that are currently mapped to a
physical page – if a page is mapped to multiple virtual ad-
dresses, it is counted once for each mapping. Since we want
to know how much physical memory is saved, we need to
distinguish between the amount of virtual memory in a pro-
cess and the actual number of physical pages allocated. We
implemented our own memory measurement that reads the
virtual-to-physical mapping for the target process from the
/proc file system. When a page has been deduplicated by
KSM or shared by our new mmapcopy system call, the same
physical page frame will show up at multiple virtual mem-
ory addresses. To derive an accurate count of the number
of allocated physical pages in the target process, our mea-
surement therefore counts the number of distinct physical
pages found in the process. The calculations are made in
a separate process, so they can be scheduled on the second
core of the system without influencing the CPU time of the
target process. We sample the number of allocated physi-
cal pages once per second to monitor the changes over time
and use the arithmetic average of these measurements to
calculate the average memory consumption for each bench-
mark. As the calculations for these memory measurements
are made using page counts, they include memory wasted
due to forced page alignment.

To compare the runtime overhead of our system with the
overhead of KSM, we measured the CPU time of the ksmd

kernel thread which is scheduled separately from the appli-
cation. This CPU time can be considered either separately
from the R interpreter (wall time) or combined with the in-
terpreter’s CPU time (total CPU time), so our figures show
the CPU time of ksmd using a split bar. For mmapcopy, a
separate measurement is not necessary since it is called from
the R interpreter and thus included in its CPU time.

5.3 Memory Savings
In this section we will compare the memory savings of our
optimizations against the KSM configurations described in
section 5.1. Figure 1 shows the memory savings of each
of the four modified configurations relative to the baseline
of a completely unmodified R interpreter. A configuration
that allocates larger objects directly from the kernel, but
does not attempt to use any sharing techniques is shown as
orig+alloc. The default KSM setting that scans 100 pages
per run is labeled ksm and the aggressive setting with 1000
pages per run is labeled ksm-aggr. mmcp represents our op-
timizations that utilize the new mmapcopy system call. In
addition to the individual results for each of the 14 bench-
marks, Figure 1 also shows the geometrical mean over all of
them. Here, we can see that just modifying the memory al-
location functions already reduces the mean memory usage
to 74.7% of the unmodified R interpreter. This is caused
by the direct allocation from the kernel instead of the usual
pooling of allocations that the malloc function uses: With
our modifications, free memory is immediately returned to
the system while malloc retains it (within reason) to re-use
for later memory allocations. Both mmapcopy and ksm can
achieve additional reductions, reducing the mean memory
usage to 64.6% (mmcp), 67.4% (ksm) and 60.1% (ksm-aggr)

 0

 20

 40

 60

 80

 100

b2
5-

1

b2
5-

2

b2
5-

3

b2
5-

4
ad

a
gb

m
kk

nn ld
a

lo
gr

eg

lss
vm

na
iv
eB

ay
es

ra
nd

om
Fo

re
st rd

a
rp

ar
t

Geo
m

. M
ea

n

m
e
m

o
ry

 r
e
la

ti
v
e
 t

o
 o

ri
g

in
a
l
[%

] orig+alloc
ksm

ksm-aggr
mmcp

Figure 1: Relative memory usage for the interpreter with modified memory allocation (orig+alloc), the
two KSM configurations (ksm and ksm-aggr) and our own optimizations (mmcp), compared to the original
interpreter (100% line)

when compared to an unmodified R interpreter. This shows
that our approach of using application knowledge to reduce
memory usage is very competitive with generic approaches.

Compared to the default KSM configuration, our optimiza-
tions reduce the memory usage by an additional 2.8 per-
centage points (pp). Especially large gains for our optimiza-
tions compared to ksm were achieved for the benchmarks
b25-1 and ada. Here we could reduce the memory usage
from 94.9% to 75.0% for b25-1 and from 69.5% to 57.4% for
ada. In seven of the benchmarks, our optimizations achieve a
smaller amount of memory savings than ksm-aggr, especially
in the case of lssvm and randomForest. This shows that our
approach of avoiding duplicates by utilizing copy-on-write
is less efficient than the arbitrary page matches utilized by
KSM. Still, compared to the interpreter with modified al-
location only, we save 12.7pp memory in kknn and 24.9pp
in randomForest, but basically no savings were achieved in
lssvm.

Although ksm-aggr realizes larger memory savings than our
approach in seven of the 14 benchmarks, it does so at the
cost of significant runtime overhead as we will show in the
next section.

5.4 Runtime Influence
Both KSM as well as our memory optimizations can influ-
ence the runtime by cache effects, additional system calls
and the CPU time required to scan page contents.

The scan for duplicated page contents in KSM is run as
a kernel thread separate from the application, so we have
shown it in Figure 2 as a cross-hatched bar segment stacked
on top of the pure runtime of the R interpreter. Here, the
relative runtime overhead for the interpreter with modified
allocation (orig+alloc), the default configuration of KSM
(ksm), the aggressive configuration (ksm-aggr) and our con-
figuration (mmcp) is shown relative to an unmodified in-
terpreter baseline (100%). The modified memory allocation
already introduces a small runtime overhead due to the in-
creased number of system calls, resulting in a mean 6.5%

longer runtime compared to an unmodified interpreter. Our
optimization improves the runtime of eight of the bench-
marks compared to orig+alloc, even though it makes addi-
tional system calls to utilize mmapcopy. Preliminary mea-
surements indicate that this is due to a reduced cache miss
rate, since the same physical page needs to be loaded into
the cache just once to provide cached access to any of its
virtual copies. Conversely, the slightly increased runtimes
for ksm and especially ksm-aggr appear to be due to in-
creased cache miss rates as the scans made by KSM evict
data from the CPU cache. The combination of these two ef-
fects give our optimizations a slight runtime advantage over
the ksm and especially ksm-aggr configurations when only
the interpreter runtime is considered. The additional CPU
time of the page scanning employed by KSM is about 6.7%
of the interpreter’s CPU time in the mean case for ksm and
40.2% for ksm-aggr. This shows that the parameters chosen
for the aggressive configuration of KSM are only viable if a
CPU core can be dedicated to page scanning as there would
otherwise be an unacceptably-large CPU overhead.

Altogether, our optimization achieves 2.8pp higher mem-
ory savings on average than the ksm configuration, but has
a 3.4pp smaller runtime overhead when the time for page
scanning is not considered and 10.4pp if the scan time is
added to the interpreter runtime. Compared to the inter-
preter with modified allocation (orig+alloc), mmapcopy re-
duces the mean memory usage by 10.1pp and reduces the
runtime overhead of the modified allocation by 2.9pp. This
shows that our new system call can be efficiently utilized to
reduce an application’s memory footprint.

6. CONCLUSION AND FUTURE WORK
This paper explores an approach for reducing the memory
footprint of memory intensive programs by utilizing appli-
cation knowledge via a new system call. By applying the
existing copy-on-write functionality of the kernel in a new
way, we avoid duplicated memory pages when data is copied,
e.g. due to call-by-value semantics. Our evaluation based on

 60

 80

 100

 120

 140

 160

 180

b2
5-

1

b2
5-

2

b2
5-

3

b2
5-

4
ad

a
gb

m
kk

nn ld
a

lo
gr

eg

lss
vm

na
iv
eB

ay
es

ra
nd

om
Fo

re
st rd

a
rp

ar
t

Geo
m

. M
ea

n

ru
n
ti

m
e
 r

e
la

ti
v
e
 t

o
 o

ri
g

in
a
l
[%

]

 60

 80

 100

 120

 140

 160

 180

b2
5-

1

b2
5-

2

b2
5-

3

b2
5-

4
ad

a
gb

m
kk

nn ld
a

lo
gr

eg

lss
vm

na
iv
eB

ay
es

ra
nd

om
Fo

re
st rd

a
rp

ar
t

Geo
m

. M
ea

n

ru
n
ti

m
e
 r

e
la

ti
v
e
 t

o
 o

ri
g

in
a
l
[%

]

orig+alloc
ksm
ksm-aggr
mmcp

Figure 2: Relative runtime overhead for the interpreter with modified memory allocation (orig+alloc), the
two KSM configurations (ksm and ksm-aggr) and our own optimizations (mmcp), compared to the original
interpreter (100% line)

the R interpreter shows that our method increases memory
savings by up to 11.7pp compared to the generic approach
of KSM, but outperforms it on runtime. For KSM, 6.7–
40.2% additional CPU time are required for page scanning,
while our method decreases runtime slightly due to more ef-
ficient cache usage. In the future, we plan to explore other
memory-hungry applications and investigate options to ap-
ply application knowledge to save memory between indepen-
dent processes running on multiple cores. We also plan to
investigate the possibility of implementing our system call
in a library that overrides the standard memory allocation
and copy functions to enable an application to profit from
mmapcopy without modification to its source code.

7. ACKNOWLEDGEMENTS
This work was partly supported by Deutsche Forschungsge-
meinschaft (DFG) within the Collaborative Research Center
SFB876, project A3 and partly supported by Oracle Labs.
The authors would like to thank Michael Engel and Andreas
Heinig for providing valuable feedback.

8. REFERENCES
[1] Kotthaus H., Korb I., Lang M., Bischl B., Rahnenführer

J., Marwedel P., Runtime and Memory Consumption
Analyses for Machine Learning R Programs. Journal of
Statistical Computation and Simulation. 2014.

[2] Lang M., Kotthaus H, BenchR: Set of Benchmark of R.
TU Dortmund University. 2015. URL
https://github.com/allr/benchR

[3] R Core Team, R: A Language and Environment for
Statistical Computing, R Foundation for Statistical
Computing, Vienna, Austria, 2015. URL
http://www.R-project.org

[4] Valat S., Pérache M., Jalby W., Introducing
Kernel-level Page Reuse for High Performance
Computing. In Proceedings of the ACM SIGPLAN
Workshop on Memory Systems Performance and
Correctness. Seattle, Washington, pp.3:1–3:9. 2013.

[5] Chen L., Wei Z., Cui Z., Chen M., Pan H., Bao Y.,
CMD: Classification-based Memory Deduplication
Through Page Access Characteristics. In Proceedings of
the 10th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments. Salt
Lake City, Utah, USA. pp.65–76. 2014.

[6] Arcangeli A., Eidus I., Wright C., Increasing memory
density by using KSM. In Proceedings of the Ottawa
Linux Symposium. Ottawa, Ontario, Canada. pp. 19–28.
2009.

[7] Miller K., Franz F., Rittinghaus M., Hillenbrand M.,
Bellosa F., XLH: more effective memory deduplication
scanners through cross-layer hints. In Proceedings of
USENIX ATC’13. USENIX Association, Berkeley, CA,
USA, 279-290. 2013.

[8] Tozawa A., Tatsubori M., Onodera T., Minamide Y.,
Copy-on-write in the PHP language. In Proceedings of
POPL ’09. ACM, New York, NY, USA, pp. 200–212,
2009.

[9] Deng Y., Song L., Huang X., Evaluating Memory
Compression and Deduplication. In Proceedings of the
IEEE NAS ’13. IEEE Computer Society, Washington,
DC, USA, pp.282–286. 2013.

[10] Kotthaus H., Korb I., Engel M., and Marwedel P.
Dynamic page sharing optimization for the R language.
In Proceedings of the 10th ACM Symposium on Dynamic
languages. ACM, New York, NY, USA, pp.79–90. 2014.

[11] Grosjean P., Urbanek S. R Benchmark 2.5 URL http:
//r.research.att.com/benchmarks/R-benchmark-25.R
2015.

[12] Gupta D., Lee S., Vrable M., Savage S., Snoeren A.,
Varghese G., Voelker G., Vahdat A. Difference Engine:
Harnessing Memory Redundancy in Virtual Machines In
Communications of the ACM ACM, New York, NY,
USA, vol. 53, no. 10, pp.85–93. 2010.

