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Abstract

Research in the field of nonparametric shape constrained regression has been extensive

and there is need for such methods in various application areas, since shape constraints

can reflect prior knowledge about the underlying relationship. It is, for example, often

natural that some intensity first increases and then decreases over time, which can be de-

scribed by a unimodal shape constraint. But the prior knowledge in different applications

is also of increasing complexity and data shapes may vary from few to plenty of modes

and from piecewise unimodal to superpositions of unimodal function courses. Thus, we

go beyond unimodal regression in this report and capture multimodality by employing

piecewise unimodal regression, mixture regression or additive regression models.

We give an overview of the statistical methods, namely the unimodal spline regression

approach by [1] and its aforementioned extensions for use with multimodal data. The use-

fulness of the methods is demonstrated by applying them to data sets from three different

application areas: breath gas analysis, marine biology and astroparticle physics. Though

the three application areas are quite different, the proposed extensions of unimodal re-

gression yield very helpful results in each of it. This encourages using the methodologies

proposed here in many other areas of application as well.

1 Introduction

Unimodal regression as a form of nonparametric shape constrained regression is a suitable

choice in regression problems where the prior information about the underlying relation-

ship between predictor and response is vague, but where it is (almost) certain that the

response first increases and then decreases with higher values of the predictor. The first

approach to unimodal regression was a pointwise nonparametric estimation procedure

by [2]. The idea was to estimate two monotonic regressions and find the best location

for the transition via least squares criterion with the drawback of possible discontinuity

at the mode. A semi-parametric spline regression approach to unimodal regression was

derived in [1] and its usefulness in dose-response analysis was presented. Simulations

showed that the approach is advantageous in comparison to parametric as well as non-
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parametric competitors. The method is based on the fact that using the B-spline basis,

a spline can be restricted to be unimodal by choosing a unimodal sequence of B-spline

coefficients with a fixed mode. Picking up the original idea by [2] the mode is selected

from all possibilities based on the least squares criterion. The usage of spline functions

guarantees the continuity of the fit and smoothness can be achieved by using penalized

spline regression as also shown in [1].

In this article we demonstrate with three real data examples from different application

areas that unimodal regression is also useful in situations where the relationship between

two variables is not unimodal, but multimodal. In addition, the applications have in-

creasing complexity and vary from few to plenty of modes and from piecewise unimodal

to superpositions of unimodal function courses.

The first application area is breath gas analysis where ion mobility spectrometry (IMS)

coupled with multicapillary columns (MCCs) is used to measure the amount of cer-

tain molecules (also called volatile organic compounds) in the air or in exhaled breath.

Knowledge about the presence of such molecules and their concentrations can be used

for medical purposes, for example to diagnose lung cancer (cp. [3]). An IMS-MCC data

set is a matrix of measured intensities. Looking only at one row or one column at a time,

the intensities are time series where the first time axis (rows) is drift time and the sec-

ond (columns) is retention time. In this article we focus only on the observed intensities

along the drift time, which is called a spectrum. Typically, the intensities in a spectrum

fluctuate around zero and exhibit few peaks, see also Figures 1 and 2. At least one peak

is always present at about 0.5 and does not carry information about the analyte: the

so-called reaction ion peak (RIP). The other peak locations and their amplitudes provide

information about the presence of different molecule types. A first aim of IMS analysis

is data reduction in a way that every peak is described by a number of parameters that

reproduce the characteristics of a spectrum (e.g., location and amplitude of the peaks)

as appropriate as possible (cp. e.g. [4]). Subsequent analyses try to identify different

molecules in the analyte with the help of those parameters or to classify samples into

subgroups like healthy or not (see also [5]). In this article we only focus on the first

analysis step.

For a whole IMS-MCC data set (rows and columns) a 2-dimensional mixture model was
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used in [4] with a background component and several peak components, where each of the

latter ones is based on the product of two three-parameter inverse Gaussian distributions,

one over drift time and one over retention time. This means that in drift time direction

the one-dimensional model is also a mixture of three-parameter inverse Gaussian distri-

butions. As the name already says, there are only three parameters that describe each

peak. Other approaches for modelling IMS or similar data (see, e.g., [6], [7], [8]) use

different distributions, but also have in common that there are very few parameters. And

although one of the aims is data reduction and the distributions allow for example for

skewness, this representation of the data might be too restrictive regarding the shape of

a peak. Since it is known that each peak is a unimodal function of the drift time, we

propose instead to analyse a spectrum with multiple unimodal regressions. The number

of modes is small in this data situation and we will apply models with piecewise and

superposed unimodality.
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Figure 1. Spectrum A of the IMS example data set. The x-axis is inverse reduced
mobility in [V s cm−2], a transformation of drift time. The y-axis gives the voltage,
measured in Volt [V].

The second field of application is the analysis of dive phases of marine animals. Time-

depth-recorders (TDRs) measure the diving depth of marine animals such as fur seals or

whales. The resulting data sets typically contain measurements of several days. Espe-

cially during night time, the animals dive repeatedly in short time intervals to forage for
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Figure 2. Spectrum B of the IMS example data set. The x-axis is inverse reduced
mobility in [V s cm−2], a transformation of drift time. The y-axis gives the voltage,
measured in Volt [V].

food. An excerpt from such a TDR data set, taken from R package diveMove (cp. [9], [10]),

is shown in Figure 3. Marine biologists are interested among other things in the detec-

tion of different dive phases like descent and ascent. For this purpose the dives have

to be modelled, which is realized in version 1.3.9 of the R package by fitting multiple

smoothing splines to the data. In this article we show that using piecewise unimodal

regression splines is advantageous. The number of modes is much higher here than in the

first application. Since the animal has to come back to the surface to draw breath, the

time series can be modelled by piecewise unimodality.

The third application comes from astroparticle physics. The First G-APD Cherenkov

Telescope (FACT) is used by astroparticle physicists to detect cosmic rays. These cosmic

rays induce light flashes in the earth’s atmosphere, which can be used to calculate the

primary particle’s properties. The camera of the telescope has several pixels and each

pixel collects a signal, that is, a time series of measured voltages, see e.g. Figure 4. Each

photon that hits a camera pixel causes a change in the signal that can be described by a

unimodal loading curve with an amplitude of approximately 10 mV (see also [11]). The

aim of the physicists is to detect the arrival times and numbers of photons to draw con-

clusions about the type of the triggering particle (gamma or hadron). A good overall fit

4



02:30 03:00 03:30

0
20

40
60

80

Time of day

D
ep

th
 [ 

m
 ]

data point

Figure 3. Excerpt from data set divesTDR (R package diveMove, [9], [10]). It displays
the diving depth [in m] of a marine animal, which was recorded every five seconds
between 02:31:55 a.m. and 03:55:15 a.m. on January 6th 2002.

is of interest, too, since the integral over the signal is used in subsequent analyses. The

shape of the signal is similar to that of a loading and unloading condensator and thus

physicists have derived a complicated parametric wave form for the change in the voltage

when one or more photons arrive at a certain time (cp. [12]). This wave form is given by

U(t) = b+ np · U0 · I{t≥t0} ·
(

1− e
−

t−t0
τ1

)

e
−

t−t0
τ2 (1)

when np photons arrive at time t0. Since the telescope has been constructed quite recently,

standard methods for the evaluation of measured signals are mostly heuristic and only

applied on segments of a signal. [12] derived parameter estimates for waves of the form

(1) from well-distinguished signals of single photons. As photons can arrive anytime, the

measured voltage is a superposition of several loading curves (each corresponding to one

or more photons). This suggests using a model with superposed parametric waves. One

such parametric wave, that is the parameters b, np, U0, t0, τ1 and τ2, can be estimated,

for example, using the least squares criterion. To ease the computational burden, we will

only estimate the baseline b, the number of photons np and the arrival time t0 of each

wave and fix the other parameters at the following values derived in [12]: Û0 = 17.41,
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τ̂1 = 4.745, τ̂2 = 31.81. We will show that this approach is not flexible enough and we

propose to use a superposition of unimodal regressions instead. The number of modes is

moderate in this application.
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Figure 4. Example of a FACT time series. The x-axis is the number of the time
slice/sample, where the slices are about 0.5 ns. The y-axis gives the measured voltages
in millivolt [mV].

The remainder of the article is organized as follows: Section 2 gives an overview of the

statistical models and methods. We first describe the unimodal spline regression approach

by [1] before we extend it to be used in models for multimodal data: piecewise unimodal

regression, mixtures of unimodal regressions and additive models. The three subsections

of Section 3 then describe how the data sets from the different application areas were

analysed and which results were gained. In Section 4 the results are discussed.

2 Methods

We first introduce some notational aspects. Let T = (τj)
g+k+1
−k be the sequence of knots

of a B-spline basis. That is, the basis consists of d = g + k + 1 (normalized) B-spline

basis functions, Nj,k+1(x), of degree k ≥ 1 with knots τj, . . . , τj+k+1. For each x the

function values are given by the recursion formulae Nj,1(x) = I[τj ,τj+1)(x), Nj,k+1(x) =
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x−τj
τj+k−τj

Nj,k(x)+
τj+k+1−x

τj+k+1−τj+1
Nj+1,k(x) for j = −k, . . . , g. Since those functions form a basis

of the space of spline functions of degree k with knots T , every spline function s in

this space can be written uniquely as s(x) =
∑g

j=−k βjNj,k+1(x) with so-called B-spline

coefficients β−k, . . . , βg (see, e.g., [13]).

In addition, let (xi, yi), i = 1, . . . , n, be pairs of observations of the model Yi = s(xi) + ǫi

=

g
∑

j=−k

βjNj,k+1(xi) + ǫi with ǫi ∼
i.i.d.

N (0, σ2), and let NM(µ,Σ) denote a multivariate

normal distribution with mean µ and covariance matrix Σ truncated on the set M ⊂ R
d.

We suppose that an adequate estimate of σ2 ≥ 0 is available prior to model fitting.

The building block of each model used for analyzing the aforementioned data sets is

the unimodal regression approach proposed in [1]. It is a univariate penalized spline

regression under the shape constraint of unimodality. The shape constraint is imposed

by finding the spline function s(x) =
∑g

j=−k βjNj,k+1(x) that minimizes the penalized

residual sum of squares criterion,

pRSS =
1

σ2

n
∑

i=1

(

yi −

g
∑

j=−k

βjNj,k+1(xi)

)2

+ λ
∥

∥

∥
V− 1

2 (β − β0)
∥

∥

∥

2

2

=

∥

∥

∥

∥

1

σ
(y −Bβ)

∥

∥

∥

∥

2

2

+ λ
∥

∥

∥
V− 1

2 (β − β0)
∥

∥

∥

2

2
,

subject to the condition ∃ m : βi ≥ βi−1 ∀ i ≤ m and βi ≤ βi−1 ∀ i > m on the B-spline

coefficients. Here we use cubic (k = 3) splines for all analyses.

Since the mode m of the coefficients is unknown, the minimization is performed for each

possible choice of m and a decision is made subject to the residual sum of squares crite-

rion. Choosing a large number of knot positions and placing a penalty on the B-spline

coefficients enables an overfitting-underfitting compromise. The matrix V ∈ R
d×d in the

pRSS criterion is a matrix of penalty coefficients and β0 ∈ R
d is a vector of constants.

The choice of V and β0 determines the form of the penalty, e.g. differences of the B-spline

coefficients as described in [14] or penalization against parametric functions as proposed

in [1]. For the IMS data sets we use a zero order difference penalty, that is, we penalize

against a constantly zero function since the intensities are very small over most of the

x-axis. In the diving depth example, each unimodal piece is fitted with a second order

difference penalty to introduce smoothness and the superposed regressions for the FACT
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data set are penalized against a fitted parametric wave (see also equation (1)). That

is, the penalty matrix V is the identity matrix and the vector β0 takes the following

values: β0j = Û(τ ∗j ) = b̂+ n̂ ·17.41 · I{τ∗j ≥t̂0}
·

(

1− e−
τ∗j −t̂0

4.745

)

e−
τ∗j −t̂0

31.81 , where τ ∗j are the knot

averages, j = −k, . . . , g.

The tuning parameter λ can be chosen via restricted maximum likelihood estimation

(REML) or approximate REML, respectively, as described in [1]. This means that the co-

efficients are viewed as random with prior β|λ ∼ NSm
(β0, λ

−1V) or β|λ ∼ NRd(β0, λ
−1V),

respectively, and integrated out of the joint likelihood to get the restricted likelihood of

λ. The tuning parameter that maximizes the restricted likelihood is selected.

The unimodal penalized spline regressions were performed using function unireg in R

package uniReg [15]. For all three applications we use approximate REML to reduce the

computational burden that arises from (repeatedly) estimating several unimodal regres-

sion functions.

For the IMS data sets we obtain an estimate of the variance from the first 800 mea-

surements, since we know that these will definitely contain no peak, and fix σ2 at this

value prior to model fitting. For the diving depth data set the model coefficients and the

variance are estimated iteratively (unireg with argument abstol=0.01), starting with

an initial variance estimate of 2. For the fitting process of the FACT data we use a fixed

standard deviation of 2 mV, which is the noise level’s order of magnitude in the FACT

measurements (see [11]).

Now one can take different approaches when modelling multimodal data using several

unimodal regressions. The first and maybe simplest is a piecewise unimodal regression,

that is, dividing the x-axis heuristically between each pair of modes and fitting separate

unimodal splines. This implies that the underlying process that generates the observa-

tions is also divisible in some respects.

Another approach is a mixture of regressions model, where each component of the mix-

ture is a unimodal regression and each observation stems from the different components

with a certain probability. Using this model the random variable Y given x and the

8



parameters θ is stated to have the density

g(y|x, θ) =
L
∑

ℓ=1

πℓ ϕ
(

y|µℓ(x), σ
2
)

,

where ϕ (y|µℓ(x), σ
2) is the density of a normal distribution with variance σ2 and the

mean µℓ(x) is given by a unimodal spline function µℓ(x) =
∑g

j=−k βℓ,jNj,k+1(x) with

coefficients βℓ,−k ≤ . . . ≤ βℓ,mℓ−1 ≤ βℓ,mℓ
≥ βℓ,mℓ+1 ≥ . . . ≥ βℓ,g. That is, the parameter

vector θ is given by θ = (π1, . . . , πL, β1,−k, . . . , βL,g). This model does not only yield

regression functions for all components but can also classify each data point into the

subgroups specified by the components. Mixture regression models can be fitted with the

EM algorithm (see [16], [17]) and are implemented in the R package flexmix (see [17]).

The number of components L can be determined with the help of a model selection

criterium, for example AIC.

The third approach for modelling multimodal data is to describe the observations as a

superposition of L unimodal functions. To achieve this we employ additive models of the

form

yi = α +
L
∑

ℓ=1

fℓ(xi) + ǫi, ǫi ∼ N (0, σ2),

where each layer fℓ is a unimodal spline, that is, fℓ(x) =
∑g

j=−k βℓ,jNj,k+1(x) with coef-

ficients βℓ,−k ≤ . . . ≤ βℓ,mℓ−1 ≤ βℓ,mℓ
≥ βℓ,mℓ+1 ≥ . . . ≥ βℓ,g. Such models can be fitted

using the so-called backfitting algorithm (cp. [18]), which is given by

1. Initialize α̂ = 1
n

∑n

i=1 yi and f̂ℓ(x) ≡ 0 ∀ℓ.

2. For ℓ = 1, . . . , L: calculate f̂ℓ from data (xi, ỹi) with ỹi = yi − α̂−
∑

k 6=ℓ f̂k(xi).

3. Center the function estimates around zero: f̂ℓ = f̂ℓ −
1
n

∑n

i=1 f̂ℓ(xi).

4. Repeat steps 2 and 3 until convergence.

Initializations for the function estimates in each layer (step 1) other than zero functions

might lead to faster convergence or more appropiate results. Hence, some time should be

spent regarding that issue.

The additive models we are looking at are not traditional ones. In contrast to commonly
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applied additive models (see e.g. [18]) we have only one regressor and this is used in all

layers. The number L of layers is thus not simply the number of regressors. Sometimes

the specific application might enforce a fixed number of layers or it can be determined

with the help of a model selection criterium. As it is also commonly used for selecting the

number of components in mixture regression models, we use the AIC for our analyses.

3 Results

In the following, the methods presented in Section 2 are applied to data sets from three

application areas: breath gas analysis, marine biology and astroparticle physics. All

analyses were performed using R (version 3.1.1, [19]).

3.1 Breath gas analysis with IMS

Each IMS-MCC measurement consists of only few, mostly well-distinguished peaks (see

for example spectrum A in Figure 1). Thus, a first approach to model this kind of

data is piecewise unimodal regression. We determined three unimodal pieces using a

threshold of 50 on the measured voltages and fitted separate unimodal splines with zero

order difference penalty and g = 100 inner knots. In Figure 5 we see that each of the

three peaks is reproduced nicely using this procedure. But problems can occur when

the peaks from different molecules are closer to each other as for example in spectrum

B (see Figure 6). The second and third peak are so close that their tails might overlap,

which means that the intensity measured in between them might result from both types

of molecules, i.e., it is a superposition of both concentrations. This cannot be modelled

appropriately with piecewise unimodal regression. A mixture model as used in [4] and

described in Section 2 is also unable to reflect this characteristic of the data, because

therein each observation stems with certain probabilities from either of the peaks and

both peaks do not reach the height of the superposed concentration. Thus we propose

to fit an additive model that can describe those cumulated intensities much better. Each

layer is a unimodal spline regression with zero order difference penalty and g = 250 inner

knots. Figures 7 and 8 show the estimated layers of the additive model fitted to spectrum
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A and the fitted global function, respectively. The number of layers was chosen with the

help of the model selection criterium AIC. That means, we fitted additive models with

two to five layers and the one with four layers had the lowest AIC value. Figures 9 and 10

show the analoguos plots for spectrum B of the IMS data set. Here, additive models with

two to six layers were fitted and the model with five layers was preferable with regard to

AIC. It seems that the RIP is appropriately described in both data sets using two layers.

The remaining peaks are modelled with one layer each and it is obvious that the two

close peaks in spectrum B are now much better represented than in the piecewise model.
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Figure 5. Close-up of IMS spectrum A with fitted piecewise unimodal regressions. The
x-axis was devided into pieces according to a threshold of 50 on the intensities (y-axis)
and a unimodal zero order difference penalized spline was fitted to each of the three
pieces. The breaks between the pieces are indicated by vertikal lines.

3.2 Analysis of dive phases of marine animals

An approach to determine dive phases (descent and ascent) in TDR data is implemented

in the R package diveMove (cp. [9], [10]). In the current version (1.3.9) the procedure

starts similar to our first approach for the IMS data with heuristically dividing the diving

depth time series into dives using a depth threshold of three meters and fitting a smooth-
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Figure 6. Close-up of IMS spectrum B with fitted piecewise unimodal regressions. The
x-axis was devided into pieces according to a threshold of 50 on the intensities (y-axis)
and a unimodal zero order difference penalized spline was fitted to each of the 5 pieces.
The breaks between the pieces are indicated by vertikal lines.

ing spline to each dive (cp. Figure 11). Afterwards the derivative of the smoothing spline

is used to identify the descent and ascent phase of each dive. This determination can

be problematic since the uniqueness of the turning point depends on the choice of the

smoothing parameter. This can be seen in Figure 12: for a smoothing parameter chosen

via data-driven cross-validation the derivative of the smoothing spline is quite wiggly

and crosses the interesting region around zero derivative several times. For a manually

chosen (larger) smoothing parameter the derivative gets smoother and the zero line is

only crossed once. However, such a manual choice might be a difficult task for users.

If we replace the smoothing spline in the first analysis step by a unimodal second order

difference penalized spline with g = 25 inner knots (i.e., using piecewise unimodal re-

gression), the derivative has only one sign change and the turning point from descent to

ascent is unique, irrespective of the tuning parameter value. This is also shown in Figure

12. Thus, a very welcome side effect of the unimodality constraint is that in constrast to

the smoothing spline approach the choice of the tuning parameter has per construction

no influence on the uniqueness of the turning point. It can be chosen via data-driven

REML estimation and the user is not confronted with this task.
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Figure 7. Close-up of IMS spectrum A with layers of the fitted additive model. Each
of the four layers (marked with different colors) is a unimodal spline regression with
zero order difference penalty.

3.3 Astrophysics data analysis

The loading curves caused by each photon hitting a FACT camera pixel are known to

have a unimodal shape. As also already noted in the introduction, single and multiple

photons can arrive at any time so that the measured voltage is a superposition of several

loading curves, suggesting the use of an additive model. First, we look at an additive

model where each layer fℓ is not a unimodal spline but a parametric wave of the form

(1). The number of layers was chosen with regard to the AIC values of models with three

to nine layers. Figure 13 shows the seven estimated individual waves (dashed lines) and

their superposition (solid line), which was the model with lowest AIC. We can see that

the superpositon of those parametric waves is a nice starting point for modelling such

data, but that it is not able to describe all characteristics since it underestimates the local

maxima and overestimates for example the falling edge between time points 180 and 200.

Thus, the model might need some more flexibility and we also fitted an additive model

where each layer is a unimodal spline (g = 100 inner knots) penalized against a fitted

parametric wave (see also Section 2). The number of layers was chosen to be equal to

that of the parametric additive model, namely 7. Figure 14 shows the fitted individual
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Figure 8. Close-up of IMS spectrum A together with the superpositon of the four
layers displayed in Figure 7.

unimodal splines (dashed lines) and their superposition (solid line) when the tuning

parameters are estimated via REML. The estimated superposed signal fits the data better

than the parametric one, also in the local maxima and the falling edge. The individual

unimodal splines on the other hand can be devided into two classes: most of them are

nearly everywhere zero and only three of them exhibit higher amplitudes. It seems that

the flexibility brought into the model by using splines is too much, since the individual

splines are so wiggly that they explain the observations of more than one bunch of arriving

photons. Figure 15 also shows an additive model with REML penalized unimodal splines,

but here, the backfitting algorithm was initialized with the estimated waves of the additive

parametric model. This results in several individual splines that differ from the zero line

and that can be distinguished into different photon bunches, while the superposed signal

fits the data much better than the superposed paramatric waves (cp. Figure 16) and thus

the integral of the curve can be determined more precisely prior to its use in subsequent

analyses.
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Figure 9. Close-up of IMS spectrum B with layers of the fitted additive model. Each
of the five layers (marked with different colors) is a unimodal spline regression with zero
order difference penalty.

4 Discussion

In this article we used the unimodal regression approach by [1] to analyse data from three

different application areas: breath gas analysis, marine biology and astroparticle physics.

We have seen that this approach is not only useful when a unimodal relationship between

dependent and independent variable is likely (as for example in dose-response analysis as

shown in [1]), but also in data situations where the relationship is multimodal and has

increasing complexity: from few to plenty of modes and from piecewise unimodality to

superpositions of unimodal functions. Table 1 summarizes the different data situations

and gives recommendations for the model choice.

In comparison to parametric models as, e.g., in dose-response analysis or the wave form

in Section 3.3, spline regression is a very flexible tool. Prior knowledge about the shape

of the underlying relationship can be incorporated by using a shape constraint (here:

unimodality) or by a "parametric" penalty (e.g., the wave form as a composition of two

condensator loading curves).

Another nice characteristic of splines is the simplicity of calculating derivatives and that

the derivatives of shape constrained splines also "inherit" shape properties. In the case of
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Figure 10. Close-up of IMS spectrum B together with the superpositon of the four
layers displayed in Figure 9.

Table 1. Recommended approaches for different data situtations

# of modes overlap deriv. recommended model example
one - simple unimodal regression as in [1] see [1]

few to many - simple piecewise unimodal regression Sec.3.2
few to several weighted hard mixture model with unimodals
few to several superposed hard additive model with unimodals Sec.3.1, 3.3

This table gives an overview of the different data situations where unimodal regression or
one of the proposed more complex models based on unimodal regression are applicable.
Depending on the number of modes and their overlap the table states the recommended
model and refers to corresponding examples. In addition, the column "deriv." informs if
derivatives are easily obtained or not.

the marine biology data, the monotonicity of the first derivative simplified the subsequent

analyses, namely the detection of decent and ascent phase of the dive by finding the zero

of the derivative.

Of course there are situations where unimodality is not as likely as for example in the case

of the peaks in IMS data or the FACT loading curves. Actually, one could argue that the

dive of a marine animal is not stricly unimodal since the animal might also descend to a

certain depth, make some smaller upward and downward movements and then ascend to

the surface again. Those wiggles at the bottom are flattened out by the unimodal spline

approach and the turning point that fits the data best divides the dive into descent and
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Figure 11. Excerpt from data set divesTDR and the smoothing splines fitted with R

package diveMove.

ascent. This might be a simplification of a dive, but it makes subsequent analyses much

easier and more accessibly to users.

When fitting more complex models such as the additive model with several unimodal lay-

ers in the FACT example, caution is advised when initializing the backfitting algorithm.

The spline functions are so flexible that a good initialization (other than zero functions)

is needed to arrive at a sensible solution.

The analyses in this article only provide an indication for the usefulness of unimodal

regression in the presented applications. Especially since subsequent analysis steps like

classification or integration are common in the described situations, systematic evalua-

tions of the impact of the modelling step on the final outcome are needed. Such perfor-

mance studies can be conducted, for example, along the lines of [5], where different peak

detection methods for IMS data were evaluated.
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Figure 16. FACT time series with a comparison of the superposed signal estimates of
Figure 13 (parametric waves, darkgrey) and Figure 15 (penalized splines, lightgrey).
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