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Abstract For the real-time microscopic simulation of traffic on a real-world road
network, a continuous input stream of empirical data from different locations is
usually needed to achieve good results. Traffic flows for example are needed to
properly simulate the influence of slip roads and motorway exits. However, quality
and reliability of empirical traffic data is sometimes a problem for example because
of damaged detectors, transmission errors or simply lane diversions at road works.
In this contribution, we attempt to close those data gaps of missing traffic flows with
processed historical traffic data. Therefore, we compare a temporal approach based
on exponential smoothingwith a data-driven approach based on PoissonDependency
Networks.

1 Introduction

Microscopic road traffic simulations based on a real-world topology usually need
many preparations to deliver reliable results. At first, a promising simulation model
has to be chosen and the topology has to be converted into a model-friendly repre-
sentation. When the simulation shall use traffic data from real-world detectors, they
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and the belonging areas to fill in (or remove) vehicles according to the data have to be
implemented as well. For complex topologies, this means that the simulation results
then not only depend on the quality of the model and the topology representation,
but also on a possibly huge number of empirical traffic detectors.

Usually, empirical traffic detectors provide new trafficflowdata everyminute. This
data is then used in the simulation to reproduce all the recent traffic in- and outflows
of the real-world system. Therefore, the permanent availability of empirical data is
necessary especially at on- and off-ramps. Unfortunately, the reliability of empirical
detectors is often not good enough to ensure this requirement minute by minute. This
contribution provides a comparison of two approaches to close the resulting gaps in
empirical data, oneworking on temporal level, the other one on level of dependencies
between multiple detectors.

2 Methods

In case of missing data, a decision has to be made how the simulation shall handle
this issue. Principally, different strategies are possible: Some detectors are redundant,
so the missing data simply could be ignored because the coverage of neighbouring
detectors is sufficient enough. However, it is often difficult to decide whether a
detector is important or not. The importance of such a redundant detector can also
rise when neighbouring detectors go off-line. Additionally, each detector often has
a complex neighbourhood, which is sometimes not fully known because the given
location data is lacking precision or is outdated. The same issues can also occur on
temporal level because it is usually unknown how long a detector will be off-line.
This is especially problematic when the simulation is used in a real-time context,
i.e. in a traffic information system [1], and thus new empirical data is queried by the
simulation at run time.

The described problem is somewhat related to short-term traffic forecasting meth-
ods and to interpolation methods for incomplete time series in general. These topics
have already been addressed by numerous approaches (see e.g. [8] for a summary).
However, these are often complicated to understand or to apply, or they also need e.g.
a complete set of historical data or a working detector neighbourhood. As described,
these preconditions are often not met. Because of this, we focus on two simple and
resilient methods for filling these gaps in real-time.

2.1 Exponential Method

The temporal approach [2] is based on exponential smoothing a set j of historical
traffic flows. j comprises previously collected traffic flows from up to 30 timestamps
t measured at the particular detector, which are chosen by a clustering algorithm that
distinguishes between different weekdays, school holidays and public holidays. The
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predicted flow j∗t is then obtained by

j∗t = α jt + α

t−1∑

i=1

(1 − α)i jt−i + (1 − α)t j0 , (1)

where jt is the most recent historical traffic flow. We use α = 0.8 for long-term gap
filling [3].

2.2 Poisson Dependency Network (PDN)

For the dependency-based gap filling, we use the recently proposed Poisson Depen-
dency Networks [4]. Dependency networks are graphical models, meaning that each
graph node represents a single detector and each edge between nodes describes
dependencies between them. Note that neighbouring detectors on the road do not
have to be strongly connected in the PDN.

Here, the set j comprises traffic flows from other detectors, but measured at the
same time. The probability function to obtain a traffic flow for detector a given all
the other flows j\a = j \ ja at that time is then denoted as

p( ja|j\a) = λ
ja
a (j\a)
ja! e−λa(j\a) , (2)

where λa(j\a) is a function which contains all knowledge about correlations between
detector a and the others. In this contribution, each λ is modelled by Poisson regres-
sion trees which have been learned by the R-package rpart.

3 Comparison Setup

For the comparison, we use empirical traffic data from the Cologne orbital motorway
network in Germany, which is formed by the motorways A1, A3 and A4 and is about
100km long. Traffic data is provided by 187 detectors at 95 cross-sections.

Both approaches use historical traffic data in a certain sense. In the Exponential
Method, there is usually a window of 1 week between each time stamp t , because
Eq. (1) is not suitable for intra-day traffic forecasting, as it does not take the intra-
day shape of a traffic flow time series into account. For the calculation of Eq. (1),
historical timestamps with missing values and timestamps of different classes (i.e.
holidays, see Sect. 2) have to be removed,meaning that the effectivewindow between
two timestamps is sometimes more than 1 week.

To create a level playingfield for the comparison, thePDNapproachuses data from
the preceding week as well to learn λa(j\a), see Fig. 1 for a graphical explanation. A
sufficient number of timestamps has to be in the training set to reflect the correlations,
so we decided to use a 60-min window from that week. Note that in contrast to the
Exponential Method, the PDN gets data from n detectors. The set of all 187 detectors
is resized dynamically to n for each prediction, because detectors without passed
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Fig. 1 Visualisation of different data sets used for the predictions. Each column represents a time
series of a single detector. Highlighted rows are used for the prediction at the next new time stamp

traffic (i.e. with var(ja) = 0) during the 60-min window have to be excluded. Also,
missing values have to be removed. This can be done row-wise by removing the
whole time stamp, but usually a huge number of missing values is produced by a
small subset of detectors. We have excluded them column-wise first, if more than
5% of their values were missing.

We used traffic data from 21/09/2015 to 27/09/2015 to test the predictions and
data from the preceding week to train the PDN. The exponential method got data
from the preceding week and up to 30 weeks before.1

4 Results

To compare the accuracy of both strategies, we calculated the root-mean-square error
between all N predicted traffic flows P and observed traffic flows O

RMSE =
√

1

N

∑N

i=1
(Pi − Oi )

2 (3)

and its normalised variant

NRMSE = 100
RMSE

sd(O)
, (4)

where sd(O) is the standard deviation of all observations.
The overall prediction accuracies are shown in Table1. There, every time stamp

of the whole test week is included. It is obvious that both prediction methods are

1These values had been calculated in advance as a part of OLSIM [1].
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Table 1 Overall prediction accuracy

Method RMSE (vehs/min) NRMSE (%)

Exponential 4.93 53.2

PDN 4.50 48.6

bold numbers show better results

not faultless, because both of them basically perform a 1-week-prediction of 1-min
count data.

For a deeper analysis, it is typically better to use a subset of data fromworking days
only.We also categorised the data by time interval2 and created a spatial visualisation,
which is shown in Fig. 2, by using the R-package ggmap [6].

The visualisation reveals that prediction problems typically are bound to topolog-
ical problems: The north-eastern part of the network around the motorway junction
between A1 (connects north-east and west) and A3 (connects northeast and south-
east) was affected by several construction sites at time of this analysis. On the A1
a speed limit of 60km/h had to be implemented because of repairs on a damaged
bridge, also trucks were not allowed to pass that bridge. Parallel, works on the A3
started to upgrade the road cross-section from three to four lanes per direction. These
required temporally closed lanes and driving on the hard shoulder. Hence, these sites
and the related upstream road sections were heavily affected by congestion because
of their huge bottleneck impact. They can be identified in Fig. 2 by the size of the
dots, which denote the mean empirical velocity at test time.

The colours of the dots in Fig. 2 show the mean differences between predicted and
observed traffic flows per lane, meaning that negative differences indicate an ongoing
underestimation of flow by the prediction. As can be seen, the Exponential Method
underestimated traffic on the A3 inside and upstream of the bottleneck heavily. One
reason for this are the temporal lane closures. Then, the distribution of vehicles on the
remaining lanes changes in contrast to the preceding weeks and thus the exponential
predictions become incorrect. The predictions from the PDN clearly benefit from the
learned correlations, although it was trainedwith historical data aswell. However, the
PDN sometimes overcompensated the lane closure, albeit an overestimation of traffic
flow is usually less of a problem than underestimation: Traffic breakdowns happen at
high traffic flows and with an underestimation, a potentially unstable traffic situation
would be missed by the simulation. Also, common microscopic traffic models tend
to underestimate the spatial extent of congestion [7], so that a slight overestimation
usually will not harm the simulation results.

One has to note that although the mean differences are often very low outside the
hotspot areas, the RMSE is usually higher, because positive and negative differences
balance each other out from minute to minute. This is shown in Fig. 3, which also
shows that the (N)RMSE rises heavily inside a jam. However, the PDN is always a
bit more accurate.

Most of the time, time series of observations and both predictions have a quite
similar shape. Figures4 and 5 show typical examples of special situations, where

2Time intervals (in local time):morning 05:00–09:59,midday 10:00–13:59, afternoon 14:00–17:59,
evening 18:00–21:59, night 22:00–04:59.
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Fig. 2 Spatial visualisation of differences between predicted and observed traffic flows on working
days by time interval. Each dot represents a detector cross-section in clockwise (a) or anti-clockwise
driving direction (b). The size of each dot shows the mean empirical velocity measured in the
corresponding time interval during the test week. First row Exponential Method, Second row PDN

Fig. 3 Prediction accuracy in congested traffic onworking days in anti-clockwise direction. Results
are divided into different classes of empirical velocities and TMC event type at test time
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Fig. 4 Different time series with diverted traffic: less traffic than usual on the northbound A3.
Some data points are missing because of missing observed data (a); more traffic than usual on the
eastbound A4 avoiding the jammed north-eastbound A1 (b)

Fig. 5 Time series with an accident on the A3 in northbound direction: upstream of the bottleneck
(a); downstream of the bottleneck (b)

Fig. 6 Established links and
the corresponding weights in
the PDN for a northbound
detector on the motorway
A3, located in the
south-eastern corner of the
map. The hotspot area
determines the upstream
traffic conditions
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the predictions differ. When traffic uses different ways than usual (see Fig. 4), the
PDN approach has a clear advantage, because it implicitly detects the necessary
dependencies to deal with the situation. However, it is not able to avoid any mispre-
diction. Figure 5 shows time series with a big accident during the rush hours, where
prediction accuracy of traffic flow was not only affected upstream of the incident,
but also downstream, because the flow was drastically reduced by the accident. This
event was not foreseeable for both methods.

5 Conclusion

In this contribution,wehave analysed the prediction accuracy of PoissonDependency
Networks in the context of traffic simulations in comparison to an older approach.
It is interesting to see how good the PDN performed, given the fact that we did
not implement the detector network topology explicitly. Further improvements are
planned, namely using a more flexible window of training data as well as trying out
different strategies for learning λa(j\a).

Also, a detailed analysis of the graphical structure of the PDN seems to be promis-
ing. An example for the correlations the PDN is revealing is shown in Fig. 6. With
the described training window, the PDN only established up to 4 edges per node.
When used with more learning data it uses more edges, even to the other side of the
ring, as we showed in [5] in a different context.
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