
Fixed-Relative-Deadline Scheduling of Hard
Real-Time Tasks with Self-Suspensions

Jian-Jia Chen

Department of Informatics

TU Dortmund University, Germany

jia.chen@tu-dortmund.de

Cong Liu

Department of Computer Science

The University of Texas at Dallas

cong@utdallas.edu

Abstract—In many real-time systems, tasks may experience
self-suspension delays when accessing external devices. The
problem of scheduling such self-suspending tasks to meet hard
deadlines on a uniprocessor is known to be NP-hard in the
strong sense. Current solutions including the common suspension-
oblivious approach of treating all suspensions as computation
can be quite pessimistic. This paper shows that another cat-
egory of scheduling algorithms, namely fixed-relative-deadline
(FRD) scheduling, may yield better performance than classical
schedulers such as EDF and RM, for real-time tasks that may
experience one self-suspension during the execution of a task
instance. We analyze a simple FRD algorithm, namely EDA,
and derive corresponding pseudo-polynomial-time and linear-
time schedulability tests. To analyze the quality of EDA and
its schedulability tests, we analyze their resource augmentation
factors, with respect to the speed-up factor that is needed
to ensure the schedulability and feasibility of the resulting
schedule. Specifically, the speed-up factor of EDA is 2 and 3,
when referring to the optimal FRD scheduling and any feasible
arbitrary scheduling, respectively. Moreover, the speed-up factor
of the proposed linear-time schedulability test is 2.787 and
4.875, when referring to the optimal FRD scheduling and any
feasible arbitrary scheduling, respectively. Furthermore, extensive
experiments presented herein show that our proposed linear-
time schedulability test improves upon prior approaches by a
significant margin. To our best knowledge, for the scheduling
of self-suspending tasks, these are the first results of any sort
that indicate it might be possible to design good approximation
algorithms.

1 Introduction
In many real-time systems, tasks may self-suspend when

accessing external devices such as disks and GPUs. The result-
ing suspension delays typically range from a few microseconds
(e.g., a read operation on a flash drive [6]) to a few seconds
(e.g., accessing a GPU [7], using computation offloading for
speeding-up [22]). Such suspension delays cause intractabili-
ties in hard real-time (HRT) schedulability analysis [20]. The
unsolved problem of efficiently supporting self-suspensions
has impeded research progress on many related research topics
such as analyzing and implementing I/O-intensive applications
in multiprocessor systems as well as computation offloading
in real-time systems.

Due to the fact that the problem of scheduling HRT self-
suspending task systems on a uniprocessor is NP-hard in the

This paper has been supported by DFG, as part of the Col-
laborative Research Center SFB876 (http://sfb876.tu-dortmund.de/), and
the priority program ”Dependable Embedded Systems” (SPP 1500 -
http://spp1500.itec.kit.edu).

strong sense [20], it is unlikely to design optimal polynomial-
time solutions. To resolve the computational complexity issues
in many of these NP-hard scheduling problems in real-time
systems, approximation algorithms, and in particular, approxi-
mations based on resource augmentation have attracted much
attention (e.g., real-time task partitioning on multiprocessors
[2], [4]). If an algorithm A has a speed-up factor ρ, then it
guarantees that the schedule derived from the algorithm A is
always feasible by running at speed ρ, if the input task set
admits a feasible schedule on a unit-speed processor. In other
words, by taking the negation of the above statement, if an
algorithm A has a speed-up factor ρ, then it guarantees that
if the schedule derived from the algorithm A is not feasible,
then the input does not admit a feasible schedule by running
at speed 1

ρ . Therefore, designing scheduling algorithms and
schedulability tests with bounded speed-up factors (resource
augmentation factors, equivalently) also ensures their qualities
for such NP-hard problems.

Resource-augmentation-based approximations assume a
certain speedup of the processor. For ordinary real-time task
systems without self-suspensions, it has been shown in [18]
that well-known priority-based real-time scheduling algo-
rithms, e.g., earliest-deadline-first (EDF) scheduling policy,
which have poor performance on a multiprocessor from an
absolute worst-case perspective, are good when allowing mod-
erately faster resources. Unfortunately, for the self-suspending
task scheduling problem, there does not exist any of such
approximation results. Besides the fact that current techniques
[8]–[12], [15], [17], [19], [21] for dealing with self-suspensions
can be quite pessimistic, none of the existing work provides us
a good understanding on how to quantify the quality of such
scheduling algorithms.

In this paper, we study the fundamental problem of
scheduling an HRT self-suspending task system on a unipro-
cessor. Classical job-level and task-level fixed-priority schedul-
ing algorithms such as EDF and Rate-Monotonic (RM) may
not be suitable for scheduling self-suspending task systems.
Several well-known negative results have been shown on
supporting the single-segment-suspending task model, where
each task contains two computation phases with one sus-
pension phase in between, under job- or task-level fixed-
priority scheduling algorithms including EDF and RM [20].
Our key observation herein is that when considering self-
suspensions, job priorities should be determined not solely by
traditional parameters such as periods or deadlines, but also
the suspension length. Consider, for example, the uniprocessor
task system, scheduled by EDF or RM, shown in Fig. 1. This
system consists of two tasks: task τ1 is an ordinary sporadic

2014 IEEE Real-Time Systems Symposium

1052-8725/14 $31.00 © 2014 IEEE

DOI 10.1109/RTSS.2014.31

149

task with an execution cost of 1 time unit, a period and a
relative deadline of 5 time units; task τ2 is a self-suspending
task with a period and a relative deadline of 10 time units that
first executes for 1 time unit, then self-suspends for 8 time
units, and finally executes for another 1 time unit. As seen
from the figure, τ2 misses its deadline under either EDF or RM.
However, if we prioritize the first computation phase of τ2 over
the computation phase of τ1, then both tasks can meet their
deadlines. Although the job of τ2 has a longer relative deadline
than the job of τ1, its first computation segment actually must
meet an “invisible” hard deadline at time 1 in order for the
entire job to meet its deadline.

Motivated by this, we show in this paper that for scheduling
single-segment-suspending task systems, another category of
scheduling algorithms, namely fixed-relative-deadline (FRD)
scheduling, may yield better performance than traditional job-
level or task-level fixed priority schedulers. An FRD scheduler
assigns a separate relative deadline to each computation phase
of a task and prioritizes different computation phases by these
relative deadlines. This approach has been adopted by Liu et al.
[16] for computation offloading. The approach in [16] greedily
assigns the relative deadline proportionally to the execution
time. We will show in this paper that such a proportional
approach is not good w.r.t. speed-up factor. We further observe
and prove that, surprisingly, a rather simple FRD scheduling
policy, namely equal-deadline assignment (EDA) that assigns
relative deadlines equally to both computation phases of a self-
suspending task and uses EDF for scheduling the computation
phases, yields good performance w.r.t. speed-up factor.

Overview of related work. Recently the problem of schedul-
ing soft real-time (with guaranteed bounded response times)
self-suspending task systems on multiprocessor has received
much attention [10], [11]. For the HRT case, besides the
suspension-oblivious approach of treating all suspensions as
computation [15], several schedulability tests have been pre-
sented for analyzing periodic single-segment-suspending tasks
on a uniprocessor [8], [9], [17], [19], [21]. The result from
[9] can only be applied when the system has only one self-
suspended task. Unfortunately, these tests are rather pessimistic
as their techniques involve straightforward execution control
mechanisms, which divide a self-suspending task into two
subtasks with appropriately shortened deadlines and modified
release times (often known as the end-to-end approach [15]).
The FRD scheduling policy can be considered as an end-to-
end approach with static assignments of the relative deadline
of the first sub-task and (relative) release time of the second
subtask of a self-suspended task.

For the more general self-suspending task model where
a task is allowed to suspend multiple times, [14] presents
a uniprocessor utilization-base test under RM and a mul-
tiprocessor utilization-based test under partitioned approach
where RM is applied as the per-processor scheduler. However,
the analysis techniques and the tests presented in [14] only
applies to synchronous periodic task systems with harmonic
periods. On multiprocessors, [12] presents the only existing
global suspension-aware analysis for periodic self-suspending
task systems scheduled under global EDF and global fixed-
priority schedulers. In another recent work [13], we consider
the general case of the self-suspension task model, where
no restriction is placed on the number of per-job suspension
segments and the computation and suspension pattern. We

suspensioncomputation

0 10

τ1

τ2

Fig. 1: Motivating example.

develop a general interference-based analysis framework that
can be applied to derive sufficient utilization-based tests for
the general self-suspending task model. This paper is com-
pletely different from the above-mentioned work [13], w.r.t.
the targeted problem, the proposed analysis technique, and the
format of the solution.

Contributions. We answer an important question in this
research: for a given sporadic single-segment-suspending task
system, if a feasible schedule exists upon a unit-speed pro-
cessor, can we design a scheduling algorithm that will lead
to a feasible schedule when being allowed with moderately
faster resources? To answer this question, we first show that
classical uniprocessor schedulers including EDF and RM yield
poor performance for scheduling self-suspending task systems,
as they yield a resource augmentation bound, that is infinite.
As an alternative, we observe and prove that a rather simple
FRD scheduler, EDA, yields non-trivial resource-augmentation
performance guarantees w.r.t. any FRD scheduler and any ar-
bitrary scheduler. Specifically, we derive a pseudo-polynomial-
time schedulability test for EDA that is exact and has a
resource-augmentation bound of 2 and 3 w.r.t. any FRD sched-
uler and any arbitrary scheduler, respectively. To reduce the
time complexity, we further present a linear-time schedulability
test for EDA, which yields a resource-augmentation bound of
2.787 and 4.875, w.r.t. any FRD scheduler and any arbitrary
scheduler, respectively. Furthermore, experiments presented
herein show that our proposed schedulability tests improve
upon prior tests by a large margin in all cases. Moreover,
our linear-time schedulability test under EDA achieves little
or even no utilization loss in many cases.

2 System Model
We consider the problem of scheduling a set T =

{τ1, τ2, ..., τn} of n independent sporadic self-suspending
(SSS) tasks on one processor. Each task is released repeatedly,
with each of such invocations called a job. Jobs alternate
between computation and suspension phases. We assume that
each job of τi contains at most two computation phases
separated by one suspension phase. This suspending task
model (as considered in numerous prior work [8], [15], [19],
[21]) actually covers a large set of real-world applications
that involve self-suspension behaviors. For example, in many
multimedia applications, a common task is to initialize the
video processing code, then fetch video data from the disk
(which can be modeled by a self-suspension phase), and finally
process the video data.

Each task τi is characterized by the following parameters.

• minimum inter-arrival time (also called period) Ti,
• worst-case execution time Ci,1 on the first computation

phase,

150

suspensioncomputation

100 20
τ1

C1,1 C1,2S1

Fig. 2: An example SSS task τ1 with Ci,1 = 2, S1 = 4,
Ci,2 = 3, Di = Ti = 10, and a utilization of 0.5.

• worst-case suspension time Si of a task instance, and
• worst-case execution time Ci,2 on the second computation

phase,
• relative deadline Di.

If Ci,2 is 0, it means that there is only one computation phase
for task τi. If Si is 0, we also implicitly assume that Ci,2 is 0
and task τi does not self-suspend.

An SSS task set T is said to be an implicit-deadline task
set if Di = Ti holds for each τi. Due to space constraints, we
limit our attention to implicit-deadline SSS tasks in this paper.

According to our SSS task model, each task τi can be
considered as two subtasks representing the two computation
phases, denoted τi,1 and τi,2. An example SSS task is given in

Fig. 2. The jth job of τi, denoted τ ji , is released time rji and

has a deadline at time Dj
i = rji +Di. Similarly, each job τ ji

consists of two subjobs (separated by a suspension), denoted
τ ji,1 and τ ji,2. Successive jobs of the same task are required to
execute in sequence. Note that, when a job of a task misses
its deadline, the release time of the next job of that task is not
altered. The utilization of τi is defined as Ui = Ci/Ti, and the
utilization of the task set T as Usum =

∑
τi∈T Ui. We require

Ci,1 + Si + Ci,2 ≤ Di, Ui ≤ 1, and Usum ≤ 1; otherwise,
deadlines can be missed. We denote max{Ci,1, Ci,2} as Ci,max

and min{Ci,1, Ci,2} as Ci,min, respectively.

3 Our Scheduling Policy and Speed-Up Factors

3.1 Fixed-Relative-Deadline Scheduling
As discussed in Sec. 1, it is not wise to schedule SSS tasks

under EDF and RM. A major reason is because the per-job
deadline parameter cannot accurately represent the urgency of
a self-suspending job. For an ordinary sporadic task τi, the
time available for its completion is given by Di. However, for
a self-suspending task τi, the time available for its completion
is actually given by Di−Si. For instance, for the task system
shown in Fig. 1, τ2 has only two time units available for
its completion of its two subtasks. Subjob τ12,1 needs to be
completed by time 1 in order for job τ2,1 to meet the deadline,
which implies that τ12,1 has a deadline at time one.

Motivated by the above observation, a better alternative is
to set fixed relative deadlines for each subtask. An FRD policy
is to set relative deadlines Di,1 and Di,2 for the executions of
the first subtask and the second subtask of τi, respectively.
When a job of task τi arrives at time t,

• the release time and the absolute deadline of the first
subjob (i.e., the first computation phase) are t and t+Di,1,
respectively,

• the suspension has to be finished before t+Di,1 + Si,

• the release time and the absolute deadline of the second
subjob (i.e., the second computation phase) is t+Di,1+Si

and t+Di,1 + Si +Di,2, respectively.

For the rest of this paper, we call such a scheduling policy
a fixed-relative-deadline scheduler (FRD scheduler). After the
relative deadlines are assigned, we will use EDF to schedule
the subjobs by using dynamic-priority scheduling.

The fixed-relative-deadline scheduling has a feasible sched-
ule if the worst-case response time of the first (second,
respectively) computation phase of task τi is no more than
Di,1 (Di,2, respectively). To ensure the feasibility of the
resulting schedule, such a scheduling policy has to ensure that
Di,1 +Di,2 + Si ≤ Ti.

Theorem 1. For a given task set T, deciding whether there ex-
ists a relative-deadline assignment for fixed-relative-deadline
scheduling is NP-complete in the strong sense.

Proof: The reduction, from the 3-PARTITION problem,
is the same as the proof for the preemptive case in Theorem 1
in [20]. We would also like to point out a minor issue in the
proof for the only-if part of the preemptive case in Theorem 1
in [20]. Here, we use the same terminologies in [20] to patch
the proof. The proof does not consider a possible case, in
which four subtasks start in one block k but only 3 subtasks are
completed in this block. In such a case, in the block k+m, the
workload that can be processed is strictly less than the block
size B. Then, the contradiction in the proof for the only-if
statement remains.

3.2 Resource Augmentation Factor
Due to Theorem 1, a common approach for quantifying the

quality of scheduling algorithms and schedulability tests is to
quantitatively bound the degree to which the algorithm under
consideration may under-perform a hypothetical optimal one.
To obtain such a bound, we adopt the concept of the resource
augmentation factor [2], [18]. When the speed of the system is

f , the worst-case execution times Ci,1 and Ci,2 become
Ci,1

f

and
Ci,2

f , respectively. However, Si remains the same.

Typically, the resource augmentation factor is defined, by
referring to any arbitrarily feasible schedule:

• Scheduling algorithm with respect to arbitrary sched-
ules: For notational brevity, we call such a factor the
arbitrary speed-up factor. Provided that the task set T can
be feasibly scheduled, an algorithm A is said to have an
α arbitrary speed-up factor when algorithm A guarantees
to derive a feasible schedule by speeding up the system
with a factor α.

• Schedulability test with respect to arbitrary schedules:
A schedulability test is with an α arbitrary speed-up factor
for a scheduling algorithm A: if the test fails, i.e., the
test returns “infeasibility”, then the task set is also not
schedulable (under any scheduling policy) by slowing to
run at speed 1

α .

Moreover, the above definition can also be extended by
referring to the optimal fixed-relative deadline schedules:

• Scheduling algorithm with respect to FRD schedules:
For notational brevity, we call such a factor the FRD

151

speed-up factor. Provided that the task set T can be fea-
sibly scheduled under a fixed-relative-deadline schedule,
an algorithm A is said to have an α FRD speed-up factor
when algorithm A guarantees to derive a feasible fixed-
relative-deadline schedule by speeding up the system with
a factor α.

• Schedulability tests with respect to FRD schedules: A
schedulability test is with an α FRD speed-up factor for
an FRD scheduling algorithm A: if the test fails, i.e., the
test returns “infeasibility”, then the task set is also not
schedulable under any FRD schedules by slowing to run
at speed 1

α .

3.3 Speed-Up Factors of EDF and RM
Classical priority-based dynamic scheduling algorithms

such as EDF and RM are able to deliver good performance on
a uniprocessor for ordinary real-time task systems without self-
suspensions (e.g., EDF is optimal on a uniprocessor). Unfortu-
nately, the following theorem shows that these algorithms yield
rather poor performance in the presence of self-suspensions
w.r.t. speed-up factors if we do not set individual relative
deadlines for the computation phases.

Theorem 2. The arbitrary and the FRD speed-up factors
under EDF and RM are ∞.

Proof: The proof is similar to the proof of Theorem 6 in
[20] with minor changes. The details are in the Appendix.

4 Necessary Conditions for Schedulability
This section presents the necessary conditions for the

schedulability of FRD schedules and any arbitrary schedules.
The following lemma gives the necessary condition of any
FRD schedule (by considering the worst-case job arrivals).

Lemma 1. No matter how Di,1 and Di,2 are assigned under
the condition Di,1 +Di,2 ≤ Ti − Si, the necessary condition
for the schedulability of any FRD scheduler is

∀t > 0,
∑
τi∈T

dbfi(t) ≤ t, (1)

where

dbfi(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 0 ≤ t < Ti − Si

(Ci,1 + Ci,2) t ≥ Ti − Si

+
⌊

t−(Ti−Si)
Ti

⌋
(Ci,1 + Ci,2)

(2)

Proof: This lemma is proved in sketch by evaluating the
computation demand incurred by the FRD scheduler in any
given time interval length t. It is not difficult to prove that we
only have to consider the case that Di,1 +Di,2 = Ti − Si for
evaluating the necessary condition for the schedulability of the
FRD scheduling policy.

Now, let us consider a fixed time instant x. Assume that
the first job of task τi is released at time x−(Di,1+Si) and all
the corresponding jobs are released as soon as the minimum
inter-arrival time constraint is met. Therefore, we know that
task τi has to finish dbfi(t) in time interval (x, t+ x] for any
t > 0. As a result, the necessary condition is proved.

Time

τi

rki,2 +Di,2
= rki,1 +Ti

rki,1

τki,1

rki,1 +Di,1

τki,2

rki,2
=rki,1 +Di,1+Si

τk+1i,1

rki,1 +Ti+Di,1

Ti

Ti - Si

Fig. 3: An illustration of (2) as a necessary condition for the
schedulability under any FRD scheduling policy.

dbfi(t) necessary condition for a feasible FDR schedule
(used as a lower bound)

Equation (2)

dbf∗
i (t) necessary condition for any feasible schedule

(used as a lower bound)
Equation (4)

dbfEDA
i (t) necessary and sufficient condition of Algorithm

EDA (used as an upper bound)
Equation (7)

dbfEDA†
i (t) sufficient condition of Algorithm EDA with a

linear approximation (used as an upper bound)
Equation (11)

dbfEDA�

i (t) transformation of dbfEDA†
i (t) for analyzing the

speed-up factors of the linear approximation
Equation (14)

TABLE I: Variant symbols related to the demand bound
functions, where EDA is an FRD algorithm studied in Sec. 5.

Fig. 3 illustrates how the demand bound function in (2) is
defined for any FRD scheduler. Next we provide a necessary
condition for scheduability under any scheduling policy.

Lemma 2. The necessary condition for the schedulability
under any scheduling policy is

∀t > 0,
∑
τi∈T

dbf∗
i (t) ≤ t. (3)

where

dbf∗i (t) =

⎧⎪⎨
⎪⎩

0 0 ≤ t < Ti − Si

Ci,max+⌊
t−(Ti−Si)

Ti

⌋
(Ci,1 + Ci,2) t ≥ Ti − Si

(4)

Proof: The proof is similar to the proof of Lemma 1, but
has to consider the arbitrary scheduling policy. Let T1 be the
tasks in T in which Ci,1 > Ci,2 and T2 be T \T1.

Now, let’s fix a time instant x. For each task τi, let the first
job of task τi be released at time x if τi is in T1, and at time
x− Si − Ci,1 if τi is in T2. Moreover, all the corresponding
jobs are released as soon as the minimum inter-arrival time
constraint is met. Therefore, we know that task τi has to finish
at least dbf∗

i (t) in time interval (x, t+ x] for any t > 0. As a
result, the necessary condition is proved.

Therefore, the functions dbfi(t) and dbf∗
i (t) provide the

lower bounds for feasible FRD and arbitrary schedules. Ac-

cording to Lemma 1, if maxt>0

∑
τi∈T dbfi(t)

t > f , the task set
T cannot be feasibly scheduled by any FRD schedule if the
speed is lower than or equal to f . Similarly, due to Lemma 2,

if maxt>0

∑
τi∈T dbf∗

i (t)

t > f ′, T cannot be feasibly scheduled
by any schedule if the speed is lower than or equal to f ′.

Notations Related to DBF The rest of this paper will use
several definitions related to the demand bound functions that
represent the minimum or the maximum demand that has to
be finished within a specified length t of time intervals. To
explain the difference among these terms, we provide a table
(in Tab. I) and an illustrative summary (in Fig. 4) here.

152

t
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

dbfi(t)

dbfEDA
i (t)

(a)

t
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

dbf∗
i (t)

dbfEDA�

i (t)

dbfEDA†
i (t)

(b)

Fig. 4: An example of the listed functions in Tab. I, when Ci,1 = 3, Ci,2 = 2, Si = 4, and Ti = 20. For clarity, two sub-figures
are presented to avoid overlapping of the curves.

5 FRD Scheduling Algorithms
In this section, we first present an equal-deadline assign-

ment (EDA) algorithm that assigns equal relative deadlines
to subtasks of each task and all subjobs are scheduled by
EDF. We then derive a pseudo-polynomial-time schedulability
test for this algorithm and prove corresponding non-trivial
resource-augmentation performance guarantees. At the end of
this section, we also explain why another greedy approach,
used in [16], by assigning the relative deadline proportionally
to the execution time is indeed a bad approach by providing
an example.

5.1 Algorithm EDA
For each task τi, Di,1 +Di,2 ≤ Ti − Si must hold. EDA

makes the following assignment

Di,1 = Di,2 =
Ti − Si

2
. (5)

As Di,1 = Di,2, for notational brevity, we denote Di,1 and
Di,2 as Δi.

The following theorem gives a schedulability test for EDA
that can be checked in pseudo-polynomial time.

Theorem 3. Algorithm EDA generates a feasible fixed-
relative-deadline schedule for the input task set T if and only
if

∀t > 0,
∑
τi∈T

dbfEDA
i (t) ≤ t, (6)

where

dbfEDA
i (t) =
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 0 ≤ t < Ti−Si
2

Ci,max
Ti−Si

2
≤ t < Ti − Si

Ci,1 + Ci,2 t = Ti − Si

dbfEDA
i (t−

⌊
t−(Ti−Si)

Ti

⌋
Ti)+

(
⌊

t−(Ti−Si)
Ti

⌋
+ 1)(Ci,1 + Ci,2) t > Ti − Si.

(7)

Proof: Due to space limitation, we only provide the
concepts behind the test. The function described in (7) is
basically similar to that in (2) except the ranges t ∈ [Ti−Si

2 +
v · Ti, Ti − Si + v · Ti) for any non-negative integer v, e.g.,
in Fig. 4a. Such a range is due to the fact that EDA assigns
these two subtasks of task τi with the same relative deadline

Ti−Si

2 , in which one of them requires Ci,max amount of time
for execution and the other requires Ci,min. For task τi in any
interval length in [Ti−Si

2 + v · Ti, Ti − Si + v · Ti), in the
worst case, there are v+1 subjobs with execution time Ci,max

and v subjobs with execution time Ci,min. These subjobs of
task τi do not have any overlap in their release times and
absolute deadlines. Therefore, the if and only-if conditions
can be proved by using the same strategy to prove the exact
schedulability test for the ordinary sporadic real-time tasks in
[3].

Theorem 3 also implies that the condition in (6) is an exact
schedulability test, that requires pseudo-polynomial time, of
Algorithm EDA.

5.2 Quantitative Evaluation of EDA
We now offer a quantitative evaluation of the efficacy of Al-

gorithm EDA. Specifically, we derive properties that are used
to provide a quantitative measure w.r.t. resource augmentation
factors of how effective Algorithm EDA is compared to an
optimal fixed-realative-deadline scheduler (Theorem 4) and an
optimal arbitrary scheduler (Theorem 5).

Lemma 3. For any t for a task τi ∈ T, we have

dbfEDA
i (t)− dbfi(t) ≤ Ci,max

and dbfEDA
i (t)− dbf∗

i (t) ≤ Ci,max.

Lemma 4. For any t ≥ 0 for a task τi ∈ T, we have

dbfi(2t) ≥ dbfEDA
i (t).

Proof: The proofs of Lemma 3 and Lemma 4 are by
simple arithmetics and the definitions of these three functions.
Specifically, the proof of Lemma 4 is in the Appendix.

Both of the above properties can be also found in Fig. 4.

Theorem 4. The FRD speed-up factor of Algorithm EDA is
2.

Proof: Suppose that at time t∗ > 0, we have∑
τi∈T dbfEDA

i (t∗) > t∗. Let us now classify the tasks in
T into three task sets:

• T1: if t∗ < Ti−Si

2 , task τi is in T1.

• T2: if Ti − Si > t∗ ≥ Ti−Si

2 , task τi is in T2.

153

• T3: if t∗ ≥ Ti − Si, task τi is in T3.

Clearly, each task τi in T is either in T1,T2, or T3. Now

suppose that

∑
τi∈T2

dbfEDA
i (t∗)

t∗ is x and

∑
τi∈T3

dbfEDA
i (t∗)

t∗ is

y. Since
∑

τi∈T dbfEDA
i (t∗) > t∗, we have

x+ y > 1.

By Lemma 4, we have∑
τi∈T2∪T3

dbfEDA
i (t∗) ≤

∑
τi∈T2∪T3

dbfi(2t
∗). (8)

Therefore, by (8), we have

max
t>0

∑
τi∈T dbfi(t)

t
≥

∑
τi∈T dbfi(2t

∗)
2t∗

≥
∑

τi∈T2∪T3
dbfi(2t

∗)
2t∗

≥
∑

τi∈T2∪T3
dbfEDA

i (t∗)
2t∗

=
x+ y

2
> 0.5. (9)

Therefore, this implies that the task set T cannot be fea-
sibly scheduled by any fixed-relative-deadline schedule when
the speed of the system is 0.5.

With a similar proof, we can also show the arbitrary speed-
up factor for EDA.

Theorem 5. The arbitrary speed-up factor of Algorithm EDA
is 3.

Proof: The proof strategy is similar to the proof of
Theorem 4. The major difference in the analysis is to further
consider a subset of tasks in which 3

2Ti− 1
2Si > t∗ ≥ Ti−Si

and a property revised from Lemma 4 for function dbf∗
i (t).

The detailed proof is in the Appendix.

5.3 Algorithm Proportional: A Bad Approach
It may seem to be very pessimistic to simply use EDA. An-

other greedy approach is to assign the relative deadline propor-

tionally to the execution time, i.e., Di,1 =
Ci,1

Ci,1+Ci,2
·(Ti−Si),

as used in [16]. However, this approach can be shown to be
quite bad in the worst cases by using the following example:
We are given n tasks, in which Ci,1 = 1, Ci,2 = 2i − 1,
Ti − Si = 2i ∗ (n − 1), and Ti � 2n for i = 1, 2, . . . , n.
By the proportional relative deadline algorithm, Di,1 is set to
n− 1, and Di,2 is set to (2i − 1) ∗ (n− 1) for each task τi.

The demand bound function of the above algorithm at
time n − 1 is n. Therefore, the above task set is not
schedulable by EDF under the proportional relative deadline
assignment. By evaluating

∑n
i=1 dbf

EDA
i (t), we can conclude

that
∑n

i=1 dbf
EDA
i (t) ≤ 4t

n−1 . Therefore, the above task set
remains schedulable under Algorithm EDA even when the
speed of the system is 4

n−1 . As a result, the speed-up factor of

the proportional relative deadline algorithm is at least Ω(n),
which is quite bad.

6 Linear-Time Schedulability Test
Sec. 5 presents EDA and schedulability analysis in pseudo

polynomial-time. This section further presents a linear-time
schedulability test, under the assumption that the sorting of
the tasks according to Ti − Si is done in advance.

6.1 Density-Based Schedulability Analysis
By simple arithmetics, it can be easily shown that

dbfEDA
i (t)
t ≤ Ci,max

(Ti−Si)/2
for any t. Therefore, to achieve a fast

schedulability analysis, if
∑

τi∈T
2Ci,max

Ti−Si
≤ 1, EDA provides

a feasible schedule under EDF. However, such a schedulability

test
∑

τi∈T
2Ci,max

Ti−Si
≤ 1 can be very pessimistic.

Theorem 6. The FRD speed-up factor of the schedulability test
by verifying whether

∑
τi∈T

2Ci,max

Ti−Si
≤ 1 holds for n tasks is

at least Hn, where Hn =
∑n

i=1
1
i .

Proof: To prove such a lower bound, we just have to
provide a concrete case. Consider a special input instance with
n tasks as follows:

• Ci,1 = Ci,2 = 1
f , Si = 2n− 2i+ 1 and Ti = 2n+ 1, for

task τi,

in which f is Hn

1+ε with ε > 0. For this input instance, we have∑
τi∈T

2
f ·2i =

1
f

∑n
i=1

1
i = 1 + ε > 1. The schedulability test

here shows that this input instance is not schedulable under
EDA. However, it is very clear that the resulting solution by
EDA is feasible even if the system is slowed down to run at
speed 1

f .

6.2 Linear Approximation
We now present a linear-time schedulability test for Algo-

rithm EDA and analyze the speed-up factors for the schedu-
lability test. The key idea is to use a linear curve to (upper)
bound the function dbfEDA

i (t) for all t, which has been used
in [4]. When the linear curve is too far away from the function
dbfEDA

i (t), the error becomes too large. Therefore, the design
philosophy is to minimize the gap between the linear curve and
the function dbfEDA

i (t).

The increase of the function dbfEDA
i (t) becomes periodic

when t is large enough, i.e., dbfEDA
i (t) = dbfEDA

i (t−Ti)+
Ci,1+Ci,2, ∀t > 2Ti−Si. Therefore, we should use the utiliza-

tion Ui =
Ci,1+Ci,2

Ti
as the slope of the linear approximation, so

that the approximation becomes more precise when t is large
enough. That is, this linear approximation should be able to
bound the function dbfEDA

i (t), under the slope Ui.

To provide a safe upper bound of the function dbfEDA
i (t)

at any interval length t, we can start with a linear segment
at interval length Δi, which is defined as Ti−Si

2 , with a
value C ′

i = max {Ci,max, Ci,1 + Ci,2 − UiΔi}. That is, this
segment is with a slope equals to Ui. The above setting of C ′

i
comes from two different specified values in the linear seg-
ment: (1) Ci,max at length Δi or (2) Ci,1+Ci,2 at length 2Δi

(which implies that the segment starts with Ci,1+Ci,2−UiΔi

at length Δi).

Since max {Ci,max, Ci,1 + Ci,2 − UiΔi} ≤ Ci,1 + Ci,2,
setting C ′

i to Ci,1 + Ci,2 with a slope Ui, starting at length

154

t
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

dbfEDA
i (t)

dbfEDA†
i (t)

dbfEDA†
i (t)

C′i = 5

C′i = 3

Fig. 5: An example of the linear approximation by us-
ing different C ′ values, where Ci,1 = 3, Ci,2 = 2,
Si = 4, and Ti = 20. Therefore, Ci,1 + Ci,2 = 5 and
max {Ci,max, Ci,1 + Ci,2 − UiΔi} is 3.

Δi, is also a feasible upper bound of dbfEDA†
(t). Fig. 5

presents the above two different linear approximations. For
the simplicity of presentation for the analysis in Sec. 6.4, we
will consider that C ′

i is equal to Ci,1+Ci,2 for the rest of this
section, while the experimental results in Sec. 7 will be based
on C ′

i = max {Ci,max, Ci,1 + Ci,2 − UiΔi}.
Therefore, for the rest of this section, suppose that1

C ′
i =

def Ci,1 + Ci,2. (10)

Moreover, the linear approximation is

dbfEDA†
i (t) =

{
0 0 ≤ t < Δi

C′i + (t−Δi)Ui Δi ≤ t.
(11)

Then, we have the following lemma.

Lemma 5. For any given t > 0 and τi ∈ T,

dbfEDA†
i (t) ≥ dbfEDA

i (t).

Proof: This is based on simple arithmetics, as also shown
in Fig. 4.

Theorem 7. Algorithm EDA generates a feasible fixed-
relative-deadline schedule for the input task set if

∀t > 0,
∑
τi∈T

dbfEDA†
i (t) ≤ t. (12)

Proof: This comes directly from Lemma 5 and Theo-
rem 3.

For notational brevity, for the rest of this section, we order
the tasks such that T1−S1 ≤ T2−S2 ≤ . . . ≤ Tn−Sn. That
is, Δi ≤ Δi+1 for i = 1, 2, . . . , n− 1.

Theorem 8. Suppose that Δi ≤ Δi+1 for i = 1, 2, . . . , n −
1. Algorithm EDA generates a feasible fixed-relative-deadline
schedule for the input task set if Usum =

∑n
i=1 Ui ≤ 1 and

�∑
i=1

dbfEDA†
i (Δ�) ≤ Δ�, ∀� = 1, 2, . . . , n. (13)

Proof: It is clear that
∑n

i=1 Ui ≤ 1 is a necessary con-

1We will use the term C′i to make distinguishes to Ci.

dition for feasible schedules. For notational brevity, let Δn+1

be ∞. With
∑n

i=1 Ui ≤ 1 and (13), for any Δ� < t ≤ Δ�+1

and � = 1, 2, . . . , n, we know that

n∑
i=1

dbfEDA†
i (t) =

�∑
i=1

dbfEDA†
i (Δ�) + (t−Δ�)

�∑
i=1

Ui

≤ Δ� + t−Δ� = t.

Therefore, by testing only these n points in (13) under the
assumption that

∑n
i=1 Ui ≤ 1, we know that the condition in

(12) in Theorem 7 holds for all t > 0, which concludes the
proof.

The following corollary provides the time complexity anal-
ysis for the schedulability test.

Corollary 1. The schedulability test in Theorem 8 can be done
in linear time provided that the tasks are ordered in a non-
decreasing order with respect to Δi.

Proof: The test can be done by incrementally evaluating∑�
i=1 dbf

EDA†
i (Δ�) for � = 1, 2, . . . , n. The details are

provided in the Appendix.

Note that the above linear approximation, as presented in
Fig. 5, has one jump at time Δi and has a constant slope after
time Δi. Such a type of linear approximation has been used to
partition sporadic real-time tasks to identical multiprocessor
systems [2], [4], [5]. The same task partitioning strategy in
[2], [4], [5] can be used to assign the self-suspended tasks to
multiprocessor systems by adopting the linear approximation
here for testing whether it is feasible to assign a self-suspended
task onto a processor. The details of the analysis are not
presented here due to the space limitations.

For the rest of this section, we will prove the arbitrary
and FRD speed-up factors of the linear approximation in the
schedulability test in Theorem 8. We denote the schedulability
test in Theorem 8 as schedulability analysis (test) LA.

6.3 Speed-Up Factor Analysis: Basic Analyses
Here, we will first provide the basic analysis by using a

simpler proof strategy. We define the following step function

dbfEDA�

i (t) to represent the lower bound of the linear approx-

imation dbfEDA†
i (t).

dbfEDA�

i (t) =

{
0 0 ≤ t < Δi

C ′
i +

(⌊
t−Δi

Ti

⌋
(Ci,1 + Ci,2)

)
Δi ≤ t

(14)

By the above definition, we have the following lemma:

Lemma 6. For any given t > 0 and τi ∈ T,

dbfEDA�

i (t) ≤ dbfi(2t). (15)

Proof: It clearly holds when t < Δi, since dbfEDA�

i (t) =
0. By the definition of C ′

i, we have C ′
i ≤ Ci,1+Ci,2. Moreover,

with the definition of dbfi(t), we know that dbfEDA�

i (t) ≤
dbfi(t + Δi). (These two inequalities happen when C ′

i is set
to max {Ci,max, Ci,1 + Ci,2 − UiΔi} instead of Ci,1 + Ci,2.)

Therefore, when t ≥ Δi, we have dbfEDA�

i (t) ≤ dbfi(2t).

155

We can now prove the FRD speed-up factor for the
schedulability analysis in Theorem 8.

Theorem 9. The FRD speed-up factor for the schedulability
analysis LA (in Theorem 8) is 3.

Proof: The schedulability test in Theorem 8 can fail
by two cases: (1)

∑n
i=1 Ui > 1 or (2) ∃� such that∑�

i=1 dbf
EDA†
i (Δ�) > Δ�. For the former case, it is clear

that the task set is not schedulable for any scheduling policy.
To prove the FRD speed-up factor, we only have to focus
on the latter case, in which the error comes from the linear
approximation as well as the scheduling policy EDA.

Suppose that � is the smallest index such that∑�
i=1 dbf

EDA†
i (Δ�) > Δ�. For i = 1, 2, . . . , �, let δi be⌊

Δ�−Δi

Ti

⌋
Ti + Δi. That is, δi is set such that

⌊
Δ�−Δi

Ti

⌋
is equal to δi−Δi

Ti
. As a result, dbfEDA†

i (Δ�) is equal to

dbfEDA�

i (δi) + Ui · (Δ� − δi). Therefore, we have

Δ� <
�∑

i=1

dbfEDA†
i (Δ�)

=

(
�∑

i=1

dbfEDA�

i (δi)

)
+

(
�∑

i=1

Ui · (Δ� − δi)

)

≤1

(
�∑

i=1

dbfEDA�

i (Δ�)

)
+ (

�∑
i=1

UiΔ�)

≤2

(
�∑

i=1

dbfi(2Δ�)

)
+ (

�∑
i=1

UiΔ�),

where ≤1 comes from the fact that δi ≤ Δ� and dbfEDA�

i (t)
is a non-decreasing function of t for each i < �, and ≤2 comes
from Lemma 6.

By dividing Δ� in both sides, we have

1 < 2

(∑�
i=1 dbfi(2Δ�)

2Δ�

)
+ (

�∑
i=1

Ui).

Therefore, either
∑�

i=1 Ui > 1
3 or

∑�
i=1 dbfi(2Δ�)

2Δ�
> 1

3 . This

also implies that, by slowing down the system to speed 1
3 , there

does not exist any feasible FRD schedule since the necessary
condition in Lemma 1 cannot be satisfied. Therefore, we reach
the conclusion.

Similar to the proofs in Lemma 6 and Theorem 9, the
following lemma and theorem can be achieved by using a very
similar strategy.

Lemma 7. For any given t > 0 and τi ∈ T,

dbfEDA�

i (t) ≤ 2dbf∗
i (2t). (16)

Proof: It clearly holds when t < Δi, since dbfEDA�

i (t) =
0. By the definition of C ′

i in (10), we have C ′
i ≤ Ci,1 +

Ci,2. Moreover, with the definition of dbf∗
i (t), we know that

dbfEDA�

i (t) ≤ dbf∗
i (t+Δi)+Ci,min. Therefore, when t ≥ Δi,

we have dbfEDA�

i (t) ≤ dbf∗
i (2t) + Ci,min ≤ 2dbf∗

i (2t).

Theorem 10. The arbitrary speed-up factor for the schedula-

bility analysis LA (in Theorem 8) is 5.

Proof: By using the same strategy in the proof in Theo-
rem 9 by using dbf∗

i () instead of dbfi(), we reach

Δ� < 2

(
�∑

i=1

dbf∗
i (2Δ�)

)
+ (

�∑
i=1

UiΔ�).

By dividing Δ� in both sides, we have

1 < 4

(∑�
i=1 dbf

∗
i (2Δ�)

2Δ�

)
+ (

�∑
i=1

Ui).

Therefore, either
∑�

i=1 Ui >
1
5 or

∑�
i=1 dbf∗

i (2Δ�)

2Δ�
> 1

5 , which
concludes the proof.

6.4 Speed-Up Factor Analysis: Tighter Analysis

Following the proofs in Theorems 9 and 10, we focus
ourselves to provide tighter analysis in this subsection. The
analysis extends the analysis developed in [5] for the speed up
factor of the linear approximate demand bound function for
ordinary sporadic real-time tasks (without self-suspensions).
With the setting of C ′

i = Ci,1 + Ci,2 in (10), the connection

between the two functions dbfEDA�

i (t) and dbfEDA†
i (t) is

identical to the linear approximation when considering normal
sporadic tasks in [5].

Now, let us look at the linear approximation in (11) and the
necessary condition based on dbfi() in Lemma 1 more closely.
Based on Lemma 5, we can observe the following theorem.

Theorem 11. The FRD speed-up factor for the schedulability
analysis LA (in Theorem 8) is 2

α if there exists t > 0 with
∑

τi∈T dbfEDA�

i (t)

t > α or
∑

τi∈T Ui > 0.5α.

Proof: By Lemma 6, the condition the existence of t

with

∑
τi∈T dbfEDA�

i (t)

t > α implies that

∑
τi∈T dbfi(2t)

2t > α
2 .

Therefore, if such a condition holds or
∑

τi∈T Ui > 0.5α,
by definition, the FRD speed-up factor for the schedulability
analysis LA is 2

α .

For the rest of this subsection, let � be the smallest index
such that

∑�
i=1 dbf

EDA†
i (Δ�) > Δ�. Moreover, δi is defined

as
⌊
t−Δi

Ti

⌋
Ti +Δi, as in the proof of Theorem 9.

The key difference between the tighter analyses here and
those in Sec. 6.3 is due to the range of t for evaluating
∑

τi∈T dbfEDA�

i (t)

t . In the proofs of Theorems 9 and 10, we
only evaluate one single value, in which t = Δ�, whereas the
tighter analyses here will adopt Theorem 11 and evaluate the

maximum value of

∑
τi∈T dbfEDA�

i (t)

t for 0 < t ≤ Δ�.

156

For notational simplicity, we define β, k†, and k as follows:

C ′
� = β

�−1∑
i=1

dbfEDA�

i (δi), (17)

�−1∑
i=1

(Δ� − δi)Ui = k†
�−1∑
i=1

dbfEDA�

i (δi). (18)

k

�−1∑
i=1

dbfEDA�

i (δi) = Δ� − (1 + β)
�−1∑
i=1

dbfEDA�

i (δi). (19)

That is, by taking
∑�−1

i=1 dbf
EDA�

i (δi) as the basis, β defines

the ratio of C ′
� to

∑�−1
i=1 dbf

EDA�

i (δi), k† defines the ratio

of the partially released workload
∑�−1

i=1 (Δ� − δi)Ui in time

interval length Δ� with respect to
∑�−1

i=1 dbf
EDA�

i (δi), and k

is defined to set Δ� = (1 + k + β)
∑�−1

i=1 dbf
EDA�

i (δi).

Based on the above definition and the fact that∑�
i=1 dbf

EDA†
i (Δ�) > Δ�, we know that k† > k and

max
t≥0

∑n
i=1 dbf

EDA�

i (t)

t
≥

∑�
i=1 dbf

EDA�

i (Δ�)

Δ�

=
1 + β

1 + k + β
. (20)

Lemma 8. If k ≤ (e0.5−1)
e0.5 (1 + β), then

max

{
max
t>0

∑�
i=1 dbfi(t)

t
,
�−1∑
i=1

Ui

}
>

1 + β

2(1 + k + β)
.

Proof: This comes directly from the above analysis in
(20).

Therefore, when k is small, the bound in Lemma 8 can
be used. The following analysis moves further by considering
larger k, in which the corresponding proofs are very similar
to the proofs in [5] and the major differences are provided in
the Appendix, for completeness.

Lemma 9. For any non-negative parameters, k, β, x, α, if
x∗ ≤ α(1+k+β)(e0.5−1)

e0.5 , then
∫ x∗

0
1

1+k+β− x
α
dx ≤ α

2 .

Lemma 10. Suppose that � is the smallest index such that∑�
i=1 dbf

EDA†
i (Δ�) > Δ� and α is k+β

1+k+β
(e0.5)

(e0.5−1) . If, for

all 0 < t ≤ Δ�, we have
∑�

i=1 dbfEDA�

i (t)

t ≤ α, then, the
total utilization

∑�−1
i=1 Ui for τ1, τ2, . . . , τ�−1 is larger than∫ k

0
1

1+k+β− x
α
dx = α

2 .

Lemma 11. If k > (e0.5−1)
e0.5 (1 + β), then

max

{
max
t>0

∑�
i=1 dbfi(t)

t
,
�−1∑
i=1

Ui

}
>

e0.5

(e0.5−1)k

2(1 + k + β)
. (21)

We can now conclude the analysis by providing the cor-
responding speed-up factors for the schedulability analysis in
Theorem 8.

Theorem 12. The FRD speed-up factor for the schedulability
analysis LA (in Theorem 8) is 2(2e0.5−1)

e0.5 < 2.787.

Proof: By Lemma 8, the function 1+β
2(1+k+β) is a decreas-

ing function with respect to k when k ≥ 0. By Lemma 11,

the function
e0.5

(e0.5−1)
k

2(1+k+β) is an increasing function with respect

to k. Therefore, the only intersection when k is equal to
e0.5−1
e0.5 (1+β) defines which part should be used for bounding

the speed-up factor.

There are two cases:

• When k ≤ e0.5−1
e0.5 (1 + β), by using Lemma 8, we know

that the FRD speed-up factor is at most 2 ·
e0.5−1

e0.5
(1+β)

1+β =
2(2e0.5−1)

e0.5 .

• When k > e0.5−1
e0.5 (1+ β), by using Lemma 11, we know

that the FRD speed-up factor is at most 2 ·
e0.5−1

e0.5
(1+β)

1+β =
2(2e0.5−1)

e0.5 .

Therefore, the FRD speed-up factor for the schedulability

analysis in Theorem 8 is
2(2e0.5−1)

e0.5 < 2.787.

Theorem 13. The arbitrary speed-up factor for the schedula-
bility analysis in Theorem 8 is 4(2e0.25−1)

e0.25 < 4.875.

Proof: The proof is identical to the proof of FRD speed-up
factor, but has to consider dbf∗

i . Therefore, the corresponding
revision of Theorem 11 for the arbitrary speed-up factor
becomes 4

α . By following the same proof procedure, we can
reach the conclusion by considering two cases, i.e., whether

k is larger than e0.25−1
e0.25 (1 + β). With the same procedure, we

can reach the conclusion. Due to space limitation, the details
are omitted.

7 Experiment
In this section, we conduct extensive experiments using

randomly-generated task sets to evaluate the applicability of
our linear-time schedulability test (Theorem 8), denoted “LA”.
We evaluated the effectiveness of LA by comparing it to the
suspension-oblivious approach denoted “SC”. That is, after
transforming all self-suspending tasks into ordinary periodic
tasks (no suspensions) using SC, the original task system is
schedulable if the total utilization of the transformed task
system is no greater than 1. Although the result in [9] is related
to this paper, it only works when the system has one self-
suspended task, and, hence, is not comparable.

In our experiments, sporadic self-suspending task sets were
generated similar to the methodology used in [11], [12]. Task
periods, i.e., Tis, were distributed uniformly over [20ms,
200ms]. Task utilizations, i.e., Uis, were distributed differ-
ently for each experiment using four uniform distributions.
The ranges for the uniform distributions were [0.005, 0.1]
(light), [0.1, 0.3] (medium), [0.3, 0.5] (heavy), and [0.005, 0.5]
(uniform). Task execution costs were calculated from periods
and utilizations.

Suspensions lengths of tasks were also distributed using
four uniform distributions: [0.01 ·(1−Ui) ·Ti, 0.1 ·(1−Ui) ·Ti]
(short suspension length), [0.1 · (1−Ui) ·Ti, 0.3 · (1−Ui) ·Ti]
(moderate suspension length), [0.3·(1−Ui)·Ti, 0.6·(1−Ui)·Ti]
(long suspension length), and [0.01 · (1 − Ui) · Ti, 0.6 · (1 −

157

0 %

20 %

40 %

60 %

80 %

100 %

 0 0.2 0.4 0.6 0.8 1

(a) light task utilization

0 %

20 %

40 %

60 %

80 %

100 %

 0 0.2 0.4 0.6 0.8 1

(b) medium task utilization

0 %

20 %

40 %

60 %

80 %

100 %

 0 0.2 0.4 0.6 0.8 1

(c) heavy task utilization

0 %

20 %

40 %

60 %

80 %

100 %

 0 0.2 0.4 0.6 0.8 1

(d) uniform task utilization

Fig. 6: Schedulability results. In all four graphs, the x-axis denotes the task set utilization cap and the y-axis denotes the fraction
of generated task sets that were schedulable. Each graph gives four curves per tested approach for the cases of short, moderate,
long, and uniform task suspension lengths, respectively. As seen at the top of the figure, the label “LA-s(m/h/u)” indicates the
approach of LA assuming short (moderate/long/uniform) task suspension lengths. Similar “SC” labels are used for SC.

Ui) · Ti] (uniform suspension length).2 For each combination
of task utilization distribution, suspension length distribution,
and Usum, 10,000 task sets were generated. Each such task set
was generated by creating tasks until total utilization exceeded
the corresponding utilization cap, and by then reducing the
last task’s utilization so that the total utilization equaled the
utilization cap.

The obtained schedulability results are shown in Fig. 6
(the organization of which is explained in the figure’s cap-
tion). Each curve plots the fraction of the generated task
sets the corresponding approach successfully scheduled, as a
function of total utilization. As seen, in all tested scenarios,
LA clearly improves upon SC by a substantial margin. For
example, as seen in Fig 6(a), when task utilizations are light,
LA can achieve 100% schedulability when Usum ≤ 0.82,
Usum ≤ 0.76, Usum ≤ 0.62, and Usum ≤ 0.5 with short,
moderate, uniform, and heavy suspension lengths, respectively;
while SC fails to do so when Usum merely exceeds 0.36, 0.1,
0.02, 0.02, respectively. Moreover, as seen in all four inset
of Fig 6, when task suspension lengths are long or uniform,
SC fails to schedule most of the generated task sets while
LA is able to deliver good performance. For instance, as seen
in Fig 6(c), when task utilizations are heavy, LA is able to
achieve 100% schedulability when Usum ≤ 0.8 with heavy
or uniform suspension lengths; while SC fails to do so when
Usum merely exceeds 0.3. This is because in these cases, the
utilization loss due to the conversion of long suspensions into
computation under SC is too significant. Another interesting
observation is that both methods perform better when task
utilizations are heavier. This is due to the fact that with heavier
task utilizations, a less number of self-suspending tasks can
be generated and the suspension lengths of such tasks are
shorter compared to the case with lighter task utilizations. This
clearly alleviates the negative impact due to suspensions in the
schedulability.

8 Conclusion
For a given sporadic self-suspending task system, if a

feasible schedule exists upon a unit-speed processor, can we
design a scheduling algorithm that will lead to a feasible
schedule when allowed moderately faster resources? To answer
this question, we present an FRD scheduling algorithm EDA,
that assigns relative deadlines equally to computation phases
of self-suspending tasks. We prove that EDA yields non-trivial

2Note that any Si is upper-bounded by (1− Ui) · Ti

resource-augmentation performance guarantees. Specifically,
we derive a pseudo-polynomial-time schedulability test for
EDA that is exact and yields a resource-augmentation bound of
2 and 3 w.r.t. any FRD scheduler and any arbitrary scheduler,
respectively. To reduce the time complexity, we further present
a linear-time schedulability test for EDA, which yields a
resource-augmentation bound of 2.787 and 4.875, w.r.t. any
FRD scheduler and any arbitrary scheduler, respectively. Fur-
thermore, experiments presented herein show that our proposed
schedulability tests improve upon prior tests by a large margin.

Based on Theorems 4 and 5, we can also adopt the ap-
proach proposed in [1] to provide approximate schedulability
in polynomial-time complexity. That is, we take a predefined
number of (different) discrete values in (7) at beginning and
use a linear approximation after the last discrete value. With
such an approach, it is also not difficult to show that the
studied problem also admits schedulability tests with FRD and
arbitrary speed-up factors 2+ε and 3+ε with polynomial time
complexity proportional to O(1ε), respectively.

While we have assumed implicit-deadline self-suspending
task systems, we observe that our results can be directly
applied to the constrained-deadline cases, and can also be
extended to apply to the arbitrary-deadline case. The intuitive
reason is because our analysis techniques do not rely on the
assumption that Di = Ti holds for any task τi. For future
research, we plan to further tighten the analysis, and consider
more general self-suspending task models. We also plan to
evaluate our proposed schedulability tests using real-world
self-suspending workloads, e.g., video processing tasks that
may experience suspension delays when accessing GPUs.

References
[1] K. Albers and F. Slomka. An event stream driven approximation for

the analysis of real-time systems. In ECRTS, pages 187–195, 2004.
[2] S. Baruah and N. Fisher. The Partitioned Multiprocessor Scheduling of

Sporadic Task Systems. In Proc. of the 26th IEEE Real-Time Systems
Symp., pages 321–329, 2005.

[3] S. K. Baruah, A. K. Mok, and L. E. Rosier. Preemptively scheduling
hard-real-time sporadic tasks on one processor. In IEEE Real-Time
Systems Symposium, pages 182–190, 1990.

[4] J. Chen and S. Chakraborty. Resource Augmentation Bounds for
Approximate Demand Bound Functions. In Proc. of the 32nd IEEE
Real-Time Systems Symp., pages 272–281, 2011.

[5] J.-J. Chen and S. Chakraborty. Resource augmentation for uniprocessor
and multiprocessor partitioned scheduling of sporadic real-time tasks.
Real-Time Systems, 49(4):475–516, 2013.

[6] W. Kang, S. Son, J. Stankovic, and M. Amirijoo. I/O-Aware Deadline
Miss Ratio Management in Real-Time Embedded Databases. In Proc.
of the 28th IEEE Real-Time Systems Symp., pages 277–287, 2007.

158

[7] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa, and
R. Rajkumar. RGEM: A Responsive GPGPU Execution Model for
Runtime Engines. In Proc. of the 32nd IEEE Real-Time Systems Symp.,
pages 57–66, 2011.

[8] I. Kim, K. Choi, S. Park, D. Kim, and M. Hong. Real-time scheduling
of tasks that contain the external blocking intervals. In Proceedings of
the 2nd International Workshop on Real-Time Computing Systems and
Applications, pages 54–59, 1995.

[9] K. Lakshmanan and R. Rajkumar. Scheduling self-suspending real-time
tasks with rate-monotonic priorities. In Proceedings of the 16th IEEE
Real-Time and Embedded Technology and Applications Symposium,
pages 3–12, 2010.

[10] C. Liu and J. Anderson. Task scheduling with self-suspensions in soft
real-time multiprocessor systems. In Proceedings of the 30th Real-Time
Systems Symposium, pages 425–436, 2009.

[11] C. Liu and J. Anderson. An O(m) analysis technique for supporting
real-time self-suspending task systems. In Proceedings of the 33th IEEE
Real-Time Systems Symposium, pages 373–382, 2012.

[12] C. Liu and J. Anderson. Suspension-aware analysis for hard real-
time multiprocessor scheduling. In Proceedings of the 25th EuroMicro
Conference on Real-Time Systems, pages 271–281, 2013.

[13] C. Liu and J. Chen. Bursty-interference analysis techniques for
analyzing complex real-time task models. In RTSS, 2014.

[14] C. Liu, J. Chen, L. He, and Y. Gu. Analysis techniques for supporting
harmonic real-time tasks with suspensions. In Proceedings of the 26th
Euromicro Conference on Real-Time Systems. IEEE, 2014.

[15] J. Liu. Real-Time Systems. Prentice Hall, 2000.
[16] W. Liu, J.-J. Chen, A. Toma, T.-W. Kuo, and Q. Deng. Computation

offloading by using timing unreliable components in real-time systems.
In DAC, pages 1–6, 2014.

[17] J. C. Palencia and M. G. Harbour. Schedulability analysis for tasks with
static and dynamic offsets. In Proceedings of the 19th IEEE Real-Time
Systems Symposium, pages 26–37, 1998.

[18] C. Phillips, C. Stein, E. Torng, and J. Wein. Optimal time-critical
scheduling via resource augmentation. In Proc. of the 29th ACM
Symposium on Theory of Computing, pages 140–149, 1997.

[19] R. Rajkumar. Dealing with Suspending Periodic Tasks. Technical report,
IBM T. J. Watson Research Center, 1991.

[20] F. Ridouard, P. Richard, and F. Cottet. Negative results for scheduling
independent hard real-time tasks with self-suspensions. In Proceedings
of the 25th IEEE Real-Time Systems Symposium, pages 47–56, 2004.

[21] K. Tindell. Adding time-offsets to schedulability analysis. Technical
Report 221, University of York, 1994.

[22] A. Toma and J.-J. Chen. Computation offloading for frame-based real-
time tasks with resource reservation servers. In ECRTS, pages 103–112,
2013.

Appendix
Proof of Theorem 2. Consider a special input instance with
two tasks as follows:

• C1,1 = T − 2 · ε, S1 = C1,2 = 0, T1 = T − ε, and
C2,1 = ε, S2 = T − ε, C2,2 = 0, T2 = T ,

where ε can be arbitrarily small and T > 2 is a constant. It is
clear that this task set is feasible if we assign higher priority to
jobs of τ2 over τ1. However, under EDF or RM, τ1’s jobs may
get higher priorities and thus cause jobs of τ2 to miss deadlines.
In order for this task system to be schedulable under EDF or
RM, on a α-speed processor, the following must hold:

T − 2 · ε
α

+
ε

α
≤ ε.

By rearrangements, we have α ≥ T

ε
− 1. Thus, α → ∞ as

ε→ 0.

Proof of Lemma 4. We consider four cases:

• If t < Ti−Si

2 , we have dbfEDA
i (t) = 0, and the inequality

dbfi(2t) ≥ dbfEDA
i (t) holds since dbfi(2t) ≥ 0.

• If Ti−Si

2 ≤ t < Ti − Si, we have dbfEDA
i (t) = Ci,max

and dbfi(2t) ≥ Ci,1 + Ci,2 ≥ Ci,max. Therefore, the
inequality dbfi(2t) ≥ dbfEDA

i (t) holds.
• If Ti−Si ≤ t < 3Ti

2 − Si

2 , we have dbfEDA
i (t) = Ci,1+

Ci,2 and dbfi(2t) ≥ Ci,1 + Ci,2 ≥ dbfEDA
i (t).

• If 3Ti

2 − Si

2 ≤ t, we have

dbfi(2t) ≥1 dbfi(t+
3Ti

2
− Si

2
)

≥2 dbfi(t+ Ti)

=3 dbfi(t) + Ci,1 + Ci,2

≥4 (dbfEDA
i (t)− Ci,max) + Ci,1 + Ci,2

≥5 dbfEDA
i (t),

where the inequality ≥1 comes from the definition that
t ≥ 3

2Ti − 1
2Si, the inequality ≥2 comes from the fact

that Ti > Si, the equality =1 comes from the definition
of dbfi(), and the inequality ≥4 comes from Lemma 3.

Lemma 12. For any t ≥ 0 and any task τi ∈ T, we have

dbf∗
i (t+ Ti) ≥ dbfEDA

i (t).

Proof: The proof is similar to the proof of Lemma 4. By
definition, dbf∗

i (t+ Ti) ≥ dbf∗
i (t) + Ci,max ≥ dbfEDA

i (t)−
Ci,max + Ci,max = dbfEDA

i (t).

Lemma 13.

inf
x+y+z>1

{
max

{
y

2
,
y

4
+

x+ z

2

}}
>

1

3
.

Proof: Suppose that x+y+z = 1+ε with ε > 0. We can
then rewrite y

4+
x+z
2 to y

4+
1+ε−y

2 = 2+2ε−y
4 . It is clear that y

2

is an increasing function with respect to y, while 2+2ε−y
4 is a

decreasing function with respect to y. Therefore, the infimum
happens when y

2 is equal to 2+2ε−y
4 , i.e., when y is 2+2ε

3 .

Therefore, the infimum is 1+ε
3 , which proves the lemma.

Proof of Theorem 5. Suppose that at time t∗ > 0, we have∑
τi∈T dbfEDA

i (t∗) > t∗. Let’s now classify the tasks in T
into four task sets:

• T1: if t∗ < Ti−Si

2 , task τi is in T1.

• T2: if Ti − Si > t∗ ≥ Ti−Si

2 , task τi is in T2.

• T3: if 3
2Ti − 1

2Si > t∗ ≥ Ti − Si, task τi is in T3.

• T4: if t∗ ≥ 3
2Ti − 1

2Si, task τi is in T4.

Clearly, each task τi in T is either in T1, T2,T3, or T4.
Similarly, we know that

∑
τi∈T1

dbfEDA
i (t∗) = 0. Now

suppose that

∑
τi∈T2

dbfEDA
i (t∗)

t∗ is x,

∑
τi∈T3

dbfEDA
i (t∗)

t∗ is y

and

∑
τi∈T4

dbfEDA
i (t∗)

t∗ is z. Since
∑

τi∈T dbfEDA
i (t∗) > t∗,

we have
z + y + x > 1.

Based on the definition of dbf∗
i () in (4) and 3

2Ti − 1
2Si >

t∗ ≥ Ti − Si for any task τi in T3, we know that∑
τi∈T3

dbfEDA
i (t∗) =

∑
τi∈T3

(Ci,1 + Ci,2)

≤2
∑

τi∈T3

Ci,max = 2
∑

τi∈T3

dbf∗
i (t

∗). (22)

159

Therefore, by (22), we know that

max
t>0

∑
τi∈T dbf∗

i (t)

t
≥

∑
τi∈T dbf∗

i (t
∗)

t∗

≥
∑

τi∈T3
dbf∗

i (t
∗)

t∗
≥

∑
τi∈T3

dbfEDA
i (t∗)

2t∗
=

y

2
. (23)

For a task τi in T4, we know that

∀τi ∈ T4, dbf∗
i (2t

∗) ≥ dbf∗
i (t

∗ +
3

2
Ti − 1

2
Si)

≥ dbf∗
i (t

∗ + Ti)

≥ dbfEDA
i (t∗), (24)

where the first inequality comes from the definition that t∗ ≥
3
2Ti − 1

2Si, the second inequality comes from the fact that
Ti > Si, and the third inequality comes from Lemma 12.
Therefore, we have∑

τi∈T4

dbfEDA
i (t∗) ≤

∑
τi∈T4

dbf∗
i (2t

∗). (25)

Moreover, since Ti − Si > t∗ ≥ Ti−Si

2 for task τi in T2,
we know that∑

τi∈T2

dbfEDA
i (t∗) =

∑
τi∈T2

Ci,max

=
∑

τi∈T2

dbf∗
i (Ti − Si)

≤
∑

τi∈T2

dbf∗
i (2t

∗). (26)

By (22), we also know that∑
τi∈T3

dbfEDA
i (t∗) ≤ 2

∑
τi∈T3

dbf∗
i (t

∗) ≤ 2
∑

τi∈T3

dbf∗
i (2t

∗)

(27)

By combining the above inequalities in (25), (26), and (27),

max
t>0

∑
τi∈T dbf∗

i (t)

t

≥
∑

τi∈T dbf∗
i (2t

∗)
2t∗

≥
∑

τi∈T4∪T3∪T2
dbf∗

i (2t
∗)

2t∗

≥
∑

τi∈T4∪T2
dbfEDA

i (t∗)
2t∗

+

∑
τi∈T3

dbfEDA
i (t∗)

4t∗

=
z + x

2
+

y

4
. (28)

By (23) and (28), we conclude the proof by showing that

max
t>0

∑
τi∈T dbf∗

i (t)

t

≥max

{
y

2
,
z + x

2
+

y

4

}

≥ inf
y+x+z>1

{
max

{
y

2
,
z + x

2
+

y

4

}}

>
1

3
, (29)

where the last inequality comes from Lemma 13.

Proof of Corollary 1. The schedulability test in (13) requires
only to test n + 1 time points, i.e., Δ1,Δ2, . . . ,Δn,∞.

Moreover, since
∑�+1

i=1 dbf
EDA†
i (Δ�+1) = dbfEDA†

�+1 (Δ�+1)+

((Δ�+1 − Δ�)
∑�

i=1 Ui) + (
∑�

i=1 dbf
EDA†
i (Δ�)), calculat-

ing
∑�

i=1 dbf
EDA†
i (Δ�) can be done in O(1) time com-

plexity by storing
∑�

i=1 Ui incrementally and referring to∑�
i=1 dbf

EDA†
i (Δ�). Therefore, the time complexity is O(n),

under the assumption that the tasks are ordered in a non-
decreasing order with respect to Δi.

Proof of Lemma 9. Since 1
1+k+β− x

α
is non-negative for

the given non-negative parameters, k, β, x, α in the integration
range, we have∫ x∗

0

1

1 + k + β − x
α

dx

≤
∫ α(1+k)(e0.5−1)

e0.5

0

1

1 + k + β − x
α

dx

=α

(
loge

1 + k + β

1 + k + β − (1+k+β)(e0.5−1)
e0.5

)
= 0.5α

Proof of Lemma 10 . The proof is basically identical to the
proofs of Lemmas 4, 5, and 7 in [5]. The connection between

the two functions dbfEDA�

i (t) and dbfEDA†
i (t) is identical

to the linear approximation when considering normal sporadic
tasks in [5]. Let W be the partially released workload, in
which

W =def
�−1∑
i=1

(Δ� − δi)Ui = k†
�−1∑
i=1

dbfEDA�

i (δi). (30)

The proof can be done by reducing the relative deadlines
(Lemma 4 in [5]) and increasing the minimum inter-arrival
time properly (Lemma 5 in [5]) to increase the value of W .

Under the assumption of α, we know that k is equal to
α(1+k+β)(e0.5−1)

e0.5 . Therefore, as in the proof of Lemma 9, we

know that
∫ k

0
1

1+k+β− x
α
dx is equal to α

2 . Moreover, based

on Lemma 9, it can be proved (as in Lemma 7 in [5]) that

the utilization
∑�−1

i=1 Ui must be larger than
∫ k

0
1

1+k+β− x
α
dx;

otherwise W will not be sufficient to make the schedulability
test in Theorem 8 fail.

Proof of Lemma 11. This comes directly from Lemma 10 and

Theorem 11 in which max
{
maxt>0

∑�
i=1 dbfi(t)

t ,
∑�−1

i=1 Ui

}
is

larger than α
2 . Moreover, we further drop β in the numerator

in (21), due to the fact that α is
e0.5

(e0.5−1)
(k+β)

(1+k+β) ≥
e0.5

(e0.5−1)
(k)

(1+k+β) .

160

