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Abstract—Over the years, many multiprocessor locking proto-
cols have been designed and analyzed. However, the performance
of these protocols highly depends on how the tasks are partitioned
and prioritized, and how the resources are shared locally and
globally. This paper answers a few fundamental questions when
real-time tasks share resources in multiprocessor systems. We
explore the fundamental difficulty of the multiprocessor syn-
chronization problem and show that a very simplified version
of this problem is NP -hard in the strong sense regardless of the
number of processors and the underlying scheduling paradigm.
Therefore, the allowance of preemption or migration does not
reduce the computational complexity. On the positive side, we
develop a dependency-graph approach that is specifically useful
for frame-based real-time tasks, i.e., when all tasks have the
same period and release their jobs always at the same time.
We present a series of algorithms with speedup factors between
2 and 3 under semi-partitioned scheduling. We further explore
methodologies for and tradeoffs between preemptive and non-
preemptive scheduling algorithms, and partitioned and semi-
partitioned scheduling algorithms. Our approach is extended to
periodic tasks under certain conditions.

1 Introduction
In a multi-tasking system, mutual exclusion for the accesses

to shared resources, e.g., data structures, files, etc., has to be
guaranteed to ensure the correctness of these operations. Such
accesses to shared resources are typically done within the so-
called critical sections, which can be protected by using binary
semaphores or mutex locks. Therefore, at any point in time
no two task instances are in their critical sections that access
the same shared recourse. Moreover, advanced embedded
computing systems heavily interact with the physical world,
and timeliness of computation is an essential requirement
of correctness. To ensure safe operations of such embedded
systems, the satisfaction of the real-time requirements, i.e.,
worst-case timeliness, needs to be verified.

If aborting or restarting a critical section is not allowed,
due to mutual exclusion, a higher-priority job may have to be
stopped until a lower-priority job unlocks the requested shared
resource that was already locked earlier, a so-called priority
inversion. The study of mutual exclusion in uniprocessor real-
time systems can be traced back to the priority inheritance
protocol (PIP) and priority ceiling protocol (PCP) by Sha
et al. [41] in 1990 and the stack resource policy (SRP) by
Baker [5] in 1991. The Immediate PCP, a variant of the PCP,
has been implemented in Ada (called Ceiling locking) and
POSIX (called Priority Protect Protocol).

To schedule real-time tasks on multiprocessor platforms,
there have been three widely adopted paradigms: parti-
tioned, global, and semi-partitioned scheduling. The par-
titioned scheduling approach partitions the tasks statically

among the available processors, i.e., a task is always executed
on the assigned processor. The global scheduling approach
allows a task to migrate from one processor to another at
any time. The semi-partitioned scheduling approach decides
whether a task is divided into subtasks statically and how each
task/subtask is then assigned to a processor. A comprehensive
survey of multiprocessor scheduling in real-time systems can
be found in [17].

The design of synchronization protocols for real-time tasks
on multiprocessor platforms started with the distributed prior-
ity ceiling protocol (DPCP) [40], followed by the multipro-
cessor priority ceiling protocol (MPCP) [39].1 The MPCP is
based on partitioned fixed-priority scheduling and adopts the
PCP for local resources. When requesting global resources that
are shared by several tasks on different processors, the MPCP
executes the corresponding critical sections with priority boost-
ing. By contrast, under the DPCP, the sporadic/periodic real-
time tasks are scheduled based on partitioned fixed-priority
scheduling, except when accessing resources that are bound
to a different processor. That is, the DPCP is semi-partitioned
scheduling that allows migration at the boundary of critical
and non-critical sections.

Over the years, many locking protocols have been designed
and analyzed, including the multiprocessor stack resource pol-
icy (MSRP) [21], the flexible multiprocessor locking protocol
(FMLP) [7], the multiprocessor PIP [18], the O(m) locking
protocol (OMLP) [11], the Multiprocessor Bandwidth Inher-
itance (M-BWI) [20], gEDF-vpr [2], LP-EE-vpr [3], and the
Multiprocessor resource sharing Protocol (MrsP) [12]. Also,
several protocols for hybrid scheduling approaches such as
clustered scheduling [10], reservation-based scheduling [20],
and open real-time systems [34] have been proposed in re-
cent years. To support nested critical sections, Ward and
Anderson [47], [48] introduced the Real-time Nested Locking
Protocol (RNLP) [47], which adds supports for fine-grained
nested locking on top of non-nested protocols.

However, the performance of these protocols highly de-
pends on 1) how the tasks are partitioned and prioritized,
2) how the resources are shared locally and globally, and 3)
whether a job/task being blocked should spin or suspend itself.

Regarding task partitioning, Lakshmanan et al. [29] pre-
sented a synchronization-aware partitioned heuristic for the
MPCP, which organizes the tasks that share common resources
into groups and attempts to assign each group of tasks to
the same processor. Following the same principle, Nemati
et al. [35] presented a blocking-aware partitioning method

1Neither of these two protocols had a concrete name in the original papers.
In the literature, most authors referred to the protocols in [40] as DPCP and
[39] as MPCP, respectively.



that uses an advanced cost heuristic algorithm to split a task
group when the entire group fails to be assigned on one
processor. In subsequent work, Hsiu et al. [24] proposed a
dedicated-core framework to separate the execution of critical
sections and normal sections, and employed a priority-based
mechanism for resource sharing, such that each request can
be blocked by at most one lower-priority request. Wieder
and Brandenburg [50] proposed a greedy slacker partitioning
heuristic in the presence of spin locks. The resource-oriented
partitioned (ROP) scheduling was proposed by Huang et.
al [25] in 2016 and later refined by von der Brüggen et al. [45]
with release enforcement for a special case.

For priority assignment, most of the results in the litera-
ture use rate-monotonic (RM) or earliest-deadline-first (EDF)
scheduling. To the best of our knowledge, the priority as-
signment for systems with shared resources has only been
seriously explored in a small numbers of papers, e.g., relative
deadline assignment under release enforcement in [45], priority
assignment for spinning [1], reasonable priority assignments
under global scheduling [18], and the optimal priority assign-
ment used in the greedy slack algorithm in [50]. However, no
theoretical evidence has been provided to quantify the non-
optimality of the above heuristics.

Although many multiprocessor locking protocols have been
proposed in the literature, there are a few unsolved fundamen-
tal questions when real-time tasks share resources (via locking
mechanisms) in multiprocessor systems:

• What is the fundamental difficulty?
• What is the performance gap of partitioned, semi-

partitioned, and global scheduling?
• Is it always beneficial to prioritize critical sections?

To answer the above questions, we focus on the simplest
and the most basic setting: all tasks have the same period and
release their jobs always at the same time, so-called frame-
based real-time task systems, and are scheduled on M identical
(homogeneous) processors. Specifically, we assume that each
critical section is non-nested and is guarded by only one binary
semaphore or one mutex lock.

Contribution: Our contributions are as follows:

• We show that finding a schedule of the tasks to meet
the given common deadline is NP-hard in the strong
sense regardless of the number of processors M in the
system. Therefore, there is no polynomial-time approxi-
mation algorithm that can bound the allocated number of
processors to meet the given deadline. Moreover, theNP-
hardness holds under any scheduling paradigm. Therefore,
the allowance of preemption or migration does not reduce
the computational complexity.

• We propose a dependency graph approach for multipro-
cessor synchronization, which consists of two steps: 1) the
construction of a directed acyclic graph (DAG), and 2) the
scheduling of this DAG. We prove that, for minimizing
the makespan, the approximation ratio of such an ap-
proach is lower bounded by at least 2− 2

M + 1
M2 under

any scheduling paradigm and 2− 1
M under partitioned or

semi-partitioned scheduling.
• We demonstrate how existing results in the literature of

uniprocessor non-preemptive scheduling can be adopted
to construct the DAG in the first step of the dependency

graph approach when each task has only one critical sec-
tion. This results in several polynomial-time scheduling
algorithms with different constant approximation bounds
for minimizing the makespan. Specifically, the best ap-
proximation developed is a polynomial-time approxima-
tion scheme with an approximation ratio of 2 + ε− 1+ε

M
for any ε > 0 under semi-partitioned scheduling strate-
gies. We further discuss methodologies for and tradeoffs
between preemptive and non-preemptive scheduling al-
gorithms, and partitioned and semi-partitioned scheduling
algorithms.

• We also implemented the dependency graph approach
as a prototype in LITMUSRT [8], [13]. The experimen-
tal results show that the overhead is almost the same
as for state-of-the-art multiprocessor locking protocols.
Moreover, we provide extensive numerical evaluations,
which demonstrate the performance of the proposed ap-
proach under different scheduling constraints. Comparing
to the state-of-the-art resource-oriented partitioned (ROP)
scheduling, our approach shows significant improvement.

2 System Model

2.1 Task Model
In this paper, we will implicitly consider frame-based real-

time task systems to be scheduled on M identical (homoge-
neous) processors. The given tasks release their jobs at the
same time and have the same period and relative deadline. Our
studied problem is the task synchronization problem where all
tasks have exactly one (not nested) critical section, denoted as
TS-OCS. Specifically, each task τi releases a job (at time 0 for
notational brevity) with the following properties:

• Ci,1 is the execution time of the first non-critical section
of the job.

• Ai,1 is the execution time of the (first) critical section of
the job, in which a binary semaphore or a mutex σ(τi,1)
is used to control the access to the critical section.

• Ci,2 is the execution time of the second non-critical
section of the job.

A subjob is a critical section or a non-critical section. There-
fore, each job of task τi has three subjobs. We assume the
task set T is given and that the deadline is either implicit, i.e.,
identical to the period, or constrained, i.e., smaller than the
period. The cardinality of a set X is denoted as |X|. We also
make the following assumptions:

• For each task τi in T, Ci,1 ≥ 0, Ci,2 ≥ 0, and Ai,1 ≥ 0.
• The execution of the critical sections guarded by one

binary semaphore s must be sequentially executed under a
total order. That is, if two tasks share the same semaphore,
their critical sections must be executed one after another
without any interleaving.

• The execution of a job cannot be parallelized, i.e.,
a job must be sequentially executed in the order of
Ci,1, Ai,1, Ci,2.

• There are in total z binary semaphores.

This paper will implicitly focus on the above task model. In
Section 8, we will explain how the algorithms in this paper can
be extended to periodic task systems under certain conditions.



2.2 Scheduling Strategies
Here, we define scheduling strategies and the properties of

a schedule for a frame-based real-time task system. Note that
the terminology used here is limited to the scenario where each
task in T releases only one job at time 0. Therefore, we will
use the term jobs and tasks interchangeable.

A schedule is an assignment of the given jobs (tasks) to one
of the M identical processors, such that each job is executed
(not necessarily consecutively) until completion. A schedule
for T can be defined as a function ρ : R×M → T∪{⊥}, where
ρ(t,m) = τj denotes that the job of task τj is executed at time
t on processor m, and ρ(t,m) = ⊥ denotes that processor m
is idle at time t. We assume that a job has to be sequentially
executed, i.e., intra-task parallelism is not possible. Therefore,
it is not feasible to run a job in parallel on two processors,
i.e., ρ(t,m) 6= ρ(t,m′) for any m 6= m′ if ρ(t,m) 6= ⊥.

Some other constraints may also be introduced. A schedule
is non-preemptive if a job cannot be preempted by any other
job, i.e., there is only one interval with ρ(t,m) = τj on
processor m for each task τj in T. A schedule is preemptive
if a job can be preempted, i.e., more than one interval with
ρ(t,m) = τj for any task τj in T on processor m is allowed.

For a partitioned schedule, a job has to be executed on
one processor. That is, there is exactly one processor m with
ρ(t,m) = τj for every task τj in T. Such a schedule can
be preemptive or non-preemptive. For a global schedule, a job
can be arbitrarily executed on any of the M processors at any
time point. That is, it is possible that ρ(t,m) = τj and
ρ(t′,m′) = τj for m 6= m′ and t 6= t′. By definition,
a global schedule is preemptive (for frame-based real-time
task systems) in our model. For a semi-partitioned schedule,
a subjob (either a critical section or a non-critical section)
has to be executed on one processor. Such a semi-partitioned
schedule can be preemptive or non-preemptive.

Based on the above definitions, a partitioned schedule
is also a semi-partitioned schedule, and a semi-partitioned
schedule is also a global schedule.

2.3 Scheduling Theory
In the rich literature of scheduling theory, one specific

objective is to minimize the completion time of the jobs,
called makespan. For frame-based real-time task systems, if
the makespan of the jobs released at time 0 is no more than the
relative deadline, then the task set can be feasibly scheduled
to meet the deadline.2 We state the makespan problem for
TS-OCS that is studied here as follows:

Definition 1: The TS-OCS Makespan Problem: We are
given M identical (homogeneous) processors. There are N
tasks arriving at time 0. Each task is given by {Ci,1, Ai,1, Ci,2}
and has at most one critical section, guarded by one binary
semaphore. The objective is to find a schedule that minimizes
the makespan.

Alternatively, we can also investigate the bin packing version
of the problem, i.e., minimizing the number of allocated
processors to meet a given common deadline D.

2Note that the deadline is never larger than the period in our setting.

Definition 2: The TS-OCS Bin Packing Problem: We are
given identical (homogeneous) processors. There are N tasks
arriving at time 0 with a common deadline D. Each task is
given by {Ci,1, Ai,1, Ci,2} and has at most one critical section,
guarded by one binary semaphore. The objective is to find a
schedule to meet the deadline with the minimum number of
allocated processors.

Essentially, the decision versions of the makespan and the
bin packing problems are identical:

Definition 3: The TS-OCS Schedulability Problem: We
are given M identical (homogeneous) processors. There are
N tasks arriving at time 0 with a common deadline D. Each
task is given by {Ci,1, Ai,1, Ci,2} and has at most one critical
section, guarded by one binary semaphore. The objective is to
find a schedule to meet the deadline by using the M processors.

In the domain of scheduling theory, a scheduling problem
is described by a triplet Field1|Field2|Field3.

• Field1: describes the machine environment.
• Field2: specifies the processing characteristics and con-

straints.
• Field3: presents the objective to be optimized.

For example, the scheduling problem 1|rj |Lmax deals with
a uniprocessor system, in which the input is a set of jobs
with different release times and different absolute deadlines,
and the objective is derive a non-preemptive schedule which
minimizes the maximum lateness. The scheduling problem
P ||Cmax deals with a homogeneous multiprocessor system,
in which the input is a set of jobs with the same release
time, and the objective is to derive a partitioned sched-
ule which minimizes the makespan. The scheduling problem
P |prec|Cmax is an extension of P ||Cmax by further consid-
ering the precedence constraints of the jobs. The schedul-
ing problem P |prec, prmp|Cmax further allows preemption.
Note that in classical scheduling theory, preemption in par-
allel machines implies the possibility of job migration from
one machine to another.3 Therefore, the scheduling problem
P |prec, prmp|Cmax allows job preemption and migration, i.e.,
preemptive global scheduling.

2.4 Approximation Metrics
Since many scheduling problems are NP-hard in the

strong sense, polynomial-time approximation algorithms are
often used. In the realm of real-time systems, there are two
widely adopted metrics:

The Approximation Ratio compares the resulting objectives
of (i) scheduling algorithm A and (ii) an optimal algorithm
when scheduling any given task set. Formally, an algorithm
A for the makespan problem (i.e., Definition 1) has an ap-
proximation ratio α ≥ 1, if given any task set T, the resulting
makespan is at most αC∗max on M processors, where C∗max
is the minimum (optimal) makespan to schedule T on M
processors. An algorithm A for the bin packing problem (i.e.,
Definition 2) has an approximation ratio α ≥ 1, if given any
task set T, it finds a schedule of T on αM∗ processors to meet

3In real-time systems, this is not necessarily the case. For instance, under
preemptive partitioned scheduling a job can be preempted and resumed later
on the same processor without migration.



the common deadline, where M∗ is the minimum (optimal)
number of processors required to feasibly schedule T.

The Speedup Factor [27], [37] of a scheduling algorithm
A indicates the factor α ≥ 1 by which the overall speed of
a system would need to be increased so that the scheduling
algorithm A always derives a feasible schedule to meet the
deadline, provided that there exists one at the original speed.
This is used for the problem in Definition 3.

We note that an algorithm that has an approximation ratio
α for the makespan problem in Definition 1 also has a speedup
factor α for the schedulability problem in Definition 3.

Please note that the speedup factor is only a means to
analyze the worst-case behavior of an algorithm. Algorithms
with similar speedup factors may differ largely regarding their
performance. This fact and how considering speedup factors
during the algorithm design can lead to reduced performance
has been recently discussed by Chen et al. [16]. To the best of
our knowledge, the presented algorithms in this paper do not
suffer from any of the potential pitfalls pointed out in [16].

3 Dependency Graph Approach for Multipro-
cessor Synchronization

To handle the studied makespan problem in Definition 1,
we propose a Dependency Graph Approach with two steps:

• In the first step, a directed graph G = (V,E) is con-
structed. A subjob (i.e., a critical or a non-critical section)
is a vertex in V and the edges in E describe the precedents
constraints of these jobs. The subjob Ci,1 is a predecessor
of the subjob Ai,1, and Ai,1 is a predecessor of the subjob
Ci,2. If two jobs of τi and τj share the same binary
semaphore, i.e., σ(τi,1) = σ(τj,1), then either the subjob
Ai,1 is the predecessor of Aj,1 or the subjob Aj,1 is the
predecessor of Ai,1. All the critical sections guarded by
a binary semaphore form a chain in G, i.e., the critical
sections of the binary semaphore follow a total order.
Therefore, we have the following properties in set E:
◦ The two directed edges (Ci,1, Ai,1) and (Ai,1, Ci,2) are

in E.
◦ Suppose that Tk is the set of tasks which require the

same binary semaphore sk. Then, the |Tk| tasks in Tk
follow a certain total order π such that (Ai,1, Aj,1) is
a directed edge in E when π(τi) = π(τj)− 1.

Fig. 1 provides an example for a task dependency
graph with one binary semaphore. Since there are z
binary semaphores in the task set, the task dependency
graph G has in total z connected subgraphs, denoted
as G1, G2, . . . , Gz . In each connected subgraph G`, the
corresponding critical sections of the tasks that request
critical sections guarded by the same semaphore form a
chain and have to be executed sequentially. For example,
in Fig. 1, the dependency graph forces the scheduler to
execute the critical section A1,1 prior to any of the other
three critical sections.

• In the second step, a corresponding schedule of G on
M processors is generated. The schedule can be based
on system’s restrictions or user’s preferences, i.e., either
preemptive or non-preemptive schedules, either global,
semi-partitioned, or partitioned schedules.

C1,1

A1,1

C1,2

C2,1

A2,1

C2,2

C3,1

A3,1

C3,2

C4,1

A4,1

C4,2

Fig. 1. A task dependency graph for a task set with one binary semaphore.

The second step of the dependency graph has been wildly
studied in scheduling theory. A solution of the problem
P |prec|Cmax results in a semi-partitioned schedule, since the
dependency graph is constructed by considering a critical
section or a non-critical section as a subjob. Moreover, a
solution of the problem P |prec, prmp|Cmax results in a global
schedule. For deriving a partitioned schedule, we can force the
subjobs generated by a job to be tied to one processor. That
is, P |prec, tied|Cmax targets a partitioned non-preemptive
schedule and P |prec, prmp, tied|Cmax targets a partitioned
preemptive schedule.

Therefore, the key issue is the construction of the de-
pendency graph, i.e., the first step. An alternative view of
the dependency graph approach is to build the dependency
graph assuming an always sufficient number of processors, i.e.,
assuming an infinite number of processors, and then the second
step considers the constraint of the number of processors.
Towards the first step, we need the following definition:

Definition 4: A critical path of a task dependency graph
G is one of the longest paths of G. The critical path length of
G is denoted by len(G).

For the rest of this paper, we denote a dependency task
graph of the input task set T that has the minimum critical
path length as G∗. Note that G∗ is independent of M .

Lemma 1: len(G∗) is the lower bound of the TS-OCS
makespan problem for task set T on M processors.

Proof: This comes from the setting of the problem, i.e.,
each task τi has only one critical section guarded by one binary
semaphore, and the definition of the graph G∗, i.e., using as
many processors as possible.

Definition 5: A feasible schedule S(G) of a task de-
pendency graph G respects the precedence constraints de-
fined in G and the specified scheduling requirement, e.g.,
being global/semi-partitioned/partitioned and preemptive/non-
preemptive. L(S(G)) is the makespan of S(G).

With the above definitions, we can recap the objectives of
the two steps in the dependency graph approach. In the first
step, we would like to construct a dependency graph G to
minimize len(G), and in the second step, we would like to
construct a schedule S(G) to minimize L(S(G)).

We conclude this section by stating the following theorem:

Theorem 1: The optimal makespan of the TS-OCS



makespan problem for T on M processors is at least

max

{∑
τi∈T

Ci,1 +Ai,1 + Ci,2
M

, len(G∗)

}
(1)

where G∗ is a dependency task graph of T that has the
minimum critical path length.

Proof: The lower bound len(G∗) comes from Lemma 1
and the lower bound

∑
τi∈T

Ci,1+Ai,1+Ci,2
M is due to the pigeon

hole principle.

4 Computational Complexity and Lower
Bounds

This section presents the computational complexity and
lower bounds for the approximation ratios of the dependency
graph approach.

4.1 Computational Complexity
The following theorem shows that constructing G∗ is

unfortunately NP-hard in the strong sense.

Theorem 2: Constructing a dependency task graph G∗ that
has the minimum critical path length is NP-hard in the strong
sense.

Proof: This theorem is proved by a reduction from the
decision version of the scheduling problem 1|rj |Lmax, i.e.,
uniprocessor non-preemptive scheduling, in which the objec-
tive is to minimize the maximum lateness assuming that each
job Jj in the given job set J has its known processing time
pj ≥ 0, arrival time rj ≥ 0, and absolute deadline dj . This
problem is NP-hard in the strong sense by a reduction from
the 3-Partition problem [31]. Suppose that the decision version
of the scheduling problem 1|rj |Lmax is to validate whether
there exists a schedule in which the finishing time of each job
Jj is no less than dj .

Let H be any positive integer greater than maxj∈J dj . For
each job Jj in J, we construct a task τj with one critical
section, where Cj,1 is set to rj , Cj,2 is set to H−dj , and Aj,1
is set to pj . By the setting, Cj,1 ≥ 0, Cj,2 ≥ 0, and Aj,1 ≥ 0
for every constructed task τj . The critical sections of all the
constructed tasks are guarded by only one binary semaphore.
Let the task set constructed above be T. The above input task
set T by definition is a feasible input task set for the one-
critical-section task synchronization problem (TS-OCS).

We now prove that there is a non-preemptive uniprocessor
schedule for J in which all the jobs can meet their deadlines if
and only if there is a dependency task graph G∗ with a critical
path length less than or equal to H for the constructed task
set T.

If part, i.e., len(G∗) ≤ H holds: Without loss of gen-
erality, we index the tasks in T so that the critical section
of Ai,1 is the immediate predecessor of the critical section
Ai+1,1 in G∗, e.g., as in Fig. 1. Suppose that G∗(τi) is the
subgraph of G∗ that consists of only the vertices representing
{Ck,1, Ak,1, Ck,2 | k = 1, 2, . . . , i− 1} ∪ {Ci,1, Ai,1} and the
corresponding edges. Let fi be the longest path in G∗(τi) that
ends at the vertex representing Ai,1.

By definition, f1 is C1,1 + A1,1. Moreover, fi is
max{fi−1, Ci,1}+Ai,1 for every task τi in T. Since len(G∗) ≤
H and Ci,2 = H−di, we know that fi+Ci,2 ≤ H ⇒ fi ≤ di
for every task τi in T.

We can now construct the uniprocessor non-preemptive
schedule for J by following the same execution order. Here,
we index the jobs in J corresponding to T. The finishing time
of job J1 is r1 +p1 = C1,1 +A1,1 = f1. The finishing time of
job Ji is max{fi−1, ri}+ pi = max{fi−1, Ci,1}+Ai,1 = fi.

This proves the if part.

Only-If part, i.e., there is a uniprocessor non-preemptive
schedule in which all the deadlines of the jobs in J are met: The
proof for the if part can be reverted and the same arguments
can be applied. Due to space limitation, details are omitted.

Theorem 3: The makespan problem with task synchroniza-
tion for T on M processors is NP-hard in the strong sense
even if M is sufficiently large under any scheduling paradigm.

Proof: This follows directly from Theorem 2. Consider
M ≥ |T|+1 processors. The if-and-only-if proof in Theorem 2
can be extended by introducing a concrete schedule that
executes the two non-critical sections of task τi on processor
i and the critical section of task τi on processor |T|+ 1.4

Theorem 3 expresses the fundamental difficulty of the
multiprocessor synchronization problem and shows that a
very simplified version of this problem is NP -hard in the
strong sense regardless of the number of processors and the
underlying scheduling paradigm. Therefore, the allowance of
preemption or migration does not reduce the computational
complexity. The fundamental problem is the sequencing of
the critical sections, which is independent from the underlying
scheduling paradigm. Therefore, no matter what flexibility
the scheduling algorithm has (unless aborting and restarting
a critical section is allowed), the computational complexity
remains NP -hard in the strong sense.

4.2 Remarks: Bin Packing
Although the focus of this paper is the makespan problem

in Definition 1 and the schedulability problem in Definition 3,
we also state the following theorems to explain the difficulty
of the bin packing problem in Definition 2.

Theorem 4: Minimizing the number of processors for a
given common deadline of T with task synchronization for T
(i.e., Definition 2) is NP-hard in the strong sense under any
scheduling paradigm.

Proof: As the decision problem is Definition 3, we reach
the conclusion based on Theorem 3.

Theorem 5: There is no polynomial-time (approximation)
algorithm to minimize the number of processors for a given
common deadline of T with task synchronization for T under
any scheduling paradigm unless P = NP .

Proof: This is based on Theorems 2 and 3. If such a
polynomial-time algorithm exists, then the problem 1|rj |Lmax

is solvable in polynomial time, which implies P = NP .

4The same statement also holds for using M = |T| processors, but the
proof is more complicated.



4.3 Lower Bounds
The dependency graph approach requires two steps. The

following theorem shows that even if both steps are optimized,
the resulting schedule for the makespan problem with task
synchronization is not optimal and has an asymptotic lower
bound 2 of the approximation ratio.

Theorem 6: The optimal schedule on M identical proces-
sors for the dependency graph G∗ that has the minimum critical
path length is not optimal for the TS-OCS makespan problem
and can have an approximation bound of at least

• 2− 2
M + 1

M2 under any scheduling paradigm, and

• 2− 1
M under partitioned or semi-partitioned scheduling.

Proof: We prove this theorem by providing a concrete
input instance as follows:

• Suppose that M is a given integer with M ≥ 2 and we
have N = M2 −M + 1 tasks.

• We assume a very small positive number δ and a number
Q which is much greater than δ, i.e., Q

MN � δ > 0.
• All N tasks have a critical section guarded by the same

binary semaphore.
• Task τ1 has C1,1 = δ, A1,1 = Q− Q

M , and C1,2 = Q
M +Nδ

• Task τi has Ci,1 = δ, Ai,1 = δ, and Ci,2 = Q
M for

i = 2, 3, . . . , N .

We need to show that the optimal dependency graph of this
input instance in fact leads to the specified bound. The proof
is in Appendix.

5 Algorithms to Construct G

The key to success is to find G∗. Unfortunately, as shown in
Theorem 2, finding G∗ is NP-hard in the strong sense. How-
ever, finding good approximations is possible. The problem
to construct G is called the dependency-graph construction
problem. Here, instead of presenting new algorithms to find
good approximations of G∗, we explain how to use the existing
algorithms of the scheduling problem 1|rj |Lmax to derive good
approximations of G∗.

It should be first noted that the problem 1|rj |Lmax cannot
be approximated with a bounded approximation ratio because
the optimal schedule may have no lateness at all and any
approximation leads to an unbounded approximation ratio.
However, a variant of this problem can be easily approximated.
This is known as the delivery-time model of the problem
1|rj |Lmax. In this model, each job Jj has its release time
rj , processing time pj , and delivery time qj ≥ 0. After a job
finishes its execution on a machine, its result (final product)
needs qj amount of time to be delivered to the customer.
The objective is to minimize the makespan K. Therefore, the
effective deadline dj of job Jj on the given single machine
is dj = K − qj . Since K is a constant, this is effectively
equivalent to the case when dj is set to −qj .

The delivery-time model of the problem 1|rj |Lmax can
then be effectively approximated. Moreover, our problem to
construct a good dependency graph for T is indeed equivalent
to the delivery-time model of the problem 1|rj |Lmax. To
show such equivalence, Algorithm 1 presents the detailed
transformation. For each semaphore sk, suppose that Tk is the

set of tasks that use sk (Line 1 in Algorithm 1). For each
task set Tk, we transform the problem to construct Gk to
an equivalent delivery-time model of the problem 1|rj |Lmax

(Line 3 to Line 8). Then, we construct the graph Gk based
on the derived schedule of an approximation algorithm for the
delivery-time model of the problem 1|rj |Lmax.

Theorem 7: An α-approximation algorithm for the
delivery-time model of the problem 1|rj |Lmax applied in
Algorithm 1 guarantees to derive a dependency graph G with
len(G) ≤ α× len(G∗).

Proof: This theorem can be proved by a counterpart of
the proof of Theorem 2. We will show that Algorithm 1 is
in fact an L-reduction (i.e., a reduction that preserves the
approximation ratio) from the input task set to the delivery-
time model of the problem 1|rj |Lmax. In this L-reduction,
there is no loss of the approximation ratio.

First, by definition, two tasks are independent if they do
not share any semaphore. Moreover, since the TS-OCS problem
assumes that a task accesses at most one binary semaphore,
a task τi can only appear at most in one Tk for a certain k.
Therefore, len(G∗) = maxk=1,2,...,z len(G∗k).

To show that the reduction preserves the approximation
ratio, we only need to prove the one-to-one mapping. One
possibility is to prove that a schedule for the input instance
of the problem 1|rj |Lmax delivers the last result at time X if
and only if the corresponding graph Gk constructed by using
Lines 9 and 10 in Algorithm 1 has a critical path length X .
This is unfortunately not possible because a (technically bad
but possible) schedule for the input instance of the problem
1|rj |Lmax can be arbitrarily alerted by inserting useless delays.

Fortunately, for a given permutation to order the |Tk| tasks
in Tk, we can always construct a schedule for the input
instance of the problem 1|rj |Lmax by respecting the given
order and their release times. Such a schedule for the input
instance of the problem 1|rj |Lmax delivers the last result at
time X if and only if the corresponding graph Gk constructed
by using Lines 9 and 10 in Algorithm 1 has a critical path
length X . Moreover, the schedule for one such permutation is
optimal for the input instance of the problem 1|rj |Lmax.

Therefore, the approximation ratio is perserved while con-
structing Gk. According to the above discussions, len(Gk) ≤
α× len(G∗k). Moreover,

len(G) ≤ max
k=1,2,...,z

len(Gk)

≤ α× max
k=1,2,...,z

len(G∗k) = α× len(G∗)

According to Theorem 7 and Algorithm 1, we can sim-
ply apply the existing algorithms of the scheduling problem
1|rj |Lmax in the delivery-time model to derive G∗ by using
well-studied branch-and-bound methods, see for example [14],
[33], [36], or good approximations of G∗, see for example [23],
[38]. Here, we will summarize several polynomial-time ap-
proximation algorithms. The details can be found in [23].

For the delivery-time model of the scheduling problem
1|rj |Lmax, the extended Jackson’s rule (JKS) is as follows:
“Whenever the machine is free and one or more jobs is



Algorithm 1 Graph Construction Algorithm
Input: set T of N tasks with z shared binary semaphores;

1: Tk ← {τi | σ(τi,1) = sk} for k = 1, 2, . . . , z;
2: for k ← 1 to z do
3: J← ∅;
4: for each τi ∈ Tk do
5: create a job Ji with ri ← Ci,1, pi ← Ai,1, and qi ← Ci,2,

where qi is the delivery time;
6: J← J ∪ {Ji};
7: end for
8: apply an approximation algorithm to derive a non-preemptive schedule

ρk for the delivery-time model of the problem 1|rj |Lmax on one
machine;

9: construct the initial dependency graph Gk for Tk , with the directed
edges (Ci,1, Ai,1) and (Ai,1, Ci,2) for every task τi ∈ Tk;

10: create a directed edge from Ai,1 to Aj,1 in Gk if job Jj is executed
right after (but not necessarily consecutively to) job Ji in ρk;

11: end for
12: return G = G1 ∪G2 ∪ . . . ∪Gz ;

available for processing, schedule an available job with largest
delivery time,” as explained in [23].

Lemma 2: The extended Jackson’s rule (JKS) is
a polynomial-time 2-approximation algorithm for the
dependency-graph construction problem.

Proof: This is based on Theorem 7 and the approximation
ratio of JKS for the problem 1|rj |Lmax, where the proof can
be found in [28].

Potts [38] observed some nice properties when the ex-
tended Jackson’s rule is applied. Suppose that the last delivery
is due to a job Jc. Let Ja be the earliest scheduled job so
that the machine in the problem 1|rj |Lmax is not idle between
the processing of Ja and Jc. The sequence of the jobs that
are executed sequentially from Ja to Jc is called a critical
sequence. By the definition of Ja, all jobs in the critical
sequence must be released no earlier than the release time
ra of job Ja. If the delivery time of any job in the critical
sequence is not shorter than the delivery time qc of Jc, then
it can be proved that the extended Jackson’s rule is optimal
for the problem 1|rj |Lmax. However, if the delivery time qb
of a job Jb in the critical sequence is shorter than the delivery
time qc of Jc, the extended Jackson’s rule may start a non-
preemptive job Jb too early. Such a job Jb that appears last
in the critical sequence is called the interference job of the
critical sequence.

Potts [38] suggested to attempt at improving the schedule
by forcing some interference job to be executed after the
critical job Jc, i.e., by delaying the release time of Jb from rb
to r′b = rc. This procedure is repeated for at most n iterations
and the best schedule among the iterations is returned as the
solution.

Lemma 3: Potts’ iterative process (Potts) is a polynomial-
time 1.5-approximation algorithm for the dependency-graph
construction problem.

Proof: This is based on Theorem 7 and the approximation
ratio of Potts for the problem 1|rj |Lmax, where the proof can
be found in [23].

Hall and Shmoys [23] further improved the approximation
ratio to 4/3 by handling a special case when there are two jobs
Ji and Jh with pi > P/3 and ph > P/3 where P is

∑
Jj
pj

and running Potts’ algorithm for 2n iterations.5

Lemma 4: Algorithm HS is a polynomial-time 4/3-
approximation algorithm for the dependency-graph construc-
tion problem.

Proof: This is based on Theorem 7 and the approximation
ratio of HS for the problem 1|rj |Lmax, where the proof can
be found in [23].

The algorithm that has the best approximation ratio for the
delivery-time model of the problem 1|rj |Lmax is a polynomial-
time approximation scheme (PTAS) developed by Hall and
Shmoys [23].

Lemma 5: The dependency-graph construction problem
admits a polynomial-time approximation scheme (PTAS), i.e.,
the approximation bound is 1 + ε under the assumption that 1

ε
is a constant for any ε > 0.

6 Algorithms to Schedule Dependency Graphs
This section presents our heuristic algorithms to schedule

the dependency graph G derived from Algorithm 1. We first
consider the special case when there is a sufficient number of
processors, i.e., M ≥ N .

Lemma 6: Assume a given task set T, M identical proces-
sors, and a given dependency graph G. The makespan of the
schedule which executes task τi on exactly one processor i as
early as possible by respecting to the precedence constraints
defined in G is len(G) if M ≥ N . By definition, this
is a partitioned schedule for the given jobs which is non-
preemptive with respect to the subjobs.

Proof: Since M ≥ N , all the tasks can start their first
non-critical sections at time 0. Therefore, the critical section
of task τi arrives exactly at time Ci,1. Then, the finishing time
of the critical section of task τi is exactly the longest path in
G that finishes at the vertex representing Ai,1. Therefore, the
makespan of such a schedule is exactly len(G).

For the remaining part of this section, we will focus on
the other case, i.e., when M < N . We will heavily utilize
the concept of list schedules developed by Graham [22] and
extensions of list scheduling to schedule the dependency graph
G derived from Section 5. A list schedule works as follows:
Whenever a processor idles and there are subjobs eligible to
be executed (i.e., all of their predecessors in G have finished),
one of the eligible subjobs is executed on the processor. When
the number of eligible subjobs is larger than the number of
idle processors, many heuristic strategies exist to decide which
subjobs should be executed with higher priorities. Graham [22]
showed that list schedules can be generated in polynomial
time and have a 2− 1

M approximation ratio for the scheduling
problem P |prec|Cmax.

We will now explain how to use or extend list schedules to
generate partitioned or semi-partitioned as well as preemptive
or non-preemptive schedules based on G.

5Hall and Shmoys [23] further use the concept of forward and inverse
problems of the input instance of 1|rj |Lmax. As they are not highly related,
we omit those details.



6.1 Semi-Partitioned Scheduling
Since the subjobs of a task are scheduled individually in list

scheduling, a task may migrate among different processors in
the generated list schedule, i.e., resulting in a semi-partitioned
schedule. However, a subjob by default is non-preemptive in
list schedules.

The following lemma is widely used in the literature
for the list schedules developed by Graham [22]. All the
existing results of federated scheduling, e.g., [6], [15], [32],
for scheduling sporadic dependent tasks (that are not due to
synchronizations) all implicitly or explicitly use this property.

Lemma 7: The makespan of a list schedule of a given task
dependency graph G for task set T on M processors is at most∑

τi∈T(Ci,1+Ai,1+Ci,2)−len(G)

M + len(G).

Proof: The original proof can be traced back to Theorem
1 by Graham [22] in 1969. We omit the proof here as this
is a standard procedure in the proof of list schedules for the
scheduling problem P |prec|Cmax.

Lemma 8: If len(G) ≤ α × len(G∗) for a certain α ≥ 1,
the makespan of a list schedule of the task dependency graph
G for task set T on M processors has an approximation bound
of 1 + α− α

M if M < N .

Proof: Since M < N , the makespan of a list schedule of
G, denoted as L(List(G)), is

L(List(G))

Lemma 7
≤

(
∑
τi∈T Ci,1 + Ci,2 +Ai,1)− len(G)

M
+ len(G)

=

∑
τi∈T Ci,1 + Ci,2 +Ai,1

M
+ len(G)(1− 1

M
)

assumption
≤

∑
τi∈T Ci,1 + Ci,2 +Ai,1

M
+ α× len(G∗)(1− 1

M
)

Theorem 1
≤ (1 + α− α

M
)OPT (2)

We now conclude the approximation ratio.

Theorem 8: When applying JKS (α = 2, from Lemma 2),
Potts (α = 1.5, from Lemma 3), HS (α = 4/3, from
Lemma 4), and PTAS (α = ε for any ε > 0, from Lemma 5) to
generate the task dependency graph G, the TS-OCS Makespan
problem admits polynomial-time algorithms to generate a
semi-partitioned schedule that has an approximation ratio of{

α if M ≥ N
1 + α− α

M if M < N
(3)

Proof: The case when M < N comes from Lemma 8.
The case when M ≥ N comes from Lemma 6 and the fact
that a partitioned schedule is also a semi-partitioned schedule
by definition.

The default list schedulers are non-preemptive in the subjob
level. However, it may be more efficient if the second non-
critical section of a task can be preempted by a critical section.
Otherwise, some processors may be busy executing second
non-critical sections and a critical section has to wait. As a
result, not only this critical section itself but also its successors

in G may be unnecessary postponed and therefore increase the
makespan. Allowing such preemption in the scheduler design
can be achieved easily as follows:

• In the algorithm, the scheduling decision is made at a
time t when there is a subjob eligible or finished.

• Whenever a subjob representing a critical section is
eligible, it can be assigned to a processor that executes
a second non-critical section of a job by preempting that
subjob.

The makespan of the resulting schedule remains at most∑
τi∈T(Ci,1+Ai,1+Ci,2)−len(G)

M + len(G) as in Lemma 7. There-
fore, the approximation ratios in Theorem 8 still hold even if
preemption of the second non-critical sections is possible.

6.2 Partitioned Scheduling
In a partitioned schedule of the frame-based task set T,

all subjobs of a task must be executed on the same processor.
Therefore, the list scheduling algorithm variant must ensure
that once the first subjob Ci,1 of task τi is executed on a
processor, all subsequent subjobs of task τi are tied to the
same processor in any generated list schedule. Specifically,
the problem is termed as P |prec, tied|Cmax in Section 2.3.

A special case of P |prec, tied|Cmax has been recently
studied to analyze OpenMP systems by Sun et al. [43] in
2017. They assumed that the synchronization subjob of a task
always takes place at the end of the task. Our dependency
graph G unfortunately does not satisfy the assumption because
the synchronization subjob is in fact in the middle of a
task. Nevertheless, the algorithm in [43] can still easily be
applied. We illustrate the key strategy by using Fig. 2. The
subgraph Ḡ of G that consists of only the vertices of the first
non-critical sections and the critical sections in fact satisfies
the assumption made by Sun et al. [43]. Therefore, we can
generate a multiprocessor schedule for the dependency graph
Ḡ on M processors by using the BFS∗ algorithm (an extension
of the breadth-first-scheduling algorithm) by Sun et al. [43].
It can be imagined that the subjobs that represent the second
non-critical sections Ci,2 are background workload and can be
executed only at the end of the schedule or when the available
idle time is sufficient to complete Ci,2.

Alternatively, in order to improve the parallelism, another
heuristic algorithm can be applied where all the first non-
critical sections are scheduled before any of the critical sec-
tions, using list scheduling. Once the first non-critical section
Ci,1 of task τi is assigned on a processor, the remaining
execution of task τi is forced to be executed on that processor.
For completeness, we illustrate this in Algorithm 2 in the
Appendix, assuming that second non-critical sections can be
preempted by critical sections and are handled as background
workload.

7 Timing Anomaly
So far, we assume that Ci,1, Ai,1, and Ci,2 are exact for

a task τi. However, the execution of a subjob of task τi can
be finished earlier than in the worst case. It should be noted
that list schedules are in this case not sustainable, i.e., the
reduction of the execution time of a subjob can lead to a
worse makespan due to the well-known multiprocessor timing
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Fig. 2. A schematic of a dependency graph with tied tasks.

anomaly observed by Graham [22]. There are three ways to
handle such timing anomaly: 1) ignore the early completion
and stick to the offline schedule, 2) reclaim the unused time
(slack) carefully without creating timing anomaly, e.g., [51],
or 3) use a safe upper bound, e.g., Lemma 7 to account for
all possible list schedules. Each of them has advantages and
disadvantages. It is up to the designers to choose whether
they want to be less effective (Option 1), pay more runtime
overhead (Option 2), or be more pessimistic by taking always
a safe upper bound (Option 3).

Due to multiprocessor timing anomaly, a dependency graph
with a longer critical path may have a better makespan in the
resulting list schedule. Our approach can be easily improved by
returning and scheduling the intermediate dependency graphs
in Algorithms Potts and HS.

8 Periodic Tasks with Different Periods
Our approach can be extended to periodic tasks with

different periods under an assumption that a binary semaphore
is only shared among the tasks that have the same period. For
each of the z semaphores, a DAG is constructed using Algo-
rithm 1. Afterwards, the z resulting DAGs can be scheduled
using any approach for multiprocessor DAG scheduling, e.g.,
global scheduling [30], Federated Scheduling [32] as well as
enhanced versions like Semi-Federated Scheduling [26] and
Reservation-Based Federated Scheduling [44].

9 Evaluations
This section presents the evaluations of the proposed

approach. We first provide the measured overhead of our
approach in LITMUSRT. Details regarding the LITMUSRT

implementation can be found in the Appendix. Afterwards, we
evaluate the performance by applying numerical evaluations
under different configurations.

9.1 Implementations and Overheads
The hardware platform used in our experiments is a cache-

coherent SMP, consisting of two 64-bit Intel Xeon Processor
E5-2650Lv4 running at 1.7 GHz, with 35 MB cache and
64 GB of main memory. Both the partitioned and the semi-
partitioned scheduling algorithms for the dependency graph
approach, presented in Section 6, have been implemented
in LITMUSRT in order to investigate the overheads, under the
plug-in Partitioned Fixed Priority (P-FP). Details can be found
in the Appendix. Out implementation has been released in [42].

Max.(Avg.) in µs DPCP MPCP PDGA SDGA
CXS 30.93 (1.51) 31.1 (0.67) 31.21 (0.71) 30.95 (1.54)

RELEASE 32.63 (3.96) 19.48 (3.91) 19.77 (4.03) 21.64 (4.3)
SCHED2 28.7 (0.18) 29.78 (0.15) 29.91 (0.16) 29.74 (0.2)
SCHED 31.43 (1.2) 31.38 (0.78) 31.4 (0.83) 31.26 (1.11)

SEND-RESCHED 47.01 (14.42) 31.83 (3.45) 45.23 (4.33) 41.53 (7.24)
TABLE I. OVERHEADS OF DIFFERENT PROTOCOLS IN LITMUSRT .

To analyze the applicability of our approach, we tracked
different overheads under LITMUSRT:

• CXS: context-switch overhead.
• RELEASE: time spent to enqueue a newly released job

in a ready queue.
• SCHED2: time spent to perform post context switch and

management activities.
• SCHED: time spent to make a scheduling decision

(scheduler to find the next job).
• SEND-RESCHED: inter-processor interrupt latency, in-

cluding migrations.

Table I reports the overheads of different protocols in
LITMUSRT, namely of the existing implementations of
DPCP) [40] and (MPCP) [39] in LITMUSRT and our im-
plementation of the partitioned dependency graph approach
(PDGA) and the semi-partitioned dependency graph approach
(SDGA). Table I shows that the overheads of our approach
and of other protocols are comparable in LITMUSRT.

9.2 Numerical Performance Evaluations
We conducted evaluations with M = 4, 8, and 16 pro-

cessors. Depending on M , we generate 1000 task sets, each
with 10M tasks. For each task set T, we generated synthetic
tasks with

∑
τi∈T Ci,1 + Ci,2 + Ai,1 = M by applying the

RandomFixedSum method [19] and enforced that Ci,1+Ci,2+
Ai,1 ≤ 0.5 for each task τi. The number of shared resources
(binary semaphores) was set to z ∈ {4, 8, 16}. The length of
the critical section Ai,1 is a fraction of the total execution time
Ci,1+Ci,2+Ai,1 of task τi, depended on β ∈ {5%−50%}. The
remaining part Ci was split into Ci,1 and Ci,2 by drawing Ci,1
randomly uniform from [0, Ci] and setting Ci,2 to Ci − Ci,1.

For a generated task set T, we calculated a lower bound
LB on the optimal makespan based on Eq. (1). Since deriving
len(G∗) is computationally expensive, we used minτi∈T Ci,1+
minτi∈T Ci,2 + maxk=1,...,z CriticalSumk as a safe approx-
imation for len(G∗), where CriticalSumk is the summation
of the lengths of the critical sections that share semaphore
sk. If the relative deadline of the task set is less than LB,
the task set is not schedulable by any algorithm. We com-
pare the performance of different algorithms according to the
acceptance ratio by setting the relative deadline D = T in
the range of [LB, 1.8LB]. We name the developed algorithms
using the following rules: 1) JKS/POTTS in the first part: using
the extended Jackson’s rule or Potts to construct the depen-
dency graph;6 2) SP/P in the second part: semi-partitioned or
partitioned scheduling algorithm is applied7; 3) P/NP in the

6We did not implement Lemma 5 due to the complexity issue. Algorithm
HS in general has similar performance to POTTS.

7In Section 6.2, we presented two strategies for task partitioning: one is
based on [43] (detailed in Appendix) and another is a simple heuristic by
performing the list scheduling algorithm based on the first non-critical sections.
In all the experiments regarding partitioned scheduling, we observed that the
latter (i.e., the simple heuristic) performed better. All the presented results for
partitioned scheduling are therefore based on the simple heuristic.
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Fig. 3. Comparison of different approaches assuming different deadlines.

third part: preemptive or non-preemptive for the second non-
critical sections.

We evaluated all 8 combinations under different settings as
shown in Fig. 3. Due to space limitation, only a subset of the
results is presented. In general, the semi-partitioned scheduling
algorithms clearly outperform the partitioned strategies, inde-
pendently from the algorithm used to construct the dependency
graph. In addition, the preemptive scheduling policy with
respect to the second computation segment is superior to
the non-preemptive strategy and POTTS (usually) performs
slightly better than JKS. We analyze the effect of the three
parameters individually by changing:

1) M = z ∈ {8, 16} (Fig. 3(a) and Fig. 3(b)): increasing
z and M also slightly increases the difference between
the semi-partitioned and the partitioned approaches.

2) z for a fixed M , i.e., z ∈ {4, 8, 16} and M = 8
(Fig. 3(c), Fig. 3(a), and Fig. 3 (d)): when the number
of resources is decreased compared to the number of
processors, the performance gap between preemptive and
non-preemptive scheduling increases.

3) Workload of Shared Resources, i.e.,
β ∈ {[5%− 10%], [10%− 40%], [40%− 50%]}
(Fig. 3(e), Fig. 3 (a), and Fig. 3 (f)): if the workload of
the critical sections is increased, the difference between
preemptive and non-preemptive scheduling approaches is
more significant.

We also compare our approach with the Resource Oriented
Partitioned (ROP) scheduling with release enforcement by von
der Brüggen et al. [45] which is designed to schedule periodic
tasks with one critical section on a multiprocessor platform.
The concept of the ROP is to have a resource centric view
instead of a processor centric view. The algorithm 1) binds the

0.0 0.2 0.4 0.6 0.8 1.0Utilization (%) / M0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ep
ta

nc
e

R
at

io
(%

)

40 50 60 70 80 90 100
0

20

40

60

80

100
(a) M=8 z=8 β=5%-10%

JKS-SP-P POTTS-SP-P ROP-EDF ROP-FP

40 50 60 70 80 90 100
0

20

40

60

80

100
(b) M=8 z=8 β=40%-50%

Fig. 4. Schedulability of different approaches for frame-based task sets.

critical sections of the same resource to the same processor,
thus enabling well known uniprocessor protocols like PCP
to handle the synchronization, and 2) schedules the non-
critical sections on the remaining processors using a state-of-
the-art scheduler for segmented self-suspension tasks, namely
SEIFDA [46]. Among the methods in [45], we evaluated ROP-
FP (under fixed-priority scheduling) and ROP-EDF (under
dynamic priority scheduling, namely earliest deadline first). It
has been shown in [45] that ROP-EDF dominates all existing
methods. We performed another set of evaluations by adopting
the aforementioned settings and testing the utilization level
in a step of 5%, where the utilization of a task set T is∑
τi∈T

Ci,1+Ci,2+Ai,1
Ti

. Fig. 4 presents the evaluation results.
Due to space limitation, only a subset of the results is
presented, but the others have very similar tendencies. For
readability, we only select two combinations in our proposed
approach that outperform the others. The results in Fig. 4
show that for frame-based tasks, our approach outperforms
ROP significantly. We note that Fig. 4 is only for frame-based
tasks, and the results for periodic task systems discussed in
Section 8 are presented in Appendix.

10 Conclusion
This paper tries to answer a few fundamental questions

when real-time tasks share resources in multiprocessor sys-
tems. Here is a short summary of our findings:

• The fundamental difficulty is mainly due to the sequenc-
ing of the mutual exclusive accesses to the share resources
(binary semaphores). Adding more processors, removing
periodicity and job recurrence, introducing task migration,
or allowing preemption does not make the problem easier
from the computational complexity perspective.

• The performance gap of partitioned and semi-partitioned
scheduling in our study is mainly due to the capability
to schedule the subjobs constrained by the dependency
graph. Although partitioned scheduling may seem much
worse than semi-partitioned scheduling in our evalua-
tions, this is mainly due to the lack of understanding of
the problem P |prec, tied|Cmax in the literature. Further
explorations are needed to understand these scheduling
paradigms for a given dependency graph.

• The dependency graph approach is not work-conserving
for the critical sections, since a critical section may be
ready but not executed due to the artificially introduced
precedence constraints. Existing multiprocessor synchro-
nization protocols mainly assume work-conserving for
granting the accesses of the critical sections via priority
boosting. Our study reveals a potential to consider cau-
tious and non-work-conserving synchronization protocols
in the future.
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Appendix
Proof of Theorem 6. Due to the design of the task set, there
are only N different dependency graphs, depending on the
position of τ1 in the execution order. Suppose that the critical
section of task τ1 is the j-th critical section in the dependency
graph. It can be proved that the critical path of this dependency
graph is jδ +Q+Nδ. We sketch the proof:

• The non-critical section C1,2 must be part of the critical
path since C1,2 = Q

M + Nδ, which is greater than any
(N − 1)Ai,1 + Ci,2 for any i = 2, 3, . . . , N − 1.

• The longest path that ends at the vertex representing A1,1

has 1) one non-critical section, 2) j − 1 critical sections
from τi for i = 2, 3, . . . , N , and 3) 1 critical section from
task τ1. Therefore, this length is δ+ (j−1)δ+Q− Q

M =

jδ +Q− Q
M .

• Combining the two scenarios, we reach the conclusion.

Therefore, the dependency graph G∗ that has the minimum
critical path length is the one where τ1’s critical section
is the first one among the N critical sections. The optimal
schedule of the dependency graph G∗ on M processors has
the following properties:

• Task τ1 finishes its critical section at time δ +Q− Q
M .

• Before time δ +Q− Q
M , none of the second non-critical

sections is executed. Therefore, the makespan of any
feasible schedule S(G∗) of G∗ on M processors is

L(S(G∗)) ≥ δ +Q− Q

M
+

N∑
i=1

Ci,2
M

= δ +Q− Q

M
+

(M2 −M + 1) QM +Nδ

M

=

(
1 +

N

M

)
δ +

(
2− 2

M
+

1

M2

)
Q

• Moreover, when the scheduling policy is either semi-
partitioned or partitioned scheduling, by the pigeon hole
principle, at least one processor must execute

⌈
N
M

⌉
of the

N second non-critical sections no earlier than δ+Q− Q
M .

Therefore, the makespan of a feasible semi-partitioned or
partitioned schedule Sp of G∗ on M processors is

L(Sp(G
∗)) ≥ δ +Q− Q

M
+

⌈
N

M

⌉
Q

M

= δ +Q− Q

M
+

⌈
M − 1 +

1

M
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Q

M

= δ +Q− Q

M
+M

Q

M

= δ +

(
2− 1

M

)
Q

We can have another feasible partitioned schedule S∗:

• The first non-critical section τ1 is executed on processor
M , and the first non-critical sections of the other N − 1
tasks are executed on the first M −1 processors based on
list scheduling. All the first non-critical sections finish no
later than Mδ. Each of the first M−1 processors executes
exactly M tasks since there are N−1 = M(M−1) tasks
with identical properties on these M − 1 processors.

• The critical sections of tasks τN , τN−1, . . . , τ1 are exe-
cuted sequentially by following the above reversed-index
order on the same processor of the corresponding first
non-critical sections, starting from time Mδ.

• At time Mδ+Nδ, all the second non-critical sections of
τ2, . . . , τN are eligible to be executed. We execute them
in parallel on the first M − 1 processors by respecting
the partitioned scheduling strategy. That is, each of the
first M − 1 processors executes exactly M tasks with
Ci,2 = Q/M . The makespan of these N − 1 tasks is
(N +M)δ +

(N−1) QM
M−1 = (N +M)δ +Q.

• At time Mδ + Nδ, the critical section of τ1 starts
its execution on processor M . Furthermore, at time
(N +M)δ +Q− Q

M , the second non-critical section of
τ1 is executed on processor M and it is finished at time
(N +M)δ +Q+Nδ = (2N +M)δ +Q.

• As a result, the makespan of the above partitioned sched-
ule S∗ is exactly (2N +M)δ +Q.

Therefore, the approximation bound of the optimal task
dependency graph approach is at least L(S(G∗))

L(S∗) under any

scheduling paradigm and is at least L(Sp(G
∗))

L(S∗) under partitioned
or semi-partitioned scheduling paradigm. We reach the conclu-
sion by taking δ → 0.

Pseudo-code of the Partitioned Preemptive Scheduling
in Section 6.2 For notational brevity, we define two vertices
vi,1 and vi,3 to represent the first and second non-critical
sections of task τi and vi,2 to represent the critical section
of task τi. Let Tm be the set of tasks in T assigned to
processor m for m = 1, 2, . . . ,M . The pseudo-code is listed
in Algorithm 2. It consists of three blocks: initialization from
Line 1 to Line 4, scheduling of the first non-critical sections
and the critical sections of the tasks according to Ḡ from Line
5 to Line 23, and scheduling of the second non-critical sections
of the tasks from Line 24 to Line 28.

The first block is self-explained in Algorithm 2. We will
focus on the second and third blocks of Algorithm 2. Our
scheduling algorithm executes the first non-critical sections
and the critical sections non-preemptively. Whenever a subjob
finishes at time t, we examine the following scenarios on each
processor m for m = 1, 2, . . . ,M :

• If there is a pending critical section on processor m that
is eligible at time t according to the dependency graph
G, this critical section is executed as soon as it is eligible
and the processor idles (i.e., Lines 12-13).
• Else if there is a task in Tm in which its first non-critical

section has not finished yet at time t, it is executed (Line
14-15)

• Otherwise, there is no eligible subjob to be executed at
time t. If there is still an unassigned task, we select one
and assign it to processor m by starting its first non-
critical section at time t (Lines 16-19).



Algorithm 2 Tied List-Scheduling (Partitioned Preemptive)
Input: G,T,M with |T| > M ;

1: current← 0;
2: assign one task τi in T to task set Tm to be executed on processor m;
3: T← T \ ∪Mm=1Tm;
4: execute vi,1 of the unique task τi in Tm on processor m from time 0,

i.e., ρ(t,m)← τi for t ∈ [0, Ci,1), for each m = 1, 2, . . . ,M ;
5: while ∃τi such that vi,2 has not finished yet at time current do
6: let t be the minimum time instant greater than current such that the

schedule finishes a subjob at time t;
7: current← t;
8: for m = 1, 2, . . . ,M do
9: if processor m is busy executing a subjob at time t then

10: continue;
11: else if processor m idles (or just finishes a subjob) at time t then
12: if ∃τi ∈ Tm, in which vi,2 has not finished yet and vi,2 is

eligible according to G at time t then
13: execute τi’s critical section from time t to t + Ai,1 non-

preemptively on processor m, i.e., ρ(θ,m) ← τi for θ ∈
[t, t+Ai,1);

14: else if ∃τi ∈ Tm, in which vi,1 has not finished yet at t then
15: execute vi,1 from time t on t + Ci,1 processor m, i.e.,

ρ(θ,m)← τi for θ ∈ [t, t+ Ci,1);
16: else if T is not empty then
17: select a task τi and remove τi from T, i.e., T← T \ {τi};
18: assign task τi to processor m, i.e., Tm ← Tm ∪ {τi};
19: execute vi,1 from time t to t + Ci,1 on processor m, i.e.,

ρ(θ,m)← τi for θ ∈ [t, t+ Ci,1);
20: end if
21: end if
22: end for
23: end while
24: for m = 1, 2, . . . ,M do
25: for each task τi in Tm do
26: schedule the second non-critical section vi,3 of task τi as back-

ground workload with the lowest priority preemptively as early as
possible but no earlier than the finishing time of its critical section;

27: end for
28: end for

In all the above steps, task τi can be arbitrarily selected if there
are multiple tasks satisfying the specified conditions. We note
that the schedule is in fact offline. Therefore, after we finish
the schedule of the first non-critical sections and the critical
sections, in the third block in Algorithm 2, we can pad the
idle time of the schedule on a processor m with the second
non-critical sections assigned on processor m, starting from
time 0, as soon as they critical section of the task is finished.

Implementation in LITMUSRT To force the tasks to follow
the pre-defined order to execute the critical sections, we added
several elements into the rt params structure which is used
to define the property for each task, i.e., priority, period,
execution time, etc. Two parameters are added: 1) rt order
to define the order of the task to execute the critical sec-
tion, and 2) rt total to define the number of the tasks that
shared the same resource. To implement the binary semaphores
under the dependency graph approach, we created two new
structures, pdga semaphore for the partitioned dependency
graph approach (PDGA), and sdga semaphore for the semi-
partitioned dependency graph approach (SDGA). In these
structures, one parameter is defined to control the order of
the execution named current serving ticket. When a task
requests the resource, it will compare its rt order with the
semaphore’s current serving ticket, if they are equal, the
task will be granted to access the resource and start its critical
section; if not, the task will be added to the wait-queue, which
is sorted by the tasks’ parameter rt order. Once a task has
finished its critical section, it will increase the semaphore’s cur-
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Fig. 5. Comparison of different approaches for periodic task sets.

rent serving ticket by 1, and check the head of the wait-queue
do the comparison again. Once the current serving ticket
reaches to the rt total, which means one dependency graph
has finished its execution of the critical sections, then the
parameter current serving ticket will be reset to 0 to start
the next iteration. The only difference between PDGA and
SDGA is that we added the migration function for SDGA to
support the semi-partitioned algorithm.

Evaluations for Periodic Task Sets We also performed eval-
uations for periodic task systems, when a binary semaphore
is only shared by the tasks with the same period described in
Section 8. We used similar configurations as in Section 9.2
to generate the task sets. For the tasks that share the same
semaphore, they have the same period in the range of [1, 10].
The following algorithms were evaluated:

• LP-GFP-FMLP [7]: a linear-programming-based (LP)
analysis for global FP scheduling using the FMLP [7].

• LP-PFP-DPCP [9]: LP-based analysis for partitioned FP
and DPCP [40]. Tasks are assigned using Worst-Fit-
Decreasing (WFD) as proposed in [9].

• LP-PFP-MPCP [9]: LP-based analysis for partitioned FP
using MPCP [39]. Tasks are partitioned according to
WFD as proposed in [9].

• GS-MSRP [49]: the Greedy Slacker (GS) partitioning
heuristic with the spin-based locking protocol MSRP [21]
under Audsley’s Optimal Priority Assignment [4].

• LP-GFP-PIP: LP-based global FP scheduling using the
Priority Inheritance Protocol (PIP) [18].

• ROP-FP [45]: The ROP under fixed-priority scheduling
and release enforcement.

• ROP-EDF [45]: The ROP under dynamic-priority
scheduling and release enforcement.

• POTTS-SF: Our approach by applying algorithm Potts for
generating G and semi-federated scheduling in [26].

• JKS-SF: Our approach by applying algorithm JKS for
generating G and semi-federated scheduling in [26].

For one evaluation point, 100 synthetic task sets were gen-
erated and tested. Only a subset of the results is presented
in Fig. 5, and LP-PFP-MPCP is not presented for better
readability since it performs the worst for the evaluations in
Fig. 5. The figure clearly shows that POTTS-SF and JKS-SF
significantly outperform the other approaches.
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[44] N. Ueter, G. von der Brüggen, J.-J. Chen, J. Li, and K. Agrawal.
Reservation-based federated scheduling for parallel real-time tasks.
CoRR, abs/1712.05040, 2017.

[45] G. von der Brüggen, J.-J. Chen, W.-H. Huang, and M. Yang. Release
enforcement in resource-oriented partitioned scheduling for multipro-
cessor systems. In Proceedings of the 25th International Conference
on Real-Time Networks and Systems, RTNS, pages 287–296, 2017.
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