
Revision 1: Appeared in ECRTS 2015 14. August 2015

Schedulability and Optimization Analysis for Non-Preemptive Static
Priority Scheduling Based on Task Utilization and Blocking Factors

Georg von der Brüggen and Jian-Jia Chen and Wen-Hung Huang

Department of Informatics

TU Dortmund University, Germany

Abstract—For real time task sets, allowing preemption is
often considered to be important to ensure the schedulability,
as it allows high-priority tasks to be allocated to the proces-
sor nearly immediately. However, preemptive scheduling also
introduces some additional overhead and may not be allowed
for some hardware components, which motivates the needs of
non-preemptive or limited-preemptive scheduling. We present a
safe sufficient schedulability test for non-preemptive (NP) fixed
priority scheduling that can verify the schedulability for Deadline
Monotonic (DM-NP) and Rate Monotonic (RM-NP) scheduling
in linear time, if task orders according to priority and period
are given. This test leads to a better upper bound on the
speedup factor for DM-NP and RM-NP in comparison to Earliest
Deadline First (EDF-NP) than previously known, closing the
gab between lower and upper bound. We improve our test,
resulting in interesting properties of the blocking time that allow
to determine schedulability by only considering the schedulability
of the preemptive case if some conditions are met. Furthermore,
we present a utilization bound for RM-NP, based on the ratio
γ > 0 of the upper bound of the maximum blocking time to the
execution time, significantly improving previous results.

1 Introduction

To model the recurrent executions of real-time applica-
tions, the sporadic task model has been widely adopted in
the real-time systems domain [19]. The sporadic task model
characterizes a task τi by its relative deadline Di, its worst-
case execution time (WCET) Ci, and its minimum inter-arrival
time Ti. A sporadic task represents an infinite sequence of task
instances, referred to as jobs, where the minimum inter-arrival
time is the minimum time interval between the release of any
two consecutive jobs of a task. The utilization Ui of task τi is
defined as Ci

Ti
.

For real-time computation systems the correct behavior
does not only depend on the value of the computation, the
correct value must also be produced within a certain amount
of time. Therefore, the satisfaction of the deadlines has to
be ensured for systems with hard real-time constraints. There
have been several scheduling policies and their corresponding
schedulability tests in the literature for such guarantees.

Allowing preemptions enables the scheduler to allocate the
processor to high priority tasks nearly immediately to ensure
that these important tasks meet their deadlines, while they
may experience long blocking times from the execution of
lower priority tasks for non-preemptive scheduling. Preemptive
Earliest-Deadline-First (EDF-P) scheduling has been shown
to be an optimal scheduling policy for dynamic priority
scheduling of implicit-deadline task sets (i.e. Di = Ti for each
task τi) with a utilization bound of

∑
τi
Ui ≤ 1 [17] that will

meet the deadlines for all schedulable task sets [11]. Moreover,
for preemptive static priority scheduling, Deadline-Monotonic
(DM-P) scheduling is optimal for constrained deadline task
sets (i.e. Di ≤ Ti for each task τi) [16] while the Rate Mono-
tonic (RM-P) scheduling is optimal for implicit deadlines [17].

However, the correct calculation of the WCET that is
needed for a good schedulability test is not easy if preemption
is allowed, as preemption introduces additional overhead to
the system, e.g. for suspending the task, inserting it into the
ready queue, flushing the processor pipeline, and dispatching
the new incoming task. Alternatively, we can adopt non-
preemptive scheduling, in which the WCETs can be calculated
much easier as no preemption overhead has to be taken
into account. Unfortunately, the utilization bound for non-
preemptive scheduling drops to 0, both for static and dynamic
priority scheduling. This has motivated deferred preemption,
preemption threshold, and limited preemptive scheduling, e.g.,
in [6], [23], [22].

Non-preemptive scheduling may also be enforced by the
hardware. For example, messages in control area network
(CAN) buses are not preemptable [1]. When considering non-
preemptive scheduling, it may be necessary that the processor
idles, even if there are jobs in the ready queue, to ensure the
schedulability, e.g., when the computation time for some task
is larger than another tasks deadline. If a task set is sporadic,
no online algorithm can decide, whether the processor should
idle or not [14]. It was shown that Non-Preemptive EDF
(EDF-NP) is optimal among work-conserving non-preemptive
schedulers [12], i.e., the processor is not allowed to go idle if
at least one job is ready to be executed. However, when quan-

Preemptive Non-Preemptive
Task Set Lower Upper Lower Upper

Constraints Bound Bound Bound Bound
Implicit 1/ln(2) ≈ 1/Ω ≈ 2 [9]
Deadline 1.44269 [17] 1.76322 [9] 1/Ω [this paper]

Constrained 1/Ω ≈ 1/Ω ≈ 2 [9]
Deadline 1.76322 [10] 1.76322 [9] 1/Ω [this paper]
Arbitrary 1/Ω ≈ 1/Ω ≈
Deadline 1.76322 [8] 2 [8] 1.76322 [9] 2 [9]

TABLE I: Fixed Priority Scheduling Speedup Factors

tifying non-preemptive scheduling with utilization bounds, it
can be easily shown that the utilization bound is 0 [20].

Although RM-P, DM-P, Non-Preemptive RM (RM-NP) and
Non-Preemptive DM (DM-NP) are not optimal scheduling
policies, it has been shown by Davis et al. [8][9][10] that
these algorithms perform relatively well, compared to pre-
emptive and non-preemptive EDF. The quantification is based
on the speedup factor ρ, compared to EDF. That is, for any
task set that is schedulable by preemptive (non-preemptive,
respectively) EDF, it is also schedulable by the fixed-priority
preemptive (non-preemptive, respectively) scheduling if speed-
ing up the processor by factor ρ (i.e., the WCET of task τi
becomes Ci

ρ). For constrained deadline task sets, an exact
speedup factor of 1

Ω ≈ 1.76322 was shown [10], where
Ω ≈ 0.56714 is a constant defined by the transcendental
equation Ω = ln

(
1
Ω

)
. For preemptive arbitrary deadline task

sets a lower bound of 1
Ω ≈ 1.76322 and an upper bound

of 2 was shown for the speedup factor [8]. In the non-
preemptive case they use EDF-NP for comparison, as it is
optimal among work conserving scheduling algorithms (RM-
NP and DM-NP vs. EDF-NP). They show the speedup factor
is lower bounded by 1

Ω ≈ 1.76322 and upper bounded by
2 for implicit, constrained and arbitrary deadline task sets [9].
Table I contains the previously known upper and lower bounds
on this speedup factors for preemptive and non-preemptive
fixed priority scheduling and the contributions of this paper.
Analogously, analyzing the required speedup factor of non-
preemptive scheduling, by comparing to the optimal preemp-
tive scheduling, has also been proposed by Thekkilakattil et
al. [21], in which the speedup factor cannot be bounded by
a constant. Moreover, prior to this paper, the only existing
utilization bound for non-preemptive fixed priority scheduling
was provided by Andersson and Tovar [1]. They show that the
utilization bound for RM-NP is 1

1+γ when γ ≥ 2, where the
blocking factor γ is defined as the ratio of (the upper bound
of) the maximum blocking time divided by the execution time.

Our Contributions: This paper focuses on the schedulability
and speedup factor analysis of non-preemptive fixed-priority
scheduling for task sets with constrained deadlines:

• We provide a schedulability test in Section 4 for non-
preemptive fixed-priority scheduling, that is in a hy-

perbolic form of the utilizations of the higher-priority
tasks, by considering the execution time and the blocking
time of the task that is being analyzed. This hyperbolic
form is proven in Section 5 to reach the speedup factor
1/Ω ≈ 1.76322 for DM-NP and RM-NP, by comparing
to EDF-NP, as also shown in Table I. Therefore, this
closes the gap between the upper bound and the lower
bound for RM-NP and DM-NP.

• We also improve the schedulability test by considering
two separated schedulability conditions more carefully
in Section 6. This results in a better schedulability
test that involves two polynomial-time analyses. These
schedulability tests reveal some interesting properties on
the blocking time. If the blocking time is less than
a certain threshold, the schedulability of the task can
be determined purely by considering the higher-priority
tasks. This means that the blocking time has no drawback
in the schedulability analysis.

• Moreover, our utilization bound (based on γ) for RM-
NP in Theorems 8 and 9 covers any arbitrary setting of
γ > 0, where γ is defined as the ratio of the maximum
blocking time divided by the execution time. We show
that the utilization bound of RM-NP can still be up to
69.3% (the same as RM-P) if γ ≤ 1−ln(2)

ln(2) ≈ 0.44269. if
none of the lower priority tasks has larger execution time,
i.e., γ ≤ 1. As long as the lower-priority tasks do not have
much longer execution time than the higher-priority tasks,
e.g., γ ≤ 1.59, the utilization bound can still be more than
50%.

2 System Model and Notations

This section presents the task model, scheduling model, and
the notations used in this paper. We consider sporadic [19] and
periodic [17] task sets with constrained or implicit deadlines
on a single core processor.

2.1 Task and Scheduling Models

We assume a given task set τ = {τ1, . . . , τn} of n
tasks. Each task releases an infinite number of jobs, where
the j-th job of τi is denoted τi,j . Each τi is specified by
a 3-tuple of parameters (Ci, Ti, Di). Ci is the worst case
execution time (WCET) and Di is the relative deadline of task
τi. The period Ti is the minimum interarrival time between
any two consecutive job releases of τi. Each job τi,j has a
release time ri,j , a finishing time fi,j and an absolute deadline
di,j = ri,j +Di. The response time Ri,j = fi,j − ri,j is the
interval between arrival and finishing time for job τi,j and
we denote the Worst Case Response Time of τi with Ri. The

2

processor utilization of τi is defined as Ui = Ci
Ti

and the total

or system utilization as Usum =
n∑
i=1

Ui

For each task τk we define hp(τk) as the set of tasks
with higher priority and lp(τk) as the set of tasks with lower
priority. We assume a total order on task priorities given by
the fixed-priority scheduling policy, in which ties are broken
arbitrarily. If not stated differently, the tasks in τ or any subsets
of τ (especially in hp(τk) and lp(τk)) are always ordered and
indexed according to these priorities.

If Di ≤ Ti holds for each τi ∈ τ , the task set is called
with constrained deadline. If Di = Ti holds for each τi ∈ τ
then τ is an implicit-deadline set. Otherwise τ has arbitrary
deadlines. For the rest of this paper, we only consider sporadic
task systems with constrained or implicit deadlines.

We assume a uniprocessor and that the scheduler always
dispatches the job in the ready queue that has the highest
priority. This priority is given by the scheduling policy. We
focus ourselves on fixed-priority scheduling by specifying a
fixed priority level for a task. That means all the jobs of a task
have the same fixed-priority level. For preemptive scheduling,
it has been shown that RM and DM are the optimal fixed-
priority scheduling policies for task sets with implicit deadlines
or constrained deadlines, respectively. We further assume that
tasks can not suspend themselves and tasks have no precedence
constraints. Each task can be executed the moment it arrives
and the arrivals of tasks are independent, and thus two or more
tasks may be released at the same time.

As motivated in the introduction of this paper, we will
consider non-preemptive fixed-priority scheduling in this pa-
per. Specifically, a job cannot be preempted once its execution
has been started. For the paper, when we use acronyms a -P
will denote the preemptive case (e.g. RM-P for preemptive
Rate Monotonic scheduling) while -NP will denote the non-
preemptive case (e.g. RM-NP). The extension for limited
preemptive scheduling will be discussed in Section 7.

A task τi is called schedulable by a given scheduling
policy if it always meets its deadline, i.e. Ri ≤ Di. If
this holds true for all τi ∈ τ we call τ schedulable by
the scheduling policy. A schedulability test is sufficient (with
respect to the scheduling policy and the system model) if
all task sets that are schedulable according to the test are
schedulable. A schedulability test is called necessary, if a task
set is unschedulable when the test is not passed. A test is called
exact if the test is sufficient and necessary.

2.2 Speedup Factor

We define the speedup factors in relation to an op-
timal workload-conserving non-preemptive algorithm, i.e.,
EDF-NP [13], or an optimal preemptive scheduling algorithm,
i.e., EDF-P [17]. Let f opt(τ) be the processor speed an optimal
algorithm needs to schedule τ , and f A(τ) the speed necessary
for scheduling algorithm A. We can now define a maximum
speedup factor for any task set τ and a scheduling algorithm
A as done in [10]

f A = max
∀τ

{
f A(τ)

f opt(τ)

}
(1)

As EDF-P is an optimal scheduling algorithm for pre-
emptive scheduling, the speedup factor for other preemptive
scheduling algorithms is determined in relation to EDF-P
(e.g., fixed priority preemptive vs. EDF-P). For implicit
deadline task sets that are schedulable by EDF-P, we get
f RM−P =

1
UB(RM−P)

UB(EDF−P) =
1

ln(2)

1 = 1
ln(2) ≈ 1.4427 using

the utilization bounds for EDF-P and RM-P [17]. The other
cases for preemptive fixed-priority scheduling are also listed in
Table I. For non-preemptive scheduling, we define the speed-
up factor by referring to the optimal workload-conserving non-
preemptive scheduling, i.e. EDF-NP.

George et al. [13] presented an exact test for arbitrary
deadline task sets to be schedulable under EDP-NP. They use
the demand bound function [2][3]

h(t) =

n∑
i=1

max

{
0,

⌊
t−Di

Ti

⌋
+ 1

}
Ci (2)

and the blocking time B(t) to determine schedulability. We
call max

{
0,
⌊
t−Di
Ti

⌋
+ 1
}
Ci = dbfi(t) the demand bound

function of task τi at time t. The maximum blocking time
B(t) for EDF-NP at time interval length t is defined as
max∀i,Di>t(Ci−∆) in [13]. As τi has to run when τk arrives
to block it, τk can only be blocked by τi for Ci − ∆, with
∆ > 0 but infinitesimally small. We assume that ∆ is so
small that it does not have any impact on the calculations,
e.g., one processor cycle, and thus we can remove it from
further equations for notation brevity.

The exact schedulability test of George et al. [13] tests if
the following two conditions both hold to determine schedu-
lability for the complete task set:

Usum ≤ 1 (3a)
h(t) + B(t)

t
≤ 1 ∀t ∈ S (3b)

with S = {∪ni=1{kTi +Di}, k ∈ N} ∩(0, L] where L is the
longest Level-k Busy Interval. S is the union of the deadlines
of all tasks in the interval (0, L].

3

Therefore, if a non-preemptive fixed-priority scheduling
algorithm A has a speedup factor fA with respect to EDF-
NP, we know that the unschedulability of algorithm A implies
that either Usum > 1

fA
or ∃t ∈ S with h(t) + B(t)

t > 1
fA

.

3 TDA Schedulability Test and Simplification

To analyse the schedulability of task sets under non-
preemptive scheduling, the blocking time has to be taken
into account. A task τk can only be blocked by tasks with
lower priority, as the scheduler executes tasks with higher
priority first anyway, and thus not adding additional time to the
response time of τk. Since the scheduler always chooses the
highest priority job in the ready queue for execution, a job of
τk can only be blocked if at its arrival time a job τi ∈ lp(τk)

is executed and can be blocked at most once. Thus, for non-
preemptive scheduling we can define the strict upper bound
Bk of the maximum blocking time of a task τk as

Bk = max
τi ∈ lp(τk)

{Ci} > max
τi ∈ lp(τk)

{Ci − ∆}. (4)

The blocking factor γ of task τk is defined as Bk/Ck.

For preemptive fixed-priority scheduling of constrained-
deadline task sets, the schedulability test can be done by using
Time Demand Analysis (TDA) [15] as follows:
τk is schedulable if the following equation holds [15]:

∃t with 0 < t ≤ Dk and Ck +
∑

τi∈hp(τk)

⌈
t

Ti

⌉
Ci ≤ t (5)

If this holds true for all τk ∈ τ the task set is schedulable
under the preemptive fixed-priority scheduling. For the non-
preemptive case the maximum blocking time has to be added
here, resulting in the following sufficient schedulability test for
task τk [6], [9]:

∃t with 0 < t ≤ Dk and Bk+Ck+
∑

τi∈hp(τk)

⌈
t

Ti

⌉
Ci ≤ t (6)

As Bk and Ck are both fixed, we can rewrite Eq. (6) by
defining Ĉk = Ck + Bk, which results in

∃t with 0 < t ≤ Dk and Ĉk+
∑

τi∈hp(τk)

⌈
t

Ti

⌉
Ci ≤ t (7)

We further divide hp(τk) into two disjunct subsets with the
following properties:

• hp1(τk) consists of the τi ∈ hp(τk) with Ti < Dk

• hp2(τk) consists of the τi ∈ hp(τk) with Ti ≥ Dk

We abuse k by resetting it to k = |hp1(τk)| + 1 for
brevity, where |hp1(τk)| is the cardinality of hp1(τk).1

We know, that τi ∈ hp2(τk) interferes with τk at most
once in the schedulability test in Eq. (7). Thus, we can
bound the interference due to tasks τi ∈ hp2(τk) by
summing up there execution times and adding them up
with the tasks execution time and the blocking time:
Ĉ ′k = Ĉk +

∑
τi∈hp2(τk)

Ci = Bk + Ck +
∑

τi∈hp2(τk)

Ci.

Thus τk is schedulable if the following equation holds:

∃t with 0 < t ≤ Dk and Ĉ ′k +
∑

τi∈hp1(τk)

⌈
t

Ti

⌉
Ci ≤ t (8)

TDA results in pseudo-polynomial runtime for the suffi-
cient schedulability test by testing all time points with job
arrivals from higher-priority tasks. We will use a more pes-
simistic test by testing only k time points {t1, . . . , tk−1, tk},
namely the last arrival points of higher priority tasks and the
absolute deadline of τk:

ti =

⌊
Dk

Ti

⌋
Ti ∀ τi ∈ hp1(τk) and tk = Dk (9)

Thus, we get the following sufficient test for the schedu-
lability of τk under the assumption that the schedula-
bility of {τ1, . . . , τk−1} has been ensured already:

∃tj ∈ {t1, . . . , tk} and

Ĉ ′k +
∑

τi∈hp1(τk)

⌈
tj
Ti

⌉
Ci = Ĉ ′k +

k−1∑
i=1

⌈
tj
Ti

⌉
Ci ≤ tj (10)

As we are only interested in the workload a higher priority
task generates, and not in the concrete order they are executed
in, we can reorder the tasks in hp1(τk) according to their last
release times, i.e., t1 ≤ t2 ≤ . . . ≤ tk−1 ≤ tk.

We know that
⌈
ti
Ti

⌉
is an integer for the last release time ti

(therefore we can remove the ceiling function) and that

ti
Ti

+ 1 ≥
⌈
tj
Ti

⌉
∀τi, τj ∈ {τ1, . . . , τk} (11)

as ti is the last release time for a job of τi before Dk and
tj < Dk ∀τj ∈ {τ1, . . . , τk}.

If we are looking at tj ∈ {t1, . . . , tk}, the
last release of τi ∈ hp(τk) only happened before tj if
i < j after we reordered them. If tj > ti we know that⌈
tj
Ti

⌉
=
⌈
ti
Ti

⌉
+ 1 = ti

Ti
+ 1 where the inequality holds

true due to the fact that ti is the last release of τi before Dk.
If tj ≤ ti, we get

⌈
tj
Ti

⌉
≤
⌈
ti
Ti

⌉
= ti

Ti
.

1Technically we would have to introduce another variable here, say k∗.
As all tasks in τi ∈ hp2(τk) are summed up in Ĉ′k and we only have to
consider the τi ∈ hp1(τk), such a new notation has no additional value for
the analysis but makes the paper more difficult to read.

4

Thus, for each time tj we can split the summation in
Eq. (10) into two parts, where the first summation represents
all jobs of higher priority tasks but the last one, and the second
summation represents the last job for the task where this last
job is already released at tj :

Ĉ ′k +

k−1∑
i=1

⌈
tj
Ti

⌉
Ci ≤ Ĉ ′k +

k−1∑
i=1

ti
Ti
Ci +

j−1∑
i=1

Ci (12)

We unify these considerations in a safe sufficient schedu-
lability test for a task τk stated in the the following lemma:

Lemma 1. If the schedulability of all higher prior-
ity tasks is ensured already, task τk is schedulable
by a non-preemptive static priority scheduling policy if

∃tj ∈ {t1, . . . , tk} such that

Ĉ ′k +
k−1∑
i=1

ti
Ti
Ci +

j−1∑
i=1

Ci ≤ tj (13)

Proof: This follows directly from the argumentation in
this section.

4 Polynomial-Time Schedulability Tests

To get a schedulability test in a hyperbolic form we need a
schedulability test based on the utilization of the higher priority
tasks and the execution and blocking time of the task currently
tested. The left summation of Eq. (13) in Lemma 1 can easily
be converted to be utilization-based as Ui = Ci

Ti
. To get the

right summation utilization-based, we have to do some simple
transformations:

j−1∑
i=1

Ci =

j−1∑
i=1

Ti
Ti
Ci =

j−1∑
i=1

TiUi ≤
j−1∑
i=1

tiUi (14)

where the inequality holds true due to the fact that
ti = fi ∗ Ti for some fi ∈ Z+. This results in the following
more pessimistic utilization-based schedulability test

∃tj ∈ {t1, . . . , tk} and Ĉ ′k +

k−1∑
i=1

tiUi +

j−1∑
i=1

tiUi ≤ tj (15)

For non-preemptive scheduling, it is important to verify the
schedulability for each task individually, as the utilization of
the task set is not a monotonically increasing function, because
the blocking time has to be considered individually for each
task and is a monotonically decreasing function.

We will use Eq. (15) to show the following theorem, that
allows a schedulability test in a hyperbolic form for fixed pri-
ority non-preemptive scheduling. The following theorem can
also be easily proved by using the k2u framework presented
in [7] with α = αi = 1 and β = βi = 1 in the setting in [7].

Theorem 1. A task τk in a non-preemptive sporadic task
system with constrained deadlines can be feasibly scheduled
by a fixed-priority scheduling algorithm, if the schedulability
for all higher priority tasks has already been ensured and the
following condition holds:(

Ĉ ′k
Dk

+ 1

) ∏
τj∈hp1(τk)

(Uj + 1) ≤ 2 (16)

Proof: We will prove the theorem by showing that if the
condition in Eq. (16) is satisfied, the condition in Eq. (15) will
be satisfied as well by using contrapositive, thus showing that
if Eq. (15) is not satisfied, Eq. (16) will not be satisfied as
well. The proof uses the same strategy as the proof of Lemma
1 in [7]. For completeness, we will list the corresponding
linear programming and the optimal extreme point solution.
The proof for the optimality of the extreme point solution is
in the Appendix.

If a task τk is not schedulable, by Eq. (8) we know that

∀t with 0 < t ≤ Dk : Ĉ ′k +
∑

τi∈hp1(τk)

⌈
t

Ti

⌉
Ci > t

This must hold true ∀ t ∈ (0, Dk]. Therefore, it must hold
true for the t of interest, particularly for the times of the last
releases of higher priority tasks. All transformations we made
to get Eq. (15) from Eq. (8) only increased the left side of the
equations, thus an unschedulable task τk will fail Eq. (15) as
well. With this we know, that if τk is not schedulable

∀ j ∈ {1, . . . , k − 1, k} : Ĉ′k +

k−1∑
i=1

tiUi +

j−1∑
i=1

tiUi > tj (17)

Note, that a task set might still be schedulable if Eq. (17)
holds, as Eq. (15) is only a sufficient scheduling condition.
But we know, that if a task is not schedulable Eq. (17) will
hold and prove, that Eq. (16) will not hold if Eq. (17) holds.
Thus Eq. (16) will not hold for any unschedulable task τk.
This results in the following optimization problem represented
by a linear programming:

inf C∗k (18a)

s.t C∗k +

k−1∑
i=1

t∗iUi +

j−1∑
i=1

t∗iUi > t∗j , ∀ 1≤j≤k (18b)

t∗j ≥ 0, ∀ 1≤j≤k (18c)

where t∗1, . . . , t∗k−1 and C∗k are variables and t∗k is defined
as tk for notational brevity. We replace > with ≥ in (18b)
as infimum and minimum are the same if ≥ is used. Thus
Eq. (17) will hold ∀ Ck > C∗k

We get C∗k ≥ t∗k −
(
k−1∑
i=1

t∗iUi +
k−1∑
i=1

t∗iUi

)
from

Eq. (18b) if j = k. We can use this inequality to replace C∗k

5

in Eq. (18a) and Eq. (18b). As for t∗k the two summations are

the same we get t∗k − 2
k−1∑
i=1

t∗iUi in Eq. (18a), and thus to

find a minimum value for C∗k we have to maximize
k−1∑
i=1

t∗iUi

as t∗k is a constant. When we replace C∗k in Eq. (18b), we get

t∗k − 2

k−1∑
i=1

t∗iUi +

k−1∑
i=1

t∗iUi +

j−1∑
i=1

t∗iUi

= t∗k −
k−1∑
i=j

t∗iUi ≥ t∗j , ∀ 1≤j≤k−1

(19)

These reformulations result in the following linear program-
ming:

max
k−1∑
i=1

t∗iUi (20a)

s.t t∗k −
k−1∑
i=j

t∗iUi ≥ t∗j ∀ 1≤j≤k−1 (20b)

t∗j ≥ 0, ∀ 1≤j≤k−1 (20c)

We know that the objective function in Eq. (20a) is bounded
as 0 ≤ t∗i ≤ t∗k < ∞, ∀ 1 ≤ j ≤ k−1. Thus, the 2(k − 1)

constraints in Eq. (20b) and Eq. (20c) form a polyhedron of
feasible solutions as stated in the extreme point theorem for
linear programming [18]. This polyhedron is either empty, thus
the optimization problem has no feasible solution, or one of the
extreme points of the polyhedron is an optimal solution for the
optimization problem due to the extreme point theorem [18].
As there are k − 1 variables, at least k − 1 of the constraints
in Eq. (20b) and Eq. (20c) have to be active, i.e. ≥ holds with
= in the solution.

We can get one extreme point solution with t∗j > 0,
∀ 1 ≤ j ≤ k − 1 by setting t∗j = t∗k −

∑k−1
i=j t

∗
iUi with

t∗i+1 − t∗i = t∗iUi, ∀ 1≤j≤k−1 (21)

Thus we know

t∗i+1

t∗i
= Ui + 1, ∀ 1≤j≤k−1 (22)

and
t∗i
t∗k

=

k−1∏
j=1

t∗j
t∗j+1

=
1∏k−1

j=i (Uj + 1)
(23)

From Eq. (18b) with j = k we know that the minimum value
of C∗k is:

C∗k = t∗k − 2

k−1∑
i=1

t∗iUi
(21)
= t∗k − 2(t∗k − t∗1)

(23)
= t∗k − 2

(
t∗k −

t∗k∏k−1
j=1 (Uj + 1)

)

⇒ C∗k = t∗k

(
2∏k−1

j=1 (Uj + 1)
− 1

)
(24)

The further proof in the Appendix shows that all other
possible solutions have a worse objective value than the one
we constructed and that is represented in Eq. (24). Thus we
conclude that Eq. (17) always holds if Ĉ ′k > C∗k . We get(

C∗k
t∗k

+ 1

) k−1∏
j=1

(Uj + 1) > 2 (25)

Thus we know, if(
C∗k
t∗k

+ 1

) k−1∏
j=1

(Uj + 1) ≤ 2 (26)

holds, τk is schedulable if all higher priority tasks are schedu-
lable. We know that t∗k = Dk. We can replace C∗k with Ĉ ′k,
as we constructed it to be the minimum of the values Eq. (17)
holds for, thus reaching the conclusion of Theorem 1.

Instead of optimizing for the smallest C∗k to ensure Eq. (17)

holds, we can also minimize Ĉ ′k +
k−1∑
i=1

tiUi to ensure Eq. (17)

holds. This leads to another sufficient schedulability test.

Theorem 2. A task τk in a non-preemptive sporadic task
system with constrained deadlines can be feasibly scheduled
by a fixed-priority scheduling algorithm, if the schedulability
for all higher priority tasks has already been ensured and the
following condition holds:

Ĉ ′k +
k−1∑
i=1

tiUi

Dk
≤ 1∏

τj∈hp1(τk)

(Ui + 1)
(27)

The proof of Theorem 2 is very similar to the proof of
Theorem 1 and can be found in the Appendix.

Observation 1. The schedulability tests in Theorem 1 and
Theorem 2 provide the same result.

The observation above is due to the fact that the
optimization problem for both approaches lead to the same
linear programming, thus providing the same solution. We use
Eq. (18b) with j = k to show the property in Theorem 1,
and Eq. (45b) with j = k to show the property in Theorem 2,

6

and these two equations are the same. As all following steps
are without estimations, both will hold if Ĉ ′k ≤ C∗k and both
will fail for Ĉ ′k > C∗k .

The schedulability test in Theorem 1 (as well as the others
in Section 4 and Section 6 with a similar treatment) can be
implemented to test the schedulability for all the n tasks in
the given task set τ under RM-NP and DM-NP in linear time,
provided that the orders by their periods and their relative
deadlines are given. This is due to the following considerations.
The blocking time for all tasks can be computed in O(n) if we
compute it starting with the lowest priority task and save the
values in an array. For DM-NP, if we move from τk to τk+1

we want to analyze the changes in hp1 and hp2 for this step.
As the relative deadline is increasing with the task priority, no
task can ever move from hp1 to hp2. Assume τk is placed in
hp2. Then all tasks τi ∈ hp2 with Dk ≤ Ti < Dk+1

will be moved to hp1.This can be determined in O(1) for each
task. If the task in hp2 are tested in increasing order of their
period, we can stop for this step once Ti < Dk+1 does not
hold. Each task is only moved from hp2 to hp1 at most once,
due to the monotonicity of the deadlines in DM, and for each
move

∏
τj∈hp1

(Uj + 1) can be computed in O(1). Therefore,

the test in Theorem 1 has an amortized cost O(1) resulting
in O(n) for τ . The two required orders can be computed in
O(n log n) if not given. Note, that for RM-NP hp2 is always
empty. For the general case this argumentation does not hold,
as tasks may be moved from hp1 to hp2 as well. In this case
the time complexity can be O(n) for each step, resulting in a
total complexity of O(n2).

We conclude this section with the following theorems:

Theorem 3. Suppose that the tasks are indexed such that
Ti ≤ Ti+1. If γ = maxτi∈lp(τk)

{
Ci
Ck

}
= Bk

Ck
, then task τk

is schedulable by RM-NP if

Usum ≤



((2

1 + γ

) 1
k − 1

1+γ

)
+(k − 1)

((2

1 + γ

) 1
k − 1

)
if γ≤1

1

1 + γ
if γ>1

(28)

Proof: This is proved based on a similar proof of the Liu
and Layland bound by using Lagrange Multiplier Method. The
details are in the Appendix.

Theorem 4. Suppose that γ = maxτk

{
maxτi∈lp(τk)

{
Ci
Ck

}}
.

A task set can be feasibly scheduled by RM-NP if

Usum ≤


γ

1+γ + ln
(

2
1+γ

)
if γ ≤ 1

1
1+γ if γ > 1

(29)

Proof: This follows directly from Theorem 3 by calculat-
ing the utilization bound when k →∞, i.e.,

lim
k→∞

((2

1 + γ

) 1
k − 1

1 + γ

)
+ (k − 1)

((2

1 + γ

) 1
k − 1

)
= k

((2

1 + γ

) 1
k − 1

)
+
(

1− 1

1 + γ

)
= ln

(2

1 + γ

)
+

γ

γ + 1

for the cases when γ ≤ 1. For γ > 1 the result is identical to
Theorem 3 regardless of k.

The result in Theorem 4 in fact significantly improves the
utilization bounds for RM-NP. Prior to this paper, the only
existing result was provided by Andersson and Tovar [1]. They
show that the utilization bound for non-preemptive RM is 1

1+γ

when γ ≥ 2. They conclude in [1] that the utilization bound
of RM-NP for control area network (CAN) 2.0A is 25.8% due
to γ ≤ 135

47 and for CAN 2.0B is 29.5% due to γ ≤ 160
67 . The

analysis in [1] was too pessimistic, as their utilization bound
was only for the extreme cases when γ ≥ 2. With the analysis
in Theorem 4, we can conclude that the utilization bound of
RM-NP for CAN bus utilization can still be up to 50% if all the
tasks have the same execution time, i.e., γ = 1, meaning that
all the messages have the same length. We will further improve
the test by using tighter schedulability analysis in Section 6.

5 Speedup Factor for DM-NP

Using the hyperbolic tests in Section 4, we present the
speedup factor of DM-NP for constrained-deadline systems
with respect to EDF-NP.

Theorem 5. The speedup factor of non-preemptive deadline
monotonic scheduling for task sets with constrained deadline is
1
Ω ≈ 1.76322 with respect to non-preemptive earliest deadline
first scheduling.

Proof: The lower bound of 1
Ω ≈ 1.76322 for the speed-

up factor was provided by Davis et. al [9]. They construct
an example that shows 1

Ω ≈ 1.76322 is nearly reached for
some task sets. This means we only have to show that the
upper bound is 1

Ω ≈ 1.76322 as well, to conclude the proof.
This can be done by showing, that all task sets accepted by
the exact schedulability test for EDF-NP on a processor with
speed 1 will be accepted for DM-NP on a processor with speed
1
Ω ≈ 1.76322 as well. We will prove this using contrapositive,
showing that if a task τk is not accepted by our schedulability
test in Theorem 1, it will also not be accepted by the exact
schedulability test for EDF-NP on a processor with speed Ω.

If
∏k−1
i=1 (Ui + 1) ≥ 2 we know that

∑k−1
i=1 Ui ≥ ln 2,

resulting in the speed-up factor of 1
ln 2 < 1.76322 directly. In

the second case we have
∏k−1
i=1 (Ui + 1) < 2, which implies∑k−1

i=1 Ui < 1, and C∗k ≥ 0.

7

We know from the proof of Theorem 1 that we can
construct the minimum value C∗k to ensure the schedulability
test fails for a task τk by solving the linear programming in
Eq. (18). From Eq. (16) we know that for the extreme case

k−1∏
i=1

(Ui + 1) =
2(

C∗k
Dk

+ 1
) (30)

By the definition of B(t) for EDF-NP (Section 2.2), we know
that B(Dk) = max∀i,Di>t{Ci} = Bk when DM-NP is used.
If a task is not accepted by our schedulability test in Theorem 1
we know, that

hk(Dk) +Bk(Dk)

Dk
=

Bk +
∑k
i=1max

{
0,
⌊
t−Di
Ti

⌋
+ 1

}
Ci

Dk

=

Bk + Ck +
∑

τi∈hp2(τk)
Ci +

∑
τi∈hp1(τk)

max
{
0,
⌊
t−Di
Ti

⌋
+ 1

}
Ci

Dk

≥
Ĉ′k +

∑k−1
i=1 max

{
0,
⌊
t−Ti
Ti

⌋
+ 1

}
Ci

Dk
≥

Ĉ′k +
∑k−1
i=1 tiUi

Dk

1
>

C∗k +
∑k−1
i=1 tiUi

tk
=

1∏k−1
i=1 (Ui + 1)

=
1 +

C∗k
Dk

2

where
1
> comes from Theorem 2 and Observation 1. We

denote C∗k
Dk

as x from now on, thus
1+

C∗k
Dk

2 = 1+x
2 .

We are looking for the infimum utilization
∑k−1
i=1 Ui to

ensure
k−1∏
i=1

(Ui + 1) > 2
x+1 . Due to the fact that the arithmetic

mean is always larger than or equal to the geometric mean,

we know that
(∑k−1

i=1 Ui
k−1 + 1

)k−1

≥
k−1∏
i=1

(Ui + 1). Moreover,

we have the fact
(∑k−1

i=1 Ui
k−1 + 1

)k−1

≤ e
∑k−1
i=1 Ui , where the

right-hand side is the case when k goes to ∞ and e is the

Euler number. From
k−1∏
i=1

(Ui + 1) > 2
x+1 , we reach

k−1∑
i=1

Ui > ln

(
2

1 + x

)
. (31)

As ln
(

2
1+x

)
is a decreasing function of x, while 1+x

2 is an
increasing function of x, we know that

inf
0≤x<1

{
max

{
x+ 1

2
, ln

(
2

1 + x

)}}
= Ω (32)

which happens at the intersection of these two functions, i.e.,
2

x + 1 = ln
(

2
1+x

)
. As a result, we conclude our proof by

max

{
h(Dk) + Bk(Dk)

Dk
,

k−1∑
i=1

Ui

}

= max


Ĉ ′k +

k−1∑
i=1

dbfi(Dk)

Dk
,

k−1∑
i=1

Ui


>max

{
2

x + 1
, ln

(
2

1 + x

)}
≥ Ω.

The following corollary is a straightforward extension of
Theorem 5.

Corollary 1. The speedup factor of non-preemptive rate mono-
tonic scheduling for task sets with implicit deadline is 1.76322
with respect to non-preemptive earliest deadline first.

6 Tighter Hyperbolic Schedulability Test

The sufficient schedulability test in Lemma 1 is pessimistic,
as the concept behind it still allows task τk to be preempted.
If we consider that task τk cannot be preempted as long as
it starts, we merely have to verify whether a job of task τk,
arriving at time t, can be started before t+Dk−Ck. Therefore,
we can determine the schedulability of τk by2

∃t ∈ (0, Dk − Ck] with Bk +

k−1∑
i=1

⌈
t

Ti

⌉
Ci ≤ t (34)

thus ensuring that there is enough time for τk to start executing.

However, testing Eq. (34) alone is not safe enough, as
the worst case response time of a task may happen to a
later job, due to the self-pushing phenomenon [5]. Fortunately,
by adopting the following lemma from Yao, Buttazzo, and
Bertogna [23], we can still use the test in Eq. (34) under certain
conditions.

Lemma 2 (Yao, Buttazzo, and Bertogna, 2010). The worst-
case response time of a non-preemptive task occurs in the
first job if the task is activated at its critical instant and the
following two conditions are both satisfied:

1) the task set is feasible under preemptive scheduling;

2) the relative deadlines are less than or equal to periods.

2In the literature, e.g., [23], [5], when considering a tight blocking time
with Bk = maxτi ∈ lp(τk){Ci −∆} (instead of a strict upper bound) they

have to use
⌊
t
Ti

⌋
+ 1 (instead of

⌈
t
Ti

⌉
) in Eq. (34). The simplication by

setting Bk to maxτi ∈ lp(τk){Ci} instead of maxτi ∈ lp(τk){Ci−∆} with
∆ > 0 allows us to put ≤ instead of < in the condition.

8

Therefore, we can combine Lemma 2 and Eq. (34), which
results in the following Lemma:

Lemma 3. A task τk is schedulable by a fixed priority
non-preemptive scheduling (FP-NP) algorithm ANP , if all
higher priority tasks are schedulable, and the following two
conditions hold:

1) the first job of τk will be executed before its deadline:
∃t ∈ (0, Dk−Ck] with Bk +

∑
τi∈hp(τk)

⌈
t
Ti

⌉
Ci ≤ t.

2) the task set is schedulable by AP (FP-P):
∃t ∈ (0, Dk] with Ck +

∑
τi∈hp(τk)

⌈
t
Ti

⌉
Ci ≤ t.

Proof: This follows directly from the previous consider-
ations and Lemma 2.

From Lemma 3, we are going to construct a tighter suf-
ficient schedulability test based on two hyperbolic equations.
This construction will be similar to the one in Theorem 1, thus
we will only state the differences here.

As we are considering different time intervals (0, Dk] and
(0, Dk − Ck] for the preemptive and the non-preemptive
test, the sets hp1(τk) and hp2(τk) will not necessarily be
identical for both tests, i.e., a task τi ∈ hp(τk) with
Dk − Ck ≤ Ti < Dk will be in hp1(τk) for the preemptive
case and in hp2(τk) for the non-preemptive case. Thus we
denote these sets hpP1 (τk) and hpP2 (τk) for the preemptive case
and hpNP1 (τk) and hpNP2 (τk) for the non-preemptive case. As
the examined deadline differs, the order of the jobs in hpP1 (τk)

and hpNP1 (τk) may differ as well if the last release time ti of
τi is in (Dk − Ck, Dk], and thus the permutation of the
τi ∈ hpP1 (τk) according to the last release of τi may differ
from the permutation of the τi ∈ hpNP1 (τk) as well. We
denote those last release times tPi and tNPi and the resulting
permutations as πPk and πNPk .

Theorem 6. A task τk is schedulable by a fixed priority non-
preemptive scheduling algorithm ANP if all higher priority
tasks are schedulable and the following two conditions hold:Bk +

∑
τi∈hpNP2 (τk)

Ci

Dk − Ck
+ 1

 ∏
τj∈hpNP1 (τk)

(Uj+1) ≤ 2 (35)

Ck +
∑

τi∈hpP2 (τk)

Ci

Dk
+ 1

 ∏
τj∈hpP1 (τk)

(Uj + 1) ≤ 2 (36)

Proof: We need to show that if both conditions in this
theorem hold, Lemma 3 holds as well. The proof for Eq. (36)
is similar to the one of Theorem 1. Instead of looking for the
smallest Ĉ ′k, we are looking for the smallest Ck.

For the proof of Eq. (35) the sets hpNP1 (τk) and hpNP2 (τk)

may differ from hpP1 (τk) and hpP2 (τk), i.e., a tasks τi with
Dk − Ck ≤ Ti < Dk is moved from hpP1 (τk) to hpNP2 (τk),
and thus |hpNP1 (τk)| ≤ |hpP1 (τk)|. The tasks in hpNP1 (τk)

will be ordered according to

tNPi =

⌊
Dk − Ck

Ti

⌋
Ti ∀τi ∈ hpNP1 (τk) and tk = Dk (37)

We create an optimization problem, again looking for the
smallest B∗k > B′k = Bk+

∑
τi∈hpNP1 (τk)

Ci to ensure that τk can

not start. The conditions for the optimization problem are the
same as in Eq. (18b) with B∗k instead of C∗k , if we replace >
with ≥ to look for the minimum instead of the infimum. With

B∗k ≥ t∗k−
k−1∑
i=1

t∗iUi−
k−1∑
i=1

t∗iUi we get a maximization problem

of the
k−1∑
i=1

t∗iUi with the same constraints as in Eq. (18), and

thus getting the same solution for B∗k .

The following theorem provides an interesting property of
the blocking time. If the blocking time is not too long under
certain conditions, the blocking time has no impact on the
schedulability test in Lemma 3.

Theorem 7. The schedulability of task τk under a non-
preemptive fixed priority scheduling ANP solely depends on
the schedulability of τk under its preemptive version AP if the
following two conditions both hold:

Ti ≤ Dk − Ck, ∀τi ∈ hp(τk) (38a)

Bk ≤
(

1− Ck
Dk

)
Ck (38b)

The proof of Theorem 7 is in the Appendix.

We conclude this section with the following theorems for
the total utilization bounds of RM-NP with respect to γ. These
bounds are tighter than the results in Theorems 3 and 4.

Theorem 8. Suppose that the tasks are indexed such that Ti ≤
Ti+1. If γ = maxτi∈lp(τk)

{
Ci
Ck

}
= Bk

Ck
> 0, then task τk is

schedulable by RM-NP if

���
���

���
���

���XXXXXXXXXXXXXXX

k∑
i=1

Ui ≤ min{k(2
1
k − 1), H(k, γ)}

k∑
i=1

Ui ≤ min

{
k(2

1
k − 1),

1

1 + γ

}
(39)

9

where

���
���

���
���

���
���

���
���

��XXXXXXXXXXXXXXXXXXXXXXXXXX

H(k, γ) =


(k − 1)(2

1
k−1 − 1) if γ≤(1

2)
1
k−1

(2
γ)

1
k− 1

γ

1+(2
γ)

1
k− 1

γ

+ (k − 1)((2
γ)

1
k − 1) if (1

2)
1
k−1<γ≤2

1
1+γ if γ>2

(40)

Proof: The utilization bound of Eq. (36) for RM-NP is
the well-known Liu and Layland bound k(2

1
k − 1), as shown

in [17], [4]. We only have to focus on the utilization bound
of Eq. (35). which is denoted by H(k, γ). Due to RM-NP, we
know Ti ≤ Tk for any higher-priority task τi, which means
Ci
Tk
≤ Ui. Therefore, a more pessimistic test than Eq. (35) is

to test whetherγUk +
∑

τi∈hpNP2 (τk)

Ui

1− Uk
+ 1

 ∏
τj∈hpNP1 (τk)

(Uj+1) ≤ 2 (41)

The utilization bound can be proven by finding the infimum
k∑
i=1

Ui such that Eq. (41) does not hold. We first show that the

condition in Eq. (41) can be simplified. Suppose that Uk +∑
τi∈hpNP2 (τk) Ui is specified, denoted as f . It is not difficult

to see that γUk+f−Uk
1−Uk is maximized either when Uk is 0 or

Uk is f . As a result, we only have to consider two cases when
Uk is 0 or Uk is f .

When Uk is 0, this problem is reduced to the case with at
most k − 1 tasks in RM-P scheduling, in which the utilization
bound is (k − 1)(2

1
k−1 − 1) > k(2

1
k − 1). We focus on the

remaining case when Uk > 0. This is done by using the
Lagrange Multiplier Method We need to find the infimum
k∑
i=1

Ui such that
(
γUk

1−Uk + 1
) k−1∏
j=1

(Uj + 1) > 2. The detailed

proof to show that H(k, γ) is the infimum happens for one of
the boundary values of U1 ∈ [0; 2

1
k−1−1] is in the Appendix.

The utilization bound for U1 = 0 is 1
1+γ . If U1 = (2

1
k−1 − 1)

the utilization bound is (k − 1) · (2
1
k−1 − 1) > k(2

1
k − 1).

Therefore, we reach the conclusion.

With the property in Theorem 8, we can now formulate the
utilization bounds of RM-NP with respect to γ for sporadic
real-time tasks with implicit deadlines.

Theorem 9. Suppose that γ = maxτk

{
maxτi∈lp(τk)

{
Ci
Ck

}}
.

A task set can be feasibly scheduled by RM-NP if

��
���

���
���

���
���

�XXXXXXXXXXXXXXXXXX

Usum ≤


ln(2) ≈ 0.693 if γ ≤ 1
γ−1
2γ−1 + ln(2

γ) if 1 < γ ≤ 2

1
1+γ if 2 < γ

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0 0.5 1 1.5 2

U
ti

li
z
a
ti

o
n
 B

o
u
n
d

γ

Theorem 9

Theorem 4

Fig. 1: Comparison of the total utilization bound of RM-NP
with respect to γ = maxτk

{
maxτi∈lp(τk)

{
Ci
Ck

}}
provided by

Theorem 4 and Theorem 9

Usum ≤

ln(2) ≈ 0.693 if γ ≤ 1−ln(2)
ln(2)

1
1+γ if γ > 1−ln(2)

ln(2)

(42)

Proof: This follows directly from Theorem 8 by
calculating the utilization bound when k → ∞. , i.e.,
limk→∞(2

γ)
1
k = 1 and limk→∞(1

2)
1
k−1 = 1. We know that

limk→∞ k(2
1
k − 1) = limk→∞(k − 1)(2

1
k−1 − 1) = ln(2)

and limk→∞
(2
γ)

1
k− 1

γ

1+(2
γ)

1
k− 1

γ

+ (k − 1)((2
γ)

1
k − 1)

=
1− 1

γ

2− 1
γ

+ ln(2
γ) = γ−1

2γ−1 + ln(2
γ).

The result in Theorem 9 further improves the result in
Theorem 4. With the analysis in Theorem 9, we can conclude
that the utilization bound of RM-NP with respect to γ can still
be up to 69.3%, if γ ≤ 1−ln(2)

ln(2) ≈ 0.44269. if none of the
lower priority tasks has a larger execution time, i.e., γ ≤ 1.
As long as the lower-priority tasks do not have much longer
execution time than the higher-priority tasks, e.g., γ ≤ 1.59,
the utilization bound can still be more than 50%. We illustrate
the results of Theorems 4 and Theorem 9 in Figure 1.

10

7 Limited-Preemptive Scheduling

Limited preemptive techniques try to combine the
advantages of preemptive and non-preemptive scheduling by
limiting the number of preemptions, e.g., [23]. Our proposed
schedulability tests can also be easily extended to limited-
preemptive scheduling, as long as the pseudo-polynomial time
schedulability test can be constructed with the similar forms in
Section 3, 4 and 6. Here, we demonstrate how to apply them
for the Task Splitting model in [23]. As shown in [23], we can
compute the strict upper bound of the blocking time for task
τk as

Bk = max
τi ∈ lp(τk)

{ max
j ∈ np(τi)

{Ci,j}} (43)

where np(τi) is the number of non-preemptive regions in τi
and Ci,j is the WCET of the j-th non-preemptive region of τi.
With the above upper-bounded blocking time, we can revise
the TDA-based schedulability test in [6] for task τk by using
the definition of Bk in Eq. (43) to replace Bk in Eq. (4) in
Section 4. Therefore, we can easily apply all our schedulability
tests in Theorem 1 and Theorem 2 for limited preemption.

If a task ends with a non-preemptive interval, a tighter
schedulability test has been proposed by Yao et al. [23] by
considering the last non-preemptive execution interval. Let
Ck,f be the length of this final non-preemptive section of τk
and let Ck,s = Ck − Ck,f be the WCET of τk without
the final section. We need to ensure that the upper-bounded
blocking time, all higher priority tasks τi ∈ hpNP2 (τk), and
the part of τk represented by Ck,s, can be executed before the
last non-preemptive section of τk. Therefore, the first condition
in Lemma 3 is changed to verify whether there exists t ∈
(0, Dk−Ck,f] with Bk + Ck,s +

∑
τi∈hp(τk)

⌈
t
Ti

⌉
Ci ≤ t, as

shown in Theorem 2 in [23]. Thus we can reformulate Eq. (35)
in Theorem 6 asBk + Ck,s +

∑
τi∈hpNP2 (τk)

Ci

Dk − Ck,f
+ 1

 ∏
τj∈hpNP1 (τk)

(Uj+1) ≤ 2

(44)
if hpNP2 (τk) and hpNP1 (τk) are constructed accordingly.

8 Conclusion

In this paper we provide, to our knowledge, the first
schedulability tests for non-preemptive fixed priority schedul-
ing with a hyperbolic structure based on the blocking factor.
We lower the upper bound of the speed-up factors of RM-NP
and DM-NP in comparison to EDF-NP to 1

Ω ≈ 1.76322,
which closes the gap for implicit-deadline and constrained-
deadline systems. We also provide the utilization bound for
RM-NP based on the ratio γ > 0, which has significantly
improved previous results in [1].

Acknowledgement: This paper has been supported by DFG, as
part of the Collaborative Research Center SFB876 (http://sfb876.tu-
dortmund.de/), and the priority program ”Dependable Embedded
Systems” (SPP 1500 - http://spp1500.itec.kit.edu).
References
[1] B. Andersson and E. Tovar. The utilization bound of non-preemptive

rate-monotonic scheduling in controller area networks is 25%. In IEEE
Fourth International Symposium on Industrial Embedded Systems -
SIES, pages 11–18, 2009.

[2] S. K. Baruah, R. R. Howell, and L. Rosier. Algorithms and complexity
concerning the preemptive scheduling of periodic, real-time tasks on
one processor. Real-Time Systems, 2:301–324, 1990.

[3] S. K. Baruah, A. K. Mok, and L. E. Rosier. Preemptively scheduling
hard-real-time sporadic tasks on one processor. In In Proceedings of
the 11th Real-Time Systems Symposium, pages 182–190, 1990.

[4] E. Bini, G. Buttazzo, and G. Buttazzo. A hyperbolic bound for the
rate monotonic algorithm. In Real-Time Systems, 13th Euromicro
Conference on, 2001., pages 59–66, 2001.

[5] R. J. Bril, J. J. Lukkien, and W. F. Verhaegh. Worst-case response time
analysis of real-time tasks under fixed-priority scheduling with deferred
preemption. Real-Time Systems, 42(1-3):63–119, 2009.

[6] A. Burns. Preemptive priority-based scheduling: An appropriate engi-
neering approach. In Advances in Real-Time Systems, chapter 10, pages
225–248. Prentice Hall, 1994.

[7] J. Chen, W.-H. Huang, and C. Liu. k2U: A general framework from k-
point effective schedulability analysis to utilization-based tests. CoRR,
abs/1501.07084, 2015.

[8] R. Davis, T. Rothvo, S. Baruah, and A. Burns. Quantifying the sub-
optimality of uniprocessor fixed priority pre-emptive scheduling for
sporadic tasksets with arbitrary deadlines. In Real-Time Networks and
Systems Conference, 2009.

[9] R. I. Davis, L. George, and P. Courbin. Quantifying the sub-optimality
of uniprocessor fixed priority non-pre-emptive scheduling. International
Conference on Real-Time and Network Systems (RTNS’10), 2010.

[10] R. I. Davis, T. Rothvoß, S. K. Baruah, and A. Burns. Exact quantifi-
cation of the suboptimality of uniprocessor fixed priority pre-emptive
scheduling. Real-Time Systems, 43, 2009.

[11] M. L. Dertouzos. Control robotics: The procedural control of physical
processes. In IFIP Congress’74, pages 807–813, 1974.

[12] L. George, P. Muhlethaler, N. Rivierre, et al. Optimality and non-
preemptive real-time scheduling revisited. 1995.

[13] L. George, N. Rivierre, M. Spuri, et al. Preemptive and non-preemptive
real-time uniprocessor scheduling. 1996.

[14] R. Howell and M. Venkatrao. On non-preemptive scheduling of
recurring tasks using inserted idle times. Information and Computation,
117(1):50 – 62, 1995.

[15] J. P. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling
algorithm: Exact characterization and average case behavior. In IEEE
Real-Time Systems Symposium’89, pages 166–171, 1989.

[16] J. Leung and J. Whitehead. On the complexity of fixed-priority
scheduling of periodic real-time tasks. Performance Evaluation, 2:237–
250, 1982.

[17] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. Journal of the ACM, 20(1):46–
61, 1973.

[18] D. G. Luenberger and Y. Ye. Linear and nonlinear programming,
volume 116. Springer, 2008.

[19] A. K. Mok. Fundamental design problems of distributed systems for the
hard-real-time environment. Technical report, Cambridge, MA, USA,
1983.

[20] M. Nasri, S. K. Baruah, G. Fohler, and M. Kargahi. On the optimality
of RM and EDF for non-preemptive real-time harmonic tasks. In RTNS,
page 331, 2014.

[21] A. Thekkilakattil, R. Dobrin, and S. Punnekkat. Quantifying the
sub-optimality of non-preemptive real-time scheduling. In Euromicro
Conference on Real-Time Systems, ECRTS, pages 113–122, 2013.

[22] Y. Wang and M. Saksena. Scheduling fixed-priority tasks with preemp-
tion threshold. In International Conference on Real-Time Computing
Systems and Applications, RTCSA ’99, pages 328–, 1999.

[23] G. Yao, G. Buttazzo, and M. Bertogna. Feasibility analysis under fixed
priority scheduling with fixed preemption points. In Embedded and
Real-Time Computing Systems and Applications (RTCSA), pages 71–
80, 2010.

Appendix

Proof of Optimality of the extreme point solution in
Theorem 1. We have to show, that there is no feasible solution
that results in a smaller value for C∗k then the one derived in
Eq. (24). An extreme point solution for k − 1 variables must

11

have at least k − 1 active constraints. This means that k − 1

constraints out of the Eqs. (20b) and (20c) hold with equality.

We first show that in an extreme point solution for each
τj ∈ {τ1, . . . , τk−1} either Eq. (20b) or Eq. (20c)
is active but not both by assuming that there is a task
τp ∈ {τ1, . . . , τk−1} with 0 = t∗p = t∗k −

∑k−1
i=p t

∗
iUi. Let

τq ∈ {τp+1, . . . , τk−1} be the next task in the extreme point
solution with t∗q > 0, thus t∗p = t∗p+1 = . . . = t∗q−1 = 0.
If no such τq exists, we set q = k∗ and t∗q = t∗k.
With these two conditions, we get the contradiction that
0 = t∗p = t∗k −

∑k−1
i=p t

∗
iUi =

∑k−1
i=q t

∗
iUi ≥ t∗q > 0 for

q ≤ k−1 and 0 = t∗p = t∗k −
∑k−1
i=p t

∗
iUi = t∗k > 0 if

q = k. Thus we can represent a feasible solution of Eq. (20)
by partitioning {τ1, . . . , τk−1} into two tasks sets T1 and T2,
where τj ∈ T1 if t∗j = 0 (Eq. (20c) holds) and τj ∈ T2

if t∗j = t∗k −
∑k−1
i=j t

∗
iUi > 0 (Eq. (20b) holds). As

we maximize
∑k−1
i=1 t

∗
iUi we can simply drop all tasks in T1

and only use the tasks in T2 thus leading to the an objective
function as in Eq. (24) where only τj ∈ T2 are considered.
As
∏
τj∈T2

(Uj + 1) ≤
∏k−1
j=1 (Uj + 1) we maximize the

objective in Eq. (20) if all higher priority tasks are in T2.

Proof of Theorem 2. We use the contrapositive to prove
this theorem as well, showing that if Eq. (15) is not satisfied,
Eq. (27) will not be satisfied. We construct a linear program-

ming to find the minimum of C∗k +
k−1∑
i=1

t∗iUi to ensure Eq. (15)

is not satisfied:

inf C∗k +

k−1∑
i=1

t∗iUi (45a)

s.t C∗k +

k−1∑
i=1

t∗iUi +

j−1∑
i=1

t∗iUi > t∗j , ∀ 1≤j≤k−1 (45b)

t∗j ≥ 0, ∀ 1≤j≤k−1 (45c)

where t∗1, . . . , t∗k−1 and C∗k are variables and t∗k is defined
as tk for notational brevity. We replace > with ≥ again as
infimum and minimum are the same if ≥ is used.

When considering Eq. (45b) with j = k, we get

C∗k +
k−1∑
i=1

t∗iUi ≥ t∗k −
k−1∑
i=1

t∗iUi, thus we can switch to the

maximization problem with
k−1∑
i=1

t∗iUi as the objective function.

We replace C∗k +
k−1∑
i=1

t∗iUi with t∗k −
k−1∑
i=1

t∗iUi in Eq. (45b)

resulting in

t∗k −
k−1∑
i=1

t∗iUi +

j−1∑
i=1

t∗iUi

= t∗k −
k−1∑
i=j

t∗iUi ≥ t∗j , ∀ 1≤j≤k−1

(46)

The result is the same linear programming as in Eq. (20), thus
finding the same optimal solution as in Theorem 1 with the
same properties. From Eq. (45b) for j = k we get

C∗k +

k−1∑
i=1

t∗iUi ≥ t∗k −
k−1∑
i=1

t∗iUi

(21)
= t∗k − (t∗k − t∗1) = t∗1

(23)
=

t∗k∏k−1
i=1 (Ui + 1)

⇒
C∗k +

k−1∑
i=1

t∗iUi

Dk
=

1∏k−1
i=1 (Ui + 1)

(47)

We can replace C∗k with Ĉ ′k as we constructed C∗k as the
minimum value to ensure Eq. (15) is not satisfied under
the worst case setting of the t∗i determined by the linear
programming. Thus if Eq. (27) holds, Eq. (15) holds as well
and the task set is schedulable.

Proof of Theorem 3. With RM-NP scheduling, we
only have to consider the case that hp2(τk) is empty.
This is due to the fact, that a task τl can only be
in hp2(τk) if Tl = Tk if RM is used. In this case

the value for
(
Ĉ′k
Dk

+ 1

) ∏
τj∈hp1(τk)

(Uj + 1) only gets

smaller as 1 + x+ y < 1 + x+ y + xy = (1 + x)(1 + y)

if x > 0, y > 0 and Ci > 0 ∀i. The utilization bound can
be proved by using Lagrange Multiplier to find the infimum

Uk+
∑k−1
i=1 Ui such that ((1 + γ) · Uk + 1)

k−1∏
j=1

(Uj +1) > 2.

By using the same observation (the arithmetic mean is larger
than or equal to the geometric mean) in the proof of The-
orem 5, we know that the infimum Ck

Tk
+
∑k−1
i=1 Ui happens

when U1 = U2 = · · · = Uk−1. Thus, there are only two
variables Uk and U1 to minimize Uk + (k − 1)U1 such that
((1 + γ) · Uk + 1)(U1 + 1)k−1 ≥ 2.

Let λ be the Lagrange Multiplier and G be Uk + (k −
1)U1−λ

(
((1 + γ) · Uk + 1)(U1 + 1)k−1 − 2

)
. The minimum

Uk + (k − 1)U1 happens when

∂G

∂U1
= (k−1)−λ(k−1) ((1 + γ) · Uk + 1) (U1 +1)k−2 = 0

∂G

∂Uk
= 1− λ(1 + γ)(U1 + 1)k−1 = 0

This implies that λ = 1
(1+γ)(U1+1)k−1 . Therefore, by Lagrange

Multiplier the above non-linear programming is minimized
when U1 is Uk + 1

1+γ − 1 and

2 = ((γ + 1)Uk + 1) (U1 + 1)k−1 = (1 + γ)(Uk +
1

1 + γ
)k.

Therefore, by solving the above equality, we have Uk =

(2
1+γ)

1
k − 1

1+γ and, hence U1 is (2
1+γ)

1
k − 1.

12

This solution with Lagrange Multiplier will allow U1 to be
negative when γ > 1. Therefore, we should set U1 to 0 and
Uk to 1

1+γ when γ > 1. By putting these two cases together,
we reach the conclusion of the proof.

Proof of Theorem 7. We need to show that under the
given assumptions, if Eq. (36) holds, Eq. (35) holds as
well. Since Ti ≤ Dk − Ck for all τi ∈ hp(τk), we
know, that hpP2 (τk) and hpNP2 (τk) are both empty, and thus
hpP1 (τk) = hpNP1 (τk) = hp(τk) and

∏
τj∈hpN1 (τk)

(Uj + 1)

and
∏

τj∈hpNP1 (τk)

(Uj +1) are the same. By Eq. (38b), we know

that Bk
Dk−Ck ≤

Ck
Dk

, which implies that the success of Eq. (36)
implies the success of Eq. (35).

Proof of Lagrange Multiplier for the proof of Theo-
rem 8. By using the same observation (the arithmetic mean
is larger than or equal to the geometric mean) in the proof
of Theorem 5, the infimum Ck

Tk
+
∑k−1
i=1 Ui happens when

U1 = U2 = · · · = Uk−1. Thus, there are only two variables
Uk and U1 to minimize G = Uk + (k − 1)U1 such that
(γUk

1−Uk + 1)(U1 + 1)k−1 ≥ 2.

Let λ be the Lagrange Multiplier and G be
Uk + (k − 1)U1 − λ

(
(γUk

1−Uk + 1)(U1 + 1)k−1 − 2
)

. The
minimum Uk + (k − 1)U1 happens when

((((
(((

((((
(((

((((
(((

((((
(hhhhhhhhhhhhhhhhhhhhhhhhhh

∂G

∂U1
= (k − 1)− λ(k − 1)

(
γUk

1− Uk
+ 1

)
(U1 + 1)k−2 = 0

((((
((((

(((
((((

(((hhhhhhhhhhhhhhhhhh

∂G

∂Uk
= 1− λ(U1 + 1)k−1 γ

(1− Uk)2
= 0

This implies that λ = (1−Uk)2

γ(U1+1)k−1 . Therefore, by Lagrange
Multiplier the above non-linear programming is minimized
when U1 is (1−Uk)(1+(γ−1)Uk)

γ − 1 and

(((
((((

(((
((((hhhhhhhhhhhhhh

2 =

(
γUk

1− Uk
+ 1

)
(U1 + 1)k−1

((((
((((

((((
(((

(((hhhhhhhhhhhhhhhhhh
= γ

(
Uk

1− Uk
+

1

γ

)(
γUk + 1− Uk
γ(1− Uk)

)k−1

���
���

���
�XXXXXXXXXX

= γ

(
Uk

1− Uk
+

1

γ

)k
Therefore, by solving the above equality, we have

Uk =
(2
γ)

1
k− 1

γ

1+(2
γ)

1
k− 1

γ

, and, hence, U1 is (2
γ)

1
k − 1.

The above solution with Lagrange Multiplier will allow
U1 to be negative when γ > 2. Therefore, by adopting the
Kuhn-Tucker condition, we should set U1 to 0 and Uk
to 1

1+γ when γ > 2. It also allows Uk to be negative
when γ < (1

2)
1
k−1 . Therefore, by adopting the Kuhn-Tucker

condition, we should set U1 to (2
1
k−1 − 1) and Uk to 0 when

γ < (1
2)

1
k−1 . By combining these three cases together, we

reach our result.

For the minimum total utilization this equation holds with
equality. We donate ` = k − 1 and get

Uk =
(2

1+U1
)` − 1

γ + (2
1+U1

)` − 1
= 1− γ

γ + (2
1+U1

)` − 1

We use this value to replace Uk in G, thus getting a func-
tion of only one variable U1. To find the minimum value
for G = `U1 + 1− γ

γ+(2
1+U1

)`−1
we calculate the first order

derivative:

∂G

∂U1
= `− `γ2(1 + U1)−`−1

(γ − 1 + 2(1 + U1)−`)2

= `

[
1− γ2(1 + U1)−`−1

(γ + 2(1 + U1)−` − 1)2

]
We know that U1 ∈ [0; 2

1
` − 1], as if U1 > 2

1
` − 1 then

Uk < 0. We now prove, that the minimal value happens for
one of the boundaries of U1. For U1 = 0 we get ∂G

∂U1
(0) =

`(1 − 2γ
(γ+1)2) > 0 as γ > 0. We further analyze the second

order derivative:

∂2G

∂U1
=
−`(−`− 1)γ2(1 + U1)−`−22(1 + U1)−`

(γ − 1 + 2(1 + U1)−`)4

+
`γ2(1 + U1)−`−12(γ − 1 + 2(1 + U1)−`)(−2`)(1 + U1)−`−1

(γ − 1 + 2(1 + U1)−`)4

=
2γ`(1 + U1)−`−2[(`+ 1)(γ − 1) + 2(`− 1)(1 + U1)−`]

(γ − 1 + 2(1 + U1)−`)3

We know that the demoninator is always positive as U1 ≥ 0

and γ > 0. In the numerator the same argument holds for
the multiplied term outside the bracket. The first term in the
bracket is a constant. 2(` − 1)(1 + U1)−` is a decreasing
function with respect to U1. So we can conclude that the
second order derivative of G with respect to U1 in all the
values in the range of [0; 2

1
` − 1] is either (1) always positive

∀U1 ∈ [0; 2
1
` − 1], (2) always negative ∀U1 ∈ [0; 2

1
` − 1], or

(3) changing from positive to negative at a certain value U∗1 for
U1 ∈ [0; 2

1
` −1]. For the first case the minimum happens when

U1 = 0. In the second case and the third case the minimum
is in one of the boundary conditions, since ∂G

∂U1
= 0 happens

when ∂2G
∂U1

< 0 and in this case we get a local maximum.

13

