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Abstract. In the era of machine learning and usage of high dimensional data many
analyses in astroparticle physics face similar problems. This contribution presents ap-
proaches to face two typical challenges in the field: verify agreement between simu-
lated and measured data and binning in multiple dimensions while preserving sufficient
statistics. The presented approaches are based on widely used machine learning algo-
rithms making them easy to use and providing good scalability in terms of size and
dimensionality of the used data.

1. Introduction

With increasing complexity of measurements conducted in astroparticle physics anal-
yses it is necessary to utilize as much information as possible. For this task machine
learning techniques provide a powerful toolkit, and over the last years more and more
of those techniques were used in the field. One of the most popular group of techniques
are decision tree (Breiman et al. 1984) based classification and regression algorithms.
These algorithms are supervised learning algorithms which means the model is trained
with data for which the desired label is known.

The training of a decision tree is recursive procedure. In each step the dataset is
split according to a cut in one of the observables. This cut is optimized to separate
the data as good as possible. For the two split datasets the algorithm is called again.
The recursion stops when a dataset can not be further split e.g. when an external con-
dition is fulfilled or the events in the remaining dataset have the same label. Limiting
the maximal depth of the tree or ensuring a minimal dataset size are often used break
conditions. The stopping points are so called leafs and represent a sequence of cuts in
the observables. A typical use case is the separation of signal and background events
or the regression of a physical quantity like a particle energy. But the characteristics of
decision tree based algorithms can be utilized even further.

2. Measurement/Simulation Mismatches

One of the key features of machine learning algorithms is that they can utilize many
observables and especially their correlations among each other. In particle physics the
labeled training data is most often generated from extensive simulations. To ensure the
trained machine learning model can be applied on actual measured data the simulations
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have to be extremely accurate and in good agreement with the measured data. Vali-
dating the compatibility between simulated and measured data for many dimensions is
especially challenging when the correlations between the features needs to be modeled
correct. For this indispensable step no general approach is established.

The idea presented here is to train a classifier to separate between measured and
simulated data (Martschei et al. 2012). For a perfect simulation the separation should
be impossible and the classifier should not be better than guessing. If the classification
is better than guessing, the trained model can be analyzed to identify observables with
a significant mismatch in the simulation.

The approach is demonstrated with data from the IceCube experiment (Achter-
berg et al. 2006). After a first preselection each event is described by 333 observables.
Those observables are used to train a Random Forest (Breiman 2001) to classify mea-
sured events (label = 0) and simulated events (label = 1). The resulting distribution for
the different components are shown in Figure 1. The distribution for all features shows
clearly that the classifier is not only guessing. The corresponding AUC is 0.685±0.011.
To identify the observables allowing for the separation the feature importance can be
used. The feature importances state how often and how strong the observables were
contributing to the training process. The sum of all feature importances is 1. For a
purely guessing RF the distribution of the feature importance should be normal distri-
bution located at 1

NObs
, because the model will be fitted to statistical fluctuations and all

observables should contribute equally. In many applications some observables are used
less often, because statistical fluctuations aren’t as prominent in their distributions e.g.
because they only have few discrete values. Therefore, the normal distribution can be
slightly shifted. The definition we propose to identify outliers uses the median and the
median absolute deviation (MAD). They are robust measures of location and variability
of univariate samples. For normally distributed data the relation between the standard
deviation σ and the MAD is σ = 1.4826 ·MAD. For the given IceCube example the
classifications were carried out in a 10-fold cross validation and if in 8 out of 10 folds
an observable had a feature importance greater than median+3 ·1.4826 ·MAD they are
considered as outliers. After the removal of the outliers the AUC for the classification
is reduce to 0.537 ± 0.009 (see Figure 1). Remaining mismatches most likely come
from uncertainties on true atmospheric muon flux.
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Figure 1. Left: Distribution of the feature importances for the classification with
the full set of 333 observables including the seven outliers. Right: Distribution of the
classification scores for the classification between measured and simulated events.
For the full set of 333 observables (top) and for the final observables set (bottom).
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3. Multivariate Data Discretization

To obtain physical parameters a binned likelihood fit is a very often used technique.
In those fits a model is postulated which gives an expected number of events in the
observable space. To fit the model parameters a likelihood is used in which the number
of expected and measured events in the binned observable space is compared. The
discretization of the observable space is a very crucial task, because it has to be fine
enough to be sensible to the effects in data. But by using a fine binning the space can
become very sparse. Low statistics in the bins can cause problems in the fit and lower
the sensitivity. To find a binning optimized for the fit also the characteristics of decision
trees can be utilized.

Our binning approach is demonstrated for an unfolding (Milke et al. 2013) mea-
surement of the energy spectrum of a γ-source measured by the imaging air cherenkov
telescope FACT (Anderhub et al. 2013). Goal of the unfolding is to obtain the energy
distribution ~f of the measured γ-particles. The number of expected event in the observ-
able space (~̂g) is obtained via a linear model ~̂g = A ~f . The matrix A is the so called
detector response matrix and consists of the conditional probabilities to measure an
event in observable Bin(gi) given that the particle is in energy Bin( f j). The matrix is
determined on simulations in which the sought-after energy of the γ-particle is known.
To determine the energy distribution ~f the following likelihood is used:
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With an ideal detector there would be a causal connection between observable and en-
ergy bin. Consequently, the detector response matrix would consist entirely of zeros
and ones. For a realistic measurement the connection is far more ambiguous and tun-
ning the observable binning is crucial to get keep this ambiguity as small as possible.
The higher the ambiguity of the measurement the higher is the condition number κ of
matrix A and the more ill-posed is the problem.

The idea of the decision tree based binning approach is to train a tree to classify the
events in the different energy bins and to use the leafs of the tree for the binning. Every
leaf of a tree represents a disjunct, rectangular area of the observable space and the
whole space is covered by the leafs. As stated before, the binning needs to be a trade-
off between a fine binning and preserving good statistic in each bin. Due to the training
process the binning is explicitly optimized to separate between the different energy bins,
which should help to make the problem as ill-posed as possible. To preserve reasonable
statistic in each bin we can add external condition to the data to stop the training when
less than k events are in a split dataset.

We use the condition number κ to compare equidistant binnings to binning using
a decision tree. For all binnings it is ensured that each bin has sufficient statistics
(≥ 10 events). To validate that the condition number κ is a reasonable measure to
compare different binnings an observable with low correlation to the energy is binned
equidistantly. The resulting condition number is κ = 90223.1. Using a observable with
a high correlation to the energy increases the condition number to κ = 169.6. Increasing
the number of used observables for an equidistant binning is difficult when a certain
number of events needs to be in every bin. For this example two observables with at
least 10 events in every bin were feasible. Two highly correlated observable increase
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condition number to κ = 84.6. This example validates the expectation, that adding more
informations lead to an less ill-posed problem. Using the same two highly correlated
observables with the decision tree based binning only leads to a minimally increased
κ = 67.0. The resulting binning is visualized in Figure 2. A way more significant
improvement of the condition is achieved when using more than two observables. For
18 observables the condition number is κ = 23.0.

In Figure 2 an overview of the singular values of the different binnings is given.
As demonstrated with the unfolding example it is possible to utilize a decision tree to
obtain an optimized observable binning. The potential gain of this approach is highly
dependent on the problem it is applied to. Its usability is not constrained to problems
using a linear model. E.g. often in γ-astronomy a power-law Φ0E−γ is used to model
the energy spectrum. For such a model one could train the decision tree as a regression
tree for the true energy and use the resulting model for the binning. Further potential
extensions is to used boosting (e.g. AdaBoost (Zhu et al. 2009)) in the training and to
use the boosted tree with the best condition.
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Figure 2. Left: Visualization of the decision tree based binning under usage of
two Observables. Right: Singular values λ and condition κ for the FACT unfolding
using different types of binning.
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