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Abstract

In various applications we face a plethora of data that is often grow-
ing continuously. Such data arize in monitoring settings such as server
log files, manufacturing processes, sensor networks or high volume news
feeds such as twitter. Analysis of such data is different to the traditional
batch setting that RapidMiner initially has been designed for.

In this work we present the streams library — a simple and easy
to use framework to continuously process streaming data. It comes
with the Streams Plugin, integrating its streaming capabilities into the
RapidMiner suite.

We give an overview of the architecture of the streams library and
its RapidMiner integration and demonstrate its usefulness for processing
very large and continuous data in several use cases.

1 Introduction

More and more applications rely on dynamic data that is produced in realtime
and at a high volume. Scientific experiments, network traffic, sensor networks
in manifacturing processes or message services are examples of such applica-
tions. Often the data in these applications is outdated quickly and reactions
need to be applied in near to realtime. An example is given by Google’s
news search, which uses a dynamic index for searching even more recent news
articles. In other scenarios an on-time analysis might save resources as irrel-
evant data can quickly be detected and discarded. Analysis in such dynamic
data settings is different to the traditional batch setting that RapidMiner has
initially been designed for.

Continuous data poses several challenges for data analysts: The data are
often produced at large volume and require continuous processing to provide



up-to-date prediction models or summaries. Such models or statistics need to
be accessible at anytime. For preprocessing that data only limited resources
with regard to memory, CPU and I/O is available. Recent advances such as
Google’s Map/Reduce paradigm address these by large scale parallelization of
batch processes [I} 2]. While this scales well with the large amounts of data
at hand, it does not tackle the problem of processing data continuously.

To catch up with the reqgirements of large scale and continuous data, online
algorithms have recently received a lot of attention. Various algorithms have
been proposed for online quantile computation [3| 4], frequent itemset mining
[5L 6l [7], clustering [8, [9] or classification [10].

1.1 Owur Contributions

In this work we introduce the streams library, a small software framework
that focuses on online processing of data and its adaption into RapidMiner as
the Streams Plugin. The streams framework provides a thin abstraction layer
to facilitate online data processing whereas the Streams Plugin uses a generic
wrapper approadﬂ to build a streaming facade within RapidMiner.

The proposed library supports

1. Modelling of continuous stream processes within RapidMiner, following
the single-pass paradigm,

2. Anytime access to services that are provided by the continuous processing
and the online algorithms deployed in the process setup, and

3. Processing of large data sets using limited memory resources.

1.2 Paper Outline

The outline of this work is as follows: In Section [2] we review the problem
setting and give an overview of related work and existing frameworks. Based
on this we derive some basic building blocks for a modeling data stream pro-
cesses (Section . In Section (4| we present the streams API which provides
implementations to these building blocks, and present the Streams Plugin that
integrates these into RapidMiner in Section [5] Finally we summarize the ideas
behind the streams library and give an outlook on future work.

1RapidMiner operators are automatically generated using the RapidMiner Beans library
[11], which allows for the implementation of operators by following the JavaBeans convention
and using simple Java annotations.



2 Problem and Related Work

With nowadays data volume, the traditional batch processing model quickly
reaches the resource limitations of single workstations. Even applying a previ-
ously created prediction model to a large set of examples can quickly become
impossible if the example set itself does not fit into main memory. The only
cumbersome solution often is to split the data into several files and process
each file separately. We will refer to this setting as the partial batch processing.
This processing typically requires the results of the processed batches to be
combined, for example by computing an average.

In some cases, the data is not even static, but continuosly produced by some
data generating process. In the simplest case we might be able to write batches
of that data into files and fall back to the mini batch processing approach.
Therefore in this work we are more interested in continuously processing that
data and provide models or services in an anytime manner, that is the current
models or statistics can be queried at any time. We will refer to this setting
as the (continuous) stream processing. When dealing with a finite source of
data we can consider the stream processing as a special case of partial batch
processing with a batch size of 1.

The data processing model of streaming approaches share common criteria.
The framing to operate on streaming data is generally given by the following
constraints/requirements:

C1 continuously processing single items or small batches of data,
C2 using only a single pass over the data,

C3 using limited resources (memory, time),

C4 provide anytime services (models, statistics).

This contrasts to the RapidMiner batch-processing model, where a set of ex-
amples is usually processed in its entirety and during a single execution of a
RapidMiner process.

Existing Frameworks

The partial batch processing as well as the stream processing have both spawned
libraries and frameworks to support either of these paradigms. With some
limitationsﬂ the partial batch processing is already natively supported by
RapidMiner by looping over files or database tables. Google’s Map/Reduce

2Essentially the key limitation we are aware of is the maintenance of a global nominal
mapping when processing examples from multiple file sources. This is required to ensure
that different nominal values refer to the same double value representation and essentially
requires the global nominal mapping to reside in main memory.



Processing Model Supporting Software (examplary)
Batch Processing WEKA, RapidMiner

Parallel Batch Processing Google MapReduce, Hadoop, Radoop

Continuous Stream Processing S4, Storm, MOA, Streams Plugin

Table 1: Different software frameworks for different processing models. Pack-
ages/libraries marked as blue are related to RapidMiner (extensions, plugins).

and the RapidMiner Radoop [2] plugin are examples supporting (parallel)
partial batch processing on a large cluster backend.

Parallel batch processing is addressing the setting of fixed data and is of
limited use if data is non-stationary but continuously produced, for example in
monitoring applications (server log files, sensor networks). A framework that
provides online analysis is the MOA library [12], which is a Java library closely
related to the WEKA data mining framework [I3]. MOA provides a collection
of online learning algorithms with a focus on evaluation and benchmarking.

Aiming at processing high-volume data streams two environments have
been proposed by Yahoo! and Twitter. Yahoo!’s S4 [I4] as well as Twitter’s
Storm [15] framework do provide online processing and storage on large cluster
infrastructures, but these do not include any online learning.

In contrast to these frameworks, the streams library focuses on defining a
simple abstraction layer that allows for the definition of stream processes which
can be mapped to different backend infrastructures (such as S4 or Storm).

Data Streams in RapidMiner

The focus of RapidMiner so far has been batch processing. With Radoop, this
has been extended to (massive) parallel partial batch processing on top of the
Hadoop clustering software. The streams library proposed in this work aims
at providing continuous stream processing of non-stationary data. Based on
this, we provide a Streams Plugin for RapidMiner to extend its processing ca-
pabilities to the continuous stream setting. Table [l|summarizes the mentioned
software libraries with respect to their focused processing mode.

The streams library provides a simple execution runtime by itself whereas
the Streams Plugin implements an execution environment within RapidMiner,
making the implemented algorithms available in the RapidMiner suite. How-
ever, the level of abstraction provided by the streams does not limit the exe-
cution of stream processes to the streams runtime, but also aims at including
large scale distributed execution environments (e.g. Storm).



3 An Abstract Stream Processing Model

In this section we introduce the basic concepts and ideas that we model within
the streams framework. This mainly comprises the data flow (pipes and filters
[16]), the control flow (anytime services) and the basic data structures and
elements used for data processing. The objective of the very simple abstraction
layer is to provide a clean and easy-to-use API to implement against. The
abstraction layer is intended to cover most of the use cases with its default
assumptions whereas any special use cases can generally be modelled using a
combination of different building blocks of the API (e.g. queues, services).

3.1 Data Items, Streams and Processors

Figure [I] illustrates an abstract data process flow following the widely ac-
cepted pipes-and-filters pattern. A stream provides access to single elements
(instances, events or examples) which are sequentially processed by one or
more processing units. Throughout this paper we will refer to these elements
as data items. Each data item represents a tuple, i.e. a set of (key,value)
pairs and is required to be an atomic, self contained element. Data items from
a stream may vary in their structure, i.e. may contain different numbers of
(key,value) pairs.
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Figure 1: The general pipeline model for data processing.

A data stream is essentially a possibly unbounded sequence of data items.
In the pipeline model, a processor is some processing unit that applies a func-
tion or filter to a data item. This can be the addition/removal/modification of
(key,value) pairs to the current item or an update of some model/state internal
to the processor. Then the outcome is delegated to the subsequent processor
for further computation.

A set of processors is wrapped in a process, which itself is an active com-
ponent that reads from a stream and applies all inner processors to each data
item. The process will be running until no more data items can be read from
the stream. Multiple streams and processes can be defined and executed in
parallel. For communication between processes, we define queues. Queues can
temporarily store a limited number of data items and can be fed by processors.



They do provide stream functionality as well, which allows queues to be read
by other processes.

These five basic elements (stream, data item, processor, process and queue)
already allow for modelling a wide range of data stream processes with a
sequential and multi-threaded data flow. Apart from the continuous nature
of the data stream source, this model of execution matches the same pipelinig
idea already inherent to RapidMiner, where each processor (operator) performs
some work on a complete set of data (example set).

3.2 Data Flow and Control Flow

An additional requirement of data stream processing is given by the anytime
paradigm, which allows for querying processors for their state, prediction model
or aggregated statistics at any time. We will refer to this anytime access as the
control flow. Within the streams framework, we model these anytime functions
as services. A service is a set of functions that is usually provided by processors
and which can be invoked at any time. It is also possible to define standalone
services, e.g. for lookup tables on static data. Processors may also consume
services. A simple example is given by a learning algorithm, that provides
predictions based on its current model as shown in Figure Here, an Add
Prediction processor acts as service consumer, adding a prediction to the data
based on the prediction service provided by the learner. The data flow and
control flow define two orthogonal views of the stream processing.

Process
Add Prediction Naive Bayes Learner Prediction Error
A C a)lc
uses: Pred. Service Prediction Service

Figure 2: The data flow and control flow in the use case of the general
test-then-train evaluation scheme. The Naive Bayes processor provides a
Prediction-Service that is used by the Add Prediction processor to add a pre-
diction to each data item. The Prediction Error processor simply computes the
error based on the prediction and the true label.



4 The streams Library

The streams library provides a set of classes and interfaces for the elements
defined in Section |3} which allows for implementing custom streams and pro-
cessors. In addition it provides basic classes for reading, writing and processing
data, e.g. from CSV files, SVMlight formatted data or by reading streams from
an SQL database. The library consists of three packages:

1. stream-api — a small collection of interfaces and classes representing the
conceptual elements outlined above.

2. stream-core — several implementations of I/O streams, processors, etc.
which are of general use.

3. stream-runtime — a light-weighted execution environment that allows to
define streaming processes in XML.

To a large extend we focused on developing the streams API as simple as pos-
sible using standard data structures and following design patterns and con-
ventions like JavaBeans [I7] or techniques like dependency injection [I8] found
in well established frameworks such as the Spring Framework [19] or Google
Guice [20].

4.1 Data Items and Processors

In the stream-api data items are represented by the stream.Data interface,
which itself is a plain Java Map with keys of string type and any serializable
objects as values. Maps support our objective to use versatile data structures
that are available and well understood in any language (e.g. dictionaries in
Python or Ruby) and do provide the self-contained property. The serialization
requirement allows data items to be transferred over network connections,
required for running stream processes in distributed environments.

A data stream is provided by the interface stream.io.DataStream and
basically provides a single readNext () method returning the next data item
of the stream. In general, the data stream implementations in the streams
library require a URL or a Java InputStream object to read from. This allows
creating streams to read from file, network resources or from external data
generating processes by reading from standard input.

The processor elements are defined by a simple interface stream.Processor
that requires a single method to be implemented as shown in Figure

Parameters via JavaBeans

Following the JavaBeans convention, processors are required to provide a no-
args constructor and may use parameters by simply providing get- and set-



public interface Processor {
/** Method called for each item to be processed. */
public Data process( Data item );

}

Figure 3: Definition of the basic processor interface, required to implement
custom processors within the streams library.

methods. The example processor shown in Figure |z| (see Appendix) outputs
an alert message for every item that does not provide a (key,value) pair for a
user defined key name. This simple beans convention allows for automatically
registering RapidMiner operators and their corresponding parameter types.
This is provided by the RapidMiner-Beans library.

4.2 Anytime Services

For implementing the anytime paradigm, the streams library provides a Service
interface and a dynamic naming service which allows for registering and ob-
taining services or references to services. This works similarly to the standard
RMI naming services included in Java, but tries to abstract from a specific
implementation.

The anytime services within the streams library are implemented by extend-
ing the Service interface and defining any method that shall be provided in
an anytime manner. As an example, the PredictionService is implemented
by all online learning algorithms, which defines a simple predict method as
shown in Figure[d As soon as a processor that implements a Service interface
is added to an experiment, it is automatically registered within the naming
service.

public interface PredictionService extends Service {
/** Returns the prediction for an item based
* on the current model */
public Serializable predict( Data item );

Figure 4: A simple PredictionService that as is provided by all online learn-
ing algorithms that support classification.

4.3 A light-weight streams Runtime

For rapid prototyping and development purposes, the streams library imple-
ments a small multi-threaded runtime environment, which allows to define



stream processes using a simple XML document. The interpretation and struc-
ture of this XML is very similar to the notation known from frameworks like
Spring [19]. A sample XML process definition of the test-then-train use case
is provided in the Appendix (Figure [g).

The services defined within the streams API are exported via a naming ser-
vice. The default naming service uses a local RMI registry, which allows for ac-
cessing services such as prediction services, or processors providing meta-data
statistics (average, minimum, maximum, top-k elements) while the processes
are running.

5 RapidMiner Streams-Plugin

The Streams Plugin provides RapidMiner operators for the basic building
blocks of the streams API using a simple wrapper approach to directly reuse
the processor implementations of most of the streams packages.

The operators of the Streams Plugin are automatically created from the
processor and data stream implementations using the RapidMiner Beans library.
This uses reflection and Java annotations to automatically extract and set
parameter types for the wrapping operators. Figure |5| gives an overview over
the Streams Plugin. The streams API serves as an abstraction layer providing
implementations of the basic elements identified in Section

&%) RAPID|MINER

Streams Plugin

RapidMiner Beans

Streams API

Streams Core Streams Mining MOA

Figure 5: The architecture of the Streams Plugin, built on top of the streams
API. The Streams Mining package as well as the MOA integration are work in
progress and have not yet been fully integrated.



5.1 A Stream Process within RapidMiner

The elements for streams and processors are represented by RapidMiner oper-
ators. The continuous process is mapped to a RapidMiner subprocess. Figure
[6] shows a stream process within RapidMiner.

CsvStream o

o ) =]

o Predictior NaiveBayes PredictionError

e L] @

Figure 6: A continuous stream process in RapidMiner. The top process shows
a stream operator and the stream process as a subprocess. The edge (1 repre-
sents a data stream object. Within the stream subprocess, IOObjects trans-
ported are single data items (edge @).

5.2 Control Flow and Anytime Services

Operators that relate to processors implementing a Service interface will be
automatically registered as services within a RapidMiner naming service pro-
vided by the Streams Plugin. They can be referenced by consuming operators
using a simple drop-down select box within the operator parameter view of
RapidMiner.

For accessing services or monitoring from outside the continous streaming
process, the Streams Plugin integrates an embedded web server that exports
services via a web service interface. Currently services are exported via this
embedded web server using the simple JSON-RPC protocol [2I] and a local
RMI registry.

6 Conclusion and Future Work

In this work we presented a simple abstraction API for modelling continuous
streaming processes and implementing custom processors and services. On top
of this layer of abstraction we implemented a RapidMiner Streams Plugin that
integrates the stream oriented processing into the RapidMiner suite. This al-



lows for processing of continuous data or large batch data sets using sequential
single item or mini batch processing.

Future work will focus on integrating MOA into the streams library, making
more data mining algorithms available for online processing. In addition we
seek for extending the remote access for other web service protocols like SOAP.
An interesting extension will be the integration of distribution capabilities,
e.g. by incorporating support for backend infrastuctures like Twitter’s Storm
framework.
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A Appendix

A.1 A Simple Processor

The sample code in Figure [7] shows the implementation of a very simple pro-
cessor defining a get- and set-method for the key parameter. In addition the
class is annotated using the Description annotation, which allows for spec-
ifying the RapidMiner Operator group into which the resulting operator will
be added.

The @Parameter annotation marks the setKey method as a mandatory
parameter and adds a description to the parameter.

import stream.Processor;

import stream.Data;

import stream.annotations.Description;
import stream.annotations.Parameter;

/*x
* A simple example processor
*/
@Description( group = "Data Stream.Processing.Validation" )

public class CheckMissing implements Processor {
String key;

QParameter( required = true, description = "The attribute to check" )
public void setKey( String key ){

this.key = key;
}

public String getKey(){
return key;

}
public Data process( Data item ){

Serializable value = item.get( key );
if ( value == null ){

System.err.println( "Missing value!" );
}

return item;

Figure 7: A simple custom processor that checks if a specified key is contained
within a data item. Some Java annotations has been added to the class to
make it available as RapidMiner operator.



A.2 A sample XML Process Definition

<container>
<stream id="data" class="stream.io.CsvStream"
url="file:/tmp/test-data.csv" />

<process input="data">
<stream.learner.AddPrediction learner-ref="NaiveBayes" />

<stream.learner.NaiveBayes id="NaiveBayes" label="play" />

<stream.learner.evaluation.PredictionError label="play" />
</process>
</container>

Figure 8: A simple experiment process in the streams runtime definition.
Each XML element within the process element directly coresponds to a Java
class implementing the Processor interface.

As can be seen in this simple example, the processor NaiveBayes is given
an id attribute, which defines the name under which it will be registered as
PredictionService (because it implements that service interface) in the naming
system. Any other processor can now reference this services using the id value.

The AddPrediction processor in this example is a service consumer. For
this it defines a single set-method

public void setLearner( PredictionService service ){

this.predictionService = service;

}

which is automatically set to the service provided by the NaiveBayes as this
is the name of the service specified in the learner-ref attribute. For each
item, the AddPrediction will request a prediction using the prediction service
and will add that prediction to the data item with key @prediction.

The naive Bayes algorithm will then update its model for each processed
item, ignoring any attributes whose key starts with an “@” and finally the
PredictionError processor will compute the error for keys with a prefix
@prediction. The result will be stored in a key with prefix @error.
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