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IDU @ NASA Ames

• Group description

– 12 members (7 Ph.D. researchers), summer interns, 
partners through NASA Research Announcements and 
SBIRs

• Develop methods that perform anomaly detection, 
diagnosis, and prediction within datasets that are

– Large

– Distributed 

– Heterogeneous---numeric (continuous, discrete) and text 
data



Roadmap

• Introduction

• Gaussian Process regression (GPR)

• Block GP

• Block GP experimental results

• Sparsity pattern identification in GPR

• SPI-GP for large data sets

• SPI-GP experimental results

• Conclusion



Introduction

• Desired characteristics in a regression-based 
model
– Accuracy

– Interpretability

– Scalability

– Confidence

• Gaussian Process Regression (GPR)
– Predicts a distribution (mean and variance)

– Captures non-linear relationship in data



Gaussian Process regression

Training data
• data matrix of observations – n x d
• y vector of target data – n x 1

Test data
• X* matrix of new observations – n* x d

Covariance function

Goal
• Predict y* corresponding to X*

Model building
• Train hyperparameters on a sample of 
• Compute covariance matrix K (n x n)

Prediction
• Compute cross covariance matrix K* (n* x n)
• Compute mean prediction on y* using

• Compute variance of prediction using

Algorithm Analysis

• Storage Complexity: Storing covariance matrix O(n2) 

• Time Complexity: Computing matrix inversion O(n3) 



Scalable GPR literature

• Numerical Approximation: Subset of regressors

• where

• Stable GP:  Approximate                    by Cholesky factorization 
with pivoting where     is         and      ismnV
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Illustration of GPR scalability

Large Scale Gaussian Process:
need a supercomputer with a 
LOT of RAM and processing power

Classical GPR can be 
computed in memory

Large Scale GPR needs a supercomputer 
with a lot of RAM and processing power

Size: O(103) Size: O(106)

Alternately: use low rank approximation
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Mixture of experts literature

• Gaussian Process Mixture of Experts

– Gating network decides which point is best predicted by 
each expert

– Uses EM/MCMC methods for learning experts 

– All training points are used for training each experts

– Very high convergence time and reduced scalability

• Scales up to the order of 103 data observations



Block GP

• Approximates Gaussian Process Mixture of Experts

– Divides the data apriori into clusters

– Builds separate models for each cluster/expert

– Uses cluster membership probabilities to compute a 
weighted average of predictions by each cluster

– Accounts for inter-cluster relationships



Block GP algorithm

1. Partition the data set using spectral clustering.

2. Train a GP for each partition.

3. Determine the cluster membership probability of each point for each cluster.

4. Those points that fall outside of the clusters are partitioned into a new cluster 
(complement set).

5. Retrain GP models for each clusters and the complement set.

6. Predicting new values using a weighted sum based on the cluster 
memberships and the predictions of each expert.

Final prediction equation is:

where       represents the weight of the

prediction by the      expert.
Complement set



Real-life data sets: multimodality

Napa California World
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Block-GP performance analysis

• For number of modes k, number 
of dimensions d and maximum 
number of data points nmax

prediction is 

– Higher scalability

– Decomposability for distributed 
computation

– Higher interpretability as 
different models predict 
different geographical regions 
accurately

106

106

106

106

106

Use numerical approximation technique for each of the 
experts individually



Accuracy and running time

Mean and standard deviation of NMSE of Block-
GP for different data sets

Running time of Block GP demonstrated on the 
California data set



Block-GP results
Data set Modes Size Details

California 10 15,000,000 x 4 MODIS 8 day surface reflectance  BRDF-adjusted from Terra and 
Aqua measured in 7 different  wavelengths. 

Color map of normalized residual (left) and variance 
(right) for the prediction task

Prediction of band 6 using 1, 4 and 5



Block GP results

California color coded into 10 clusters based on 
surface reflectance using spectral clustering. 

Top 5 percentile cases where Block-GP 
performed better

Top 5 percentile cases where low rank approx. 
performed better

 Land cover changed with time

 Number of clusters

 Noisy target artifact



Covariance matrix structure

• Block GP constraints
– Works only for block diagonal structure of covariance 

matrix

• Unknown sparsity structure
– Prior assumptions can lead to erroneous results
– Numerical approximations destroy model 

interpretability
– Calculating complete covariance matrix will give much 

denser matrix

• Inverse covariance estimation gives relevant 
conditional independence information



Illustration on climate data

Precipitation  data over land  for the entire world 

Covariance and inverse covariance matrices constructed from the above data  for every pair of locations



Regularization

• Additional penalty to reduce model 
complexity or prevent overfitting

– Penalty for L1: 

– L1 regularization results in parsimonious models

• LASSO: least square regression using L1 
regularization

– where     is regularization parameter



Sparse covariance selection

• Estimate sparse inverse covariance of a 
Gaussian distribution, given the sample mean 
and sample covariance matrix

Covariance selection for graphical models 

Inverse covariance matrix estimation in 
Gaussian Process



Estimating inverse covariance

• Equivalent to inferring a graphical model

– LASSO regression on every variable as possible 
target followed by AND/OR operation on pairwise
relations

– Minimize the pseudo negative log-likelihood of 
data; stable solution requires a L1 penalty

– can be solved using block-wise coordinate descent 
very efficiently



SPI-GP

1. Build kernel matrix

2. Use optimization to estimate sparse inverse 
kernel for GPR based prediction

– Study important dependency patterns in the data

3. Compute predictions using the following 
equation:



ADMM for optimization

• Earth Science data - too huge to fit in memory

– Standard optimization techniques do not work

• Alternating Direction Method of Multipliers 
(ADMM): decomposition algorithm for solving 
separable convex optimization problems

– Based on iterative scatter and gather operations 
on the augmented Lagrangian



ADDM for Inverse Estimation

Optimization variable

Linking /update variable

Dual variable

Analytical closed form requires doing eigen decomposition  of 
matrix K

Analytical closed form is doing a soft thresholding at every step



SPI-GP experimental results

Climate network for years 1982 (above) and 1991 (below) based on precipitation in south Asia



Summary

• Scalable (parallelizable) Gaussian Process regression algorithm 
for multimodal data with scalability parameters: 
– Number of dimensions of input data

– Number of observations

– Number of modes in input data

• Block GP only handles approximately block diagonal covariance 
matrices

• SPI-GP allows identification of any sparsity pattern through inverse 
covariance estimation through parallelizable optimization technique
– Able to compute (estimate) inverse kernel even when the data cannot be 

loaded into memory



On going research

• Method-oriented

– Error bound on approximation for Block GP

– Decomposable approximation for pseudo inverse 

• Data oriented

– Choice of kernel

– Choice of number of clusters

– Interpretation of network evolution study in terms 
of teleconnections
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