Network Coding for Resource-Efficient Operation of Mobile Clouds

Frank H.P. Fitzek
Aalborg University
Short intro

• Aalborg University
• Research work on
 – Cooperative Wireless Networks
 – Cognitive Networks (not so much the radio part)
• Heading the mobile device group
 – Implementing “paper work” into “real world” AND feedback the output (evolution theory)
 – Mobile device it THE device
 – Nokia Innovation Network (NIN) member
Rocket Science

- Bringing a rocket into space is simple – on paper
- Simple Newton laws are enough
- Real problem is the realization
- Year of testing needed to understand basic problem for rockets with liquid fuel
Problems for Mobile Devices

• Services (Apps)
 – Make the difference for the user

• High speed Internet Access
 – Monolithic approach is limited
 – Spectrum

• Energy and Power
 – Long operational times
 – Green aspects
 – Heating problems
Today’s Talk

Resource Sharing in Mobile Clouds

Communication within the Mobile Cloud
Monolithic Approach
Private Clouds

Private (Fixed) Cloud – Motorola

Private Mobile Cloud - phonedeck
Altruistic Sharing

• Mobile Hotspots
• Cellular connection is shared with others
 – Own devices
 – Friends
 – Others (?)
Public Mobile Clouds

\[P = 1.3 \text{ W} ; R = 0.2 \text{ Mbit/s} \]

Cellular link (C)

\[P = 1.6 / 1.3 \text{ W} ; R = 5 \text{ Mbit/s} \]

ENERGY PER BIT COUNTS

Cooperation
Basic rules of cooperation

1. Egoistic behavior rules! (No slavery, no altruism!)
2. Reciprocity (vampire bat)
3. Detection of cheaters (vampire bat)
4. Pay off tolerance (monkeys)
Two examples

Video services / Download

- All members of the cooperative cloud are interested in the SAME content
- Reduction of the cellular data rate but increased exchange of local short range
- Each cooperating entity gains in the very same moment.

Web Services

- Members of the cooperative cloud are interested in different content
- Cellular air interface activity versus reading phase 1:4
- Pay off tolerance becomes an issue
- Building up trust in short time is needed
NETWORK CODING
Network Coding: The Butterfly

- Two packets a and b should be conveyed to two destinations
- Bottleneck in the middle
- Either packet a or b will path the bottleneck
Network Coding: The Butterfly

- Same old problem
Network Coding: The Butterfly

- Ahlswede et. al. In 2000
- Coding the packet
- Other ideas were around
- Max-flow min-cut theorem

\[EV = a + b \]
Kirchhoff versus Network Coding

Kirchhoff

Network Coding

\[O = I_1 + I_2 \]

\[O = f(I_1, I_2) \]
Coding

No coding

Psucc = 0.5

Binary coding

Psucc = 0.6667

RLNC coding

Psucc = 1
Network Coding

If a separate solution is possible for each sink, there is also a joint solution!
[Koetter/Medard]
Different forms of coding
Network Coding for Cooperative Wireless Networks

• Our starting point
• Simple scenario
• Seeding of packet a and b is crucial
 – Fairness
 – Performance
• Forms of NC
 – XOR in the air (COPE)
 – RLNC
XOR
S60 Implementation RLNC

Coding and decoding throughput

Throughput [kB/s]

Packets coded together

- GF(2^8) encoding
- GF(2^8) decoding
- GF(2^{16}) encoding
- GF(2^{16}) decoding
Not for free ...

- Overhead due to encoding vector (\uparrowGF++ GS++)
 - Additional bits to indicate which packets are coded together
 - Seed trick reduces this to zero
 - “Intrinsic information exchange”
- Computational overhead (\uparrowGF++ GS++)
 - Coding/Decoding is not for free
- Network Overhead (\downarrowGF++ GS++)

- GF size and the generation size (GS) determine the performance
PictureViewer

• Convey information of your mobile phone to your neighbors.
• How to do this?
• What about multi-hop?
Results of Preanalysis (g=64) 1/2

Fig. 4: Expected number of transmission per packet, $p = 0.3$.
Network Coding GF(2)
Systematic Network Coding GF(2)
Coding throughput on Nokia N95

Nokia N95-8GB, ARM 11 332 MHz CPU, 128 MB ram, Symbian OS 9.2
NC is real ...

- We implemented COPE and RLNC
 - Mobile phones
 - Nokia
 - Android
 - iPhone
 - Laptops
 - Sensor board

- Problems
 - Coding potential is missing
 - Random generator !!
 - Coding performance too bad
ENOC
ENOC

• Nokia project
• IPTV services over LTE networks
 – RAPTOR codes are used to deliver the content
• New approach
 – Cooperation among devices
 – Network Coding for cluster communication
Scenario under Investigation

- four scenarios
- 10% error rate
- Generation size inf
Hetero

Network Operator will ask for NC!!!!

Nodes might go for Coop or NC coop

BS sends

Energy per node

Up to 40%

No difference
CATWOMAN

- Multihop network based on BATMAN routing (draft RFC)
- Implementation of network coding on real WiFi access points
- Multi hop

Work by Martin Hundeboell and Jeppe Ledet-Pedersen
Catwoman

Scenarios under Investigation

• First Alice & Bob
• Later arbitrary networks
Catwoman
Results
Conclusion and Outlook

• Network coding is the missing piece for cooperative wireless networks.
• NC will improve the performance of CWN in terms of throughput and energy consumption.
• NC is not just paperwork. It runs on any device. But care is needed to do it the right way.
• NC offers inherent security

• Seeding packets into cooperative cluster → GA
• Low complexity for higher GF (multi hop)
• Multi hop challenge
• First products will be launched end 2011
Tutorial on Cooperative Wireless Networks

- Free Online Tutorial
- IEEE Tutorial NOW
- Fitzek/Katz
- Recorded at GC 09
Contact

www.fitzek.net
www.youtube.com/frankfitzek
ff@es.aau.dk