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Extreme amounts of data

Real-time analyses required to
trigger follow-up observations
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Real-Time Analysis Improved Event Reconstruction through Machine Learning

FACT [No6the 2017]
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Novel Unfolding Techniques Increasing Simulation Efficiency
» Indirect measurements result in limited resolution and acceptance » Abort unnecessary simulations as early as » Perfect agreement between observations and
» Unfolding methods reconstruct the probability distribution of possible [Baack 2016a] simulations is hard to achieve
energies (spectrum) from the observed quantities » Flexible stack implementation allows for » Improving agreement by feature selection
prioritization and discarding of particles » Remove features that distinguish observations

Dortmund Spectrum Estimation Algorithm (11) (c)

from simulations [Borner et al. 2017]

Methodology & Results
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