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Big Data in Multi-Messenger Astronomy
Physics questions: origins of cosmic rays cosmic particle acceleration dark matter fundamental physics at high energies

Common Challenges

COSMIC RAYS

PHOTONS

NEUTRINOS

EARTH-BASED
OBSERVATORIES

SOURCES
(E.G. ACTIVE GALACTIC 

NUCLEI)

I Extreme amounts of data
I Real-time analyses required to

trigger follow-up observations
I Indirect measurement processes

for the quantities of interest
I Signal-to-background ratios

from 1 : 103 to 1 : 1010

I No annotated samples from
the real world

The need for and the possibility of extensive physical
simulations are both a blessing and a challenge.

Neutrino Astronomy
I Extreme signal-to-background ratios

νµ: 1 : 106, ντ : 1 : 1010

IceCube
I Below the geographic South Pole
I 5160 light sensors in 1 km3 of ice
I Complex high-dimensional and

variable data
I Limited computational resources and

bandwidth (100 GB/d)
I 3000 Events/s⇒ 1 TB/d

Gamma-Ray Astronomy
I Cherenkov radiation measured
I Atmosphere used as the

detector volume
I 1 gamma-ray : 104 hadrons
FACT
I New detector technology
I ~70 Events/s⇒ 750 GB/d
I Monitoring⇒ fast alerts
MAGIC
I Stereoscopic system
I ~300 Events/s⇒ 1 TB/d

Simulations
I Particle interactions
I Propagation of leptons
I Cherenkov light production
I Propagation of photons
I Detector optics and electronics

Atmosphere

Telescope

γ Particle

Air Shower

Cherenkov Light

I Several cluster years of computations
I More than 5 PB simulated data
I Many events are discarded in the first

analysis steps
I Great potential for optimization

Real-Time Analysis

Calibration,
Cleaning

Feature
Extraction

Energy
Estimation

Signal
Separation

FACT [Bockermann et al. 2015] A1

I Full real-time analysis chain for FACT
I Online application of pre-trained

machine learning models
I Best Paper Award ECML 2015

IceCube [Hünnefeld 2017]

I Deep learning improves reconstruction
while being orders of magnitude faster

I Constant application time prevents
event pileup
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Improved Event Reconstruction through Machine Learning
FACT [Nöthe 2017]
I All reconstruction tasks are now solved using random

forests (classification & regression)
I Greatly improved angular resolution
I Background suppression improved by a factor of 2
I 50 % gain in sensitivity
I Evaluation of deep learning started

IceCube [Hünnefeld 2017]
I Deep learning improved reconstruction in many areas
I Random forests improved sensitivity of search for rare

tau neutrino events by a factor of 2

MAGIC [Mielke 2017]
I Deep learning improved energy resolution by a factor of

2 in the higher energies

log10(MC Muon Energy at Entry / GeV)

Resolution of energy reconstruction algorithms for
IceCube. The novel deep learning reconstruction
outperforms other methods by large margins.

Novel Unfolding Techniques
I Indirect measurements result in limited resolution and acceptance
I Unfolding methods reconstruct the probability distribution of

energies (spectrum) from the observed quantities

Dortmund Spectrum Estimation Algorithm A1 C5

I Individual information by multivariate estimation of class probabilities
I Applied to FACT and LHCb [Bunse et al. 2018] [Ruhe et al. 2016]
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MCMC-Likelihood-Sampling
I Estimates uncertainty and correlation
I Accounts for systematic uncertainties as nuisance parameters
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Aartsen et al.’17c, CSCD (astro)
Aartsen et al.’17g, HESE (astro)
Aartsen et al.’16c, 𝜈𝜇

Adrian-Martinez et al.’13, 𝜈𝜇

Aartsen et al.’15b, 𝜈𝜇 (IC59)
Aartsen et al.’17e, 𝜈𝜇 (IC79)
Aartsen et al.’16e, 𝜈𝜇 (IC86-I)
Boerner 2018, 𝜈𝜇

[Börner 2018]

Increasing Simulation Efficiency
I Abort unnecessary simulations as early as

possible [Baack 2016a]
I Flexible stack implementation allows for

prioritization and discarding of particles

I Active learning for simulation parameters that
help training models the most [Bunse et al. 2017]
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I Network interface allows for parallelization of
single shower simulations and optimal usage of
cluster resources

IceCube
I Showers without high-energy muons are aborted
I Run-time reduced from 169.5 ms to 2.5 ms per

shower

FACT [Baack 2016b]
I Early abortion of particles unlikely to produce

detectable Cherenkov radiation
I Run-time reduction of ≈ 80% per shower

I Perfect agreement between observations and
simulations is hard to achieve

I Improving agreement by feature selection
I Remove features that distinguish observations

from simulations [Börner et al. 2017]
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