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Vertex refinement Theoretical expressivity

Property testing framework
for graph kernels [IJCAI 2018]

Assignments via trees

Kernels from optimal assign-
ments [NIPS 2016]

Local k-dimensional Weisfeiler-
Lehman kernel [ICDM 2017]
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Assignment kernel based on k-disks
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D Additional selected results Towards the third phase
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» Spectrum approximation via random walks » Counting cycles of large graphs [Algorithmica 2018] » Hierarchical pooling [NIPS 2018]
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