
Distributed Subgroup MiningMihael Wurst and Martin SholzArti�ial Intelligene Group, University of Dortmund, Germany{wurst,sholz}�ls8.s.uni-dortmundAbstrat. Subgroup disovery is a popular form of supervised rulelearning, appliable to desriptive and preditive tasks. In this workwe study two natural extensions of lassial subgroup disovery to dis-tributed settings. In the �rst variant the goal is to e�iently identifyglobal subgroups, i.e. the rules an analysis would yield after olletingall the data at a single entral database. In ontrast, the seond on-sidered variant takes the loality of data expliitly into aount. Theaim is to �nd patterns that point out major di�erenes between individ-ual databases with respet to a spei� property of interest (target at-tribute). We point out substantial di�erenes between these novel learn-ing problems and other kinds of distributed data mining tasks. These dif-ferenes motivate new searh and ommuniation strategies, aiming at aminimization of omputation time and ommuniation osts. We presentand empirially evaluate new algorithms for both onsidered variants.1 IntrodutionThe aim of data mining is to �nd useful patterns in large data olletions. Dis-tributed omputing plays an important role in this proess for several reasons.First, data mining often requires huge amounts of resoures in storage spae andomputation time. To make systems salable, it is important to develop meha-nisms that distribute the work load among several sites in a �exible way. Seond,data is often inherently distributed to several databases, making a entralizedproessing of this data very ine�ient and prone to seurity risks. Algorithms forseveral data mining tasks were proposed, for example for distributed assoiationrule mining [1℄, lassi�ation, lustering and dimensionality redution [2℄.The goal of subgroup disovery [3℄ is to identify interesting rules. In thispaper we study two distributed subgroup disovery tasks. The �rst one aims atthe disovery of global subgroups from distributed databases using distributedalgorithms. Its two objetives are to �nd the same rules as entralized learners [4℄,and to minimize ommuniation osts. The seond distributed task aims to detetrelative loal subgroups, whih desribe harateristis of individual databasesonerning a target value. Suh rules an, for instane, apture information howsales deviate at ertain branhes of a ompany.In Se. 2 existing work on subgroup disovery is presented and extended todistributed settings in Se. 3. Novel algorithmi solutions for distributed sub-group disovery are proposed in Se. 4 and evaluated in Se. 5.



2 Subgroup disoverySubgroup disovery aims at the identi�ation of interesting and interpretablerules [3, 5℄. Eah subgroup desribes a subset of the overall population in adatabase, whih deviates from the overall behavior in terms of a given propertyof interest. Among the typial appliations of subgroup disovery are the iden-ti�ation of homogeneous groups of lients in marketing, and the indution ofinterpretable rules in medial domains. Case studies illustrating bene�ts of sub-group disovery for deision support an be found in [6℄. An example appliationin a medial domain with a fous on inorporating bakground knowledge anduser-de�ned preferenes is desribed in [7℄.Formally, the learning task shares some of the harateristis of lassi�erindution. In partiular it is also a supervised learning task. Instanes of thepopulation are referred to as examples x ∈ X in this paper, while the property ofinterest an be formalized as a target attribute Y. Every subgroup is representedby a rule A → C with anteedent A : X → {true, false} that is a onjuntionof literals, and a onlusion C : Y → {true, false}.In subgroup disovery the interestingness of rules is measured in terms of auser-given utility funtion, a parameter of the task itself. Hene, subgroup disov-ery an be onsidered to de�ne a very broad rule disovery framework, overinglassi�ation as a spei� ase. However, the fous of subgroup disovery di�ersfrom induing lassi�ers. Although the disovered sets of rules an well be usedto make preditions if interpreted probabilistially [8℄, subgroup disovery is typ-ially used for desriptive data analysis. Di�erent seletion metris re�eting ruleinterestingness have been motivated in [5℄. The main objetive of utility fun-tions is to trade-o� between two quantities, whih both indiate interestingnessbut tend to be diametri. These quantities are formalized in the following twode�nitions. To ease notation we denote the absolute number of true positives ofa rule r with p(r), and the number of its false positives with n(r). The argumentis omitted if lear from the ontext. P and N denote the number of positivesand negatives in the omplete dataset.De�nition 1. For a given database E ⊆ X × Y the support of a rule A → Cis denoted as Sup(A → C). It is de�ned as
Sup(A → C) :=

|{A(x) | 〈x, y〉 ∈ E}|

|E|
= p + n,the fration of examples 〈x, y〉 ∈ E for whih the anteedent A evaluates to true.The notion of rule support is well-known from frequent itemset mining [9℄.De�nition 2. The bias of a rule r : A → C is de�ned as the di�erene betweenthe onditional distribution of C given A and the default probability of C:

Bias(r) :=
p

p + n
−

P

P + N
.



The bias re�ets the degree to whih a subgroup di�ers from expetation, i.e. thatthe target attribute is distributed as in the overall dataset. A broad varietyof utility funtions have been suggested for rule disovery, most of whih aremonotone in the bias and support of rules. Please refer to [10℄ for an overview.The most popular utility funtion for subgroup disovery is the weighted relativeauray [5, 11℄, whih is exemplarily used in our algorithms proposed in Se. 4.De�nition 3. The weighted relative auray of a rule r is de�ned as
WRAcc(r) := Sup(r) · Bias(r) =

p + n

P + N

(
p

p + n
−

P

P + N

)

.For seleting rules only the order indued by an evaluation metri is relevant.Sine P and N are onstants for any �xed dataset we may multiply the termabove with (P+N)2

N
and reah at a more onvenient formulation:

WRAcc ·
(P + N)2

N
= (p + n) ·

(P + N)

N
·

(
p

p + n
−

P

P + N

)

=
p · (P + N) − (p + n) · P

N
= p −

P

N
· n = p − c · n (1)for a database-dependent onstant c ∈ IR+. This simple reformulation re�etsthe fat that ROC isometris of the weighted relative auray are parallel lineswith a slope of 1. Learners optimizing this evaluation metri handle lass skewsdi�erently than e.g. preditive auray does. Several searh strategies have beenproposed to �nd rules optimizing this metri for di�erent settings.The most straight-forward subgroup disovery task is to identifying a setof k rules with highest utility sores, where k is a user-given parameter. TheILP system MIDOS [4℄ is the best-known algorithm for this task, optimizingthe weighted relative auray metri. It is designed for multi-relational learningand searhes the spae of rules exhaustively, exept for safe pruning. The useof a re�nement operator allows to evaluate rules from general to spei�, whilemaking sure that no rule is evaluated twie. The pruning strategy exploits theoperator's top-down searh. The support of eah rule r dereases monotoniallywith eah re�nement, so for p positive and n negative examples the upper bound

WRAcc(r) ≤ Sup(r) ·

(

1 −
P

P + N

) (2)allows to prune all re�nements of a rule with low support if it annot improveover the k-th best rule found so far.In order to speed up the subgroup disovery proess adaptive sampling hasbeen proposed [12℄. The learning task needs to be reformulated to aount forthe inevitable risk of drawing a poor sample. Hene, the goal is to �nd k approx-imately best rules with high probability. For the most relevant utility funtionsprobabilisti guarantees an be given to �nd good rules with high probability.Several authors have addressed subgroup disovery in the presene of (or rel-ative to) prior knowledge. A reently presented system exploits di�erent kinds



of bakground knowledge to selet relevant features, to disretize variables in ameaningful way, and to exploit user-given preferenes for guiding searh heuris-tis [7℄. Knowledge-based sampling [8℄ generially inorporates probabilisti priorknowledge and an be ombined with any of the other approahes. It yields un-expeted patterns and supports the indution of aurate lassi�er ensembles.3 Disovering subgroups from distributed data3.1 Global distributed subgroup miningAn extension to lassial subgroup disovery that has not yet been investigatedby the data mining ommunity is the disovery of subgroups from distributeddata. We start with a few de�nitions for evaluating rules on distributed data toease the formulation of the formal learning problems studied in this work.In the remainder of this paper the global data E is assumed to be distributedto nodes {1, . . . , m}, eah holding a loal subset Ei ⊂ E so that E =
⊎m

i=1 Ei.The number of positives and negatives at site i are denoted as Pi and Ni.De�nition 4. For any rule r : A → C the absolute number of overed positivesand overed negatives in node i are denoted as
pi(r) := |{A(x)∧C(y) | 〈x, y〉 ∈ Ei}| and ni(r) := |{A(x)∧C(y) | 〈x, y〉 ∈ Ei}|.This allows to restate the support and bias of rules for individual databases Ei.De�nition 5. The loal support of rule r at a site i is de�ned as

Supi(r) :=
pi(r) + ni(r)

|Ei|
,while the loal bias is de�ned as

Biasi(r) :=
pi(r)

pi(r) + ni(r)
−

Pi(r)

Pi(r) + Ni(r)Global utility funtions an be adapted in a straight-forward manner based onthese loal quantities. We on�ne ourselves to weighted relative auray.De�nition 6. Loal weighted relative auray of rule r at node i is de�ned as
WRAcci(r) := Supi(r) · Biasi(r).The �rst studied distributed subgroup disovery task is referred to as globalsubgroup disovery. It aims at the identi�ation of the same k best subgroups inthe global data E, but without shifting all the data to a single database.Global subgroup disovery is an unexpetedly hard problem. If the distribu-tion underlying di�erent databases Ei may deviate from the global distributions,i.e. they annot be onsidered to be uniform subsamples of E, then globally bestrules may perform poor at all loal sites [13℄. More preisely, olleting all the



loally best rules with respet to WRAcci does not neessarily yield a set thatontains one of the k globally best rules, neither exatly nor approximately in thesense of the approximately k best rules problem (see Se. 2). As a onsequene,algorithms addressing global subgroup disovery need to exhange either exam-ples or models and ounts if guarantees are required. A new algorithm tailoredtowards the spei� harateristis of the task will be presented in Se. 4.1.3.2 Relative loal subgroup disoveryThe novel task of relative subgroup mining takes the loality of data expliitlyinto aount. A rule is onsidered to be interesting, if it is well supported by loaldata, and if its loal on�dene deviates substantially from the orrespondingon�dene when evaluating the same rule globally.Relative subgroups are relevant in several domains. E.g. in a marketing appli-ation the orresponding rules may identify spatial regions in whih the buyingbehavior of ustomers di�ers from that observed in other parts of the ountry.An unsupervised approah with a related aim, mining high ontrast frequentitemsets, has reently been presented [14℄. Based on entropy, it identi�es item-sets with ounts that are inhomogeneously distributed to the di�erent sites. Inthis paper we address supervised relative rule disovery, a learning task proposedin reent prior work [13℄. It aims at the identi�ation of rules maximizing thefollowing evaluation metri:De�nition 7. The relative loal utility of a rule r at node i is de�ned as
RLUi(r) := Supi(r) · (Biasi(r) − Bias(r) + ci) , with ci :=

Pi

Pi + Ni

−
P

P + N
.Di�erent lass skews Pi/Ni are of minor interest in this setting, so the term ciis used to fous on deviations of globally and loally di�erent onditional lassdistributions for subsets overed by onsidered rules. This turns the term inbrakets into deviations of loal and global on�denes, as motivated above.As for WRAcc, a more onvenient version of the RLU metri an be derived:

RLUi(r) = Supi(r) ·

(
pi(r)

pi(r) + ni(r)
−

p(r)

p(r) + n(r)

)

= |Ei|
−1 ·








pi(r) − p(r) ·
pi(r) + ni(r)

p(r) + n(r)
︸ ︷︷ ︸

=:p̂i(r)








=
pi(r) − p̂i(r)

|Ei|The term p̂i(r) an be interpreted as the estimated number of positives withinthe subset overed by rule r at site i. This estimate is based on the fration ofpositives in the subset of the global data that are overed by the rule, i.e. on theglobal on�dene. A fator-equivalent metri to RLU is RLU∗

i (r) := pi(r)−p̂i(r).The task of disovering the best k relative loal subgroups has been shownto be at least as hard as disovering global subgroups from distributed data [13℄.



4 Algorithms for distributed subgroup disovery4.1 Distributed global subgroup disoveryIn this setion we propose an algorithm for distributed global subgroup miningbased on ount polling and distributed rule pruning based on optimisti esti-mates. A basi priniple of the algorithm is that for eah rule r all re�nementsof this rule r′ are reated and ounted at exatly one node. We use a re�nementoperator as de�ned in [4℄. The following de�nition assumes a �xed total orderon the set of attributes.De�nition 8. A re�nement operator ρ is a funtion that maps eah rule to theset of its diret suessors. A rule r′ : A′ → C′ is a diret extension of r : A → C,if and only if C = C′, A′ = A ∪ {Xi = v} for a variable Xi with the propertythat all attributes Xj in A have an index j whih is stritly lower than i. Thetransitive relation r′ < r denotes, that r′ is a re�nement of r.Our pruning method exploits the following relationship. If for eah node theounts for a rule r or a predeessor of r, denoted as r′ are known, we an alulatea tight upper bound on the WRAcc(r). If this highest possible sore is worsethan the urrently k-best rule, then the algorithm an safely prune the rule r.Lemma 1. The (global) utility of a rule r is bounded by the following term
WRAcc(r) ≤

∑m

i=1 pi(r
′

i)

P + N
·

(

1 −
P

P + N

)

=
N

(P + N)2

m∑

i=1

pi(r
′

i),where r′i = r or r < r′i. For the most spei� rules pi(ri) is known for, this boundis tight.Proof. The orretness of the lemma follows from eqn. (1), implying that WRAccis order-equivalent to p− P
N
·n. Hene, optimal re�nements disard all negativesbut no positives, whih leads to the sore used as an upper bound.The di�erene to eqn. (2) is that the support is replaed by the fration oftrue positives, a quantity whih is stritly smaller unless r annot further beimproved by re�nements, anyway. The pruning strategy exploits the fat that

WRAcc inreases monotonially if re�nements �disard� only negatives. It ismaximized by re�nements that disard all negatives and no positives. For thisreason straightforward adaptations of eqn. (2) apply to the broad lass of utilityfuntions sharing this property of monotoniity, e.g. to the binomial test fun-tion. It is su�ient to substitute the tightest known ounts during optimistisore omputation in lemma 1 for eah rule, and to optimistially assume thata subsequent re�nement is able to disard only the overed negatives.The lemma an be used to prune rules for whih exat ounts are availableonly from a subset of all nodes. If the upper bound for WRAcc(r) is worse thanthe k-th best rule, r an be pruned without polling further ounts. Lemma 1 alsoimplies a seond pruning ondition. If a rule r′ is pruned, then all re�nements



r < r′ of this rule an be pruned as well, as their optimisti sores are known tobe no better than the optimisti sore of r′.These pruning strategies are ombined with ount polling to derive an al-gorithm for distributed subgroup mining that sales linearly in the number ofnodes. Eah node i keeps three data strutures. First, a list Bi ontaining the
k urrently best hypotheses. Seond, a list of pruned hypotheses Zi. These arerules for whih it is known that no desendant an reah a sore better than

kbi := min
r∈Bi

WRAcc(r),the k-th best sore at node i. To this end an optimisti upper-bound is omputedusing lemma 1. Finally, eah node keeps a list of all rules, for whih it is pollingounts. This list is denoted as Qi.The algorithm is initialized by assigning all rules with an empty body to anarbitrary node. The omputation then follows Fig. 1. A node that reeives anassignment for a rule r generates all anonial re�nements (diret suessors)
ρ(r) and serves as their polling node. A rule r : A → C an be pruned (i) basedon its optimisti sore, or (ii) beause it is subsumed by a previously pruned rule
r′ : A′ → C′, that is C′ = C and A′ ⊂ A, so {A(x) | x ∈ X} ⊂ {A′(x) | x ∈ X}and hene pi(r) < pi(r

′) at all sites. For eah re�ned rule r′ the algorithm�rst obtains the loal ounts from the database and heks whether r′ an bepruned. If the rule is pruned based on its optimisti sore, the node additionallyinforms all other nodes about this step of pruning. In ontrast, subsumption-based pruning of a rule r′ does not require to broadast r′, sine eah node isknown to have a rule subsuming r′ in its list of pruned rules Zi. If a rule is notpruned the node broadasts a query for ounts on r and adds r to the list ofopen hypotheses Qi. The individual nodes then reply their loal ounts for r′. Asmore and more loal ounts arrive the bound on the global ount gets tighter.If all loal ounts for a rule r are available and r annot be pruned, it is �rstheked, if the rule is better than kbi. If this is the ase, it is inserted into Bi asdesribed above and broadasted to all other nodes. Then the rule is assigned toa node that is responsible for generating and ounting the anonial re�nementsof the rule. Besides the rule itself, the loal ounts for rule r are transmittedfrom all the nodes. This information is neessary to allow for pruning basedon partially available ounts, as desribed above. The node to whih a rule isassigned is determined by the support of the rule. The rationale of this hoie is,that suh a node is the most likely to be able to prune the rule without queryingother nodes for ounts.The algorithm has ommuniation osts in O(m|C|), where m is the numberof nodes and C is the set of evaluated andidates. Hene, the algorithm saleslinearly with the number of nodes and andidates. This an easily be seen fromthe fat that at most O(m) messages are exhanged per andidate: a query forounts, its replies, and possibly a broadast for a new best hypothesis or forpruning. These messages ontain only rules and individual ounts. Additionally,at most one delegation message for a rule is produed, ontaining a set of loalounts. This message is of size O(m).



// Update best rulesfor bestij(r,WRAcc(r)) ∈ Mj doif WRAcc(r) > kbj theninsert(Bj ,r);// Update pruned rulesfor pruneij(r) ∈ Mj do
Zj = Zj ∪ {r};// Obtain message ountsfor countij(r, ni(r), pi(r)) ∈ Mj dorealulate optsore(r);if prunable(r) then

Zj = Zj ∪ {r};elseif ounts-omplete(r) thenif WRAcc(r) > kbj thenbest.insert(Bj , r);bast(best(r,WRAcc(r)));
Qj = Qj \ {r};
m = argmaxi(ni(r) + pi(r));send(assignjm(r, {(p1(r), ...)}));

// Handle assignment to re�ne a rulefor assignij(r, {(p1(r), ...)}) ∈ Mj dofor r′ ∈ refinements(r) dorealulate optsore(r′);if not(prunable(r′)) thenbast(query(r′));
Qj = Qj ∪ {r′};// Answer queries for loal ountsfor queryij(r) ∈ Mj dosend(countji(r, nj(r), pj(r)));prunable(r):if r ≤ r′ : r′ ∈ Zj thenreturn true;if optscore(r) < kbj thenbast(prune(r));return true;return false;Fig. 1. Algorithm for distributed global subgroup mining at node j. Mj denotes theinput message queue of node j. bestij , pruneij , countij , queryij and assignij aremessages, where i denotes the sender and j the reeiver. The proedures above areexeuted as long as messages arrive.4.2 Distributed relative subgroup disoveryFinding relative loal subgroups di�ers from �nding global subgroups in thateah node �nds an own, individual set of rules. The sore of a rule is de�nedwith respet to its loal support and its relative bias. While the support of a rule ran easily be omputed loally at eah database, global ounts for r are requiredfor omputing the bias. Global ounts of rules are aggregated as desribed inthe last setion. There is one important di�erene however. Rules an only bepruned, if they are pruned at every node. We propose an algorithm that is basedon ount polling and optimisti pruning. The following tight optimisti pruningrule holds for the task of relative loal subgroup mining.Lemma 2. For relative loal subgroup disovery, rules r with pi(r) positives,

ni(r) negatives, and p̂i(r) estimated positives overed by rule r at site i,
RLUi(r

′) ≤
pi(r) − max(0, p̂i(r) − ni(r))

|Ei|is a tight upper-bound for the loal utilities of all rules r′ < r.Proof. Considering the fator-equivalent metri RLU∗ it is easily seen that anoptimal re�nement of rule r redues p̂i(r) by overing less examples that are



�predited� positive, while not reduing pi(r). If the ni(r) negative examplesovered by r are predited positive by p̂i(r), and if a re�nement r′ < r existsthat overs only the pi(r) positive examples, then we reah at a utility of
RLU∗

i (r′) = pi(r) − max(0, p̂i(r) − ni(r)).This annot be improved any further by re�nements, sine r′ overs only pos-itives, and further re�nement redues pi(r) at least as muh as p̂i(r) − ni(r).Sine RLU∗ = RLU · |Ei| this proves the lemma.Our algorithm for relative subgroup mining works as follows. Again, eahnode has a list of best rules, pruned rules, and open rules. Additionally, nodeskeep a rule ahe, that is used to store the global ounts of rules for whih anode serves as the polling node. The mapping of rules to responsible nodes isrealized by a hash funtion.Eah node starts with an empty set of rule andidates. It then generates�rst-level rules that are evaluated loally. If a rule r an be pruned based onlemma 2 it is disarded. Otherwise, the node requests global ounts n(r) and
p(r) for r from a polling node that is determined by alulating a hash value forthe rule. The node that reeives this request heks whether it �nds the rule inits ahe. If so, it diretly returns the orresponding global ounts. Otherwise,the node �rst queries all other nodes for their orresponding loal ounts. Afteraggregating all loal ounts ni(r) and pi(r) the polling node stores and returnsthe global ounts. Given the global ounts and the loal ounts for a rule r, theexat utility sore of r an be omputed. If r is better than the k-best rule itis inserted into Bi as desribed in the last setion. If r, and thus eah of itsre�nements, reeive an optimisti sore that is worse than the lowest sore in
Bi, then r is pruned. Neither best rules nor pruned rules are broadasted, asthey are not relevant to other nodes.While the pruning strategies for relative loal subgroup mining are weakerthan for distributed global subgroup mining, the approah still sales linearlywith the number of nodes. Thus, relative loal subgroup mining is in O(|C|m),where |C| are the andidates onsidered by at least one node. Relative loalsubgroup mining for all nodes is usually more expensive than global subgroupmining, beause rules may only be pruned, if they would be pruned at all nodes.5 ExperimentsWe performed experiments to analyze the properties of the proposed algorithms.As both algorithms are guaranteed to �nd the best rules, evaluation is onlyonerned with ommuniation osts. These osts are evaluated on three datasetstaken from the UCI library, mushroom, adult, and german. For adult and germannumerial attributes were disretized using minimal entropy partitioning.First of all the substantial di�erene between the tasks of subgroup andassoiation rule mining is illustrated exemplarily. Assoiation rule and frequentitemset mining rely on a user-provided support threshold and are usually applied
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Fig. 2. Communiation osts for dis-tributed global subgroup mining  300
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Fig. 3. Data skew / ommuniation ostsfor global and relative subgroup miningto �nd huge amounts of rules. Subgroup disovery �nds only the k best rules withrespet to a user-spei�ed utility funtion, not requiring a threshold. Even if thebest rule utility was known to a frequent itemset mining algorithm in advane, itwould be more ostly to generate all itemsets based on a orresponding supportthreshold in a distributed setting than to run distributed subgroup disovery;state-of-the-art algorithms for distributed frequent itemset mining evaluate atleast all frequent itemsets at all nodes. E.g. the german dataset ontains morethan 50.000 frequent itemsets using the support-based pruning threshold of theMIDOS algorithm (see eqn. (2)) in ombination with the (usually unknown)utility of the best subgroup. In ontrast, the global subgroup disovery algorithmevaluates less than 3.000 andidates.Still, the ommuniation osts for our algorithm grow no more than linearly inthe number of nodes. We validated this property in a �rst experiment, measuringosts by aounting 4 bytes for eah rule transmitted over the network and2 bytes for eah ount. To be able to measure the impat of data skews inthe distribution of data to individual nodes we used the following proedure.First, the data was lustered using an EM algorithm. The number of lusterswas hosen as the number of nodes. We use a parameter pskew denoting theprobability that an example is assigned to a node aording to the orrespondingluster. Otherwise it is assigned randomly at equal probability. For pskew = 1eah node reeives all data points in its orresponding luster. For pskew = 0 allexamples are distributed randomly. This allows to adjust the data skew betweenboth extremes. The results for the datasets using pskew = 0 and �nding oneglobal rule (k = 1) for rules of onstrained length as in MIDOS (we searhedfor best rules ontaining up to 3 literals) are shown in Fig. 2. For all threedatasets the urves on�rm our theoretial �ndings onerning the salability ofour method. Please note, that in this experiment eah database ontains aboutthe same amount of data, whih is the worst ase for our method.The seond experiment ompares the ommuniation osts for distributedglobal and relative subgroup mining for varying degrees of skew. The results ofmining the most interesting rule of length up to 3 literals for the mushroom data



set is shown in Fig. 3 for a network of m = 5 nodes. We see that distributed globalsubgroup mining shows a low sensitivity regarding the data skew. For relativesubgroup mining the situation is di�erent. Given a low skew, the osts for �ndingrelative subgroups inreases. The reason is that relative subgroups an only befound if the data distribution among nodes deviates. For low skews only ruleswith very low sores an be identi�ed, whih however fores all nodes to searh avery large searh spae as pruning annot be applied. Reahing at a ertain levelof skew the distributions deviate su�iently to identify orresponding logialrules, leading to a sharp derease of osts in Fig. 3 for relative subgroup mining.6 Disussion and onlusionDisovering distributed global and relative loal subgroups are two novel know-ledge disovery tasks. Sine subgroup disovery is a supervised learning task itould be approahed with state of the art distributed lassi�ation algorithms,e.g. distributed boosting [15℄ in order to �nd probabilisti rule ensembles as in [8℄.Distributed boosting and similar algorithms are however not omplete, thus donot guarantee to �nd optimal rules. As noted in [15℄ the quality of rules thatan be disovered depends on the distribution of examples over the individualdatabases. Results presented in [13℄ support this observation. For this reason wefoused on omplete algorithms for distributed rule mining.Existing omplete algorithms for distributed rule mining are mostly on-erned with �nding assoiation rules [1℄. A straightforward extension of the Apri-ori algorithm is Count Distribution (CD) [16℄. At eah round, every databasegenerates all k + 1 andidates from the globally large k-itemsets and broad-asts all ounts to all other nodes. This proedure auses ommuniation ostsof Ω(|C|m2), where |C| is the number of andidates and m is the number ofnodes. One way to improve the CD algorithm is to use a designated node foreah andidate that is responsible for polling and redistributing all ounts ofthe andidate itemset. This method is applied in the FDM algorithm [17℄. Itredues the ommuniation omplexity of the algorithm to Θ(|C|m). Two ad-ditional pruning tehniques are applied in FDM. Loal pruning is based on theobservation that for an item to be frequent it must be frequent at least at onenode. Only for suh items ounts need to be exhanged. Seond, nodes use anoptimisti estimate for the support of an itemset based on partial ounts re-eived from other nodes. If this estimate is smaller than the minimal support,the andidate an be pruned. The idea of a polling site, as introdued by FDMhelps to avoid ostly broadasts and is very general.The real power of the above approahes lies in their loal pruning strategies,however, whih do not apply to distributed global subgroup mining as shownin [13℄; globally optimal rules an simultaneously be inferior at eah individualnode, while pruning strategies applied to distributed frequent itemset mining relyon the fat that globally frequent itemsets must be frequent at least at one node.This re�ets that subgroup utility funtions are laking the monotoniity of rule
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