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Abstract

The concept of f -divergences introduced by [2] provides a rich set of distance
like measures between pairs of distributions. Divergences do not focus on certain
moments of random variables, but rather consider discrepancies between the cor-
responding probability density functions. Thus, two-sample tests based on these
measures can detect arbitrary alternatives when testing the equality of the distri-
butions. We treat the problem of divergence estimation as well as the subsequent
testing for the homogeneity of two samples. In particular, we propose a nonpara-
metric estimator for f -divergences in the case of continuous distributions, which is
based on kernel density estimation and spline smoothing. As we show in exten-
sive simulations, the new method performs stable and quite well in comparison to
several existing non- and semiparametric divergence estimators. Furthermore, we
tackle the two-sample homogeneity problem using permutation tests based on vari-
ous divergence estimators. The methods are compared to an asymptotic divergence
test as well as to several traditional parametric and nonparametric procedures un-
der different distributional assumptions and alternatives in simulations. According
to the results, divergence based methods detect discrepancies between distributions
more often than traditional methods if the distributions do not differ in location
only. The findings are illustrated on ion mobility spectrometry data.

1 Introduction

Given two distributions P and Q with probability density functions p and q, respectively,
the f -divergence from P to Q is defined by

D f (P,Q) =
∫

f
(

p(y)
q(y)

)
dQ(y) = EQ

(
f
(

p(Y )
q(Y )

))
, (1)

where f is a given convex function applied to the density ratio r(x) = p(x)
q(x) . In order to

ensure a well-defined density ratio, P must be dominated by Q. An f -divergence attains
its minimal value f (1) if and only if P = Q, see [2]. For all common divergences f (1) = 0
holds, giving a rather intuitive interpretation to the above property.
We illustrate this class of measures introducing some popular divergences, which will
be considered in the following. The choice faKL(x) = x · log(x) yields the asymmetric
Kullback-Leibler divergence denoted by DaKL, which is closely related to the popular
AIC information criterion ([20]) and the classical maximum likelihood estimation ([5]).
The measure can be symmetrised using fKL(x) = (x−1) · log(x). This leads to the symmet-
ric Kullback-Leibler divergence DKL(X ,Y ) fulfilling DKL(X ,Y ) = DaKL(X ,Y )+DaKL(Y,X).
In case of continuous and one-dimensional random variables this measure has the repre-
sentation

DKL(P,Q) =
∫

[p(x)−q(x)] · [log(p(x))− log(q(x))] dx .

Another member of this class is the squared Hellinger distance, also called Hellinger
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divergence, which is defined by

D2
H(P,Q) =

1
2

∫ (√
p(x)−

√
q(x)

)2
dx .

As suggested by the names, DH is a metric, while D2
H is the f -divergence corresponding

to fH(x) = 1
2 · (
√

x−1)2. In contrast to the unbounded Kullback-Leibler divergence, the
Hellinger divergence does not exceed 1.
Divergence measures, similar to Kolmogorov-Smirnov type statistics ([12]), reflect gen-
eral discrepancies of the distributions. They take into account deviations in the mean,
the scale, the skewness, the tail behaviour and any other characteristics of the distribu-
tions, and weight them implicitly according to the function f . Thus, methods based on
divergences can reveal arbitrary dissimilarities between distributions. For this reason,
divergence measures and related methods are considered in various estimation and test-
ing problems like contingency tables ([3]), model selection ([20]), survival analysis ([26])
and detection of structural breaks in time series ([16]). Quite often, they yield a good
compromise between efficiency and robustness, cf. [6] and [5]. A downside when working
with divergence measures in nonparametric settings is their problematic estimation, be-
cause the ratio of the involved densities is usually unknown. Hence, the problem is often
solved in two steps:

• Estimate the density ratio function r(x) = p(x)
q(x) by r̂

• Estimate the divergence given r̂

The remainder of this paper is structured as follows: Section 2 focusses on the problem of
the estimation of divergences. We present several existing non- and semiparametric ap-
proaches and introduce a new nonparametric divergence estimation technique combining
kernel density estimation, smoothing methods and numerical integration. We also trans-
fer the divergence decomposition approach given in [13] to general divergence estimation.
In the second part of the section, the performance of the estimation algorithms is eval-
uated in a simulation study. Section 3 deals with the two-sample homogeneity testing
problem. At first, we recapitulate an asymptotic, semiparametric divergence test pro-
posed in [13]. Hereafter, an alternative procedure relying on the permutation technique
is described, which can be performed using arbitrary divergence estimators. Both meth-
ods are compared to traditional parametric and nonparametric procedures on artificial
data paying special attention to model misspecification. The tests performing best are
then applied to ion mobility spectrometry data from the field of bioinformatics. Section
4 provides a summary of the results and some recommendations.

2 Divergence estimation

This section is dedicated to the estimation of f -divergences and consists of three parts.
The first subsection 2.1 reviews several non- and semiparametric methods for the esti-
mation of the density ratio r. The second part 2.2 utilises the density ratio estimations
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introduced before to construct divergence estimators. In addition to stating the standard
procedures, we extend the idea of divergence decomposition proposed in [13] to arbitrary
density ratio estimators. Hereafter, we introduce a new approach to divergence estima-
tion based on numerical integration and smoothing splines. In subsection 2.3 we report
the results of a simulation study involving all divergence estimators presented before and
evaluate their performance. The best methods are applied to ion mobility spectrometry
data.

In the following we assume that x1, . . . ,xn ∈ R are observations from one-dimensional,
continuous, independent and identically distributed random variables X1, . . . ,Xn. Each of
these follows the distribution P with probability density function p. We make analogous
assumptions for the sample y1, . . . ,ym and the corresponding random variables Y1, . . . ,Ym
with distribution Q and probability density function q. Expectations with respect to P
and Q are denoted by EP and EQ, respectively.

2.1 Density ratio estimation

A straightforward naive approach to nonparametric estimation of the density ratio func-
tion r = p

q consists of two steps. At first, a nonparametric estimation of the probability
density functions p and q by appropriate estimators p̂ and q̂, respectively, is performed.
Hereafter, r = p

q is approximated by r̂ = p̂
q̂ .

Estimates of the individual probability density functions can be attained by the ker-
nel density procedure ([24]). Given an i.i.d. sample z1, . . . ,zl generated by an unknown
density g, the kernel density estimate of g is

ĝ(x) =
1

l ·h

l

∑
i=1

Kh (x,zi)

using for instance the Gaussian kernel function

Kh(x,z) =
1√
2π

exp

(
−1

2

(
x− z

h

)2
)
, x ∈ R (2)

with a bandwidth h. It is well known that in most cases the choice of the bandwidth has
a much stronger effect on the results than the choice of the kernel function, cf. [24]. Stan-
dard algorithms for the selection of h are cross validation and the method Sheater and
Jones ([21]), which relies on a minimiser of the estimated mean integrated squared error.
The latter is used for all computations involving kernel density estimates in this paper.
The Gaussian kernel, which is also always applied in the following, ensures q̂(x) > 0 for
all x ∈ R and thus guarantees a well defined density ratio estimate r̂ = p̂

q̂ .

As opposed to the nonparametric approach, semiparametric methods aim at estimating
the density ratio directly, omitting the estimation of the underlying densities. The key
idea is the introduction of a density ratio model r(·,θ) assuming that r(x) = r(x,θ ∗) holds
for a certain value θ ∗ = (θ ∗1 , . . . ,θ

∗
d ) ∈ Rd and all x ∈ R. Thereby, the identification of
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r boils down to the approximation of the parameter θ ∗ via an estimate θ̂ . Since dif-
ferent distributions can result in the same density ratio, the density ratio model does
not parametrise the densities completely and thus can be regarded as semiparametric.
In the following paragraphs we describe two main techniques of parameter estimation in
semiparametric density ratio models.

For the true density ratio function r = p
q , the moments EP(η) and EQ(η · r) are equal for

an arbitrary moment function η :

EP(η) =
∫

η(x) · p(x) dx =
∫

η(x) · p(x)
q(x)
·q(x) dx = EQ(η · r) .

The moment matching method for density ratio estimation is motivated by this equation.
Replacing the expectations by appropriate sample means allows to estimate θ ∗ such that
r(·) = r(·,θ ∗) by solving the equation

1
n

n

∑
i=1

η(xi,θ)−
1
m

m

∑
j=1

r(y j,θ) ·η(y j,θ) = 0 (3)

as a function of θ for a given density ratio model r(·,θ). In other words, the parameter
θ is chosen such that the empirical approximations of the considered moments match,
which clarifies the name of the method. As shown in [18] the moment function

η
∗(x,θ) =

1
1+ n

m · r(x,θ)
∇ logr(x,θ) (4)

is optimal for a given density ratio model r(·,θ) in the sense that the corresponding
estimator induced by the moment matching has the minimal asymptotic variance. Hereby,
∇ logr(x,θ) denotes the gradient column vector of the function logr(x,θ) with respect to
θ .
There are analytic solutions of equation (3) for density ratio models which are linear in
θ . Explicit estimators of r in arbitrary density ratio models are only available at the
sample points y1, . . . ,ym. When the problem is not explicitly solvable, it is rephrased
via the minimisation of the square of the left-hand side of equation (3) and numerical
optimisation is applied. This approach is chosen in the simulations presented in the
following, since we apply the popular exponential model

re(x,θ) = exp
(
θ1 +θ2 · x+θ3 · x2) (5)

including the case of both P and Q being Gaussian distributions. This model also holds
for two exponential distributions, because the density ratio for negative values is of no
interest in this case. However, the exponential model re is overparametrised by (5), since
the quadratic term is redundant.
In the following applications of the moment matching we always use the optimal moment
function η∗ (4) and the exponential model (5) unless stated otherwise. The optimisation
problem is solved using the minimiser of Nelder and Mead proposed in [17], which is
implemented in the R-function optim and used with default settings. The initialisation
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values are derived from the maximum likelihood estimates of the mean and variance under
the assumption of Gaussianity. We investigated several other initialisation procedures,
which did not improve the estimation performance. Especially the initialisation assuming
r = 1 provided quite bad results and is not advisable.

The moment matching described above can be conducted using arbitrary density ratio
models, as long as the moment function η allows to identify θ ∗. Typically, models with
a low dimension are used and thus relatively strong assumptions on the density ratio are
made. In contrast to that, the density ratio model in the ratio matching approach is fixed
to

rK(x,θ) =
d

∑
i=1

θi ·Kh(x,ci) , (6)

where θ = (θ1, . . . ,θd) ∈Rd, Kh is the Gaussian kernel (2) and the c1, . . . ,cd are randomly
chosen from the first sample x1, . . . ,xn. This model has a much higher dimension d, which
can allow a more flexible density ratio modelling. According to [23] a model dimension
d = min(100,n) is sufficient to guarantee reasonable results together with tolerable com-
putation time in most applications.
In order to estimate the parameter θ ∗ within this framework, a divergence or a diver-
gence like measure between the true and the modelled density ratio is minimised. One
example for that is the Kullback-Leibler importance estimation procedure, abbreviated
by KLIEP, which is explained in detail in [23]. The methods relies on the measure
KL(θ) = −

∫
log(rK(x,θ)) · p(x) dx, which is the nonsymmetric Kullback-Leibler diver-

gence from p to the implicitly modelled p(x,θ) = rK(x,θ) · q(x) up to a constant in-
dependent of θ . Since divergence measures attain their minimal value only for equal
distributions, the KLIEP procedure estimates θ by minimising an empirical equivalent of
KL(θ) as a function of θ . Another example for ratio matching is LSIF, the Least-Squares
Importance Fitting, also presented in [23]. The method corresponds to the quantity

LS(θ) =
1
2

∫
rK(x,θ)2 ·q(x) dx−

∫
rK(x,θ) · p(x) dx

=
1
2

∫
(rK(x,θ)− r(x))2 ·q(x) dx+ c ,

where the constant c is independent of θ . Similar to lasso regression, a penalty term
consisting of the weighted L1-norm of θ is added for regularisation purposes leading to
the estimate

θ
∗ = argmin

θ

1
2m

m

∑
j=1

rK(y j,θ)
2− 1

n

n

∑
i=1

rK(xi,θ)+w
d

∑
u=1
|θd| .

Both KLIEP and LSIF require constraint optimisation procedures, since the estimate θ̂ =(
θ̂1, . . . , θ̂d

)
must not be negative so that a nonnegative density ratio estimation is ensured.

In order to avoid the numerical problems of high-dimensional constrained optimisation
tasks, Sugiyama et al. propose to drop the nonnegativity restriction initially and replace
the L1 penalty term by L2 regularisation. Since the density ratio model (6) is linear in θ ,
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the unconstrained optimisation minimisation with the L2 penalty is analytically solvable.
To guarantee a reasonable density ratio estimate, the negative entries of the resulting
estimate θ̂ are set to zero. This procedure is called the unconstrained Least-Squares
Importance Fitting, abbreviated by uLSIF. In addition to leading to an analytically
solvable optimisation problem, the score of the leave one out cross-validation in uLSIF
can be computed efficiently and stably, which is quite useful for obtaining a suitable
bandwidth h and a regularisation weight w. An implementation of this algorithm, which
is utilized in the following computations with default settings, is available at http://
sugiyama-www.cs.titech.ac.jp/~sugi/software/.

2.2 Divergence estimation using density ratio estimates

In this subsection, we introduce several possibilities for estimating an arbitrary diver-
gence D f assuming that r̂, an estimate of the density ratio function r = p

q , is available.
Recalling the definition of D f in (1), note that a divergence is nothing but the expecta-
tion EQ ( f (r (Y ))). Hence, straightforward application of the strong law of large numbers
allows to estimate D f by the natural estimator

D̂ f =
1
m

m

∑
j=1

f
(
r̂(y j)

)
.

As a simple mean, this estimator is easy to implement and fast to compute. However,
the procedure is asymmetric in the sense that the second sample is used for density ratio
estimation and for divergence estimation, while the first one only affects the density ratio
estimation. As we will see in the simulations in Section 3, this can lead to tests with
asymmetric performance even for symmetrical divergence measures.

Working on the moment matching approach introduced in 2.1, D̂ f is expanded in [13] by
including the second sample in the divergence estimation. The convex function f , which
characterises a divergence measure, is decomposed via f = f1 + r · f2. Given such a pair
f1 and f2, each f -divergence can be estimated by the decomposed estimator

D̂D
f =

1
m

m

∑
j=1

f1
(
r̂(y j)

)
+

1
n

n

∑
i=1

f2 (r̂(xi)) ,

because D f =EQ ( f (r))=EQ ( f1 (r))+EP ( f2 (r)) holds. For the moment matching method
based on the moment function η = η∗ given in (4) Kanamori et al. proved that the
decomposition into

f ∗1 (x) =
f (x)

1+ n
m · r(x,θ)

and f ∗2 (x) =
n
m · f (x)

1+ n
m · r(x,θ)

(7)

leads to an estimator with minimal asymptotic variance under fairly weak and verifiable
conditions, cf. [13].
Even though the decomposed estimator was introduced for the moment matching density
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ratio estimation, it is applicable for any density ratio estimation procedure.

We now introduce an alternative numerical procedure for the estimation of f -divergences.
For the moment we do not consider a divergence measure as an expectation of a random
variable, but rather understand it as an integral involving the known convex function f ,
the unknown density ratio r and the unknown density q. The unknown functions can be
estimated following the naive approach of density ratio estimation. The only problem left
to solve then is the integration process, which can be tackled by numerical integration.
Preliminary investigations not reported in this work indicate that the performance of this
approach can be improved by smoothing the integrand before the numerical approxima-
tion. We use cubic splines ([11]) for this purpose. In summary, we propose the following
algorithm to obtain a numerical estimator D̂N

f :

1. Compute the kernel density estimates p̂ and q̂ and set r̂ = p̂
q̂ .

2. Smooth the function f (r̂(x)) · q̂(x) via cubic splines.

3. Integrate the smoothed function of step (2) numerically.

The numerical estimation is implemented using the statistical software R ([19]). The ker-
nel density estimation relies on the method of Sheater and Jones for bandwidth optimisa-
tion and the Gaussian kernel function (2) ensuring a well-defined density ratio estimate.
Spline smoothing is performed using the routine smooth.spline with default settings and
numerical integration is carried out via the function integrate for 500 subdivisions. All
these functions are available in the stats package. For more detailed information we refer
to the corresponding help pages and the references provided therein.

2.3 Evaluation of the divergence estimators

In this subsection the estimators presented above are applied to artificial data. In order
to investigate their performance, we restrict ourselves to distribution pairs with explicit
representations of the corresponding divergence measure. This allows us to calculate
the true divergence, which should be estimated by the methods. Therefore, we study
exponential, Laplacian and Gaussian random variables, but report the results for the
latter only, since the findings for the distributions were essentially the same. We work
with equally sized samples and m = n ∈ {50,100,300}. While the first sample is drawn
from the standard Gaussian distribution, the second one is drawn from the Gaussian
distribution with mean µ and variance σ2. The cases considered are :
(i) µ = 0, σ2 = 1, (ii) µ = 3, σ2 = 1, (iii) µ = 0, σ2 = 2, (iv) µ = 3, σ2 = 2 .
In each of these four data settings, 500 sample pairs are generated, where the Kullback-
Leibler and the Hellinger divergence should be estimated. We investigate the naive kernel
density approach, the moment matching technique and the uLSIF algorithm for the
density ratio estimation. Due to its high computational demand mentioned in ([23]), we
do not take the KLIEP procedure into account. Each of these three methods is passed
to the natural estimators D̂ f and its decomposed version D̂D

f . The latter one relies on
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the decomposition presented in equation (7), which is optimal for the moment matching
density ratio estimation. Furthermore, the numerical estimator D̂N

f introduced at the end
of Section 2.2 is computed for both divergence measures.
For two Gaussian distributions with means µ and ν and variances σ2 and τ2, respectively,
the symmetric Kullback-Leibler divergence is given by

DKL(P,Q) =
(σ2− τ2)2

2σ2τ2 +
(µ−ν)2

2
·
(

1
σ2 +

1
τ2

)
and the squared Hellinger distance can be expressed as

DH(P,Q) = 1−
√

2στ

σ2 + τ2 · exp
(
−1

4
(µ−ν)2

σ2 + τ2

)
.

These explicit representations of the divergence measures allow us to compute the true
divergence values. In the settings (i) to (iv) this yields 0, 9, 1.125 and 6.75 for the
Kullback-Leibler criterion and 0, 0.82, 0.17 and 0.74 for the Hellinger divergence, respec-
tively. This allows us to assess the performance of the estimators by the empirical mean
squared error (MSE). For our evaluation we use the statistical software R ([19]), version
2.15.1-gcc4.3.5. The R-package BatchExperiments ([7]) is applied to run the experiments
in a batch and to distribute the computations to the cores of the computer. All compu-
tations presented in the following are conducted on a 3.00GHz Intel Xeon E5450 machine
with 15GB of available RAM running a SuSE EL 11 SP0 Linux distribution.
Since we get analogous results for different sample sizes, for both divergence measures
we only present the empirical MSEs in the case of n = m = 300 in Tables 1 and 2 in
the appendix. The estimated errors for the Hellinger divergence are presented on a 10−4

scale, because they are much smaller than those for the Kullback-Leibler divergence. This
could be caused by the boundedness of the Hellinger divergence. As for the measure itself,
the estimates for the Hellinger divergence will typically lie within (0,1) causing a small
empirical MSE compared to the estimates of the unbounded Kullback-Leibler measure.
According to the results in general higher divergence values are more difficult to estimate
than smaller ones. This becomes in particular clear focussing on data setting (ii). Al-
though situation (iv) seems more difficult than (ii) at first glance, since more variability
is introduced by a higher variance of the second distribution, the estimated MSEs are
mostly lower than in case (ii). In fact, case (ii) leads to the highest errors overall. Higher
divergence values indicate a density ratio with more high and more low values. Thus, the
density ratio estimation is more difficult and larger errors in the divergence estimation
become more likely.
A comparison of the density ratio estimators shows that the moment matching algorithm
leads overall to the best results. This semiparametric approach makes use of more infor-
mation than the nonparametric methods, because the correct density ratio model is spec-
ified. In contrast, the uLSIF algorithm leads to extreme estimations and hence achieves
the worst results. Sugiyama et al. stressed its good performance for multidimensional
problems, but in the univariate case we find the other methods to estimate the true diver-
gence value better. Among the nonparametric methods in case of the Kullback-Leibler
divergence, the numerical estimator D̂N

f outperforms the naive kernel density approach,
which leads to some huge overestimations, while the numerical alternative seems more
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stable. In the most realistic sample case (iv) D̂N
f even attains the smallest MSE of all

methods considered. For the bounded Hellinger divergence, the decomposed estimator
based on the naive kernel density estimation gives slightly better results than the numer-
ical estimator, which performs quite well overall. In addition, the results suggest that
decomposing dramatically decreases the MSE in the majority of the cases for all methods
and not just for the moment matching.

3 Homogeneity tests based on divergences

In this section we study two sample procedures testing H0 : P = Q based on divergence
measures. At first, we review the asymptotic test given in [13], which relies on a semipara-
metric divergence estimator. Hereafter, we propose alternative tests based on arbitrary
divergence estimators based on the permutation technique. In the second part of the
section, the tests presented before are compared to some parametric and nonparametric
tests in a broad simulation study. Finally, the methods performing best are applied to
ion mobility spectrometry data.

3.1 Divergence based tests

In [13], an asymptotic test for the two-sample homogeneity problem based on divergence
measures is developed. The authors estimate the divergence via the semiparametric
moment matching introduced in Section 2.1. Hereby, they used the moment function
η∗ and the decomposition functions f ∗1 and f ∗2 presented in (4) and (7), respectively.
The authors proved that the chi-square distribution with d−1 degrees of freedom is the
asymptotic distribution of the test statistic

T =
2 ·n ·m

(n+m) · f ′′(1)
· D̂D

f

under the null hypothesis H0 : P = Q for any divergence measure D f , where d denotes
the length of the parameter vector θ in the density ratio model and f ′′ is the second
derivative of the convex function f specifying the chosen divergence. In the following, we
refer to this method as the Kanamori test.

Recent research in various fields shows that the permutation principle ([10]) and its ex-
tensions can lead to quite powerful tests, cf. [25], [22] and [8] and the references given
therein. Motivated by these results, we propose the following distribution free procedure
to test H0 : Given the original sample pair x1, . . . ,xn and y1, . . . ,ym, we generate b new
sample pairs from the original data. For this purpose, we draw n of the n+m observa-
tions from the sample at random without replacement yielding a new first sample. The
remaining m observations form the new second sample. In other words, the sample labels
are permuted at random. In this way, we obtain b sample pairs. Next, the divergence of
choice is estimated on each of the b sample pairs as well as on the original data using the
same estimator leading to b+ 1 estimates. Under the null hypothesis H0 : P = Q, these
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stem from identically distributed random variables. Since the true divergence value for
any convex function f is minimal under H0, a permutation test based on a divergence
estmator rejects the null hypothesis, if the divergence estimate on the original data ex-
ceeds the empirical (1−α)−quantile of the b+ 1 divergence estimates, where α is the
predefined significance level.
Note that, in contrast to the Kanamori test, the permutation procedure itself is con-
structed without any restrictions of the sizes of the samples and also does not impose
any distributional assumptions. Thus, it does not need a correctly specified density ratio
model to keep the significance level under the null hypothesis. Another advantage is the
possibility to use arbitrary divergence estimators, which can be superior to the moment
matching in certain settings.

3.2 Evaluation of the divergence tests

Before comparing the tests described above with parametric and nonparametric alter-
natives, we assess the minimum sample size required for the Kanamori test to keep the
nominal significance level of α = 5%. For this purpose the Kanamori tests based on the
Kullback-Leibler and the Hellinger divergence are applied to 500 pairs of equally sized
samples drawn from the standard Gaussian distribution for different sample sizes. An
analogue computation is performed with data generated from the exponential distribu-
tion with mean 1. Kanamori et al. also checked the convergence rate of their method
in a similar simulation, but focussed on the multidimensional rather than the univariate
setting. As mentioned before, the exponential density ratio model given in (5) is ad-
equate if two Gaussian or two exponential distributions are considered. However, it is
overparametrised in the latter case. In order to examine the way this affects the results,
we perform the same tests in the case of exponential distributions using the reduced
exponential model

rre(x,θ) = exp(θ1 +θ2 · x) , (8)

dropping the quadratic term.
We analyse the convergence of the method considering the empirical size of the test given
in Table 3 as functions of the sample size. The exponential distribution scenarios il-
lustrate the strong impact of the density ratio model. While for the correctly specified
models 250 observations seem sufficient to ensure a proper test procedure, the rejection
rate for the overparametrised exponential model converges much slower to α = 5% and
leads to increased false rejections. The results also indicate a faster convergence of the
test using the Hellinger distance compared to the Kullback-Leibler version.

We now compare the empirical power of several homogeneity tests in different scenarios
proceeding as follows: At first, we choose a certain data setting like for example location
alternatives for Gaussian distributions. The distribution P is fixed, while the parameters
of the second distribution Q vary on a chosen grid reflecting different degrees of discrep-
ancy. For each of these parameter constellations, we generate 500 sample pairs of size
m = n = 50 from the respective P and Q. We then apply several tests on each of the
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sample pairs and compute the empirical rejection rate for each test and each parameter
constellation. These tests include six divergence based permutation tests as well as other
parametric and nonparametric tests known from the literature. Since the asymptotic
Kanamori test is not applicable for such small sample sizes as is illustrated above, we
repeat the simulation for samples of size 300. In exchange to running the Kanamori test
for both divergence measures in the large sample case, we exclude some of the permuta-
tion tests here, which perform similar to others for m = n = 50. Due to the huge amount
of results, we do not list all rejection rates for the small and the large sample case in all
settings. Instead, we give some representative examples for qualitatively similar results
and summarize the main conclusions.

Before going into detail with regard to the data settings, we specify the tests inves-
tigated: The testing based on the permutation procedure is conducted in six versions
based on different divergence estimators always permuting the sample labels b = 500
times. As divergence estimators we consider the numerical estimators D̂N

KL and D̂N
H , the

natural estimators D̂KL and D̂H as well as the decomposed estimators D̂D
KL and D̂D

H . The
corresponding density ratios are estimated by the naive kernel density approach. The
semiparametric uLSIF algorithm is omitted due to its high computational demand and
its modest results in Section 2.3. We also leave out the asymptotic Kanamori test, be-
cause it does not attain the nominal significance level for such small samples as shown
in the previous subsection. In addition to the six permutation tests, we apply the non-
parametric Wilcoxon rank-sum, the Kolmogorov-Smirnov and the Anderson-Darling test
([12]). While the first primarily detects location alternatives, the other two reveal ar-
bitrary deviations from the null hypothesis and are based on differences between the
empirical distribution functions. If appropriate, we also include optimal distribution
specific tests like the F-test and the t-test. In particular, when dealing with exponential
distributions, a two-sided parametric test is considered. It is based on two one-sided tests
and rejects the null hypothesis H0 : P = Q if and only if one of the one-sided tests rejects
H0. The one-sided tests are optimal for the comparison of exponential distributions and
are constructed to detect the alternatives λP > λQ and λP < λQ, respectively ([15]). Their
test statistic is the ratio of the sample means, which follows an F-distribution under H0.
Both one-sided tests are carried out at a significance level of 2.5% to ensure the global
significance level of 5%. This method was implemented by the authors, while all other
parametric and nonparametric tests are conducted using the implementations in the R
packages stats and adk. All tests are carried out at a nominal significance level of 5%.

In this paragraph, we extensively explain the data settings the test are applied to. We
always list the parameter values for the small sample simulation and give the correspond-
ing quantities for the large sample case in brackets.
At first, we consider the case of two Gaussian distributions. While P is the stan-
dard Gaussian distribution, random variables with distribution Q have mean µ and
variance σ2. For location alternatives we fix σ2 = 1 and vary µ = −1,−0.9, . . . ,0.9,1
(µ =−0.5,−0.45, . . . ,0.45,0.5). Scale alternatives are studied setting µ = 0 and changing
the values of σ2 = 0.1,0.2, . . . ,1.9,2 (σ2 = 0.5,0.55, . . . ,1.45,1.5). In order to investigate
simultaneous discrepancies in location and scale, the mean and variance are linked using
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µ = θ − 1 and σ = θ for θ = 0.1,0.2, . . . ,1.9,2 (θ = 0.5,0.55, . . . ,1.45,1.5). Analogous
simulations are performed for the family of scaled t-distributions with 5 and 20 degrees
of freedom, respectively. A selection of representative rejection rates for these settings is
given in Tables 5 and 6. In addition, Table 4 provides the rejection rates under the null
hypothesis for the large sample case, which is included in the location, the scale and the
linked setting. Consequently, Table 4 is based on 1500 replications.
In a second step, we evaluate the performance of the methods in case of skewness al-
ternatives making use of the skewed Gaussian distribution class ([4]). The skewness of
corresponding random variables is regulated by the parameter λ . For λ = 0 the skewed
Gaussian distribution coincides with the standard Gaussian, while for negative (positive)
values of λ it is left-skewed (right-skewed). Note that a skewed Gaussian random vari-
able does not have mean 0 and variance 1 for λ 6= 0. Therefore, we always generate
data from a standardised skewed Gaussian distribution Q for λ = −50,−40, . . . ,40,50
(λ =−5,−4, . . . ,4,5) and compare it to observations drawn from the standard Gaussian
distribution P. The results for the large sample case in this setting are presented in Table
7.
Next, we investigate the methods’ capability of detecting departures from the Gaussian
distribution class in terms of heavy tails. Hereby, P is again chosen as the standard
Gaussian distribution, while Q is a t-distribution with a number of degrees of freedom ν

varying between 3 and 10. In the same manner as with the skewness, we draw data from
a standardised version of Q, so that P and Q neither differ in location nor in scale. The
rejection rates for this setting are listed in Table 8.
Finally, we generate data from two exponential distributions. While P is fixed to have
parameter value λP = 1, the parameter of Q is chosen as λQ = 0.2,0.3, . . . ,1.7,1.8 (λQ =
0.6,0.7, . . . ,1.5,1.4). The corresponding small sample results are given in Table 9.

According to the rejection rates for the parametric methods, the t- and F-test, as ex-
pected, perform best under Gaussianity for discrepancies in location and scale, respec-
tively. However, they reject H0 quite rarely if their specific alternative is not met, cf.
Tables 7 and 8. As illustrated in Table 4, the F-test is more affected by an incorrect
distributional assumption and does not hold the significance level, whereas the t-test
becomes conservative when applied to data generated by a t-distribution. In the expo-
nential setting, the parametric test consisting of two one-sided optimal tests attains the
highest rejection rates, too.
Among the traditional nonparametric procedures, the Anderson-Darling test achieves
better results than the Kolmogorov-Smirnov test in almost every case investigated. Al-
though both asymptotic tests are applicable for samples of size 50 already, they still reject
H0 more rarely than in 5% of the cases for the t-distribution with 5 degrees of freedom
even for m = n = 300. Both of them detect various kinds of discrepancies between the
distributions, in contrast to the Wilcoxon test, which mainly reveals location alternatives.
The latter is solely superior to the Anderson-Darling test if the samples differ in location
only.
Comparing the permutation tests to each other we see that the ones based on the Hellinger
divergence perform most of the time somewhat better than their Kullback-Leibler coun-
terparts. However, the choice of divergence does not affect the results as much as the
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divergence estimation technique. The tests using the numerical estimators or the decom-
posed estimators lead to similar and more stable results, whereas the ones relying on the
natural estimators D̂H and D̂KL perform quite differently, cf. Tables 5 and 9. For example
in the setting of different scales the latter detect departures from the null hypothesis more
often if the variance of the second sample exceeds the one of the first, but reject rarely
compared to other methods in the opposite case. This behaviour could be caused by the
asymmetry of the estimation procedure discussed on page 6. Overall, the decomposed
and numerical estimators lead to higher rejection rates in most of the cases we study.
All in all, permutation tests using divergence estimators detect discrepancies between dis-
tributions less often than the Wilcoxon, Kolmogorov-Smirnov and Anderson-Darling test
if the corresponding samples differ primarily in location. More precisely, the nonparamet-
ric procedures outperform the divergence tests only for the location and the exponential
setting. In all other cases studied, the tests based on the numerical divergence estima-
tors and the decomposed estimators attain at least competitive and often considerably
higher empirical powers. Especially in situations, where the means of the distributions
are equal, the advantages of the divergence procedures are striking, like in the scale and
the skewness setting as well as for the comparison of Gaussian and t-distributed data.
The two Kanamori tests show even better results than the permutation tests as long as
the exponential density ratio model is correct. However, if the model is inadequate, they
do not hold the nominal significance level and lead to worse results than the permutation
tests, cf. Table 4, 7 and 8.

Since the two best permutation tests using D̂N
H and D̂D

H lead to quite similar results, they
are evaluated in terms of runtime. We apply the methods to equally large samples of
varying size n = m = 50,100,200 . . . ,1000 and determine the mean computation time over
200 replications for each sample size. All tests are conducted using 1000 permutations and
data stemming from the standard Gaussian distribution in both samples, respectively. We
also checked the runtime in the case of different Gaussian distributions and got essentially
the same results. According to the results given in Table 10, the runtime of the test based
on D̂N

H are always smaller and increase notably slower in the sample size than the runtime
for the decomposed estimator D̂D

H . Since both methods led to comparable rejection rates
in our simulations, we recommend the numerical divergence estimator for applications.

3.3 Application to real data

We want to get an impression of the performance of our tests on real data and thus
consider so called ion mobility spectrometry (IMS) measurements, which are carried out
to detect volatile organic compounds in the air or in exhaled breath. For the analysis
groups of measurements are summarised in spectrograms, two-dimensional data struc-
tures similar to heat-maps. Since the spectrograms are generated one-by-one in real-time
with a high frequency, the amount of data grows very quickly. In order to represent the
given information in a compressed form and thereby minimise the amount of storage,
they are typically analysed with regard to major peaks. In this way, the position and
shape of the detected peaks is stored instead of the corresponding measurements. In an
effort to automate and speed-up the computations, D’Addario et al. propose to model the

13



spectrograms in each of the two dimensions independently by finite mixtures of inverse
Gaussian probability density functions, cf. [9]. The parameters within this model are
estimated using a version of the EM algorithm. We make use of homogeneity tests to
evaluate this modelling.
From several minutes of IMS measurement we obtain 500 one-dimensional spectrograms
by conditioning on a certain value for one of the two dimensions for each spectrogram and
focussing on the other dimension, cf. [14]. For every spectrogram two equally sized data
sets containing m = n = 500 observations are investigated. Hereby, one of the data sets is
generated from the corresponding real spectrogram observed, while the other is sampled
from the fitted mixture model. We apply the permutation test based on the numerical
divergence estimator D̂N

H as well as the Anderson-Darling test both at a significance level
of five percent to each of these 500 sample pairs.
In general, the results for both tests suggest that the inverse Gaussian models fit the
spectrograms quite well. They reject the null hypothesis of equal distribution for only 62
and 51 of the 500 spectrograms, respectively. For 91 spectrograms they come to different
test decisions. We focus on two of these 91 situations in the following by looking at
kernel density estimates associated with the data and the corresponding mixture model,
see Figure 1.

Most of the 91 spectrograms, where the tests come to different decisions, are unimodal
or almost unimodal like spectrogram A. Among these, there are both cases where the
Anderson-Darling test rejects the null hypothesis of equal distributions while the diver-
gence test does not and vice versa. Presumable, most of them are false rejections of one
or the other test. However, for all of the few multimodal situations similar to spectrogram
B, the Anderson-Darling test does not reject H0 : P = Q in contrast to the divergence test.
Since the discrepancies between the densities in spectrogram B look notedly larger than
in spectrogram A, the test based on D̂N

H is preferable to the common Anderson-Darling
test. These results also go well with our impressions based on the simulation study. The
Anderson-Darling test has problems if the samples differ in shape but not in location,
while the divergence based test detects such discrepancies more often.

4 Conclusions

This paper deals with the estimation of f -divergences and the testing of homogeneity
of two samples using such quantities. Since divergences are density based distance-like
measures between distributions, they are capable of detecting any departure between the
corresponding distributions and are not restricted to discrepancies in location or scale.
Working in the one-dimensional setting in the case of continuous distributions, we propose
a new nonparametric divergence estimation technique involving kernel density estimation
and numerical integration and compare it to several standard estimators by Monte Carlo
experiments. The new estimator shows a stable performance and leads to quite good
results especially for the unbounded Kullback-Leibler divergence.
In addition, we make use of the permutation technique to tackle the two-sample homo-
geneity problem based on arbitrary divergence estimators. Just like the new estimator,
the method does not require any assumptions on the underlying distributions and is
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Figure 1: Kernel density estimation based and data and fitted model for two spectrograms.

therefore widely applicable. It is compared to a semiparametric asymptotic divergence
based test procedure as well as to standard parametric and nonparametric tests. Our
simulation experiments suggest that the traditional nonparametric procedures like the
Kolmogorov-Smirnov and the Anderson-Darling test outperform divergence based tests
if the distributions differ in location only. However, for scale alternatives, skewness alter-
natives and for the comparison of different distribution classes the divergence test yield
better results. The asymptotic test proposed by Kanamori et al. ([13]) performs better
than the permutation tests as long as its density ratio model is adequate, but breaks
down otherwise. We also apply the test based on the new divergence estimator to real
data from bioinformatics and get results at least comparable to the Anderson-Darling
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test. On the basis of our findings, we recommend to use the permutation test based
on the stable numerical estimator of the Hellinger divergence for testing the two-sample
homogeneity problem in cases with no a priori information of discrepancies in location
only. Also, a combination of this method and the Anderson-Darling test via a Bonferoni
correction or the like might be a reasonable option.

5 Appendix

In the tables below, we use the abbreviations given in brackets:
Gaussian distribution (G), t-distribution with 5 degrees of freedom (t5), t-distribution
with 20 degrees of freedom (t20), t-test (t), F-test (F), Wilcoxon test (Wil), Kolmogorov-
Smirnov test (KS), Anderson-Darling test (AD), Kanamori test based on the Kullback-
Leibler divergence (KanKL), Kanamori test based on the Hellinger divergence (KanH),
parametric test for two exponential distributions (Exp), naive kernel density ratio esti-
mator (KD), uLSIF density ratio estimator (uLSIF) and moment matching density ratio
estimator (MM). Permutation tests based on a divergence estimator are denoted by the
estimator’s label. All rejection rates are given in percent and the null hypothesis is always
H0 : P = Q.

Table 1: Empirical mean square errors for estimators of the Kullback-Leibler divergence in
situations (i) to (iv), cf. page 7.

KD uLSIF MM
D̂KL D̂D

KL D̂KL D̂D
KL D̂KL D̂D

KL D̂N
KL

(i) 0.0014 0.0019 0.0027 0.0041 0.0004 0.0004 0.0015
(ii) 8.2009 17.8172 91.3088 7.1588 10.9003 1.1715 3.9507
(iii) 0.9449 0.9276 0.3728 0.4041 0.0611 0.0610 0.1801
(iv) 77.2846 79.2853 9.6543 10.0414 0.8303 0.8276 0.6996

Table 2: Empirical mean square errors for estimators of the Hellinger divergence in situations
(i) to (iv), cf. page 7, multiplied by 104.

KD uLSIF MM
D̂H D̂D

H D̂H D̂D
H D̂H D̂D

H D̂N
H

(i) 0.20 0.24 0.37 0.56 0.07 0.07 0.22
(ii) 685.34 15.79 7699.41 161.73 466.80 11.05 18.03
(iii) 3.05 3.02 6.31 7.56 3.35 3.34 3.53
(iv) 18.13 11.78 27.89 25.79 10.05 8.88 11.99
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Table 3: Rejection rates of the Kanamori test under H0 for different sample sizes. Considered
distributions: a) standard Gaussian, b) and c) exponential with mean 1. Considered density
ratio models: a) and b) exponential, c) reduced exponential.

n 10 30 50 75 100 150 200 250 300 400 500

a)
KLD 16.8 8.6 7.6 7.4 6.2 5.2 5.8 5.4 4.4 4.4 6.0
Hell 11.4 7.6 7.0 6.6 5.6 5.0 5.8 5.2 4.2 4.2 6.0

b)
KLD 23.2 17.8 9.0 8.6 11.6 8.4 8.2 7.2 7.0 6.6 6.2
Hell 11.8 12.8 5.4 6.4 9.4 6.4 6.0 5.8 6.6 6.0 5.4

c)
KLD 8.6 9.0 4.2 5.8 6.4 4.6 6.6 5.2 5.2 5.6 5.4
Hell 7.6 8.2 4.2 5.4 6.2 4.6 6.4 5.2 5.2 5.6 5.4

Table 4: Rejection rates under H0 for m = n = 300 .
t F Wil KS AD KanKL KanH D̂KL D̂N

H
G 5.2 5.2 5.0 5.0 5.6 4.2 3.8 4.4 4.0
t5 4.0 22.4 5.2 3.6 4.0 7.6 7.0 5.2 4.2

t20 4.4 6.4 5.6 5.2 4.8 5.0 4.8 3.8 4.4

Table 5: Rejection rates under several alternatives for m = n = 50. The parameters of the
distribution Q are µ1 = −0.5, µ2 = 0.5 for location alternatives, σ2

1 = 0.5, σ2
2 = 1.5 for scale

alternatives and θ1 = 0.6, θ2 = 1.4 for alternatives in both location and scale simultaneously,
cf. page 11.

Location Scale Location and Scale
G t20 t5 G t20 t5 G t20 t5

µ1 µ2 µ1 µ2 µ1 µ2 σ1 σ2 σ1 σ2 σ1 σ2 θ1 θ2 θ1 θ2 θ1 θ2

t 72 68 68 69 71 73 5 4 4 5 4 4 67 40 70.2 34.6 66.8 37.8
F 5 5 7 7 20 20 100 79 100 80 97 73 92.2 61.4 92.0 59.0 84.6 60.2

Wil 68 68 73 69 80 80 5 6 5 4 4 5 63.2 35.8 67.6 33.2 75.4 44.4
KS 58 52 53 54 67 69 36 11 36 13 29 10 72.8 36.4 77.6 36.2 84.8 42.8
AD 70 63 68 66 77 78 75 23 72 23 57 20 85.6 50.4 89.4 45.0 89.0 55.8
D̂KL 46 40 42 40 43 49 33 68 26 67 12 54 41.6 64.2 41.0 60.6 40.2 58.2
D̂H 46 41 43 43 49 52 40 65 35 65 22 56 47.4 63.4 45.4 59.4 47.2 60.0
D̂D

KL 50 45 46 45 48 54 94 52 93 51 75 34 89.2 54.2 90.0 48.4 85.4 42.8
D̂D

H 50 45 47 46 52 56 94 52 94 51 84 37 89.0 54.4 90.0 46.4 88.8 45.6
D̂N

KL 50 44 47 45 46 50 94 51 94 53 83 40 90.6 53.4 90.6 48.0 87.0 44.2
D̂N

H 51 45 48 48 54 55 94 50 94 51 85 41 90.8 54.2 92.0 48.2 91.8 49.4
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Table 6: Rejection rates under several alternatives for m = n = 300. The parameters of the
distribution Q are µ1 = −0.2, µ2 = 0.2 for location alternatives, σ2

1 = 0.8, σ2
2 = 1.2 for scale

alternatives and θ1 = 0.8, θ2 = 1.2 for alternatives in both location and scale simulaneously, cf.
page 11.

Location Scale Location and Scale
G t20 t5 G t20 t5 G t20 t5

µ1 µ2 µ1 µ2 µ1 µ2 σ1 σ2 σ1 σ2 σ1 σ2 θ1 θ2 θ1 θ2 θ1 θ2

t 66 71 69 69 69 69 5 6 4 4 4 4 78 64 77 62 76 62
F 5 5 6 6 22 22 98 89 96 86 89 78 98 89 96 86 89 78

Wil 67 66 67 69 78 77 6 5 6 5 6 5 75 57 75 60 85 69
KS 51 57 56 57 71 70 26 17 25 16 22 16 85 69 86 67 90 73
AD 63 70 66 69 78 75 60 37 57 32 41 27 95 83 96 79 95 83

KanKL 55 63 57 62 63 62 96 80 92 75 68 49 99 94 99 90 93 80
KanH 55 63 57 61 62 62 96 80 92 75 67 48 99 94 99 90 92 79
D̂KL 40 45 41 44 37 37 59 75 50 70 20 48 84 90 81 85 60 75
D̂N

H 42 47 44 47 45 46 88 69 82 60 62 44 98 87 96 81 91 72

Table 7: Rejection rates for testing the equality of the standard Gaussian and a skewed Gaussian
distribution with skewness parameter λ for m = n = 300.

λ t F Wil KS AD KanKL KanH D̂KL D̂N
H

-5 6.8 7.8 13.6 35.0 51.8 7.4 7.0 75.4 96.4
-3 6.6 7.2 11.0 21.2 23.8 6.2 5.8 51.4 66.4
-1 7.4 5.0 7.0 5.6 7.0 6.4 6.4 6.8 6.2
0 6.0 5.2 5.6 4.2 5.4 4.4 4.4 5.2 5.0
1 4.8 4.2 4.4 4.4 5.8 6.0 6.0 5.4 5.6
3 3.0 6.4 9.8 19.0 20.4 5.0 5.0 45.2 63.4
5 3.8 7.2 13.8 31.8 46.8 5.4 5.2 75.0 95.0

Table 8: Rejection rates for testing the equality of the standard Gaussian and a standardised
t-distribution for varying degrees of freedom and m = n = 300.

d.o.f. Wil KS AD KanKL KanH D̂H D̂N
H

3 4.8 74.2 90.8 24.0 23.2 97.8 99.4
4 5.0 25.2 35.8 9.8 9.6 59.6 72.6
5 5.6 14.0 16.4 7.6 7.0 34.2 44.4

10 4.8 5.2 6.8 6.6 6.4 9.0 11.0
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Table 9: Rejection rates for testing the equality of two exponential distributions with parameters
λP = 1 and varying λQ for m = n = 50.

λQ Exp Wil KS AD D̂KL D̂H D̂D
KL D̂D

H D̂N
KL D̂N

H
0.7 98.8 96.0 93.8 97.4 83.0 95.4 60.0 85.8 81.2 88.0
0.8 79.4 67.2 56.4 71.6 42.6 61.6 23.0 41.2 36.2 41.6
0.9 26.2 22.4 15.2 22.6 17.4 20.6 9.6 12.6 11.8 12.8
1 6.6 5.4 6.2 6.2 6.6 4.8 6.0 4.4 5.2 3.8

1.1 19.8 15.6 14.4 16.6 1.4 1.8 6.6 8.4 9.6 8.8
1.2 60.2 48.4 37.8 49.6 1.4 5.8 16.6 25.0 26.6 26.8
1.3 88.4 77.4 68.4 80.0 3.4 12.6 31.4 54.6 49.6 57.8

Table 10: Runtimes of the permutation tests using the estimators D̂D
H and D̂N

H on samples from
the standard Gaussian distribution in seconds.

n 50 100 150 200 250 300 350 400 450 500
D̂D

H 16.9 23.9 31.4 39.1 46.6 54.2 62.4 70.3 77.8 85.6
D̂N

H 13.6 13.8 14.1 14.4 14.8 15.2 15.6 16.1 16.7 17.2
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