
This is page 1
Printer: Opaque this

Constructive Function
Approximation: Theory and
Practice

D. Docampo
D.R. Hush
C.T. Abdallah

ABSTRACT In this paper we study the theoretical limits of finite con-
structive convex approximations of a given function in a Hilbert space using
elements taken from a reduced subset. We also investigate the trade-off be-
tween the global error and the partial error during the iterations of the
solution. These results are then specialized to constructive function ap-
proximation using sigmoidal neural networks. The emphasis then shifts to
the implementation issues associated with the problem of achieving given
approximation errors when using a finite number of nodes and a finite data
set for training.

1 Introduction

It has been shown that continuous functions on compact subsets of IRd can
be uniformly approximated by linear combinations of sigmoidal functions
[11, 20]. What was missing from that result is how the error in the approx-
imation is related to the number of sigmoids used. This can be phrased
in a more general way as the problem of approximating a given element
(function) f in a Hilbert space H by means of an iterative sequence fn, and
has an impact in establishing convergence results for projection pursuit al-
gorithms [22], neural network training [5] and classification [12]. Moreover,
the fact that one will have to achieve the approximation when samples of f
are given has been largely forgotten by most papers which quote the results
of [11, 20]. The approximation problem can be given a constructive solu-
tion where the iterations taking place involve computations in a reduced
subset G of H [22, 5]. This leads to algorithms such as projection pursuit.
Convergence of the classical projection pursuit regression techniques [13]
however, has been shown to be very slow unless the iterate fn+1 is chosen
to be an optimal combination of the past iterate fn and a ridge function
of elements of the subset G. The bound of the error in this approximation
has been refined several times since the initial non-constructive proof given
by Maurey, as reported in [23]. Jones [22] provided the first constructive



2 D. Docampo, D.R. Hush, C.T. Abdallah

solution to the problem of finding finite convex approximations of a given
function in a Hilbert space using elements taken from a reduced subset.
His results have been recently refined by Barron [3] and Dingankar [12]. In
this paper we report that the rate of convergence obtained in [22] and [5]
is the maximum achievable, and, only under some restricted assumptions,
the results in Dingankar can be derived as the optimal convex combination
to preserve the desired convergence rate.

In the first part of the paper, we formulate the approximation problem
in such a way that we can study the limits of the global error, obtain the
best possible trade-off between global and partial errors, and give theoret-
ical bounds for the global error when a prespecified partial error is fixed.
We then concentrate on the implementation aspects of the problem, specif-
ically, the problem of achieving a certain approximation error using one
approximating function at a time. We then discuss some specific sigmoidal
functions and algorithms which have been shown to be efficient in solving
a particular step of the approximation problem.

The rest of the paper is organized as follows: We start out by review-
ing some theoretical results in section 2 where we state the problem and
highlight its practical implications. In section 3 we review the theoretical
solutions to the problem, and provide the framework under which those so-
lutions can be derived. In section 4 we analyze the limits of the global error
and its relation to the partial errors at each step of the iterative process.
In section 5 we specialize the constructive functions to sigmoidal functions.
Section 6 presents the practical issues associated with implementing a con-
structive algorithm with an eye towards neural network results. Finally,
section 7 presents our conclusions.

2 Overview of Constructive Approximation

In this section, we state and present some theoretical results on the con-
structive approximation problem. In order to state the results in their full
generality, let G be a subset of a real or complex Hilbert space H , with
norm ‖.‖, such that its elements, g, are bounded in norm by some positive
constant b. Let c̄o(G) denote the convex closure of G (i.e. the closure of
the convex hull of G in H). The first global bound result, attributed to
Maurey, concerning the error in approximating an element of c̄o(G) using
convex combinations of n points in G, is the following:

Lemma 2.1 Let f be an element of c̄o(G) and c a constant such that

c > b2 −‖f‖2 = b2
f . Then, for each positive integer n there is a point fn in

the convex hull of some n points of G such that:

‖f − fn‖2 ≤ c

n
4



1. Constructive Function Approximation: Theory and Practice 3

The first constructive proof of this lemma was given by Jones [22] and
refined by Barron [3]; the proof includes an algorithm to iterate the solution.
In the next section, a review of the constructive proof will be presented.
We will specifically prove the following in section 3.

Theorem 2.1 For each element f in c̄o(G), let us define the parameter γ
as follows:

γ = inf
υ∈H

sup
g∈G

{

‖g − υ‖2 − ‖f − υ‖2
}

Let now δ be a constant such that δ > γ. Then, we can construct an iterative

sequence fn, fn chosen as a convex combination of the previous iterate fn−1

and a gn ∈ G, fn = (1 − λ)fn−1 + λgn, such that:

‖f − fn‖2 ≤ δ

n

Proof: See section 3.
Note that this new parameter, γ, is related to Maurey’s b2

f , since if we

make υ = 0 in the definition of γ we realize that γ ≤ b2
f .

The relation between this problem and the universal approximation prop-
erty of sigmoidal networks was clearly established by [22, 5]; specifically,
under certain mild restrictions, continuous functions on compact subsets
of IRd belong to the convex hull of the set of sigmoidal functions that one
hidden layer neural networks can generate. Moreover, since the proofs are
constructive, an algorithm to achieve the theoretical bounds is provided as
well.

Other nonlinear approximation techniques have also benefited from the
solution to this problem: approximation by hinged hyperplanes [8], pro-
jection pursuit regression [28] and radial basis functions [17]. In all these
related approximation problems the solution can always be constrained to
fall in the closure of the convex hull of a subset of functions (e.g. hinged
hyperplanes, ridge functions or radial basis functions in the examples men-
tioned above).

3 Constructive Solutions

For the sake of clarity and completeness, we include here the proof given
in [5] and [12].

Lemma 3.1 Given f ∈ c̄o(G), for each element of co(G), h, and λ ∈ [0, 1]:

inf
g∈G

‖f − (1 − λ)h − λg‖2 ≤ (1 − λ)2‖f − h‖2 + λ2γ (1.1)



4 D. Docampo, D.R. Hush, C.T. Abdallah

Proof: The proof of the lemma will be carried out for f ∈ co(G); it extends
to elements in c̄o(G) because of the continuity of all the terms involved in
the inequalities [10].

Since f ∈ co(G), there exists a convex combination of elements g∗ from G,
so that f =

∑m

k=1 αkg∗k. Let then g∗ be a random vector taking values on
H with probabilities P (g∗ = g∗k) = αk.

Then: E(g∗) = f , var(g∗) = E(‖g∗ − f‖2) = E(‖g∗‖2) − ‖f‖2 ≤ b2
f .

Additionally, for υ ∈ H ,

var(g∗) = var(g∗−υ) = E(‖g∗−υ− (f −υ)‖2) = E(‖g∗−υ‖2)−‖f −υ‖2.

Thus, ∀υ ∈ H ,

var(g∗) ≤ sup
g∈G

‖g − υ‖2 − ‖f − υ‖2 ⇒

var(g∗) ≤ inf
υ∈H

sup
g∈G

‖g − υ‖2 − ‖f − υ‖2 = γ.

Now, for λ ∈ [0, 1] and d ∈ H ,

E(‖λ(g∗ − f) + d‖2) = λ2E(‖g∗ − f‖2) + ‖d‖2 ≤ λ2γ + ‖d‖2,

and for λ ∈ [0, 1]

inf
g∈G

‖f − (1 − λ)h − λg‖2 ≤ E (‖(1 − λ)h + λg∗ − f‖)2 ≤

≤ E (‖(1− λ)(h − f) + λ(g∗ − f)‖)2 ≤ (1 − λ)2‖f − h‖2 + λ2γ

which concludes the proof of Lemma 3.1. 4
We can now prove Theorem 2.1, using an inductive argument.

Proof: At step 1, find g1 and ε1 so that ‖f −g1‖2 ≤ infG ‖f −g‖2 + ε1 ≤ δ.
This is guaranteed by (1.1), for λ = 1 and ε1 = δ − γ.

Let now fn be our iterative sequence of elements in co(G), and assume that
for n ≥ 2,

‖f − fn−1‖2 ≤ δ/(n − 1)

It is then possible to choose among different values of λ and εn so that:

(1 − λ)2‖fn−1 − f‖2 + λ2γ ≤ δ

n
− εn (1.2)

At step n, select gn such that:

‖f − (1 − λ)fn−1 − λgn‖2 ≤ inf
g∈G

‖f − (1 − λ)fn−1 − λg‖2 + εn (1.3)

Hence, using (1.1), (1.3) and (1.2), we get: ‖f − fn‖2 ≤ δ

n
, and that com-

pletes the proof of Theorem 2.1.



1. Constructive Function Approximation: Theory and Practice 5

The values of λ and εn in [5] and [12] are related to the parameter α,
α = δ/γ − 1, in the following way:

[5] : λ =
‖f − fn−1‖2

γ + ‖f − fn−1‖2
; εn =

αδ

n(n + α)

[12] : λ =
1

n
; εn =

αγ

n2

It is easy to check that, in both cases, ε1 is equal to δ − γ as stated in the
proof.

Given that the values of the constant λ are different in both cases, we first
look for the values of λ which make the problem solvable (i.e. feasible values
for the constant λ). Admissible values of λ will have to satisfy inequality
(1.2) for positive values of εn; it is easy to show that those values fall in
the following interval, centered at Barron’s optimal value for λ:

‖f − fn−1‖2

γ + ‖f − fn−1‖2
± 1

γ + ‖f − fn−1‖2

√

‖f − fn−1‖4 − ‖f − fn−1‖2 +
δ

n

To evaluate the possible choices for the bound εn we need to make use
of the induction hypothesis; introducing it in inequality (1.2), values of λ
should now satisfy

(1 − λ)2
δ

n − 1
+ λ2γ ≤ δ

n
− εn

In this case, admissible values of λ for positive values of εn fall in the
interval (which always contains the value of λ = 1/n):

1 + α

n + α
± n − 1

n + α

√

α(1 + α)

n(n − 1)

In Figure 1 we show the bounds of this second interval for λ as a function
of n. The bounds are shown in solid lines, the center of the interval using
a dotted line, and the value of λ in [12] using a dash dotted line. Note how
the dash-dotted line approaches the limits of the interval, which results in
a poorer value for εn, as will be shown later.

3.1 Discussion

Since the results presented so far achieve a bound of the global error of
O(1/n), and, to construct the solution, a partial error εn of O(1/n2) is
the maximum allowed at each step, it is useful to formulate the following
questions:



6 D. Docampo, D.R. Hush, C.T. Abdallah

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FIGURE 1. admissible values of λ for α = 1

1. Is there any possibility of achieving a further reduction in the global
error using convex combinations of n elements from G? What is the
minimum bound for the global error assuming εn = 0 for all n?

2. What is the optimal choice of λ for a given bound, so that εn is
maximum, making the quasi-optimization problem at each step easier
to solve?

3. For that the optimal choice of λ and a prespecified partial error, εn,
what is bound for the global approximation problem?

Based on the assumptions made and in Lemma 3.1, let us formulate
the problem again in a more general way: Our objective is to look for a
constructive approximation so that the overall error using n elements from
G satisfies the following inequality:

‖f − fn‖2 ≤ δ

b(n)
(1.4)

b(n) being a function of the parameter n which indicates the order of our
approximation (i.e. b(n) = n both in [22] and [12]) and δ the parameter
related to γ as defined before.

In what follows we will assume that the iterate fn will be chosen as a
convex combination of the previous iterate fn−1 and a point in G, gn; this
introduces a loss of generality, since other constructive approaches could be
devised in order to re-optimize the coefficients of previous elements from
G at each step. The facts that fn is forced to be a convex combination of
n elements from G, and our algorithm has to be constructive, mean that
fn is in the convex hull of {g1, g2, . . . , gn} and fn−1 is in the convex hull
of {g1, g2, . . . , gn−1}, but that does not imply that fn must be a convex
combination of fn−1 and gn, as can be easily shown. We leave the more
general problem for further investigation and concentrate here on the case



1. Constructive Function Approximation: Theory and Practice 7

where constructiveness of the algorithm is taken as in [22] and [12] to be
equivalent to the constraint that, at each step, fn is in the convex hull of
{fn−1, gn}.

Before we try to answer the three questions posed at the beginning of
this section, let us now set up a framework where the constructive results
can be derived.

Let fn = (1−λ)fn−1 +λgn, then, in our approximation problem we want
to find λ, εn, and the function b(n) so that:

‖f − fn‖2 ≤ inf
0<λ<1

inf
g∈G

‖f − (1 − λ)fn−1 + λg‖2 + εn

≤ inf
0<λ<1

(1 − λ)
2 ‖f − fn−1‖2 + λ2γ + εn

≤ inf
0<λ<1

(1 − λ)
2 δ

b(n − 1)
+ λ2γ + εn ≤ δ

b(n)
(1.5)

Since δ = (1 + α)γ, we can rewrite the last inequality in the following way:

inf
0<λ<1

(1 − λ)
2 δ

b(n − 1)
+ λ2δ + εn − λ2αγ ≤ δ

b(n)

This last expression represents the trade-off between the global error we
are trying to achieve δ/b(n) and the error at each of the subproblems, εn.

We are going to prove the following: if we set εn = λ2αγ, then, for a
given λ, the best rate of convergence of the approximation which can be
achieved, measured in b(n), is the one given in [12] and [5], and the optimal
value of λ which minimizes εn for that best rate of convergence is precisely
the value given in [12]. To see that, let’s introduce the value of εn in (1.5),
then:

(1 − λ)
2 δ

b(n − 1)
+ λ2δ ≤ δ

b(n)

Hence,

(1 − λ)2 + b(n − 1)λ2 ≤ b(n − 1)

b(n)

and then:

P (λ) = λ2((1 + b(n − 1)) − 2λ + 1 − b(n − 1)

b(n)
≤ 0 (1.6)

P (λ) has to have a discriminant greater than or equal than 0 for the in-
equality (1.6) to hold. So,

1 − (1 + b(n − 1))

(

1 − b(n − 1)

b(n)

)

≥ 0



8 D. Docampo, D.R. Hush, C.T. Abdallah

and then, finally:

b(n) ≥ (1 + b(n − 1)) (b(n) − b(n − 1)) ⇔
b(n − 1) ≥ b(n − 1) (b(n) − b(n − 1)) ⇔

b(n) ≤ 1 + b(n − 1) (1.7)

Inequality (1.7) proves that, under the assumption that εn = λ2αγ, there is
no better rate of convergence using these kind of convex constructive solu-
tions that the one obtained in references [22] and [12], since the maximum
rate is obtained when

b(n) = 1 + b(n − 1) ⇒ b(n) = b(1) + n − 1 = n (1.8)

Furthermore, for this rate of convergence there is only one zero of the
function P (λ), namely, λ = (1/n) which is the optimal value and coincides
with the one provided in Dingankar’s algorithm.

We will next answer the questions posed at the beginning of this section,
concerning the limits and bounds of the approximation.

4 Limits and Bounds of the Approximation

If we look back at expression (1.5), we will notice that, after using Lemma
3.1, we have at each step a quadratic problem in λ, which consists of min-
imizing

Q(λn) = (1 − λn)2
δ

b(n − 1)
+ λ2

nγ

provided that the induction hypothesis (1.4) is satisfied for k < n. We have
introduced the notation λn to stress the variation of this parameter along
the iterative process.

Taking derivatives, we get

λnγ = (1 − λn)
δ

b(n − 1)
⇒

λn =
(1 − λn)δ

γb(n − 1)
=

1 + α

1 + α + b(n − 1)
(1.9)

Hence, we get the following expression of the optimal error bound:

‖f − fn‖2 ≤ (1 − λn)2
[

δ

b(n − 1)
+

(1 + α)δ

b2(n − 1)

]

+ εn

= δ

(

b2(n − 1)

1 + α + b(n − 1)

) (

1 + α + b(n − 1)

b2(n − 1)

)

+ εn

=
δ

1 + α + b(n − 1)
+ εn =

δ

b(n)
(1.10)



1. Constructive Function Approximation: Theory and Practice 9

From (1.10) we can write the following expression for b(n) and εn:

1

b(n)
=

1

1 + α + b(n − 1)
+

εn

δ
(1.11)

and then

εn =
δ

b(n)(1 + α + b(n − 1))
[1 + α + b(n − 1) − b(n)] (1.12)

From this last expression we conclude that there is a fundamental limitation
in the rate of convergence that can be achieved under the hypothesis made
so far, namely:

b(n) − b(n − 1) ≤ 1 + α =
δ

γ

4.1 Minimum Global Error

Assuming that we can solve the partial approximation problems at each
step of the iteration, so εn = 0, n ≥ 1, then

b(n) = 1 + α + b(n − 1) ⇒ b(n) = n(1 + α)

provided that we make b(1) = 1 + α, which means that we should find an
element g1 in G so that

‖f − f1‖2 ≤ δ

1 + α

which is guaranteed by Lemma 3.1. Hence, the best rate of convergence
that can be obtained follows the law c/n, since

δ

n(1 + α)
=

γ

n

We have then reached the minimum value of the constant c, namely c = γ.
Note that for this minimum to be reached we have

λn =
1 + α

(1 + α)n
=

1

n

so the optimal convex combination would be the average of n elements from
G, as in [12].

We have then answered the first of our questions. We now examine the
trade-off between the global error and εn. Specifically, we will find the min-
imum global error for a specified partial error, εn, and the maximum bound
we can place on the partial error for a prespecified rate of convergence.



10 D. Docampo, D.R. Hush, C.T. Abdallah

4.2 Fixing εn

Given the nonlinear character of the recursion involved in (1.11), there is
no analytical procedure to find a closed expression for b(n). However, we
can compute the bound of the approximation following the flow diagram
of the optimal procedure, and from it derive some asymptotically results.

1. Select a constant δ such that δ > γ; let δ = (1 + α)γ.

2. Find g1 ∈ G so that ‖f − g1‖2 ≤ δ. Set f1 = g1.

3. For n > 1, evaluate:

(a) λn = (1 + α)/ (1 + α + b(n − 1)) from (1.9)

(b) Find gn ∈ G so that

‖f − (1−λn)fn−1−λngn‖2 ≤ inf
G

‖f − (1−λn)fn−1−λng‖2 + εn

(c) Make fn = (1 − λn)fn−1 + λngn

(d) Compute b(n) from (1.11)

In order to make the appropriate comparisons with previous results, we will
set εn = (αγ/n2), as in [12]. Then, again under the induction hypothesis,

1

b(n)
=

1

1 + α + b(n − 1)
+

α

(1 + α)n2

To predict the asymptotic behavior of b(n), let us assume that, at step
n− 1, b(n− 1) ≥ β(1 + α)(n− 1), we will prove then that, for some values
of the constant β, we can imply that also b(n) ≥ β(1 + α)n.

Since b(n − 1) ≥ β(1 + α)(n − 1), we have:

1

b(n)
≤ 1

(1 + α)(1 + β(n − 1))
+

α

(1 + α)n2
⇒

1 + α

b(n)
≤ 1

1 + β(n − 1)
+

α

n2
⇒

b(n)

n(1 + α)
≥ n(1 + β(n − 1))

n2 + α(1 + β(n − 1))
⇒

b(n)

n(1 + α)
≥ β ⇔ n(1 − β) ≥ βα(1 + β(n − 1)) ⇔

n(1 − β − β2α) ≥ βα(1 − β)

This last inequality is asymptotically fulfilled for any value of β such that:

0 ≤ β ≤
√

4α + 1 − 1

2α



1. Constructive Function Approximation: Theory and Practice 11

Then, for the value of εn selected in [12], the asymptotic value for b(n) is:

b(n) = (1 + α)n

√
4α + 1 − 1

2α

which is a better rate than the one obtained in [12].

In Figure 2 we show b(n) as a solid line, and the straight lines l(n) = n
corresponding with the rate in [12], dotted line, and the predicted asymp-
totic behavior of b(n). The figure clearly supports the asymptotic results,
and shows that the constant λn found (1.9) always results in a better con-
vergence rate than [12]. The gap between the two lines would be bigger for
larger values of the constant α; in other words, the larger the constant δ
the worse the convergence rate achieved using λ = 1/n.

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

FIGURE 2. Optimal convergence rate for α = 1

4.3 Fixing the rate of convergence

The remaining problem, namely: given the optimal value of λ find the max-
imum εn for a fixed convergence rate, thus making the quasi-optimization
problem at each step easier to solve, was already explicitly solved in (1.12).
Again, to show how our results compare with [5] and [12], we will assume
that our desired rate of convergence is given by b(n) = n.

The value λn = (1 + α)/(n + α) solves the optimization problem, and:

εn =
αδ

n(n + α)
(1.13)

This is the best upper bound we can achieve for the partial error at each
step of the iteration process. It is easy to show that it coincides with Bar-
ron’s bound, and is always greater than the bound found in [12].



12 D. Docampo, D.R. Hush, C.T. Abdallah

Now, in Figure 3 we show the bound εn for n = 5 and γ = 1, as a function
of α. The optimal bound is shown using the solid line, while the bound
from [12] is shown using a dotted line.

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

FIGURE 3. εn for n = 5

5 The Sigmoidal Class of Approximators

When discussing neural networks, we are typically referring to a system
built by linearly combining a large collection of simple computing de-
vices (i.e., nodes), each of which performs a nonlinear transformation σ
(in general a sigmoid function) on its inputs [18]. A sigmoid is defined
here as a bounded function σ(x). It is now known that a 1-hidden layer
static network, whose nodes are sigmoidal is capable of approximating an
arbitrary (continuous) function. Many proofs of this result have appeared
of which we recall the ones in [11, 20]. Until recently, these proofs have
used the Stone-Weirestrass theorem and required the continuity or even
differentiability of the sigmoid (or nonlinearities) in the neural net. Chen
et al. [9], building on the research of Sandberg [25, 26, 27] have recently
shown however that all is needed is the boundedness of the sigmoid build-
ing block. Table 5 is taken from [9] and summarizes some available results
for the approximation of functions. The set K denotes a compact subset
of IRn. Note that even those results labeled “constructive” still ignore the
facts associated with the training algorithm and the available data.
The set of popular sigmoids include the hardlimiting threshold or Heaviside

function shown in Figure 4(a):

σH (x) =

{

1 x > 0
0 x ≤ 0

(1.14)



1. Constructive Function Approximation: Theory and Practice 13

Reference Activation Function Approximation In Proof

[11] Continuous Sigmoid C[K] Existential

[11] Bounded Sigmoid Lp[K] Existential

[20] Monotone Sigmoid C[K] Constructive
[9] Bounded Sigmoid C[IRn] Constructive

TABLE 1.1. Approximation Results

-10.0 10.00.0

0.0

1.0

x

σ
H

(x
)

(a) Hardlimiter Nonlinearity

β=5.0

β=1.0

β=0.2

-10.0 10.00.0

0.0

1.0

x

σ
S
(x

)

(b) Sigmoid Nonlinearities

FIGURE 4. Typical Nonlinearities.

In order to derive certain learning techniques, a continuous nonlinear acti-
vation function is often required. For example, gradient descent techniques
typically require that the sigmoid be differentiable [2]. Thus the threshold
function is commonly approximated using the sigmoid function shown in
Figure 4(b):

σS(x) =
1

1 + e−βx
(1.15)

The gain of the sigmoid, β, determines the steepness of the transition
region. Note that as the gain approaches ∞, the sigmoid approaches a
hardlimiting threshold. Often the gain is set equal to one, and β is omitted
from the definition in equation (1.15). Later in this paper, we shall use the
ramp equation which is another sigmoid defined as

σr(x) =







0, z ≤ α
(z − α)/(β − α), α ≤ z ≤ β

1, β ≤ z
(1.16)



14 D. Docampo, D.R. Hush, C.T. Abdallah

Initialization:

f0(x) = 0

for n = 1 to nmax do

1. Compute Residual: en(x) = f(x) − fn−1(x)
2. Fit Residual: gn(x) = arg ming∈G ‖en(x) − g(x)‖
3. Update Estimate: fn(x) = αfn−1(x) + βgn(x)

where α and β are chosen to minimize ‖f(x) − fn(x)‖

endloop

FIGURE 5. Iterative Approximation Algorithm (IIA).

6 Practical Considerations

In section 2 we recalled that it is possible to approximate an unknown func-
tion f ∈ c̄o(G) with a convex combination of functions gi ∈ G, i = 1, 2, ..., n
such that the approximation error is bounded by δ/n. More importantly it
was shown that the functions gi can be found constructively, i.e. one at a
time. The proof of this result was itself constructive, and thus provides a
framework for the development of an algorithm for building these approxi-
mations. The purpose of this section is to explore such algorithms. In doing
so, our primary concerns are with the feasibility and computational com-

plexity of these algorithms. Specific statements regarding these two issues
are often not possible without considering a specific class of approximating
functions. For this purpose we have chosen the class of sigmoidal functions
described in the previous section.

Perhaps the most straightforward algorithm that can be derived from
the proof in section 3 is the iterative approximation algorithm (IIA) shown
in Figure 5 [5]. This algorithm is attractive in that the main loop contains
only three steps, each of which is conceptually quite simple. However, im-
plementation of this algorithm is not so straightforward. The second step
in particular can be quite difficult. This step requires that we find the func-
tion gn that best fits the current residual. Even though this step can be
difficult, it is certainly more manageable than finding all n of the gi simul-
taneously, which is the more popular (non-constructive) approach used in
neural networks.

The final model produced by the IIA algorithm can be expressed in the
form

fn(x) =

n
∑

i=1

aigi(x) (1.17)

where the ai coefficients are simple deterministic functions of the α and β
values computed at each step of the IIA. Thus, the model produced by this



1. Constructive Function Approximation: Theory and Practice 15

algorithm has the familiar “linear combination of basis functions” form,
where {gi}n

i=1 forms the basis set. In this context the gi are referred to as
tunable basis functions because they are “tuned” to the data in Step 2 of
the algorithm. This is in contrast to the more conventional basis function
approach (e.g. polynomial expansions) where the basis are fixed a priori,
and only their relative weightings (i.e. the ai’s) are tunable.

Let us look more closely at the three steps of the IIA. The first step
involves a simple subtraction which is trivial. The third step also turns out
to be quite simple when the L2 norm is used. In this case the solution for
α and β has a simple closed form. The second step however, generally does
not have a closed form solution. This step involves a search over the func-
tion space G for the best fitting member gn. The intrinsic difficulty of this
search depends largely on the manner in which the members of G are pa-
rameterized, but because they are nonlinear and tunable there is generally
no closed form solution, so the search must be performed algorithmically.
Unfortunately, even algorithmic solutions are not guaranteed to produce
the optimal function in an efficient manner. All is not lost however, since it
is often possible to produce “good approximations” (i.e. near optimal func-
tions) in a computationally efficient manner. This may be adequate, since
the function produced in Step 2 does not need to be optimal to achieve
the O(1/n) bound in approximation error. In section 3 we saw that it was
sufficient for Step 2 to produce a function that is within O(1/n2) of the
optimum. A question remains however, as to whether or not this can ac-
tually be achieved. Although efficient algorithms exist for Step 2, we know
of no proof that any such algorithm can produce functions that satisfy the
O(1/n2) tolerance in polynomial time. To our knowledge this is an open
question.

In practice it is common to use a refitting (or backfitting) procedure to
“fine tune” the result of the IIA. This procedure can compensate somewhat
for the suboptimal result produced at Step 2, and also to some degree for
the possible limitations due to the constructive nature of the IIA. A typical
refitting procedure is shown in Figure 6. The basic idea is to refit each basis
function, one at a time, to the residual formed from the approximation using
the other n − 1 basis functions. This algorithm has the same attributes as
the IIA: it optimizes individual basis functions by fitting them to a residual,
and then reintegrates them into the overall fit. It differs from the IIA in
that the residual is computed differently, and that the starting point for
each refitting is usually close to its final point. This means that the search
in Step 3 is generally very fast compared to its counterpart in Step 2 of the
IIA. Because of this, refitting usually runs much faster than the IIA.

6.1 Projection Pursuit Methods

This section presents a brief introduction to projection pursuit (PP) meth-
ods [21]. Projection pursuit can be thought of as a general methodology



16 D. Docampo, D.R. Hush, C.T. Abdallah

for i = 1 to n do

1. Compute fn−1: fn−1(x) =
∑n

j 6=i
ajgj(x)

2. Compute Residual: en−1(x) = f(x) − fn−1(x)
3. Fit Residual: gi(x) = arg ming∈G ‖en−1(x) − g(x)‖
4. Update Estimate: fn(x) =

∑n

j=1
ajgj(x)

where {ai} are chosen to minimize ‖f(x) − fn(x)‖

endloop

FIGURE 6. Refitting Algorithm.

for data exploitation that can be used in a variety of problem domains in-
cluding regression, classification, density estimation and data exploration
[16, 14, 15, 21]. When used for regression, PP encompasses a popular class
of algorithms used to solve Step 2 of the IIA. The motivation for projec-
tion pursuit regression (PPR) is the following. Nonlinear regression can be
performed accurately and robustly in lower dimensions (e.g. 1 or 2) using a
wide variety of techniques (e.g. polynomials, splines, Parzen windows, etc.).
However, the natural extension of these techniques to higher dimensional
problems is hampered by the curse of dimensionality. This curse manifests
itself in a variety of ways, one of which is in the rapid growth in the number
of free parameters associated with the model. For example, in dimension
d the number of free parameters associated with a polynomial model of
degree q is O(dq). This number can become quite large for even modest
values of q and d. Projection Pursuit methods attempt to circumvent the
curse of dimensionality by projecting the input to a 1–dimensional space
before fitting a nonlinear regression function. The projection is usually
linear (or affine) and thus defines a “direction of pursuit” in the original
d–dimensional space. The key to success with PPR methods is in finding
good projection directions. One version of the PPR algorithm is shown in
Figure 7 [21]. The univariate fit in Step 2 can be performed using any num-
ber of nonlinear regression methods (cubic splines are a popular choice).
Finding the new projection in Step 3 is the most difficult step in the al-
gorithm. This is a nonlinear optimization problem that can be approached
in a variety of ways. We will explore this step in more detail through a
specific example in the next section, but for now suffice it to say that it can
be computationally expensive. Although PP has become a very popular
technique for nonlinear regression, the complexity of Step 3, as well as the
potentially large number of iterations required for convergence of the main
loop, make it a computationally expensive procedure. In the next section
we show how PPR can be used with neural networks. Initially this amounts
to little more than using the logistic function for φ in PPR. But as we shall



1. Constructive Function Approximation: Theory and Practice 17

Initialization:

Choose an initial projection, w0

repeat

1. Project Data: u = wT
k
x

2. Univariate Fit (find φ with w fixed): φk = arg minφ ‖y − φ(u)‖
3. Update Projection (find w with φ fixed): wk+1 = arg minw ‖y −
φk(wT x)‖

until (wk converges) ;

FIGURE 7. The Projection Pursuit Regression Algorithm.

see, the computational efficiency can be improved dramatically if we use
piecewise continuous functions (called “ramp functions”) instead.

6.2 Projection Pursuit with Neural Networks

We use the following notation to simplify our development in this section.
The symbol x̃ will be used to represent input vectors x that have been
augmented with a 1 in the first position, i.e.

x̃ =

[

1
x

]

(1.18)

Similarly, w̃ will be used to represent weight vectors w that have been
augmented with a “bias” weight in the first position

w̃ =

[

w(0)
w

]

(1.19)

The dimension of these augmented vectors is d + 1 and is denoted d̃.
In neural networks the most popular tunable basis function is arguably

the logistic function,

σl(x) = (1 + e−(w̃T
x̃))−1 (1.20)

This function is smooth, bounded and parameterized by the weight vector
w̃. If we wish to use the logistic function in the PPR algorithm it needs to
be scaled and shifted so that it can better fit functions with arbitrary range
and position. These scaled and shifted logistic functions form the members
of Gs,

g(x) = a0 + a1σl(x) = a0 + a1(1 + e−(w̃T
x̃))−1 (1.21)

Although one could argue that this scaling and shifting is not needed,
since it can be accounted for by the linear weights in (1.17), it is more



18 D. Docampo, D.R. Hush, C.T. Abdallah

convenient from the standpoint of algorithmic development to include them
separately as we have done here. When viewed from the projection pursuit
perspective, w̃ plays the role of the projection vector and g plays the role
of the regression function φ. In this case, Step 2 of the PPR algorithm
involves updating the coefficients a0 and a1.

Using g in (1.21) as the basis, the optimization problem in Step 2 of the
IIA (or equivalently Steps 2 and 3 of PPR) takes on the form

θ∗l = {a0, a1, w̃}∗ = arg min
θl

∫

(en(x) − a0 − a1σl(x))
2
dµ(x) (1.22)

where µ(x) is a suitable probability measure on the input space. In practice
we don’t have access to en(x) (recall that e1(x) = f(x)), only samples of
this function at a finite number points in the input space. This forces us to
consider a somewhat different optimization problem, where we seek the θl

that minimizes the error over the sample data set {xi, en(xi)}, i = 1, 2, ...N .
This new optimization problem takes on the form

θ∗l,N = {a0, a1, w̃}∗N = arg min
θl

N
∑

i=1

(en(xi) − a0 − a1σl(xi))
2

(1.23)

The solution to this optimization problem is generally different from the
solution to (1.22). This in turn introduces error into our estimate of gn.
If we let gn,N represent the function parameterized by θ∗l,N in (1.23), then
there is an error of the form

en,N = gn,N − gn (1.24)

due to the fact that g is estimated using a finite number of samples. This
error is referred to as the estimation error [4]. The extent to which this
error becomes significant depends largely on the quantity and richness of
the sample data. For a single sigmoidal function Barron has shown that
the estimation error is bounded by the following expression [4]

‖en,N‖ = O(d log N/N) (1.25)

where all N samples are assumed to be independent and identically dis-
tributed (IID). This result assumes “perfect learning”, i.e. that θ∗l,N is the
global optimum of (1.23). Thus, if we hope to estimate gn closely enough so
that en,N is within O(1/n2) of en, Barron’s result tells us that the number
of samples N should satisfy N/ logN = Ω(dn2). With this in mind we turn
to the task of actually solving for θ∗l,N in (1.23).

The solution to (1.23) has no closed form. This is easy to see because σl is
a nonlinear function of the weight vector w̃. But (1.23) is an unconstrained
nonlinear optimization problem with a differentiable criterion, and thus
lends itself to a wide variety of local descent search methods. The most



1. Constructive Function Approximation: Theory and Practice 19

popular method (the backpropagation algorithm [24]) uses a stochastic
gradient approach. A number of more sophisticated algorithms such as
Levenberg–Marquart, conjugate gradient and modified–Newton have also
been proposed (see [6] for an overview of these methods). Unfortunately,
the characteristics of the criterion in (1.23) can make it very difficult to
optimize. Local minima can be a real problem. Their exact number and
location depend largely on the data set, but it is possible to have up to an
exponential number of them [1]. In addition, convergence is generally quite
slow for local descent methods, and a robust stopping criteria for these
searches is especially difficult to come by (see [19] for a perspective on why
this is true). Although it is difficult to avoid all of these problems entirely,
their degree of severity can be reduced tremendously by making a slight
change in the basis function.

By replacing the logistic function with the ramp function (described in
(1.16) and repeated below), Breiman and Friedman were able to develop a
search algorithm that runs orders of magnitude faster than algorithms like
backpropagation [7]. A ramp function is defined as follows. Let z = w

T
x,

then

σr(x) =







0, z ≤ α
(z − α)/(β − α), α ≤ z ≤ β

1, β ≤ z
(1.26)

This function can be viewed as a piecewise continuous approximation to the
logistic function defined in (1.20). It is a member of Gs defined in section
5 and thus satisfies all the properties necessary for the approximation (and
estimation) error bounds presented previously.

Following the previous development for the logistic function, the mem-
bers of Gs derived from the ramp function are of the form

g(x) = a0 + a1σr(x) (1.27)

The optimization problem (corresponding to Step 2 of the IIA) then takes
on the form

θ∗r,N = {a0, a1, α, β,w}∗N = argmin
θr

N
∑

i=1

[en(xi) − a0 − a1σr(xi)]
2 (1.28)

subject to the constraint
‖w‖ = 1 (1.29)

An algorithm for approximating θ∗r,N is shown in Figure 8 [7]. Conceptually
this algorithm partitions the input samples into three sets, S− , Sl and
S+, and performs a least-squares fit to the samples in each set separately.
The fit to S− and S+ is a constant (0th order fit), while the fit to Sl is a
hyperplane (1st order fit). It then uses the result of these fits to re–partition
the data into new sets S− , Sl and S+. This process is continued until the
partitions converge. The bulk of the work performed in the main loop of this



20 D. Docampo, D.R. Hush, C.T. Abdallah

{ Let yi = en(xi) below. }
Initialization:

Make initial guesses for w, α and β
repeat

1. Compute zi = wT xi, i = 1, 2, ...,N .
2. Partition the input data into S−, Sl and S+:

S− = {(xi, yi) : zi < α}
Sl = {(xi, yi) : α ≤ zi ≤ β}
S+ = {(xi, yi) : β < zi}

3. Perform Least-Squares Fit to S−, Sl and S+:
R = (

∑

Sl

x̃ix̃
T
i

)/Nl

r = (
∑

Sl

x̃iyi)/Nl

β− = (
∑

S
−

yi)/N−

β+ = (
∑

S+
yi)/N+

w̃ = R−1r

4. Update α and β:
α = (β− − w̃(0))/‖w‖
β = (β+ − w̃(0))/‖w‖

5. Normalize w:
w = w/‖w‖

until (w,α,β converge) ;

Compute the bias and scale parameters:

a0 = β−

a1 = β+ − β−

End

FIGURE 8. Breiman/Friedman Ramp Function Algorithm.

algorithm involves least-squares fitting, a process for which very efficient
and numerically robust algorithms exist. Experience with this algorithm
shows that it converges very quickly and scales well to higher dimensions.
Its efficiency and robustness is often far superior to that of local descent
algorithms (like backpropagation) used with the logistic basis.

7 Conclusions

In this paper, we have reviewed some theoretical results on constructive
function approximation. We have specifically set up a framework where
constructive algorithms based on convex combinations of elements taken
from a subset of a Hilbert space can be analized. We have obtained the
optimal values for the coefficients in the convex expansions to guarantee a
desired convergence rate. We have also studied the trade-off between global



1. Constructive Function Approximation: Theory and Practice 21

and partial errors for those optimal values.
It was recalled that one can achieve an approximation error bound of

O(1/n), with n sigmoidal units, obtained one at a time. From a practical
standpoint we have revealed several potential barriers to achieving this
bound:

1. The function gn in Step 2 of the IIA must be estimated from a finite
number of examples.

2. The solution to Step 2 of the IIA has no closed form, and must be
sought algorithmically.

3. No provably efficient algorithm is guaranteed to produce the optimal
function at Step 2, or for that matter a function that is within the
O(1/n2) tolerance.

In spite of these barriers, it is reasonable to assume that the O(1/n) bound
on approximation error can actually be achieved in practice, as long as
the training examples are sufficiently rich. For higher dimensional prob-
lems it becomes essential to use algorithms like the one in Figure 8 if we
hope to achieve good approximations in a reasonable time. In addition, we
must often employ the refitting procedure in Figure 6 to compensate for
the suboptimal functions produced in Step 2 of the IIA. Future work will
concentrate on studying Step 2 of the IIA, and on studying approximating
results for dynamical neural networks from a constructive point of view.

8 Acknowledgments

The research of D. Docampo was supported by CICYT (TIC96-0500-C10-
10), ISTEC, and the US Air Force. The research of C.T. Abdallah and D.R.
Hush was supported by ISTEC, and Boeing Computer Services Contract
number W-30045.

9 References

[1] P. Auer, M. Herbster, and M.K. Warmuth. Exponentially many local
minima for single neurons. In D. Touretzky, M.C. Mozer, and M.E.
Hasselmo, editors, Advances in Neural Information Processing Systems

8, pages 316–322. Morgan Kaufmann, 1996.

[2] P. Baldi. Gradient descent learning algorithm overview: A general
dynamical systems perspective. IEEE Trans. Neural Nets, 6(1):182–
195, 1995.

[3] A.R. Barron. Statistical properties of artificial neural networks. In
Proceedings of the 28th IEEE Conf. on Decision and Control, pages
280–285, 1989.



22 D. Docampo, D.R. Hush, C.T. Abdallah

[4] A.R. Barron. Approximation and estimation bounds for artificial neu-
ral networks. In L.G. Valiant and M.K. Warmuth, editors, Proceedings

of the 4th Annual Workshop on Computational Learning Theory, pages
243–249, 1991.

[5] A.R. Barron. Universal approximation bounds for superpositions of
a sigmoidal function. IEEE Transactions on Information Theory,
39(3):930–945, 1993.

[6] R. Battiti. First- and second–order methods for learning: between
steepest descent and newton’s method. Neural Computation, 4(2):141–
166, 1992.

[7] L. Breiman and J.H. Friedman. Function approximation using ramps.
In Snowbird Workshop on Machines that Learn, 1994.

[8] L. Breiman. Hinging hyperplanes for regression, classification and
function approximation. IEEE Trans. on Inf. Theory, 39(3), 1993.

[9] T. Chen, H. Chen, and R-W. Liu. Approximation capability in C(R̄n)
by multilayer feedforward networks and related problems. IEEE

Trans. Neural Nets, 6(1):25–30, 1995.

[10] E.W. Cheney. Topics in approximation theory, 1992.

[11] G. Cybenko. Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals, and Systems, 2(4):303–314, 1989.

[12] A. T. Dingankar and I. W. Sandberg. A note on error bounds for
approximation in inner product spaces. Circuits, Systems and Signal

Processing, 15(4):519–522, 1996.

[13] J.H. Friedman. Multivariate adaptive regression splines. The Annals

of Statistics, 19, 1991.

[14] J.H. Friedman and W. Stuetzle. Projection pursuit regression. J.

Amer. Stat. Assoc., 76:817–823, 1981.

[15] J.H. Friedman, W. Stuetzle, and A. Schroeder. Projection pursuit
density estimation. J. Amer. Stat. Assoc., 79:599–608, 1984.

[16] J.H. Friedman and J.W. Tukey. A projection pursuit algorithm for
exploratory data analysis. IEEE Transactions on Computers, C–
23(9):881–890, 1974.

[17] F. Girosi and G. Anzellotti. Convergence rates of approximation by
translates. Technical Report 1288, MIT Art. Intell. Lab., 1992.

[18] Simon Haykin. Neural Networks: A Comprehensive Foundation.
Macmillan, New York, 1992.



1. Constructive Function Approximation: Theory and Practice 23

[19] D. Hush, B. Horne, and J.M. Salas. Error surfaces for multi–layer
perceptrons. IEEE Transactions on Systems, Man and Cybernetics,
22(5):1152–1160, 1992.

[20] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward
networks are universal approximators. Neural Networks, 2(5):359–366,
1989.

[21] P.J. Huber. Porjection pursuit. The Annuals of Statistics, 13(2):435–
475, 1985.

[22] L.K. Jones. A simple lemma on greedy approximation in hilbert space
and convergence rates for projection pursuit regression and neural net-
work training. The Annals of Statistics, 20:608–613, 1992.

[23] G. Pisier. Remarques sur un resultat non publié de b. maurey, 1980–
1981.

[24] D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning internal
representations by error propagation. In D.E. Rumelhart and J.L. Mc-
Clelland, editors, Parallel Distributed Processing: Explorations in the

Microstructure of Cognition, pages 318–362. MIT Press, Cambridge,
MA, 1986.

[25] I.W. Sandberg. Structure theorems for nonlinear systems. Multidim.

Syst. and Sign. Proc., 2:267–286, 1991.

[26] I.W. Sandberg. Uniform approximation and the circle criterion. IEEE

Trans. Automat. Control, 38(10):1450–1458, 1993.

[27] I.W. Sandberg. General structures for classification. IEEE Trans.

Circ. and Syst.–1, 41(5):372–376, 1994.

[28] Y. Zhao. On projection pursuit learning. PhD thesis, Dept. Math.
Art. Intell. Lab., MIT, Boston, MA, 1992.


