
Data Min Knowl Disc (2015) 29:1312–1342
DOI 10.1007/s10618-015-0419-9

Ranking episodes using a partition model

Nikolaj Tatti1

Received: 24 May 2014 / Accepted: 25 April 2015 / Published online: 15 May 2015
© The Author(s) 2015

Abstract One of the biggest setbacks in traditional frequent pattern mining is that
overwhelmingly many of the discovered patterns are redundant. A prototypical exam-
ple of such redundancy is a freerider pattern where the pattern contains a true pattern
and some additional noise events. A technique for filtering freerider patterns that has
proved to be efficient in ranking itemsets is to use a partition model where a pattern
is divided into two subpatterns and the observed support is compared to the expected
support under the assumption that these two subpatterns occur independently. In this
paper we develop a partition model for episodes, patterns discovered from sequen-
tial data. An episode is essentially a set of events, with possible restrictions on the
order of events. Unlike with itemset mining, computing the expected support of an
episode requires surprisingly sophisticated methods. In order to construct the model,
we partition the episode into two subepisodes. We then model how likely the events
in each subepisode occur close to each other. If this probability is high—which is
often the case if the subepisode has a high support—then we can expect that when one
event from a subepisode occurs, then the remaining events occur also close by. This
approach increases the expected support of the episode, and if this increase explains
the observed support, then we can deem the episode uninteresting. We demonstrate in
our experiments that using the partition model can effectively and efficiently reduce
the redundancy in episodes.

Keywords Episode mining · Partition model · Pattern ranking

Responsible editors: Joao Gama, Indre Zliobaite, Alipio Jorge and Concha Bielza.

B Nikolaj Tatti
nikolaj.tatti@gmail.com; nikolaj.tatti@aalto.fi

1 HIIT, Department of Information and Computer Science, Aalto University, Espoo, Finland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-015-0419-9&domain=pdf

Ranking episodes using a partition model 1313

1 Introduction

Pattern mining is one of the most well-studied subfields in exploratory data analysis.
One of the major setbacks of traditional frequent pattern mining techniques is that the
obtained results are heavily redundant. Hence, the focus of the pattern mining field has
moved away from mining patterns efficiently to reducing redundancy of the output.
This has been especially the case for mining itemsets.

A technique to reduce redundancy that has proved to be efficient for itemsets is to
use a partition model (Webb 2010). A partition model for itemsets involves in dividing
an itemset, say Z , into two subitemsets, say X and Y , and assume that items in X and
Y are independent. If the observed support of Z is close to the expected support, then
we deem Z uninteresting. In order to select X and Y we simply iterate over all possible
partitions and pick the one that fits the best with the observed data. For example, if Z
is an itemset that contains an interesting pattern and some independent noise events,
then the partition model is able to detect this and downplay the importance of Z .

In this paper our goal is to reduce redundancy in episodes, a very general class
of sequential patterns (Mannila et al. 1997). Essentially, an episode is a set of events
that should occur in a sequence. In addition, these events may have constraints on the
order in which they should occur. This order is expressed by a directed acyclic graph
(DAG).

While ranking and filtering patterns to reduce redundancy is well-studied for item-
sets, it is surprisingly underdeveloped for episodes. Themost straightforward approach
to rank episodes is to compare them against the independence model (Gwadera et al.
2005b; Low-Kam et al. 2013; Tatti 2014). In this paper we will introduce ranking
technique based on partition models instead of independence model. Our goal is that
by using partition models we will be able to reduce redundancy in episodes in a similar
fashion that partition models allow us to reduce redundancy in itemsets (Webb 2010).

Computing the expected support for an episode is a more intricate process than
computing the expected support for an itemset. For example, to obtain the expected
support of an itemset according to the independence model we can simply multiply
the margins of individual items. On the other hand, to compute the expectation for an
episode, we need to construct a finite state machine, where each state represents the
episode events that we have seen so far (see Sect. 4 for more details). We can then
compute the expected support by computing the probability of a random sequence
reaching the final state of the machine.

Wewill consider two types of partitionmodels. In the first approachwe partition the
episode into two subepisodes. If one or both of these subepisodes have few gaps, then
we will increase the probability of a whole subepisode to occur in a sequence once
we have seen at least one event from the subepisode. This will increase the expected
support of the episode. In the second approach we try to explain the support of an
episode with an episode that has the same events but impose more strict constraints on
the order. In this case we will increase the probability of events whenever they obey
the more strict order.

Fortunately, we can construct the partition model for both aforementioned cases
using the same finite state machine that we use to compute the expectation for the
independence model. Roughly speaking, when computing the probability of reaching

123

1314 N. Tatti

the final state of the finite state machine, we will increase the probability of a random
sequence taking certain transitions. These transitions will be determined either by the
subepisodes (the first case) or by the superepisode (second case). In both cases, this
will increase the probability of a random sequence containing the episode and will
increase the expected support of an episode.

The rest paper of the paper is organized as follows. We introduce preliminary
notation in Sect. 2. In Sect. 3 we describe how to rank episodes given the model. In
Sect. 4 we construct a finite state machine that we need to compute the independence
model. Our main methodological contribution is given in the next two sections. In
Sect. 5 we obtain a partition model by boosting certain transitions of the finite state
machine. We introduce the partition model using subepisodes and superepisodes in
Sect. 6. We discuss the related work in Sect. 7. Finally, we introduce our experimental
evaluation in Sect. 8 and conclude the paper with discussion in Sect. 9.

2 Preliminaries

We begin by introducing the notation that we will use throughout the paper.
Our input dataset consists ofm sequencesS = S1, . . . , Sm . Each sequence contains

events coming from some finite universe, which we will denote by �.
We are interested in episodes introduced by Mannila et al. (1997) and defined as

follows.

Definition 1 An episode G = (V, E, lab) is a directed acyclic graph with labelled
vertices. The labels are represented by the label function lab : V (G) → �, mapping
each vertex to a label.

We will call G a parallel episode if G has no edges. On the other hand, an episode
that represents a total order is called a serial episode.

Informally, an episode represents a set of events that should occur in the order that
is consistent with the edges. More formally:

Definition 2 Given a sequence S = s1, . . . , sn and an episode G = (V, E, lab), we
say that S covers G if there is an injective mapping m from the vertices of G to the
indices of s, m : V (G) → 1, . . . , n, such that

1. labels are honored, sm(v) = lab(v) for every v ∈ V ,
2. edges are honored, m(v) < m(w) if (v,w) ∈ E .

Example 1 Consider an episodeG1 given inFig. 1.Definition2 implies that a sequence
S covers G1 if and only if S contains a followed by b and c in arbitrary order, and
finally followed by d, with any number of events before between, or after these 4
events. For example, aeb f cd covers G1 due to a subsequence abcd but cabde does
not since there is no c between a and d.

Note that an episode and its transitive closure represent essentially the same pattern:
an episode is covered if and only its transitive closure is covered. For simplicity, we
will assume that we are only dealing with transitively closed episodes. However, for

123

Ranking episodes using a partition model 1315

Fig. 1 Toy episodes used in
examples

a

b c

dG1

a

a

b

c

G2

a

a

b

c

G3

aesthetic reasons, whenever showing an episode wewill remove edges that are implied
by the transitive closure.

Now thatwe have defined occurrence in a single sequence,we can define the support
of an episode.

Definition 3 Let G be an episode and S = S1, . . . , Sm be a collection of sequences.
The support of G is the number of sequences covering G,

sup(G) = |{i | Si covers G}|.

Since the support is monotonically decreasing, discovering all episodes whose
support is higher than some given threshold can be done efficiently using APriori or
DFS style approach.

Unlike itemsets, episodes are surprisingly difficult to handle. For example, checking
whether a sequence covers an episode is in fact an NP-hard problem (Tatti and Cule
2011).

We will focus on a more simple class of episodes, which are called strict
episodes (Tatti and Cule 2012).

Definition 4 An episode G = (V, E, lab) is strict if any two distinct vertices v,w ∈
V with the same label, lab(v) = lab(w) we have either (v,w) ∈ E or (w, v) ∈ E .

The need for using strict episodes stems from technical details that we will see
in later sections. Nevertheless, this class of episodes is large: it contains all serial
episodes, all episodes with unique labels. In addition, for every parallel episode G,
there is a strict episode H such that a sequence will cover G if and only if the same
sequence covers H . To obtain H from G simply connect all vertices with the same
label. For example, G2 in Fig. 1 is a parallel episode while G3 is a strict episode, and
a sequence S covers G2 if and only if S covers G3 as well.

From now on we will assume that episodes are strict.
We will need a concept of an induced episode which is essentially a standard notion

of an induced graph.

Definition 5 Given an episode G = (V, E, lab) and a subset of vertices W ⊆ V , we
define an induced episode G(W) to be the episode with vertices W and edges

E(W) = {(v,w) ∈ E | v,w ∈ W }).

The vertices have the same labels as the vertices in G.

123

1316 N. Tatti

3 Ranking episodes based on expectation

In this section we describe how to rank episodes based on the expected support. We
will give the details for computing the expectation in the latter sections.

Formally, consider that we are given an episode G and a dataset of sequences
S = S1, . . . , Sm . Unlike with itemsets we need to take into account the length of
individual sequences as longer sequences have a higher probability to cover an episode.
Assume that we have a generative model M for a sequence, that allows us to compute
the probability thatG occurs in a sequence of a certain length, that is, we can compute

pk = p(X covers G | |X | = k, M),

where X is a random sequence of length k. We will define different variants of M in
the next sections.

Let X be m random sequences, each random sequence having the same length as
the input sequence, |Xi | = |Si |. If we assume that each sequence in X is generated
independently, then the expected support of G according to the model is then

μ =
∑

S∈S
p|S|.

Moreover, we can easily show that the probability that sup(G) is equal to n is

p(sup(G;X) = n | M) =
∑

T ⊆S
|T |=n

∏

S∈T
p|S|

∏

S∈S\T
(1 − p|S|),

where the sum goes over all subsets of S of size n. If all sequences are of equal length,
then this distribution is in fact a binomial distribution.

Assume that we observe the support to be sup(G;S) = n. Ideally, we would like
to compute the rank to be the probability p(sup(G;X) ≥ n | M). This value is
close to 1 whenever support is low and 0 whenever the support is large. Note that this
quantity can be interpreted as a p-value. However, in this work we will not make this
interpretation and treat this quantity simply as a rank (see Sect. 9 for discussion about
interpreting this quantity as a p-value). Since in practice most of the values will be
very close to 0 we consider the logarithm of the score, that is, we define

r(G | M) = − log p(sup(G;X) ≥ n | M)

= − log 1 −
n−1∑

k=1

p(sup(G;X) = k | M).

Episodes that have abnormally high support will have a high rank. Computing the
rank can be done in O(n2m) with a simple recursive equation. However, this may be
slow if n, the observed support, is large. Hence, in practice we will use well-known

123

Ranking episodes using a partition model 1317

asymptotic estimates for p(sup(G;X) ≥ n | M). If n is large enough, we can estimate
the probability with a normal distribution N (μ, σ), where the variance σ 2 is

σ 2 =
∑

S∈S
p|S|(1 − p|S|).

In practice, the input dataset is large enough so that the approximation is accurate if μ

is not close to 0. If μ is small, say μ ≤ 10, this approximation becomes inaccurate. In
such cases, a common approach is to estimate the probability with Poisson distribution
with a mean of μ.

4 Independence model for episodes

In this section we review how to compute the expected support of an episode using the
independence model. The idea of computing the expected support using the indepen-
dence model was originally done by Gwadera et al. (2005b). This approach requires
us to construct a certain finite state machine. In later sections we will use this machine
to build the partition model.

4.1 Finding episodes with finite state machine

Our first goal is to construct a finite state machine from an episode. This machine has
two purposes. Firstly, we can use it to compute the support of an episode. Secondly,
we can use it to compute the expected support, either using the independence model,
which we will review in Sect. 4.2 or the partition model which we will introduce in
Sect. 5.

We start with a definition of a prefix graph which will turn out to be the states of
our machine.

Definition 6 Given an episode G = (V, E, lab) and a subset of vertices W ⊆ V , we
say that an induced graph H = G(W) is a prefix subgraph if all ancestors of vertices
in W are also included in W , that is,

v ∈ W and (w, v) ∈ E implies w ∈ W.

We will denote the collection of all prefix graphs by pre(G).

Example 2 Consider an episode G given in Fig. 2. This episode has six prefix graphs
H1, . . . , H6, given also in Fig. 2. Note that the empty graph G(∅) and the full graph
G are both prefix graphs.

Now that we have defined the states of our machine, we can finally define the
machine itself.

Definition 7 Given an episodeGwedefine amachineM(G) to be aDAGwith labelled
edges, such that the states are the prefix subgraphs pre(G) and two states H1 and H2

123

1318 N. Tatti

a

b c

dG

a

b c

dH1

a

b c

dH2

a

b c

dH3

a

b c

dH4

a

b c

dH5

a

b c

dH6

Fig. 2 Toy episode G and all the prefix graphs H1, . . . , H6

H1 H2

H3

H4

H5 H6a
b

c

c

b

d

Fig. 3 A machine M(G) for the episode given in Fig. 2

are connected with an edge (H1, H2) if we can obtain H1 by deleting a (sink) vertex
from H2. The label of the edge is the label of the deleted vertex.

The source state of M(G) is the empty prefix graph G(∅), while the sink state is
the episode G itself.

Example 3 Consider an episode G given in Fig. 2. This episode has 6 prefix graphs
given also in Fig. 2 and the machine M(G) is given in Fig. 3.

Note that we can viewM(G) as a finite state machine with a small technical differ-
ence. Finite state machine requires that we should specify transitions from each state
for every possible label. We can think of M(G) as a finite state machine by adding
self-loops for every possible missing label. However, it is more natural to ignore these
self-loops from the notation since in practice M(G) is implemented as a DAG.

Our next technical lemma is the key result why we are working only with strict
episodes. We will see later on how this lemma helps us with the definitions and
propositions.

Lemma 1 Let G be a strict episode and let H be a state in M(G). Each outgoing
edge from H has a unique label among outgoing edges. Each incoming edge to H has
a unique label among incoming edges.

Proof Assume that there are two edges (H, F1) and (H, F2) having the same label.
This means that there are two distinct vertices v and w in G with the same label such
that H = F1 \ v and H = F2 \ w. Since G is strict, v and w must be connected.
Assume that (v,w) ∈ E(G). This means that F2 cannot be a prefix graph since v is a
parent of w and is not in V (F2). This is a contradiction and shows that every outgoing
edge has a unique label. The proof for incoming edges is similar. �	

Our next definition is a greedy function mapping a sequence and an initial state to a
final state. The final state is essentially a state that we will end up by walking greedily
the edges M(G).

Definition 8 Given a machine M = M(G) for a strict episode G, a state H in M , and
a sequence S = s1, . . . , sn , we define gr(M, S, H) to be the state to which s leads

123

Ranking episodes using a partition model 1319

M from H , that is, we can define gr(M, S, H) recursively by first defining gr for the
empty sequence, gr(M,∅, H) = H , and then more generally, for i = 1, . . . , n,

gr(M, si , . . . , sn, H) = gr(M, si+1, . . . , sn, F)

if (H, F) ∈ E(M) with a label si , and

gr(M, si , . . . , sn, H) = gr(M, si+1, . . . , sn, H),

otherwise.

We will abbreviate gr(M, S,G(∅)) by gr(M, S).
Note that this definition is only well defined if M(G) has unique outgoing edges.

Lemma 1 guarantees this since G is a strict episode.

Example 4 Consider M = M(G) given in Fig. 3. Then, for example,

gr(M, adc) = gr(M, adc, H1) = H4 and gr(M, bcd, H2) = H6.

One of the reasons we definedM(G) is the fact that we can use this to detect when
a sequence is covering G. First let us define the coverage for a state inM(G).

Definition 9 We say that a sequence S covers a state H in M(G) if there is a subse-
quence T of S leading from the source state to H , that is,

gr(M, T) = H.

As expected, covering an episode G and the sink state inM(G) are closely related.

Proposition 1 (Proposition 1 in Tatti (2014)) Sequence S covers an episode G if and
only if S covers the sink state in M(G).

The technical difficulty with using the definition of coverage is that we need to find
a subsequence that travels from the source state to the sink state. Fortunately, the next
result states that we can simply use the whole sequence.

Proposition 2 (Corollary 1 in Tatti (2014)) Sequence S covers the sink state in M(G)

if and only if gr(M, S) = G.

For the sake of completeness we provide the proof in Appendix 1.

Example 5 Consider G given in Fig. 2 and its corresponding machine M = M(G)

given in Fig. 3. Sequence S = aeb f cd covers G. Proposition 1 implies that there
is a subsequence of S, say T , such that gr(M, T) = H6 and Proposition 2 makes a
stronger claim that one can choose T = S. By applying the definition of the greedy
function, we can easily verify that indeed gr(M, S) = H6.

We should point out that this does not hold for a general finite state machine,
however, this holds for any M(G).

123

1320 N. Tatti

4.2 Independence model

Our next step is to compute the expected support. Here we use the results from the
previous section, by computing the probability that a random sequence reaches the
sink state.

We will use the following notation.

Definition 10 Let M = M(G) be a machine and let H be a state. Let S = s1, . . . , sn
be a random sequence of n events, generated independently. Define

pind(H, n) = p(gr(M, S) = H)

to be the probability that S leads to H from the source state.

In other words, the probability that a sequence of n events covers G is equal to
pind(G, n).

We can now compute the probability recursively using the following proposition.

Proposition 3 Let M = M(G) be a machine and let H be a state. Let S = s1, . . . , sn
be a random sequence of n events, generated independently. Then the probability of
gr(M, S) = H is equal to

pind(H, n) = q × pind(H, n − 1) +
∑

e=(F,H)∈E(M)

p(lab(e))pind(F, n − 1) ,

where q is the probability of being stuck in H for a single event

q = 1 −
∑

e=(H,F)∈E(M)

p(lab(e)).

This proposition is a special case of Proposition 4, hence we will omit the proof.
If we write Mind to be the independence model, we define

rind(G) = r(G | Mind).

To compute this rank we need to compute the probability that a random sequence of
length k covers episode G. This is exactly what Proposition 3 does.

Example 6 Assume that the alphabet consists of 5 labels and the probabilities for
labels are p(a) = 0.4, p(b) = 0.3, p(c) = 0.2, p(d) = 0.06, and p(e) = 0.04.
Consider M given in Fig. 3. The initial probabilities are

pind(H1, 0) = 1, pind
(
Hj , 0

) = 0, for j = 2, . . . , 6.

123

Ranking episodes using a partition model 1321

a

b

c

G M(G)

H1 H2 H3

H4 H5 H6

a b

c c c

a b

Fig. 4 Toy episode and its machine

According to Proposition 3 the probabilities are

pind(H1, n + 1) = 0.6pind(H1, n),

pind(H2, n + 1) = 0.5pind(H2, n) + 0.4pind(H1, n),

pind(H3, n + 1) = 0.8pind(H3, n) + 0.3pind(H2, n),

pind(H4, n + 1) = 0.7pind(H4, n) + 0.2pind(H2, n),

pind(H5, n + 1) = 0.94pind(H5, n) + 0.2pind(H3, n) + 0.3pind(H4, n),

pind(H6, n + 1) = 0.06pind(H5, n) + pind(H6, n).

5 Partition model for episodes

Consider an episode G given in Fig. 4 and its machine M(G). Assume that b has
tendency to occur soon after a but c is a freerider: its occurrence is independent of
vicinity of a and b. This episode will have a high rank because its support is higher
than what independence model predicts. The reason for this is that b occurs more often
than expected after a, that is, we will move sooner from state H2 to H3 and from H5
to H6 sooner than expected.

Our goal is to construct a more flexible model that would take into account that
some of the transitions are more probable than what the independence model predicts.
This will allow us to remove the freeriders.

In order to do that let us fix an episode G and assume that we are given two disjoint
subsets of edges C1 ⊂ E(M(G)) and C2 ⊂ E(M(G)). Note that (both of) these sets
can be empty and it is possible that C1 ∪ C2 �= E(M(G)). We will describe later on
how we select these sets but for now we will assume that they are given. Also, we can
easily define this model for k sets but we only need two sets.

Our model has |�| + 2 parameters: |�| parameters ul states the likelihood of a
label l. The larger ul , the more likely l is to occur in a sequence. In addition, we have
two transition parameters. Parameter t1 states how likely we use an edge in C1 while
t2 states how likely we use an edge in C2.

In order to define the actual model let us first define the conditional probability of
a label given a state H ,

p(l | H) =

⎧
⎪⎨

⎪⎩

1
ZH

exp (ul + t1), if there is (H, F) ∈ C1 and lab((H, F)) = l,
1
ZH

exp (ul + t2), if there is (H, F) ∈ C2 and lab((H, F)) = l,
1
ZH

exp (ul), otherwise,

123

1322 N. Tatti

where ZH is a normalization constant guaranteeing that
∑

l p(l | H) = 1. Note that
ZH depends on H while ul and t1 and t2 do not.

This probability implies that the labels with large ul are more likely to occur.
Moreover, if there is an edge (H, F) ∈ C1, then the probability of generating the label
of the edge is increased due to t1 (and similarly for C2).

Note that this is well defined because Lemma 1 states that labels for outgoing edges
are unique.

We select ul and ti by optimizing the likelihood of a sequence. In order to do this,
we first new to define the probability of a sequence. Let us first decompose it into
conditional probabilities,

p(S) =
n∏

i=1

p(si | s1, . . . , si−1).

We define the probability of si to be

p(si | s1, . . . , si−1) = p(si | H),

where H is the state given by the greedy function,

H = gr(M, (s1, . . . , si−1)).

In other words, si is generated from p(· | H), where H is the current state led by
s1, . . . , si−1.

Note that if C1 = C2 = ∅, then p(l | H) = p(l), and the model is in fact
the independence model. However, if C1 and C2 are not empty, certain labels are
expected to occur more often1 depending on the current state of M(G).

Our next step is to compute the probability of a sequence covering an episode. To
that end, let us define pprt(H, n) to the probability according to the partitionmodel that
a random sequence of length n reaches H . The following proposition, a generalization
of Proposition 3, allows to compute the expected support.

Proposition 4 Let M = M(G) be a machine and let H be a state. Let S = s1, . . . , sn
be a random sequence of n events, generated independently. Then the probability of
gr(M, S) = H is equal to

pprt(H, n) = q × pprt(H, n − 1) +
∑

e=(F,H)∈E(M)

p(lab(e) | F)pprt(F, n − 1) ,

where q is the probability of being stuck in H for a single event

q = 1 −
∑

e=(H,F)∈E(M)

p(lab(e) | H).

1 Or more rarely if ti are small.

123

Ranking episodes using a partition model 1323

The proof of this proposition is given in Appendix 3.
Our final step is to find the parameters {ui }, t1, and t2 of the model. Here we select

the parameters optimizing the likelihood of S

p(S) =
m∏

i=1

p(Si),

that is we assume that each sequence in S is generated independently. Unlike with the
independence model we do not have a closed solution. However, we can show that the
likelihood is a concave function of ul , t1 and t2.

Proposition 5 log p(S) is a concave function of the model parameters {ui }, t1 and t2.
The proof of this proposition is given in Appendix 2.
The concavity allows us to use gradient methods to find the local maximum which

is guaranteed to be also the global maximum. We used Newton–Raphson method to
find the optimal solution. The technical details for computing the descent are given in
Appendix 4.

Example 7 Consider a serial episode G = a → b → c → x . Assume that there
are no gap events between a and b, and b and c, and x occurs independently of other
events.

In such case, the independencemodelwill overestimate the the sizes of gaps between
a and b, and b and c. This leads to underestimating the probability G occurring in a
sequence of a given length, which ultimately leads to underestimating the support of
G.

On the other hand, let us setC1 = {(a, a → b), (a → b, a → b → c)} andC2 = ∅.
Then themaximum likelihood solutionwill have t1 = ∞. This means that the partition
model will never generate a gap event between a, b, and c, which implies an increase
in the expected support. In fact, since we x assume that x is independent of a, b, and
c, the partition model corresponds exactly the generating model, and consequently the
estimate of the support is unbiased.

6 Which partition models to use?

Now that we have defined our model for ranking episodes, our next step is to con-
sider which models to use. That is, how to select C1 and C2. Here we consider two
approaches. In the first approach we consider a partition model rising from a prefix
graph and in the second approach we consider a model rising from a superepisode.
Finally, we combine both of these approaches in Sect. 6.3 by selecting the model
providing the best explanation for the support.

6.1 Partition model from prefix graphs

Now that we have defined our model, our next step is to select which transitions in
M(G) we should boost, that is, how to select C1 and C2.

123

1324 N. Tatti

We consider two approaches. The first approach, described in this section, is to
divide the episode into two subepisodes. The second that is based on considering
superepisodes will be described in the next section.

Informally, our idea is to consider a prefix graph H of G. Every vertex in H
corresponds to possibly several edges in M(G). This will give us the first set of edges
C1. These transitions determine the occurrence of H in a sequence. The other set of
edges, C2, is given by the vertices outside H .

In order to define this formally, let us first define the set of edges in M(G) based
on a subset of vertices.

Definition 11 Given an episode G = (V, E, lab) and a subset of vertices W , define
a subset of edges Cp(W | G) of a machine M = M(G),

Cp(W | G) = {(H, F) ∈ E(M) | V (H) ∩ W �= ∅, V (F) \ V (H) ⊆ W },

that is, Cp(W | G) contains the edges (H, F) such that

1. F is obtained from H by adding a vertex from W ,
2. H contains at least one vertex from W .2

Let G = (V, E, lab) be an episode. Given a prefix graph H with a vertex set W ,
we define two sets of edges as C1 = Cp(W | G) and C2 = Cp(V \ W | G). Since
our goal is to explain the support of G using smaller episodes, we will require that
W �= ∅ and that W �= V .

Example 8 Consider an episode G given in Fig. 2 along with its prefix graphs, and
also the corresponding M(G) given in Fig. 3. There are four possible prefix graphs
H2, . . . , H5. These graphs give a rise to the edge sets,

H2 : C1 = ∅,
C2 = {(H4, H5), (H3, H5), (H5, H6)},

H3 : C1 = {(H2, H3), (H4, H5)},
C2 = {(H5, H6)},

H4 : C1 = {(H2, H4), (H3, H5)},
C2 = {(H5, H6)},

H5 : C1 = {(H2, H3), (H2, H4), (H4, H5), (H3, H5)},
C2 = ∅.

Let us consider H5, an episode, where a is followed by b and c, in any order. Let us
assume b and c occurs almost immediately after a, in other words, the edges in C1
should be traversed quickly,which leads to a large t1, and elevated expected support.On
the other hand, (H5, H6) is not boosted in anyway, that is, we model d independently
of a, b, and c.

2 Consequently, F contains at least two vertices from W .

123

Ranking episodes using a partition model 1325

Let us now take a closer look on H3 = a → b. Assume that H3 has elevated
support and the main reason for this elevated support is that b occurs often after a
almost immediately. Consider now the corresponding edges C1 in M(G), (H2, H3)

and (H4, H5). These edges correspond to seeing b after we have witnessed a (in the
latter we have also witnessed c as a gap event). Hence, by our assumption these edges
should be traversed quickly, that is, t1 should be large. Similarly, C2 corresponds to
c → d, and if d occurs often c, then t2 should also be large. Consequently, if t1 and/or
t2 is large, then the model will yield an increased expected support for G.

Note that in the definition of Cp(W | G) we require that the parent node of an edge
must be a state containing at least one member in W . For example, outgoing edges
of the source state of M(G) will never be a part of C1 or C2. The idea behind this
constraint is that C1 and C2 should not model the likelihood of finding the first vertex
of the prefix graph (or the postfix graph). Instead we want model how likely we will
find the remaining vertices of an episode once the first vertex is found in a sequence.

To justify the definition of Cp(W | G), consider a machine N = M(G(W)). An
abnormally large support of G(W) suggests that the edges in N are traversed abnor-
mally fast, that is, the number of gap events is low. As the following proposition states
the edges in Cp(W | G) have a direct correspondence to the edges in N , and so they
will be traversed abnormally fast. By modelling this phenomenon with a parameter t1,
we hope to take into account the large support of G(W).

Proposition 6 Let G = (V, E, lab) be an episode. Let W ⊆ V be a subset of
vertices such that G(W) or G(V \ W) is a prefix subgraph. Let M = M(G)

and N = M(G(W)). Define a mapping ρ from states of M to states of N to be
ρ(H) = H(V (H) ∩ W). Then ρ is a surjection and for any edge in (H, F) ∈ E(M)

one of the following holds

1. ρ(H) = ρ(F) or ρ(H) is the initial state or
2. (ρ(H), ρ(F)) is an edge in N and (H, F) ∈ Cp(W | G).

In addition, for every edge (H ′, F ′) ∈ N there is an edge (H, F) ∈ Cp(W | G) such
that H ′ = ρ(H) and F ′ = ρ(F).

Proof Assume that G(W) is a prefix subgraph (the G(V \W) case is similar). A state
H in N corresponds to a prefix subgraph ofG(W), which makes H also a prefix graph
of G, and, by definition, a state in M . The fact that ρ(H) = H , makes ρ a surjection.

Let H and F be two states in M such that (H, F) ∈ E(M). Then F is obtained
from H by adding one vertex, say w. If w /∈ W , then ρ(H) = ρ(F). Assume that
w ∈ W and ρ(H) is not the initial state, that is, H ∩ W �= ∅. Then, by definition,
(ρ(H), ρ(F)) is an edge in N and (H, F) ∈ Cp(W | G)

The last statement follows immediately from the fact that ρ(H) = H whenever H
is a prefix subgraph of G(W). �	

Let H be a prefix graph of G and let C1 and C2 be the edges as constructed above.
Write M(C1,C2) to be the partition model. We define the rank to be

rprt(G; H) = r(G | M(C1,C2)).

123

1326 N. Tatti

This rank canbe computedusingProposition4. In our experiments,wemimic approach
byWebb (2010) for itemsets and use the smallest rank among all possible prefix graphs,
see Sect. 6.3 for more details.

We should point out that from technical point of view, H in rprt(G; H) does not
need to be a prefix graph. However, models that are generated from non-prefix graphs
may behave unexpectedly.

Example 9 Consider an episode G = a → b → c and let W = {a, c}. The machine
M(G) consists of 4 states H1 → H2 → H3 → H4, andC1 = Cp(W | G) = (H3, H4)

andC2 = ∅. Note that in this case t1 does notmodel the number of gaps between a and
c, instead it models the number of gaps between b and c. In fact, if we setW ′ = {b, c},
then C1 = Cp

(
W ′ | G)

and C2 = Cp({a} | G).

The essential problem shown in the example is that there is no direct transition in
M(G) of observing c after we have seen a. The following proposition shows that this
problem can be prevented if and only if we use prefix graphs.

Proposition 7 Let G be an episode and let M = M(G) be the correspondingmachine.
Let W1 be a subset of nodes, and let W2 = V \W1. Then the following statements are
equivalent:

1. either W1 or W2 induces a prefix graph.
2. for any X ∈ pre(G) and i = 1, 2 such that ∅ �= V (X) ∩ Wi �= Wi there exists

Y ∈ pre(G), depending on X and i , such that (X,Y) ∈ Cp(Wi | G).

Proof The direction (1) → (2) is trivial. Let us prove the other direction. Assume that
neither W1 nor W2 induce a prefix graph. Then there is v ∈ W2 and w ∈ W1 such that
(v,w) ∈ E . Let X be the largest prefix graph not containing v, such graph exists as
the union of the two prefix graphs is a prefix graph.

Assume that V (X) ∩ W1 �= ∅. Since w /∈ V (X), we also have V (X) ∩ W1 �= W1.
Assume that that there is Y ∈ pre(G), such that (X,Y) ∈ Cp(W1 | G). By definition,
Y is obtained from X by adding a vertex from W1. Since Y also does not contain v,
this violates the maximality of X .

Assume that V (X)∩W1 = ∅. This is possible only if (v, u) ∈ E for every u ∈ W1.
Since W2 does not induce a prefix graph, there is a ∈ W1 and b ∈ W2 such that
(a, b) ∈ E . Define X ′ to be the maximal prefix graph not containing a. This graph
contains v and does not contain b. Consequently,W2 �= V (X ′)∩W2 �= ∅. Assume that
that there is Y ∈ pre(G), such that (X ′,Y) ∈ Cp(W2 | G). By definition, Y is obtained
from X by adding a vertex from W2. Since a /∈ V (Y), this violates the maximality of
X ′. �	

6.2 Partition model from superepisodes

In the previous section we considered a model predicting the support of an episode
based on two smaller episodes. In this section we approach the ranking from another
perspective. Namely, we try to predict the support of G using superepisodes of G.

In order to motivate this consider the following example.

123

Ranking episodes using a partition model 1327

Fig. 5 Episode G1 and G2 and
the corresponding machines
M(G1),M(G2) a b

G1

H1

H2

H3

H4
a

b

b

a

M(G1)

a b

G2

H1 H2 H4a b
M(G2)

Example 10 Consider two episodes G1 and G2 given in Fig. 5. Episode G2 is a
superepisode of G1. Assume that in our dataset, event b occurs often once a has
occurred. This is to say that if we are in H2 in either M(G1) or M(G2) we are likely
to move soon to H4.

Assume also that occurrence of a after b follows the independence model, or that b
occurs rarely without a in front of it. In both cases the elevated support of G1 can be
explained by the fact that b follows often after a. This means that we can explain the
elevated support of G1 if we know that G2 has an elevated support, and consequently
we should assign G1 a low rank.

Assume two episodes G = (V, E1, lab) and H = (V, E2, lab) such that E1 � E2.
If (W, E2(W)) is a prefix graph of H , then (W, E1(W)) is also a prefix graph
of G. This allows us to define a mapping ρ from pre(H) to pre(G) by setting
ρ((W, E2(W))) = (W, E1(W)). Moreover, if x is a sink in (W, E2(W)), then it
is also a sink in (W, E1(W)). This immediately implies ρ can be viewed as a graph
homomorphism fromM(H) toM(G), essentially makingM(H) a subgraph ofM(G).
We can now define the set of edges of M(G) for our partition model to be the edges
inM(H). More formally,

Definition 12 Given two episodes G = (V, E1, lab) and H = (V, E2, lab) such that
E1 � E2, define a subset of edges Cs(H | G) of a machine M = M(G),

Cs(H | G) = {ρ(X,Y) ∈ E(M) | X �= ∅, (X,Y) ∈ E(M(H))} ,

that is, Cs(H | G) contains the edges from non-source vertices that can be also found
inM(H).

We can now define C1 = Cs(H | G) to be the first set of edges and C2 = ∅. Note
that, similarly to the prefix graph approach from the previous section, C1 will not
contain any edges from the source state. The rationale here is the same: transitions
from the source state indicate beginning of an episode while we are interested in
modelling how fast we can find the complete episode once we have found the first
label. Also note that since we require that E1 �= E2, we will have at least one edge
(H, F) ∈ E(M(G)) such that H �= ∅ and (H, F) is not contained C1.

Example 11 Consider an episode G given in Fig. 2 and also the correspondingM(G)

given in Fig. 3.

123

1328 N. Tatti

Assume a serial episode H = a → b → c → d. Then

Cs(H | G) = {(H2, H3), (H3, H5), (H5, H6)},

where Hi are given in Fig. 3.
On the other hand, if we set H = a → c → b → d. Then

Cs(H | G) = {(H2, H4), (H4, H5), (H5, H6)}.

Let H be a superepisode of G and let C1 be the edges as constructed above. Write
M(C1,∅) to be the partition model. We define the rank to be

rprt(G; H) = r(G | M(C1,∅)).

This rank can be computed using Proposition 4. In our experiments, we use the smallest
rank induced by a superepisode in our candidate set.

6.3 Combining ranks

Now that we have defined several different partition models, we propose a simple
approach to combine these models into a single rank.

To that end, assume that we have a collection C of episodes that we wish to
rank. These candidate episodes are obtained, for example, by mining frequent closed
episodes. For a given episode G ∈ C, letP = pre(G)\ {G(∅),G} be the prefix graphs
without the empty or the full prefix graph. Also, letQ be the proper superepisodes of
G in C having the same vertices asG. We then compute the rank by taking the smallest
rank among all partition models,

rprt(G) = min

(
min
H∈P

rprt(G; H) , min
H∈Q

rprt(G; H)

)
.

That is, if we can explain the support of G by either a single prefix model or a single
superepisode in Q, then we will deem G as redundant.

This approach mimics the approach of Webb (2010), where itemsets are filtered by
comparing the observed support against the best 2-partition model.

6.3.1 Computational complexity

Finally, let us conclude this section with a short discussion about computational com-
plexity. Assume that we have an episode G with n nodes. Let m = |E(M(G))| be the
number of edges inM(G).

Using the partition model is a two-step process, the first step is to find the para-
meters while the second step is to compute the rank. The first step uses iterative
gradient descent, for example, Newton–Raphson descent that requires O(n2.373) time
for Hessian inversion and O(n2 + m) time for constructing the matrix and gradient.

123

Ranking episodes using a partition model 1329

The dominating term will depend on structure of the episode. For example, for serial
episodes we have m = n. For general episodes we must have m ≤ 2n and for parallel
episodes we have m = 2n .

In order to compute rprt(G) we need to loop over all prefix episodes. Again, the
number of such episodes depends on G. For serial episodes there are only n + 1 such
episodes, whereas a parallel episode has 2n prefix episodes. The parallel episode case
is the worst case since there are only 2n subepisodes in any G.

This implies that in theory computing this rank may not scale for large episodes,
especially if they are parallel. Fortunately, in practice, most episodes are small and for
these cases our approach remains feasible.

7 Related work

7.1 Discovering episodes

Episode discovery was introduced byMannila et al. (1997) where the authors consider
episodes defined as DAGs and consider two concepts of support: the first one based
on sliding windows of fixed length and the second one based on minimal windows.
Unfortunately, the number ofminimal windows is notmonotonic in general—however
this can be fixed by considering the maximal number of non-overlapping windows,
see for example Laxman et al. (2007). Mining general episodes can be intricate and
computationally heavy, for example, discovering whether a sequence covers a general
episode is NP-hard (Tatti and Cule 2011). Consequently, research focus has been
into mining subclasses of episodes, such as, episodes with unique labels (Achar et al.
2012; Pei et al. 2006), and strict episodes (Tatti and Cule 2012). A miner for general
episodes that can handle simultaneous events was proposed by Tatti and Cule (2011).
An important subclass of episodes are serial episodes or sequential patterns. A widely
used miner for mining closed serial episodes was suggested byWang and Han (2004).

7.2 Ranking episodes

Unlike with itemset mining, ranking episodes based on surprisingness is underde-
veloped. The most straightforward way of ranking episodes, reviewed in Sect. 4, by
comparing the support against the independence model, was introduced by Gwadera
et al. (2005b). Using Markov models instead of the independence model to rank ser-
ial episodes was suggested by Gwadera et al. (2005a). Both of these pioneer works
focus on ranking episodes by analyzing support based on a sliding window, that is,
the input dataset is a single sequence and the support of an episode is the number
of sliding windows of fixed length that cover the episode. Interestingly enough, this
scenario generates technical complications since the windows are no longer indepen-
dent, unlike in the setup where we have many sequences and we assume that they
are generated independently. These complications can be overcome but they require
additional computational steps. Instead of using windows of fixed length, ranking
based on minimal window lengths with respect to the independence model was sug-
gested by Tatti (2014). Ranking serial episodes allowing multiple labels using the

123

1330 N. Tatti

independence model was suggested by Low-Kam et al. (2013). Achar et al. (2012)
also considered a measure that downranks the episode if there is a non-edge (x, y)
that occurs rarely, which suggests that we should augment the episode with the edge
(y, x).

In related work, Mannila and Meek (2000) consider general episodes as generative
models for sequences. They generate short sequences by selecting a subset of events
from an episode and ordering events with a random order compatible with the episode.
They do not allow gaps and only one pattern is responsible for generating a single
sequence.

Finally, SQS and GoKrimp, pattern set mining approaches for discovering serial
episodes were respectively introduced by Tatti and Vreeken (2012) and Lam et al.
(2014). The idea behind the approach is to find a small set of serial episodes that model
the data well. In order to do that the authors constructed amodel given a set of episodes
and used a posteriori probability of the model to score the episode set. The authors
then used a heuristic search to find a set with good episodes. In general, the goal of our
approach and the is the same: reducing the redundancy in patterns. From a technical
point of view, the approaches are different: in this work we rank episodes based on
how surprising their support is while the pattern set mining methods select episodes
based on how well we can model the data using the episodes. Moreover, we work
with general strict episodes while the current pattern set approaches limit themselves
to serial episodes. Extending these miners to general episodes is an interesting future
line of research. However, it is highly non-trivial due to the fact that the score, the
algorithm for computing the score, and the mining algorithm are specifically designed
for serial episodes.

8 Experiments

8.1 Datasets

In our experiments we used three synthetic datasets and three text datasets. The sizes
of the datasets are given in Table 1.

The first synthetic dataset, Plant, was created as follows. We generated 10,000
sequences of length randomly selected from a uniform distribution between 20 and
30. A single event in each sequence was generated from a uniform distribution of 990
events. We planted two serial episodes and one general in the data. The first episode,
a serial episode of four vertices was planted with no gaps into a randomly selected
sequence 200 times. The second episode, a serial episode of two vertices was planted
with no gaps into a randomly selected sequence 20 times. The third episode, given in
Table 2, was planted 10 times with no gaps, the order of events n and m was picked
uniformly. We made sure that the events used in planted patterns did not occur in the
noise. This gave us an alphabet of size 1000.

The second synthetic dataset, Plant2, was created as follows. We generated 10,000
sequences of length randomly selected from a uniform distribution between 20 and
30. A single event in each sequence was generated from a uniform distribution of 1000
events. We planted two serial episodes with three vertices with no gaps 400 times.

123

Ranking episodes using a partition model 1331

Table 1 Basic characteristics of
datasets, frequency thresholds,
the numbers of discovered
episodes, and running time
needed to rank the episodes

The number of events for Gap is
an average over 17 datasets

Dataset |S| |Events| σ |C| Time (s)

Plant 10,000 249,955 10 43,029 56

Plant2 10,000 249,736 10 46,329 50

Gap 10,000 250,150 – – –

Addresses 5584 62,066 5 19,367 12

JMLR 5986 75,646 5 49,951 46

Moby 13,987 105,671 5 17,550 26

Table 2 Top episodes in Plant dataset

Independence model Partition model

Rank Episode type rind(G) Rank Episode type rprt(G)

1. a b c d 1. a b c d 10308
2. k m

n
l e f 128

3.–7. a b c d x 184–185 k m
n

l 78

8. e f 128 a b c d x 0–14
9.– x y or x, y

249 2.

3.

4.–
2–14 or x y or x, y

The symbols x and y represent noise events. The rank for the first episode with respect to the independence
model is outside the floating point range

The third synthetic dataset, Gap, was created as follows. Similarly to Plant, we
generated 10,000 sequences of length between 20 and 30. An event in each sequence
was generated from a uniform distribution of 996 events.We planted one serial episode
of 4 events into the data 200 times. We set the probability of the next event being a
noise event to be p, this made the average gap length to be p/(1 − p). We varied p
from 0 to 0.8 with 0.05 increments. We did not plant events if they did not fit into a
sequence.

Our fourth dataset, Moby, is the novel Moby Dick by Herman Melville.3 Our fifth
dataset, JMLR consists of abstracts of papers from the Journal of Machine Learning
Research website,4 Our final dataset, Addresses, consists of inaugural addresses of the
presidents of the United States.5 We processed the datasets by stemming the words and
removing the stop words. We further split the text into sequences such that a sequence
corresponds to a single sentence.

8.2 Setup

We mined closed strict episodes from each dataset, except Gap, with a miner given
by Tatti and Cule (2012). As frequency thresholds we used five for text datasets and ten
for the synthetic dataset. The amount of discovered patterns, |C|, is given in Table 1.

3 http://www.gutenberg.org/etext/15.
4 http://jmlr.csail.mit.edu/.
5 http://www.bartleby.com/124/.

123

http://www.gutenberg.org/etext/15
http://jmlr.csail.mit.edu/
http://www.bartleby.com/124/

1332 N. Tatti

a b c dG1

a b c d xG2

a
b

c

dG3

0 0.2 0.4 0.6 0.8
0

20

40

60

gap probability
sc
or
e

rprt G2
rprt G3
rind G2

0 0.2 0.4 0.6 0.8
0

200

400

600

gap probability

r p
rt

(G
)

rprt G1

Fig. 6 Episodes and their ranks in Gap datasets. The plots for G2 represent an average of 10 different
episodes, each of them having different noise event x . The scales of y-axis of plots are different. The values
of rind (G1) and rind (G3) were outside floating point range

We then proceeded by ranking each episode first by independence model and then by
the partition model.6

8.3 Results

Our main goal is to compare rprt(G), ranks given by the partition model, against the
baseline ranks given by the independence model, rind(G).

Let us first consider the synthetic dataset Gap. We considered ranks for 3 different
episodes, given in Fig. 6, the planted serial episode G1, the planted episode with
additional noise event G2, here we took an average rank of 10 such episodes, and
finally G3 a non-trivial subepisode of G1. The ranks rind(G1) and rind(G3) were
outside floating point range. The remaining ranks are given in Fig. 6 as a function of
the gap probability. Let us first consider G2 and G3. Unlike the independence model,
the partition model predicts the support accurately for these patterns which results in
a low rank. Episode G2 is predicted accurately due to a partition of G2 to G1 and the
noise label while G3 is predicted accurately due to G1 being a superepisode of G3.
As expected, the rank rprt(G1) remains high as there are no partition model that can
explain this pattern. This rank goes down as the average gap length increases as the
planted pattern becomes more and more explainable by the independence model.

Let us now look at the top episodes in Plant dataset, given in Table 2. The top
episode having the largest rind(G) is the planted serial episode of four vertices a →
b → c → d. The second episode is the planted general episode. However, the next 5
episodes are of form a → b → c → d → x , where x is a noise label. These episodes
have abnormally high support because of the original high support of the planted
pattern. The 8th episode according to rind(G) is the second planted episode, namely
e → f . Let us now look at the top episodes according to rprt(G). The top 3 episodes
are the planted episodes. The remaining episodes are either parallel episodes or serial
episodes containing 2 events or episodes of form a → b → c → d → x , where x
is a noise label. There is a clear difference between the score values. While the rank

6 The implementation is available at http://research.ics.aalto.fi/dmg/.

123

http://research.ics.aalto.fi/dmg/

Ranking episodes using a partition model 1333

0 100 200 300 400 500
0

10

20

30

40

rind(G)

r p
rt

(G
)

Addresses
V (G) = 2

0 50 100 150
0

10

20

30

40

rind (G)
r p
rt

(G
)

JMLR

0 100 200 300 400
0

10

20

30

40

50

rind(G)

r p
rt

(G
)

Moby

0 50 100 150
0

10

20

30

40

rind(G)

r p
rt

(G
)

Addresses

0 100 200 300 400
0

20

40

60

80

100

rind(G)

r p
rt

(G
)

JMLR

0 50 100 150
0

10

20

30

40

rind(G)
r p
rt

(G
)

Moby

V (G) = 3 V (G) = 4 V (G) = 5 V (G) = 6

Fig. 7 Partitionmodel ranks rprt(G) as a function of rind (G) for text datasets. The top row contains parallel
episodes with two vertices. The bottom row contains episodes with more than two vertices. The ranges of
axis vary from figure to figure

for the first three episodes was 78–10308, the ranks for the remaining episodes varied
between 0 and 14. In other words, rprt successfully downgraded the freerider episodes
that had significant rind . Some of the freerider episodes still have a significantly large
rank. This is due to the multiple hypothesis phenomenon: if we test large amount of
patterns, then some of them will have abnormal support just by chance.

We observe similar behaviour in Plant2 dataset. The top-8 episodes in Plant2
according to rprt are the 2 planted serial episodes (ranked as 2nd and 4th) and the
6 serial subepisodes with two vertices. The ranks of these episodes were 1205–3704.
The remaining episodes were ranked between 0–15. On the other hand, rind(G) ranked
the 2 planted patterns as top-2 episodes. The next 1089 episodes contained either ver-
tices from both patterns, or several vertices from one pattern and one noise event.
These episodes had ranks 19–3704. Episodes G1 = a → b → c → d → e → f
and G2 = (a → b → c), (d → e → f) had ranks rind(G1) = 212 (17th) and
rind(G2) = 289 (14th) whereas the partition model gave the ranks rprt(G1) = 4.8
(5575th) and rprt(G2) = 0.0005 (45284th). The remaining episodes were ranked
between 0–15.

SQS miner (Tatti and Vreeken 2012) discovered the planted serial episode in all
Gap datasets. In Plant SQS discovered the two planted serial episodes, but not the
general planted episode, since SQS discovers only serial episodes. Instead, SQS found
the two serial superepisodes k → n → m → l and k → m → n → l.

123

1334 N. Tatti

Table 3 Kendall-τ coefficients
of episodes ranked by rprt and
rind

Dataset All Parallel, V (G) = 2 V (G) > 3

Addresses 0.61 0.60 0.42

JMLR 0.54 0.62 0.45

Moby 0.66 0.59 0.38

Let us now consider episodes discovered from text datasets. In Fig. 7we plot rprt(G)

as a function of rind(G). We highlight parallel episodes with two vertices by plotting
them separately in the top row while the bottom row contains the episodes with more
than two vertices. Note that we omitted serial episodes of size 2 since both ranks will
produce an equal score, rind(G) = rprt(G), since there are no proper superepisodes
for an episode G and the only prefix partition is actually equal to the independence
model.

The results demostrate that rprt(G) is typically much smaller than rind(G). This
implies that there are lot of patterns whose abnormally high support can be justified
by a partition model. In the top row of Fig. 7 we see that the parallel episodes of size 2
are typically considered redundant by rprt(G) because typically the serial counterpart
of the episode can explain well the behaviour of the parallel episode. For certain
parallel episodes, the rank remains the same by design as there are no serial counterpart
episodes in the mined collection.

The Kendall-τ coefficients given in Table 3 imply that rprt and rind are correlated.
The correlation is weaker for larger episodes than for parallel episodes of size 2. This
is because rprt(G) = rind(G) if G is a parallel episode of size 2 and does not have a
frequent serial episode.

The top episodes according to rprt(G), given in Table 4 in the text datasets were
short serial episodes of words that occur often together. This is an expected result as
these episodes represent common expressions. For comparison, the top-10 patterns
obtained by SQS are given in Table 5. While serial episodes are favored by rprt(G),
there are non-serial episodes that have high rank, for example, G1 = east, west in
Addresses has rank rprt(G1) = 30 (42nd), and G2 = (subgroup→discoveri), rule in
JMLR has rank rprt(G2) = 25 (376th).

Our next step is to highlight some episodes that had a high rind(G) but also ranked
low by rprt(G), and vice versa. In order to do that we sorted episodes based on

ρ(G) = rind(G) − rprt(G)

rprt(G)
and η(G) = rprt(G) − rind(G)

rind(G)
. (1)

The top episodes should have large rind(G) and rprt(G) close to 0. In Fig. 8, we
listed top-5 episodes from each text dataset. Many of these episodes contain a true
pattern, such as, united → states or support → vector → machine augmented with a
common event, seemingly independent event, such as,world or regression. Let us now
compare the top-5 episodes with large η(G). Unlike with ρ(G), this list is dominated
with episodes forwhich sup(G) < μpart < μind, that is, bothmethods overestimate the
actual support but the partitionmodel ismore correct. Tomake η(G)moremeaningful,

123

Ranking episodes using a partition model 1335

Table 4 Top-10 episodes according to rprt(G) and rind (G)

ranked by rind(G) rind rprt ranked by rprt(G) rind rprt
Addresses

1. unit state state 931 931
2. unit state citizen 256 256
3. fellow citizen state 97 97
4. fellow citizen year 79 79
5. preserv protect defend

constitut unit state

women 77 77

6. best abil preserv protect
defendconstitut

ago 75 75

7. constitut unit state navi 63 63
8. constitut state south 53 53
9. preserv constitut state

protect defend
limit 52 52

10. unit state constitut

931
445
256
190
119

931
1.2
256
0.9
13

unit
fellow
constitut
four
men

110 11 year

100 23 armi
97
96

97
15

north
within

89 0.6 chief magistr 51 51

JMLR

1. support vector machin 357
440
90
10

vector 440 440
2. support vector vector machin 357
3. support vector machin machin 324 324
4. support vector 3 vector machin 306 306
5. reproduc kernel hilbert set 284 284
6. support machin world 260 260
7. vector machin data 213 213
8. data set art 191 191
9. real world learn 190 190
10. support vector svm network 166 166

Moby

1. sperm whale whale 874 874
2. sperm whale dick 359 359
3. mobi dick man 224 224
4. old man head 186 186
5. mast head whale 179 179
6. white whale whale 131 131
7. head mast deck 96 96
8. seven hundr seventi peleg 86 86
9. right whale mate 85 85
10. old man

support
support440

404
356

svm support
machin svm

space 341 73 data
325
306

325
306

real
real

284 284 state
260 260 machin
250 85 bayesian

874 874 sperm
397 1.6 mobi
359 359 old
224 224 mast
187 187 white
179
138

179
0.8

right
quarter

seventh 133 35 captain
131 131 chief
102 1.5 new bedford 82 82

we considered only episodes for which the partitionmodel underestimated the support,
sup(G) ≥ μpart, given in Fig. 9. We see that the differences between rprt(G) and
rind(G) are small in Fig. 9 and large in Fig. 8.

Many of downgraded episodes are parallel episodes, for example, (united, states),
see Table 4. While the independence model ranks them high, the elevated support of
a serial episode united → states explains well the elevated support of this parallel
episode since these words occur almost always in this particular order. This makes the
partition model based on the superepisodes to give this episode a low score.

Finally, let us consider running times that are given in Table 1. We see that we
can rank large amount of episodes in a short period of time. Ranking 50,000 episodes

123

1336 N. Tatti

Table 5 Top-10 episodes according to SQS. The pattern G in Moby was a long episode, such
funni sporti gami jesti joki hoki poki lad ocean, a litany repeated 3

times in the novel

Addresses JMLR Moby

fellow citizen support vector machin sperm whale
unit state machin learn mobi dick
men women state art mast head
feder govern data set white whale
self govern bayesian network old man
four year larg scale captain ahab
year ago nearest neighbor G
american peopl decis tree quarter deck
vice presid cross valid right whale
chief magistr neural network captain peleg

Addresses:

G1: unit state world G2: unit state shall G3: state
unit world

4.112.90.9

G4: state
unit peac G5: unit state peac

0.718.71

JMLR:

G1: support vector machin regress G2: support vector machin
regress

4.091.59

G3: support vector machin number G4: support vector machin
regress

4.680.25
G5: support vector machin space

51.6

Moby:
G1: sperm whale thing G2: sperm whale ship

3.124.31

G3: sperm whale ship G4: sperm ship
whale

G5: sperm whale water
6.415.91.7

Fig. 8 Episodeswith high rank rind (G)but considered redundant by rprt(G). Top-5 episodes based onρ(G)

given in Eq. 1. The given numbers are rind (Gi), whereas the partition model ranks are rprt(Gi) ≤ 10−6

took us less than a minute. To obtain a more detailed picture, we present running
times as a function of |E(M(G))| in Fig. 10 for JMLR episodes. We see that the more
complex episode (the largest episode contained 5 nodes), the longer it takes to rank.
This suggests that while there are complicated steps in computing the support that
may even result in exponentially large structures, in practice ranking can be done
efficiently.

123

Ranking episodes using a partition model 1337

Addresses:
G1: govern great world G2: govern great peac G3: countri nation govern

20.1/61.100.3/44.390.1/33.1
G4: such nation peopl G5: nation govern made

25.1/26.153.1/64.1

JMLR:

G1: algorithm show featur G2: result model algorithm G3: show
algorithm
problem

77.0/91.135.0/80.163.0/70.1
G4: algorithm data obtain G5: model train result

12.1/74.157.0/80.1

Moby:
G1 : round old whale G2 : now though whale G3 : now round whale

97.1/48.126.1/86.127.3/44.4
G4 : out over whale G5 : now whale good

12.2/62.254.1/94.1

Fig. 9 Top-5 episodes based on η(G) given in Eq. 1, for which partition model underestimated the support.
The number format is x/y, where x = rprt(Gi) and y = rind (Gi)

10 20 30 40 50 60 70 80
0

5

10

15

E M G

tim
e
(m

s)

upper quartile
median
lower quartile

Fig. 10 Time needed to compute the rank for patterns obtained from JMLR as a function of the number of
edges inM(G)

9 Concluding remarks

In this paper we introduced ranking episodes based on a partition model. Such a
ranking reduces redundancy among episodes by ranking episodes low if they can be
explained by either two subepisodes or by a more strict episode.

To construct the model we first constructed a finite state machine that is used
for computing the expected support for the independence model. We then modi-
fied the probabilities of some of the transitions. These transitions are selected based
on which subepisodes we are considering. We compare this model to the indepen-
dence model and show that for our experiments the model reduces redundancy in
patterns.

The effectiveness of the partition model relies on the assumption that the two
subepisodes (or the superepisode) have few gaps. This causes the parameters t1 and
t2 to be large. If this assumption does not hold, that is, t1 ≈ t2 ≈ 0, then the partition
model will reduce to the independence model. While this assumption is natural and

123

1338 N. Tatti

reasonable, in a setup where episodes are frequent but have large gaps, this approach
will not reduce redundancy. In such a setup, a different approach is needed, a potential
direction for a future line of work.

When partitioning an episode into two subepisodes, we did not consider all the
possible partitions. Instead, we only considered partitions arising from prefix graphs.
While these partitions are a natural subclass of all possible partitions, this restriction
leads to some limitations. For example, we do not partition a serial episode a → b →
c → d to a → c and b → d. However, note that for many episodes, every partition is
a partition arising from a prefix graph. This is the case with any parallel episode. We
should point out that from technical point of view, we can use non-prefix partitions.
However, as demonstrated in Example 9 and Proposition 7, a partition model may not
take properly into account the lack of gaps in a non-prefix subepisode. Developing a
technique that properly takes interleaving subepisodes into account is an interesting
direction for a future work.

Instead of using just the partition model to rank episodes, it may be advantageous
to combine it with other ranking method. For example, one approach would be to rank
the episodes using the partition model, select top-k episodes, and rerank them based
on the independence model. The number k can be given explicitly or determined by
interpreting the rank as a p-value, and filtering the episodes based on a given sig-
nificance level. In the latter approach some extra steps are needed, such as adjusting
for the multiple hypotheses testing. This can be done either with direct adjustment
or a holdout approach as described by Webb (2007). Strictly speaking, interpret-
ing rank as a p-value requires that we know the exact model parameters which is
uncommon. Consequently, in practice and in this work we estimate these parame-
ters, and by doing so estimate the true p-value, by finding the maximum likelihood
estimates.

This work opens several future lines of research. One straightforward extension is
to combine the partition approach with a markov model suggested by Gwadera et al.
(2005a). A more intriguing extension is to apply this model for a scenario where we
are given one long sequence instead of a database of sequences. In such a case, the
support is either based on sliding windows of fixed length or minimal windows. Since
the instances are no longer independent, that is, the support is no longer a sum of
independent variables, it is likely that we cannot apply the model directly. However,
it may be possible to rank episodes by using some other statistic than a support.
Table 4 for JMLR shows that we can still reduce redundancy among the top patterns.
One fruitful approach would be developing a pattern set miner for general episodes.
A potential starting point for such a miner could be SQS miner (Tatti and Vreeken
2012), a pattern set miner for serial episodes.

Appendix 1: Proof of Proposition 2

In order to prove the proposition we need the following lemma which we will state
without the proof.

123

Ranking episodes using a partition model 1339

Lemma 2 Assume that a sequence S = s1, . . . , sn covers an episode G. If there is
a source vertex v such that s1 = lab(v), then s2, . . . , sn covers G \ v. Otherwise,
s2, . . . , sn covers G.

Proof (of Proposition 2) We need to prove only ”only if” case. Assume that S =
s1, . . . , sn covers an episode G.

We will prove the proposition by induction over n. Obviously, the result holds for
n = 0. Write S′ = s2, . . . , sn .

If there is no source vertex in G with a label s1, then gr(M, S) = gr
(
M, S′).

Now the lemma implies that S′ covers G and the induction assumption implies that
gr

(
M, S′) = G.
If there is a source vertex v in G such that lab(v) = s1, then gr(M, S) =

gr
(
M, S′,G(v)

)
. Note that the G(v) and its descendants form exactly M(H), where

H = G \ v. That is, gr(M, S) = G if and only if gr
(
M(H), S′) = H . The lemma

implies that S′ covers H and the induction assumption implies that gr
(
M(H), S′) = H

which proves the proposition. �	

Appendix 2: Proof of Proposition 5

In order to prove the proposition we need the following proposition, which essentially
describes the properties of a log-likelihood of a log-linear model. The proof of this
proposition can be found, for example, in Kullback (1959).

Proposition 8 Assume that we are given a set of k functions Ti : � → R, mapping
an object from some space � to a real number. For n real numbers, r1, . . . , rk , define

Z(r1, . . . , rk) =
∑

ω∈�

exp
k∑

i=1

ri Ti (ω).

Define a distribution

p(ω) = exp
∑k

i=1 ri Ti (ω)

Z(r1, . . . , rk)
.

Let X be a multiset of events from �. Define

c(r1, . . . , rk) =
∑

ω∈X
log p(ω).

Then c is a concave function of r1, . . . , rk . In fact

∂c

∂ri
=

∑

ω∈X
(Ti (ω) − Ep[Ti])

123

1340 N. Tatti

and

∂c

∂rir j
= |X |(Ep[Ti] Ep

[
Tj

] − Ep
[
Ti Tj

]
).

Proof (of Proposition 5) In order to prove the result we need to rearrange the terms in
log p(S) based on current state. In order to do that, let us define LH to be a multiset
of labels that occur in S while the current state is H , that is,

LH =
⋃

s1,...,sn=Si
i=1,...,m

{
s j | gr(s1, . . . , s j−1

) = H
}
.

We can now rewrite the log-likelihood as

log p(S) =
∑

H∈V (M)

∑

l∈LH

log p(l | H). (2)

All we need to show now is that each term can be expressed in the form given in
Proposition 8. In order to do that, define for each label l an indicator function

Tl(s) =
{
1, if l = s,

0, otherwise.

Also, define indicator functions whether the transition is in C1 or C2, that is, define
T1 and T2 as

Ti (s) =
{
1, if there is (H, F) ∈ Ci with lab(H, F) = s,

0, otherwise.

We have now

p(l | H) = 1

ZH
exp

(
t1T1(l) + t2T2(l) +

∑

s∈�

usTs(l)

)
.

Since ZH corresponds exactly to the normalization constant in Proposition 8, we have
shown that

∑

l∈LH

log p(l | H)

is a concave function. The sum of concave functions is concave, proving the result. �	
The proof also reveals how to compute the gradient and the Hessian matrix. These

are needed if we are optimize log p(S). Since log p(S) is a sum of functions given
in Proposition 8 the gradient and the Hessian matrix of log p(S) can be obtained by
summing gradients and Hessian matrices of individual terms of Eq. 2.

123

Ranking episodes using a partition model 1341

Appendix 3: Proof of Proposition 4

Proof Let F = gr(M, s1, . . . , sn−1).
If F = H , then we remain in H only if sn is not a label of an outgoing edge. The

probability of this is equal to q.
If F �= H , the only way gr(M, S) = H , is that F is a parent of H and the label

connecting F to H is equal to sn . This gives us the result. �	

Appendix 4: Computing gradient descent

We use Newton–Raphson method to fit the model. In order to do this we need to
compute the gradient and the Hessian matrix with respect to the parameters. This can
be done efficiently as described by the following proposition.

Proposition 9 Let G be an episode and let M = M(G). Let H be a state in M.
Let C1 and C2 be two disjoint subsets of E(M). Define Li to be the set of labels

such that l ∈ Li if and only if there is an edge (H, F) ∈ Ci labelled as l. Let J be a
matrix of size 2 × |�| such that Jil = 1 if l ∈ Li , and 0 otherwise.

Let v be a vector of length |�| such that vl = p(l | H) is equal to the probability
of generating label l. Define w = Jv.

Let c be the count of how often we stay in H,

c = ∣∣{(i, j) | s = S j , H = gr(M, (s1, . . . , si))
}∣∣.

Let n be a vector of length |�|,

nl = ∣∣{(i, j) | s = S j , H = gr(M, (s1, . . . , si−1)) , si = l
}∣∣,

to contain the number of symbols labelled as l visited in S while being in the state H.
Let V = diag(v) and let W = diag(w). Define

dH =
[

n − cv
J (n − cv)

]
and BH = c

[
V − vvT V J T − vwT

JV − wvT W − wwT

]
.

Then the gradient and hessian of log p(S) at {ui }, t1 and t2 is equal to

d =
∑

H∈V (M)

dH and B =
∑

H∈V (M)

BH .

Proof Proposition8 andProposition5 imply that the gradient ofqH = ∑
l∈LH

log p(l |
H) is equal to dH and the hessian is equal to BH . Since log p(S) = ∑

H∈V (M) qH ,
the result follows. �	

In order to obtain additional speed-ups, first notice that Proposition 9 implies that
we do need to scan the original sequence set every time. Instead it is enough to compute

123

1342 N. Tatti

the vector n and a scalar c for each state H . Moreover, for a fixed episode G, the rank
does not depend on probabilities of individual labels that do not occur in G. In other
words, we can treat all labels that do not occur in G as one label. This will reduce the
length of the gradient and the size of the hessian from |�| + 2 to |V (G)| + 3, at most.
These speed-ups make solving the model very fast in practice.

References

Achar A, Laxman S, Viswanathan R, Sastry PS (2012) Discovering injective episodes with general partial
orders. Data Min Knowl Discov 25(1):67–108

Gwadera R, Atallah MJ, Szpankowski W (2005a) Markov models for identification of significant episodes.
In: Proceedings of the 5th SIAM international conference on data mining (SDM), Newport Beach,
CA, pp 404–414

Gwadera R, AtallahMJ, SzpankowskiW (2005b) Reliable detection of episodes in event sequences. Knowl
Inf Syst 7(4):415–437

Kullback S (1959) Information theory and statistics. Wiley, New York
Lam HT, Mörchen F, Fradkin D, Calders T (2014) Mining compressing sequential patterns. Stat Anal Data

Min 7(1):34–52
Low-Kam C, Raïssi C, Kaytoue M, Pei J (2013) Mining statistically significant sequential patterns. In:

Proceedings of the 13th IEEE international conference on data mining (ICDM), Dallas, TX, pp 488–
497

Laxman S, Sastry PS, Unnikrishnan KP (2007) A fast algorithm for finding frequent episodes in event
streams. In: Proceedings of the 13th ACM international conference on knowledge discovery and data
mining (SIGKDD), San Jose, CA, pp 410–419

Mannila H, Meek C (2000) Global partial orders from sequential data. In: Proceedings of the 6th ACM
international conference on knowledge discovery and data mining (SIGKDD), Boston, MA, pp 161–
168

Mannila H, Toivonen H, Verkamo AI (1997) Discovery of frequent episodes in event sequences. Data Min
Knowl Discov 1(3):259–289

Pei J, Wang H, Liu J, Wang K, Wang J, Yu PS (2006) Discovering frequent closed partial orders from
strings. IEEE Trans Knowl Data Eng 18(11):1467–1481

Tatti N (2014) Discovering episodes with compact minimal windows. DataMin Knowl Discov 28(4):1046–
1077

Tatti N, Cule B (2011) Mining closed episodes with simultaneous events. In: Proceedings of the 17th ACM
international conference on knowledge discovery and data mining (SIGKDD), San Diego, CA, pp
1172–1180

Tatti N, Cule B (2012) Mining closed strict episodes. Data Min Knowl Discov 25(1):34–66
Tatti N, Vreeken J (2012) The long and the short of it: summarising event sequences with serial episodes.

In: Proceedings of the 18th ACM international conference on knowledge discovery and data mining
(SIGKDD), Beijing, China, pp 462–470

Wang J, Han J (2004) Bide: efficient mining of frequent closed sequences. In: Proceedings of the 20th
international conference on data dngineering (ICDE), Boston, MA, pp 79–90

Webb GI (2007) Discovering significant patterns. Mach Learn 68(1):1–33
Webb GI (2010) Self-sufficient itemsets: an approach to screening potentially interesting associations

between items. ACM Trans Knowl Discov Data 4(1):3

123

	Ranking episodes using a partition model
	Abstract
	1 Introduction
	2 Preliminaries
	3 Ranking episodes based on expectation
	4 Independence model for episodes
	4.1 Finding episodes with finite state machine
	4.2 Independence model

	5 Partition model for episodes
	6 Which partition models to use?
	6.1 Partition model from prefix graphs
	6.2 Partition model from superepisodes
	6.3 Combining ranks
	6.3.1 Computational complexity

	7 Related work
	7.1 Discovering episodes
	7.2 Ranking episodes

	8 Experiments
	8.1 Datasets
	8.2 Setup
	8.3 Results

	9 Concluding remarks
	Appendix 1: Proof of Proposition 2
	Appendix 2: Proof of Proposition 5
	Appendix 3: Proof of Proposition 4
	Appendix 4: Computing gradient descent
	References

