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Abstract

In industries like steel production, interlinked production
processes leave no time for assessing the physical quality of
intermediate products. Failures during the process can lead
to high internal costs when already defective products are
passed through the entire value chain. However, process
data like machine parameters and sensor data which are di-
rectly linked to quality can be recorded. Based on a rolling
mill case study, the paper discusses how decentralized data
mining and intelligent machine-to-machine communication
could be used to predict the physical quality of intermediate
products online and in real-time for detecting quality issues
as early as possible. The recording of huge data masses and
the distributed but sequential nature of the problem lead to
challenging research questions for the next generation of
data mining.

1 Introduction

The creation of high-quality products demands a con-
tinuous monitoring of quality properties along the process
chain. Certain industries, e.g. steel production, put a con-
straint on the available time between processing steps. In
such interlinked production processes, goods are processed
sequentially in a defined number of stations and given or-
der. Here, examining the physical properties of a product
between stations is often too time-consuming or even im-
possible. However, if the quality can only be checked at
the end of the process, an already defective product might
be unnecessarily passed through the entire value chain, con-
suming energy and causing machine deterioration, as well
as rejection and reworking costs [4, 6, 8]. Since the qual-
ity of the final product depends on how it was processed,
the quality-related physical properties of intermediate prod-

ucts may be predicted by models based on recorded process
data. This data can include process parameters from the ma-
chines themselves as well as measurements from additional
sensors. Ideally, prediction models would be deployed di-
rectly at the sensors and their prediction results sent over a
network to subsequent machines in real-time. These could
then decide on the further processing. For example, prod-
ucts that cannot reach the desired quality anymore could be
scrapped.

Data mining already has been successfully used for the
automatic detection of faulty processing modes, based on
similar process data. However, as will be explained, the pre-
diction of quality-related product properties in interlinked
production processes differs from the detection of faulty
modes in several respects. Research questions arise that
challenge state-of-the-art methods in data mining.

This paper is arranged as follows: Section 2 introduces
a rolling mill case study and describes its process chain, the
recorded data and the accompanying data mining task. Sec-
tion 3 explains the differences between fault detection and
quality prediction. It then poses challenging new research
questions for selected phases of the data mining process.
First efforts to solve these questions and preliminary results
are presented in Sect. 4. At the end, we conclude and dis-
cuss future work.

2 Case Study: Rolling Mill

The rolling mill case study described in the following
sections is provided by a leading German steel producer. It
is representative for the data mining challenges discussed in
this paper.

2.1 The Process Chain

Beginning with continuous casting or ingot casting in the
steel mill, stainless steel long products are processed se-
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Figure 1. Process chain of a rolling mill

quentially while passing through the stations of the rolling
mill (see Figure 1). At first, steel blocks from the steel mill
are inserted into a rotary hearth furnace consisting of five
different subsequent heating zones.While passing through
the zones, each steel block is heated up to the forming tem-
perature required for rolling. After leaving the furnace,
three different rolling mills, one block roll and two finishing
rolls, deform the steel ingot according to a preset automated
reduction plan. However, depending on the assessment of
a machine operator, the plan can also be interactively mod-
ified. The rolled product is then transferred to the separa-
tion facility where each individual steel rod is cut into final
length and bundled into batches as ordered. Followed by a
cooling-down period at the end of the process, the quality
of each cutted steel rod is determined by material features
resulting in ultrasonic tests. Subsequent to these tests, addi-
tional heat treatment such as tempering, quenching, anneal-
ing and hardening as well as finishing can be conducted if
required.

2.2 Recorded Data

Machine parameters and sensor measurements are or
will be collected at each processing unit (see Figure 1). The
data can be joined with global information, like customer
order data, block dimensions or material properties, and can
also be linked to quality information documented during the
ultrasonic tests.

Customer Order and Static Data A customer order con-
sists of a certain number of steel rods of potentially different
lengths and diameters. Based on these dimensions, it can be
calculated how many steel blocks are needed to produce the
rods. Each steel block can be related to its corresponding
order by a unique identifier.

Process Data At the rotary hearth furnace, one ther-
mal sensor per zone records value series data describing
which temperature the blocks are exposed to while mov-
ing through the oven. Furthermore, information on the spe-
cific position in the oven and the period of time per zone
are documented. The data is recorded in real-time with a
sampling rate of up to 100Hz. The records allow for a re-
construction of the material temperatures based on physical
models. At the rolls, multivariate value series data will be
collected, such as rolling temperature, rolling velocity and
speed, rolling force, roller grooves and adjustment for each
roll pass. The data allows for a reproduction of the rolling
process and the material behavior during deformation. The
data can be recorded at a sampling rate of up to several mea-
surements per millisecond.

Quality-related Data The quality of cutted steel rods is
described by metallurgical quality properties. For each or-
der, it is known how many cutted steel rods had a certain
type of error, like insufficient deformation, segregation or
partial melting. Aggregated information on the errors is
available by error keys, summarizing the different ultra-
sonic test results. Since the marking of heated blocks and
cutted rods is impractical, it is currently impossible to track
which cutted rods have been part of which steel block.

2.3 The Data Mining Task

From a data mining perspective, each processing station
records multivariate value series data that describes how the
individual steel blocks were processed. Based on this data
and the recorded quality information, one or more predic-
tion models need to be trained for each processing step. The
models predict what physical quality individual steel blocks
will have at the end of the process. While the training of the
model may take place off-line, the prediction and a subse-
quent decision-making must happen in real-time.



3 Challenges for Data Mining

In the following, it is shown how quality prediction
differs from fault detection. These differences, the dis-
tributed, but sequential nature of the prediction task and
huge amounts of data pose challenges to state-of-the-art
data mining methods. Moreover, the lack of quality infor-
mation on individual steel blocks is related to a new type of
machine learning problem.

3.1 Fault vs. Quality Prediction

Fault detection consists of identifying machine states
that differ from a normal mode of operation. Normal states
and malfunctions, respectively, are explicitly specified by a
domain expert or, for complex state descriptions, could also
be learned. Fault prediction is concerned with the question
when machines will fail in the future, based on the monitor-
ing of machine states over time. Data mining methods have
already been used successfully in both areas [7]. The de-
rived models can be as simple as thresholding rules and get
as complex as neural networks. However, usually failures
at one processing station don’t cause faults at other stations.
This allows for the learning and application of local models
that have to deal with single machines only.

In comparison, the quality of the final product potentially
is influenced by the operational modes of all machines in
the process chain. Certain quality issues could only arise,
for example, if two or more machines were in a particular
state together. Hence, global prediction models over sev-
eral processing stations need to be trained. Moreover, faulty
states are usually easier to describe or at least to identify
than states which can lead to quality issues. For instance, in
the steel industry, quality often depends on the intuition of
experts who can hardly describe their knowledge explicitly.
Here, states which occur during normal operation and be-
yond that are not classified as faulty ones can nevertheless
impact the quality of a product negatively.

3.2 Centralized vs. Decentralized Processing

The multivariate value series data, which describe the
processing of single steel blocks, is recorded locally at dif-
ferent processing stations. This corresponds to the scenario
of vertically distributed data, where the feature set of the
training examples is partitioned and each feature subset is
being stored on different nodes in a network. The physi-
cal quality of intermediate products needs to be predicted
after each processing step and the result communicated to
subsequent machines. Hence, instead of a single global
model, at least one model for each processing station must
be trained. Due to the potential dependencies mentioned in
Sect. 3.1, usually these models need to be trained not only

on data from the current station, but also on data of pre-
decessor stations. An interpretation of the trained models
might then lead to knowledge about the existing interde-
pendencies. Based on this knowledge and the actual predic-
tions transmitted, subsequent machines could react to po-
tential problems in real-time. In the ideal case, they would
be able to adjust their working parameters autonomously in
accordance with the quality requirements. The following
sections compare the central processing of data to a decen-
tralized approach.

3.2.1 Centralized Processing

Since training may happen off-line, a solution could be to
transfer all available data for learning to a central machine
and train individual prediction models for each processing
station. It must be considered though that depending on the
temporal resolution of sensors, processing stations can pro-
duce hugh amounts of data in a short period of time. For
instance, the rotary hearth furnace can produce several gi-
gabytes of temperature recordings per week. This can re-
sult in about one terabyte of data for training, just from a
single processing station. Apart from training on smaller
samples or aggregated data, such amounts of data might be
handled by approximation algorithms like the Ball Vector
Machine [17] or one-pass algorithms. A research question
is how sampling, compression or approximation would af-
fect the prediction accuracy.

In comparison to training, where time is not crucial, the
prediction itself is only allowed to take a few milliseconds.
The trained prediction models could either be deployed at
the individual processing stations or at a central machine.
Since the current prediction model additionally depends on
data of its predecessor stations, this data must be transferred
over the network. In both cases, the amount of data trans-
ferred would become larger with each station. For matching
the real-time constraint, it is therefore necessary to intelli-
gently reduce and limit the data transferred between ma-
chines. Here, several options exist which are discussed in
the next section.

3.2.2 Decentralized Processing

Instead of transferring all data to a central machine, it
might be more beneficial to exploit the already decentral-
ized structure of the data and to apply distributed data min-
ing algorithms. In the case study, the focus is on vertically
distributed data. A promising algorithm is the distributed
one class ν-SVM by Das et al.[5]. The one class ν-SVM in-
troduced by Schölkopf et al. [13] determines a hyperplane
which separates ν percent of the data points with maximum
margin from the origin. Points lying on the other side of
the hyperplane are marked as outliers. For the case study,



models could either be trained only on process data belong-
ing to steel blocks which have a desired quality or on those
with quality issues. The distributed one class ν-SVM by
Das et al. [5] trains local models at each network node.
The local outliers and small samples from the local nodes
are then transferred to a central node, where a global model
is learned. Only local outliers which are also global out-
liers are output. It could be shown that in comparison to
centralization, less than 1% of the communication costs are
needed for detecting more than 99% of the global outliers.
Up to now, it is unknown whether the techniques used by
this algorithm can be transferred to other algorithms like
clustering, for instance.

Another problem is the real-time constraint during pre-
diction. For global classification with the one class ν-SVM,
all feature values of an object must be transferred over the
network. Several solutions or combinations thereof could
solve this problem. Not all features might be relevant to the
prediction task. Algorithms for the extraction and selection
of features from value series data, like methods trees [10],
could possibly find appropriate transformations and reduce
the number of features. Transformations might also include
translation into a symbolic representation by algorithms like
SAX [9] and the extraction of patterns, like general sequen-
tial patterns (GSP) [15]. The shapelet technique [19] finds
time series patterns which are most relevant to a class. Com-
pression and aggregation methods like KRIMP[14], which
is based on the MDL principle, may be used in a prepro-
cessing step, as long as they preserve the most important
properties of the data. These algorithms should be devel-
oped further to become resource-aware, dynamically choos-
ing the ratio of compression, depending on the bandwidth
and current network load. Classification algorithms based
on compressed or aggregated data should also be able to es-
timate the confidence in their predictions and indicate if it
falls below a certain threshold. Instead or in addition to the
extracted feature values, prediction results of predecessor
stations can be transferred to the current node and combined
to a single prediction. This combination might be improved
by respecting confidence values. However, it is unclear how
to reliably combine the confidence values of different learn-
ing algorithms, like Decision Trees [12] and SVMs [18].
Assfalg et al. [1] proposed a solution which derives confi-
dence estimates from confidence ranges, but in general, the
literature on this topic is rare.

3.3 Missing Quality information

Missing labels for individual steel blocks due to tech-
nological restrictions pose another issue. All information
that can be calculated is how many blocks of an order had
a certain type of defect, assuming that all blocks in an or-
der produce the same amount of rods and that whole blocks

are either defective or not. Consequently, for several sets of
examples, only aggregated label information, namely how
many examples in the set had a particular label, is available.
This new type of learning problem is called learning from
aggregate outputs [11] or learning from label proportions
and has gained attention in the machine learning commu-
nity, only recently. Not many algorithms exist which could
meet the requirements of the aforementioned scenario, con-
cerning prediction accuracy and training time. The develop-
ment of a new algorithm for learning from label proportions,
presented in Sect. 4.2, was driven by the case study.

4 First Results

First results were achieved by training models on data
from the rotary hearth furnace. Moreover, a new algorithm
for learning from label proportions has been developed.

4.1 Prediction on Temperature Profiles

In general, the labels for individual steel blocks are miss-
ing. In cases in which all steel rods of an order had sufficient
quality, the processing of the corresponding individual steel
blocks must have been proper at all stations in the chain.
If all rods had bad quality, the processing must have been
faulty at at least one processing station. In this way, labels
for some temperature curves recorded in the rotary hearth
furnace could be reconstructed, resulting in 3,257 curves
indicating a high quality and 1,504 curves related to a low
quality. For better comparison of their shapes, all curves
were either interpolated or extrapolated to the same length,
with each curve being represented by a vector of 300 tem-
perature values. A one class ν-SVM model trained on the
high quality curves could reach a cross-validated prediction
accuracy of 72,20%. For cross-validation, the model was
trained only on a single class, but tested on both classes. A
one class ν-SVM trained on the low quality curves led to
an accuracy of 82,74%. However, especially in the latter
case, an interpretation of the results is difficult due to the
fact that quality issues might not have been caused by the
rotary hearth furnace. On both types of curves, a Random
Forest [3] model achieved a prediction accuracy of 92,42%.
In the future, the results will be improved by a more so-
phisticated extraction of features. Further experiments need
to be conducted, once data from the remaining processing
stations is available.

4.2 The LLP Algorithm

The LLP algorithm for learning from label proportions,
introduced in [16], was developed in the context of the case
study. Assuming that similar examples also have similar
labels, the algorithm’s core step consists of clustering all



examples and labeling the clusters heuristically. Thereby,
it minimizes the difference of the label proportions which
would result from such cluster labeling to the given pro-
portions. Taking the remaining difference as a fitness cri-
terion, in an outer loop the algorithm changes the attribute
weights of examples by an evolutionary strategy. In this
way, the difference to the given label proportions is reduced
even further. The clustering algorithm can be exchanged,
as long as it partitions the set of examples. Using k-Means,
LLP has only linear run-time in the number of examples
and produces compact models consisting of labeled cen-
troids which can be used for fast classification. LLP was
compared to state-of-the-art methods for learning from label
proportions on several data sets from the UCI repository[2].
It achieved a significantly higher or similar prediction accu-
racy, but needed less time for training. For application on
value series data, it is planned to replace the evolutionary
feature weighting by method trees [10] which can learn a
proper combination of transformations on value series.

5 Conclusions

The training of models for quality prediction and the in-
telligent transmission of prediction results from sensors to
other machines over a network in real-time could lead to
more informed and current decisions on the processing of
products. However, as demonstrated in the case study, inter-
linked production processes pose several challenges to data
mining. Huge amounts of sensor data demand fast learn-
ing algorithms when training is centralized. The already
decentralized storage of data could benefit from distributed
data mining algorithms. It is planned to develop distributed
cluster algorithms which can be used with LLP. However,
the learning of global models from purely local ones is chal-
lenging for vertically distributed data, due to possible corre-
lations between features across processing stations. In addi-
tion, the real-time constraint during prediction requires low
communication costs between stations and models that are
fast to apply. Algorithms need to be developed that produce
models which can self-adapt to current workloads, guaran-
teeing hard upper bounds on communication costs and pro-
cessing time.
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