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Chapter 1

Introduction

Cluster analysis has become an essential classi�cation method in machine learning. To

cluster a set requires its partition into smaller sets (clusters) under the mandate that ob-

jects in a cluster need to be as similar to each other as possible. Text clustering is the

application of these techniques on documents. The most common use of text clustering

in information retrieval is to group queried documents into di�erent genres based on their

contents.

The biggest challenge of text clustering is the so called "curse of high dimensionality" [9].

The most common representations of documents in information retrieval have their dimen-

sionality bound by their common vocabulary, which leads to data vectors with more than

10000 di�erent dimensions. This high dimensionality renders classical clustering methods,

which heavily rely on Euclidian metrics to calculate similarity between objects, useless.

Subspace clustering provides a solution to this problem by �rst searching for small sub-

spaces of the data space, in which objects of the same class are close to each other. In

contrast to global dimensionality reduction the subspaces found preserve possible relations

between documents. Another advantage of clustering in much smaller subspaces is that

Euclidian metrics become a meaningful discrimination criterion again.

In this thesis the viability of three speci�c subspace clustering methods for the application

of homograph disambiguation is discussed; homograph disambiguation has similarities to

the task of genre classi�cation, a problem that is often solved satifactory by clustering. A

manual categorization of homographs is too resource-intensive because the corpora that

are used for language research are too large. Good homograph disambiguation could aid

linguistic research in quantifying the usage of the di�erent senses of a homograph plotted

against time. It could also help to �nd the origin of a new sense.
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2 CHAPTER 1. INTRODUCTION

1.1 Thesis Structure

Chapter two provides the linguistic background of homograph disambiguation. The prob-

lem is then linked to genre indexing; a common application of clustering in text mining.

KobRA, which provides the data for the experimental evaluation, is introduced.

Chapter three presents the clustering procedures that operate on the global data space

in addition to common methods of dimensionality reduction, as well as the vector space

model, which is used to represent documents in text mining.

The next chapter explains in detail why common clustering methods do not work on high

dimensonal data and the infeasibility of global dimensionality reduction as a solution for

text clustering. An overview of the current branches of subspace clustering is given. The

advantages of subspace clustering for text clustering are presented.

In chapter four and �ve the three subspace clustering algorithms CLIQUE, FTC and

K-Subspace, and their implementation into the data mining suite RapidMiner, as an ex-

tension, are introduced.

Chapter six presents the experimental evaluation method and the results of the empirical

analysis of the implemented algorithms.

1.2 Notations

dist(a, b) Distance between a and b

X = {X1, . . . , Xn} Data set

Xi Data Point i

C = {C1, . . . , Ck} Clusters

Ci Cluster i

D = {D1, . . . , Dn} Document corpus

Di Document i

T = {t1, . . . , tj} Vocabulary of the corpus D

ti Term i

R{I} = {×
i∈I

ti} An axis parallel subspace containing the terms indexed by set I

for example(R{1,2,5} = t1 × t2 × t5)



Chapter 2

Linguistic Background

2.1 Homographs

A homograph is a word that shares the same spelling to a set of words with di�erent

meanings. Most homographs are also homonyms; they share the same pronounciation in

addition to the same spelling. There are two main categories of homonyms[16].

The �rst one is the coincidental homonym. A homonym of this category may be the result

of a phonetic convergence. Two previously di�erent spelling forms merged, or a new word

was given as spelling to a sense that coincided with an unrelated older word with a di�erent

meaning.

The second category is that of the polysemous homonym. In this case multiple divergent

meanings derived historically from the same word often preserving a perceptible metaphoric

or semantic link.

There are two instantly obvious lexicographic problems that arise from the de�nition of

homographs. The �rst one is the correct assignment of a word in either the coincidental

or the polysemous category. Two coincidental homonyms may also share a weak semantic

link while a polysemous semantic link may become opaque.

The second problem is general disambiguation based on context and the search for the

original sense of a set of homonyms and their natural order in terms of �rst appearance

and frequency of use.

Homographs only discriminate based on spelling; because of that heteronyms are also a

part of the set of homographs. The fact that heteronyms share the same spelling but have

a di�erent pronounciation for di�erent meanings leads to homograph identi�cation being

an essential step in text to speech synthesis[33].

3



4 CHAPTER 2. LINGUISTIC BACKGROUND

2.2 Genre Indexing for Homograph Disambiguation

Given a set of documents and a set of genres the task of genre indexing encompasses cor-

rectly assigning a document to one (or more) genre(s) based on the content of a document;

multiple mentioning of 'spaceships' and 'faster than light travel' will most likely result in

an assignment to the 'Science Fiction' category. One method of assigning data to genre

categories is clustering. Points that share a cluster (the genre) are similar to each other,

just like books of a certain genre often feature a noticable jargon.

The idea this thesis discusses is that the meanings or 'senses' of a homograph are similar

to genres. If a homograph is found in a document, the surrounding text may provide

enough context to identify the correct meaning of the homograph [15]. Unfortunately a

few problems arise by utilizing genre classi�cation methods for homograph identi�cation.

The �rst is that unlike genres the growth of the number of senses for a homogaph is volatile.

New documents may feature senses that have not yet been o�cially recorded. This may

lead to false identi�cations or the categorization of a new meaning as noise.

The second consideration that has to be made when comparing classi�cation of homograph

meanings with genre is the lack of ambiguity on the side of homographs. Given proper

context and ignoring edge cases like poems and jokes homographs always relate to only

one sense whereas a book may belong to multiple genres.

Another problem is �nding multiple instances of the same homograph in one document.

Some homographs like 'lie' are common enough to appear multiple times with di�erent

meanings in the same document; because of this, the only context that can con�dently be

used for disambiguation are sentences in direct proximity to the homograph, when applying

the categorization.

2.3 KobRA

"Korpus-basierte Recherche und Analyse mit Hilfe von Data-Mining" in short, KobRA

translates to: Corpora based research and analytics with the help of data mining [21].

Its goal is to develop and apply data mining and machine learning methods to German

language corpora. These methods are to aid German linguists and lexicographs in �nding

and verifying new theses. There are currently three speci�c research �elds covered by

KobRA [20]:

Internet lects and communication The analysis of speech features in internet-based

communication and its comparison to standard-compliant written language found in arti-

cles, books and other standard texts.
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Lexicography Finding signi�cant and unusual documents to discover the origins of se-

mantic changes. The visualisation of these changes plotted against time.

Diachronic linguistics The development of vocabulary, syntax, morphology in a given

investigation period. Studies on processes of lexical change and the in�uence of contact

languages and diatopic varieties.
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Chapter 3

Regular Cluster Analysis and PCA

3.1 Cluster Analysis

Cluster analysis is a set of procedures that aims to detect similarity between objects be-

longing to a large data set. The grouping of objects that have been determined similar

under a set of conditions are grouped together. These groups are referred to as "clusters".

In addition to grouping together objects, cluster analysis also has the goal of discover-

ing previously unknown groups of data and providing a comprehensible description of the

groups main similarity features. A signi�cant advantage provided by group discovery is

that a data set can be analysed by clustering methods without requiring any prior knowl-

edge, also refered to as an unsupervised classi�cation.

The main distinction of di�erent clustering algorithms is the way objects are assigned to

a cluster. We di�erentiate between hard clustering - objects are either assigned to a clus-

ter or they are not - and soft clustering - objects are given a probability distribution of

belonging to one of all found clusters.

3.1.1 Hierarchical Clustering

The core idea of hierarchical clustering is that objects that are more similar to each other

reside in a smaller distance to each other than dissimilar objects. To describe its clusters

hierarchical methods use the distance it takes to connect all components of a cluster. If

we plot the distance against the set of found clusters a graph is created that starts with

every point being a cluster. As the distance grows more points will satisfy the condition

of reaching their neighbors by travelling the given distance. Clusters grow gradually until

there is only one cluster containing all objects [28]. The graph that now shows the hierarchy

of clusters is called dendrogram.

There a are two approaches to achieve hierarchical clustering: The �rst one is to start from

the bottom with every point being a cluster and growing the distance until enough points

have merged into clusters to reach a satisfyingly low number of clusters.

7



8 CHAPTER 3. REGULAR CLUSTER ANALYSIS AND PCA

The other method is to start with one cluster containing the whole data set and recursively

splitting clusters until a number of clusters high enough is reached.

There are many di�erent methods to determine when two clusters are merged into one

based on their distance. The most popular are:

Single-Linkage The smallest possible distance between the objects of cluster A and B

is compared against the threshold distance min{dist(a, b) : a ∈ A, b ∈ B} < d

Complete-Linkage The largest possible distance between the objects of cluster A and

B is compared against the threshold distance max{dist(a, b) : a ∈ A, b ∈ B} < d

Average-Linkage The average distance of each point A to B is calculated and compared

against the threshold distance 1
|A|·|B|

∑
a∈A,b∈B

dist(a, b) < d

3.1.2 Centroid-based clustering

In centroid based clustering each cluster is represented by a single point that does not need

to be part of the data set; this point is called the cluster center. An object is assigned

to a cluster Ci if its distance in relation to the point representing the cluster is smaller

than any other cluster center. Most centroid based clustering methods require the user to

specify the number of clusters that need to be found. The calculation of the ideal positions

of the cluster centers to minimize the dispersion of the clusters is NP-hard. Instead of

explicitly calculating the ideal clusters the most popular centroid clusterers like k-Means

[18] approximate the ideal clusters by randomly selecting cluster centers and iterating until

a local optimum is found.

3.1.3 Density-based clustering

Density based clustering methods de�ne a cluster as a region in which a higher density

of data points exist compared to the complete value range of the data set. One way to

calculate the density of the data space is to partition the feature space into units of equal

size. The disadvantage of this method is that the clustering quality is heavily dependent

on the size of these units. If no previous knowledge of the data, which is to be clustered,

exists it may take several runs with di�erent unit sizes to get a satisfying result.

The most popular density based algorithm is DBSCAN. It determines dense regions by

constructing an ε-region around each data point [13]. If enough neighbors of the point lie

in the ε-region the point is set as part of a dense cluster. For each found neighbor the same

check is performed if they also have enough neigbors in their ε-region they are also added

to the cluster and the same check is performed for their neighbors. If they do not have

enough neighbors in their ε-region they will be added to the cluster but their neighbors
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will not be checked again. After the check is performed for all the points they are either

assigned to a dense cluster region or categorized as noise.

3.2 Metric

Almost all clustering methods rely heavily on the use of distance measurements to de-

termine the assignment of a point a to a cluster b. The shape of a cluster can change

radically if the metric used for the distance measurements is changed. Some points that

were nearest neighbors under one metric might be the farthest appart under another. The

most common distance metrics used for clustering are:

• Squared Euclidean distance: ‖a− b‖22 =
∑
i

(ai − bi)2

• Manhattan distance: ‖a− b‖1 =
∑
i
|ai − bi|

• Maximum distance: ‖a− b‖∞ = max
i
|ai − bi|

• Cosine similarity: cos(θ) = a·b
‖a‖‖b‖

3.3 Vector Space Model

Since metrics are heavily utilized to make the assignment of an object to a cluster, any

data that is used needs to support them. This provides a challenge for document cluster-

ing, because it is impossible to provide a universally correct distance between two di�erent

documents. The �rst step of document clustering therefore has to be the transformation

of a text into a formal mathematical representation of itself, the vector space model [27].

The simplest vector space model is the boolean model. With a collection of n documents

that are part of a corpus D as an input, each document di of this corpus is given a unique

index number 1 ≤ i ≤ n ∈ N. The �rst step is to create the collection of all terms that

occur in the documents of D. This set of terms is called the vocabulary and is denoted by

T , each term is also given a unique index 1 ≤ j ≤ m ∈ N.
The boolean model is only interested in the occurrence of a term out of T in a document

di. For each document a binary vector vi ∈ {0, 1}m is created. If the j-th term out of T

occurs in document di the j-th component of vi is set to 1. All document vectors are then

aggregated into a n×m matrix that now represents the corpus D as a boolean model.

While the boolean model is great for its simplicity, it lacks providing the complete in-

formation about the terms of a document. The "bag-of-words" model gets nearer to a

full representation of a document by substituting the binary occurence of a term with the

actual number of occurences TFdi(tj) in the document di.

The most commonly used vector space model for document representation is TF-IDF (term
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frequency-inverse document frequency) [7]. In addition to modelling the local representa-

tion of a document di, it also models its context in the corpus by creating a weighted term

vector for each document. The idea is to weight terms that occur in a great number of

documents in D, lower because they might not be as signi�cant in modelling the speci�city

of that particular document. The inverse document frequency is de�ned as:

IDF (tj) = log(
n

DF (tj)
)

DF (tj) indicates how often the term tj occurs in all documents of D. A logarithmic scale is

used to mitigate the e�ect of the IDF for very small numbers of DF (tj). The j-th position

of the document vector vi ∈ Rm is calculated as

TFdi(tj) · IDF (tj)

3.4 Principal Component Analysis

Principal component analyis (PCA) is one of the most well known procedures to structure

large sets of data. For a set of possibly correlated variables PCA returns a set of principal

components. The set returned is often orders of magnitude smaller than the initial data

set. Components of this set are orthogonal to each other and thus linearly uncorrelated.

They are de�ned as the indicators of variance of the original data. The �rst component

accounts for the largest amounts of variance and further components are ordered descend-

ingly by their accountability of variance.

PCA's most common use is dimensionality reduction [11]. The original data set is trans-

formed into a new system spanned by the set of principal components.

The most intuitive way to describe how principal components are found is to think of a

set of scattered points in a multidimensional cartesian system. The �rst principal com-

ponent is a line which is closest to every data point. The solution to this problem is the

minimization of the sum of Euclidian distances of all points to the line. The �rst step of

this "intuitive" calculation is to �nd the centroid of all scattered data points. A line that

is closest to all data points must include this point. If we were to calculate the sum of

distances for all lines going through this point and select the line with the smallest sum of

distances we successfully selected the �rst principal component. Further principal compo-

nents are selected the same way with the additional constraint that the next selected line

has to be perpendicular to all the lines that were selected before [19].

The statistical model most closely re�ecting this intuitive but computationally unfeasible

approach is the eigenvalue decomposition of the covariance matrix. In the �rst step the

covariance matrix Σ of the data set is created. Covariance is a measurement to �nd any
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relationship between the dimensions of the data set; the covariance of a set of observations

with itself is the variance. The covariance between a vector A and B is

cov(A,B) =

n∑
i=1

(Ai − Ā)(Bi − B̄)

n− 1

where Ā is the mean of the set A. The covariance matrix Σ is a representation of all co-

variance relations the data set contains. Next the eigenvalue matrix Λ is calculated. This

matrix has the eigenvalues of Σ in a descending order on its diagonal; all other values of

the matrix are zero. The eigenvectors calculated to the corresponding k �rst eigenvalues

build the system of principal components of the data set [19].

While the eigenvalue decomposition might be a very simple method for calculating the

principal components, it has the disadvantage of memory use. The required dense covari-

ance matrix has a memory footprint of O(n2) with n being the number of examples of

the example set. In the implementation of PCA in this paper the method of single value

decomposition is used to calculate principal components [1].
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Chapter 4

Clustering High Dimensional Data

4.1 High-Dimensional Data

Data in natural language processing, contingent upon the domain of a modern dictionary,

features a high number of attributes in its most common representational structures (bag

of words, term frequency vector). Apart from obvious disadvantages, like di�culties in

intuitive understanding and memory allocation, high-dimensional data poses one more

challenge, which is especially relevant to clustering algorithms, in the form of distance

convergence [9]:

lim
dimensions→∞

distancemax − distancemin
distancemin

→ 0

Most distance measurements become useless in high-dimensional feature spaces, because

the di�erence between the nearest and farthest neighbor of one data point becomes negli-

gible [14]. Since most conventional clustering algorithms rely on these distance measures

to assign points to a cluster, another more meaningful way for assignment needs to be

provided.

4.2 Global Dimensionality Reduction

In some instances, high dimensional datasets may have their points distributed within a

lower dimensional manifold. Dimensionality reduction methods aim to correctly model

the structure of the manifold project all points of the higher dimensional space into the

lower dimensional manifold space. Classical methods like PCA require the manifold to be

embedded linearly into the data space.

More recent non-linear dimensionality reduction methods only require local linearity. ISOMAP,

for example creates a matrix containing the pairwise distance between points sharing a local

neighborhood and then uses the Floyd-Warshall algorithm to calculate the global geodesic

distance between all points on the manifold [31]; after this simple linear multidimensional

13
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scaling is performed, which is similar to PCA but uses a dissimilarity matrix instead of the

covariance matrix [11].

NLDR methods get closer to solving the problem of high dimensionality. The criterion of

local linearity is shared by some subspace clustering methods that will be discussed in the

next section. Unfortunately most NLDR methods still rely heavily on euclidian distance

metrics, which could lead to classi�cation problems based on the nearest/farthest neighbor

convergence.

4.3 Subspace Clustering

In the last decade subspace clustering has become the proposed solution to deal with

the problems, created by high dimensionality, that render regular clustering algorithms

useless. Instead of using the whole d-dimensional dataspace to determine clusters, subspace

clustering algorithms �rst perform a search for relevant subspaces [14]. The motivation

for performing a subspace search �rst is that we assume that the data space is a union of

di�erent arbitrary subspaces that were induced by the clusters in addition to noise. There

are many di�erent forms of subspaces. In text clustering, which uses the vector space

model for representation, all data instances are contained in a space that is equipped with

the Euclidian topology. A subspace search in this particular space has to take into account

that any subset of the original data space found needs to be equipped with a topology that

is element of its parent space to be called a valid subspace [12]. A few examples for a valid

subspace in text clustering include:

• Discretization: The data space is partitioned into arbitrary pairwise disjoined inter-

vals. The original data is now represented by the interval they reside in.

• Domain restriction: Instead of looking at the whole domain of a dimension only a

smaller subset of the domain is considered as relevant.

• Feature selection: The dimensions of the data space are given a weight for their

relevance in relation to a cluster.

The main problem in performing a search for an arbitrary subspace is that the number

of possible valid subspace candidates is in�nite. Subspace clustering algorithms therefore

only concentrate on a bounded subset of all possible subspaces in the hope to approximate

the true cluster subspaces enough to provide a valid clustering.

4.4 Axis Parallel Subspaces

The most common restriction that is used for the initial search is to only focus on axis

parallel subspaces. We can de�ne all axis-parallel subspaces as a special case of feature
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weighting where the only possible weights that can be used are either zero or one. The

biggest advantage of applying the axis-parallel restriction on the search is that the number

of subspaces that need to be searched through is dramatically reduced.

If we want to �nd a k-dimensional subspace in a d-dimensional dataset at maximum
(
d
k

)
subspaces need to be examined to determine the relevant subspaces. If we need to search

through all axis-parallel candidates of a d-dimensional subspace the number increases to

d∑
k=1

(
d

k

)
= 2d − 1

which is computationally infeasible for data of high dimensionality. Most subspace clus-

tering methods of this category use either a top-down or bottom-up heuristic to perform

the subspace search e�ciently [14].

4.4.1 Top-Down Approaches

Top down approaches start by assigning each data point to a cluster by either random

selection or with the use of a regular clustering algorithm. In the �rst step of these al-

gorithms each dimension of the feature space is weighted the same. In the next step the

algorithm assigns each dimension a weight for each cluster. The algorithm then iterates

by alternating between clustering and weight generation until either an iteration threshold

is reached or the cluster assignment has converged.

PROCLUS, the �rst top-down clustering algorithm, �nds its clusters by �rst generating a

set of k medoids based on a sampling of the data [2]. A greedy algorithm selects medoids

with the goal of them being far appart. For each medoid a subspace is chosen in which the

average point/medoid distance is small compared to statistical expectation.

After the initialization PROCLUS re�nes its clustering iteratively by selecting a subset of

medoids then replacing bad medoids with new randomly selected new ones and determines

if clustering quality has improved. The measure for quality is attained by calculating the

average distance between data points and the nearest medoid in the determined subspace.

Most top-down approaches operate under the locality assumption. It must be possible to

create a cluster based on the local neighborhood of the cluster center in the complete data

space. If this condition is not ful�lled a correct cluster assignment is not possible.

Newer algorithms like FINDIT and σ-Clusters have re�ned their subspace search by devel-

oping new locally sensitive distance measuring methods and can even �nd non-axis-parallel

subspaces by allowing continuous feature weights [32].

4.4.2 Bottom-Up Approaches

Bottom-up algorithms utilize the downward monotony behavior of clusters in axis-parallel

dimensions. It states that each cluster in a high dimensional space is also a cluster in
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each axis-parallel subspace. The search of subspaces starts by �nding clusters in one-

dimensional subspaces using regular clustering methods. These subspaces are then used to

construct subspaces of a higher dimensionality using a APRIORI style search [4]. It looks

for an overlap of lower dimensional clusters in a higher dimension. If an overlap exists a

new higher dimensional cluster, the cut of both lower dimensional clusters, is found and

the subspace is added to the list of relevant subspaces.

Algorithms of this category �nd all subspaces that clusters exists in. They create a hierar-

chical clustering based on dimensionality. The clusters they produce overlap, which means

that one instance can be assigned to more than one cluster. One of the �rst bottom-up

clustering algorithms was CLIQUE [5], which will be described in detail later in this paper.

4.5 Biclustering

Biclustering is based on �nding certain patterns in the data matrix. The �rst biclustering

algorithm was developed by Mirkin in 1996. A cluster of a biclustering algorithm is a

submatrix of the initial data matrix which satis�es a set of predetermined conditions.

These submatrices may overlap. In 2008 the similarity measure χ-Sim was introduced

[10], which calculates the similarity between objects and their features. Utilizing this

measure it is possible to use regular clustering methods to perform biclustering, because

the distances correspond directly to biclustering conditions. A few examples for conditions

in biclustering are:

Constant values: Each parameter of a cluster submatrix has to be the same. If this

condition is applied to a text clustering data matrix that uses the boolean vector space

model each submatrix returned is the document support of a frequent term set. The

columns of the cluster correspond to the terms of the term set while the rows correspond

to the documents supporting the term set.

Constant values in rows/columns: Every parameter in a row/column needs to be the

same. If a submatrix under the constant column condition is projected into the subspace

determined by its columns all points corresponding to the selected rows will be the same

in the projection. If the condition is relaxed by allowing all values in a column to be in a

ε-region it enables biclustering to be used to determine dense regions of a data set in every

subspace.

Coherent values: The coherent value condition can be used to determine points that

are positively correlated in certain subspaces. If vij is the value of the parameter in the

i-th row and j-th column the condition that needs to be satis�ed for a coherent value is

vij = c+ ri + cj .
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c is a constant that deals with any o�set the submatrix could have. ri are adjustment

constants for each row and cj adjusts each column.

4.6 Correlation Clustering

Axis-parallel subspaces have many advantages in text clustering. If we �nd a cluster using

this method we can easily generate a set of words associated with it by simply using the

domain of the subspace it resides in. The great disadvantage of these methods however is

that it only takes the associated words into account. If the data for clustering is too sparse

to �nd any meaningful dense regions based on the term sets a quality cluster assignment is

not possible. A proposed solution is correlation clustering. It generalizes the axis-parallel

subspace model by allowing arbitrarily oriented, a�ne subspaces.

The most common implementations of correlation clustering use principal component anal-

ysis to determine the subspace clusters reside in. ORCLUS expands the axis-parallel algo-

rithm PROCLUS by applying PCA to all points assigned to a medoid [3]. The eigenvectors

corresponding to the smallest eigenvalues are calculated. If the points belonging to the

medoid are projected in this subspace their average distance to the medoid will be minimal

because the system de�ned by the smallest eigenvectors indicates the subspace in which

the points are most dense in.
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Chapter 5

Implemented Clustering Algorithms

5.1 K-Subspace

K-Subspace [6] was developed as an extension to the well known k-Means[18] algorithm.

Its purpose is to model arbitrarily oriented subspaces and to assign data points to clusters,

that reside in them. Two of the subspaces that are modelled are a line and a plane. In

addition to these two subspace models, that were �rst presented in the k-Plane algorithm

[22], k-Subspace also provides a more advanced model for spherical clusters.

The algorithm works in two phases in each iteration step. The algorithm terminates after

a user-selected threshold of iterations is reached.

Cluster assignment phase Each data point x out of the data set is assigned to one of

k (an input parameter) clusters Ci. The decision is based on Euclidian proximity

i = arg min
1≤i<k

dist(x,Ck)

in the initial iteration of the algorithm the data points are assigned randomly to calculate

the �rst clustering models.

Model selection phase After each assignment of data points the algorithm calculates

the parameters for all three cluster models for all K clusters. The decision for the cluster

model that will be used for the next cluster assignment phase is made by selecting the

model with the smallest model dispersion. The model dispersion in k-Subspace is de�ned

as

Dispersion =
∑

dist(xk, Ck)

the sum of distances of the assigned data points.

19
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5.1.1 Cluster Models

Line Shaped Clusters A line shaped cluster in k-Subspace is represented by two pa-

rameters a point ci and normalized directional vector ai. The distance between a data

point x and the cluster Ci is de�ned as the squared Euclidian distance of its perpendicular

component in relation to the line:

dist(x,Ci) = ‖x⊥‖2

The perpendicular component x⊥ is calculated by �rst attaining the scalar parallel compo-

nent x‖ e.g. the stretched normalized directional vector to make it line up perpendicular

to x

x‖ = ai[a
T
i (x− ci)].

The perpendicular component is aquired by simple vector substraction

x⊥ = (x− ci)− x‖.

Let xi ∈ Ci be a data point assigned to the cluster Ci. Given a cluster assignment Ci the

point parameter ci is computed as the centroid of all points in Ci

ck =
1

|Ci|
∑
xi∈Ci

xi

and the directional component ai as the �rst normalized principal component of all xi.

Plane Shaped Clusters Plane and Hyperplane shaped clusters are parameterised anal-

ogous to line shaped clusters. The model uses a point parameter ci and two directional

vectors a1i , a
2
i , for hyperplanes additional directional vectors a

j
i (j <Dimensionality of the

data space) are added.

The perpendicular distance ‖x⊥‖ is calculated as

dist(x,Ci) = ‖x− ci −
∑

αja
j
k‖

with α being

αj = (x− ci)Taji

. The calculation of the parameters given a cluster assignment is also analogous to line

shaped clusters. The point ci is centroid of all x ∈ Ci while the directional parameters

are the �rst two or more, depending on the dimensionality of the hyperplane, principal

components of all x ∈ Ci.
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Sphere Shaped Clusters The easiest approach to generate sphere shaped cluster would

be to adapt the centroid based model, which k-Means uses for its clustering. K-Subspace

does however model an explicit sphere shaped cluster region. In this case the distance

between a data point and the cluster is not the distance between the centroid and the

point. Instead the measured distance is the squared Euclidian distance between the hull

of the sphere region of the cluster and the data point.

dist(x,Ci) = max(0, ‖x− ci‖2 − ησ2)

The spherical model requires the input parameters η and σ. If a data point is located

inside the sphere de�ned by the parameter ci with the radius
√
ησ the distance is set at

zero.

The model parameter ci given a cluster assignment Ci is calculated by minimizing the

dispersion of all assigned data points.

min
ci

∑
x∈Ci

max(0, ‖x− ci‖2 − ησ2)

The solution to this minimization problem is

1

1− η
(

∑
x∈C>

i

x

|C>i |
− η

∑
x∈Ci

x

|Ci|
)

with C>i being the set of all data points asigned to the cluster Ci that are outside of the

sphere's radius.

5.2 CLIQUE

CLIQUE [5], one of the �rst subspace clustering algorithms, combines density based and

grid based clustering. The algorithm �rst identi�es all relevant subspaces and then pro-

ceeds to �nd all clusters in each one of them. The subspaces that are found by CLIQUE are

axis parallel. A bottom up approach is used to grow the dimensions of possible subspaces

candidates that may contain clusters. The algorithm operates in three steps.

1. Subspace identi�cation: Using the data points that are provided by the example

set, one dimensional subspaces are created. The previously created (k-1)-dimensional

subspaces are used to �nd the next set of k-dimensional subspaces until no new

relevant subspaces are found.

2. Cluster identi�cation: In each subspace that was previously found a search for

clusters is performed.

3. Cluster description generation: For every cluster a cover is calculated to give

the cluster a comprehensible description.
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5.2.1 Subspace identi�cation

The input of CLIQUE consists of n d-dimensional points X = {X1, X2, . . . , XN} with

Xi = (xi1, xi2, . . . , xid). The attributes of the data space are represented by the set T =

{t1, t2, . . . , td}, the vocabulary of the vector space model. They span the feature space

S ⊆ Rd all points reside in. vij stands for the value the i-th data point takes in the j-th

dimension corresponding to attribute/term tj .

CLIQUE starts by turning the continuous feature space into a discrete subspace. Each

dimension is partitioned into ξ intervals of equal length. After this discretization the new

feature subspace consists of ξd units. A unit U is de�ned by the intervals {u1, u2, . . . , ud}
with ui being a right open interval [li, ri[. If a point has the value lj ≤ xij < rj in all its

dimensions it is added to the support of the unit U . The function support(U) returns the

number of all points that are contained within the unit U .

An axis parallel subspace RI of the original feature space S is de�ned as

RI = {×
i∈I

ti|I ⊂ {1, 2, . . . , d}}

a simple selection of terms from T . A unit in an axis parallel subspace is de�ned as an

intersection of all intervals of the attributes that are contained in the subspace. A point

is added to the unit's support if all values of the attributes contained in the subspace lie

within the bounds of the unit's intervals.

CLIQUE conducts its search for relevant subspaces in a bottom up fashion. It starts

by initializing all one dimensional subspaces R{1}, R{1}, . . . , R{d} and pruning them for

relevancy. A subspace is called relevant if it contains at least one dense unit. A unit U is

called dense if support(U)/n > τ , τ is the user speci�ed density threshold parameter. The

set containing all dense one-dimensional subspaces is called RD1

In the next iterations the (k-1)-dimensional dense subspaces are used to generate the

candidates for the k-dimensional subspaces. CLIQUE utilizes the monotonicity of points

in a cluster to generate the correct candidates.

Monotonicity If a collection of points S is a cluster in a k-dimensional space,

then S is also part of a cluster in any (k-1)-dimensional projections of this

space.[5]

The step to generate the k-dimensional subspaces gets the set RDk−1 as an input. The

subspaces in RDk−1 are sorted lexicographically by their dimensions. The set is joined

with itself. Two subspaces RI and RJ ∈ RDk−1 with |I| = |J | = k − 1 are joined into a

k-dimensional subspace if they meet the following conditions [4].

1. In the ordered sets of subspace attributes I and J the �rst k-2 elements need to be

identical
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2. The last element of each subspace needs to be di�erent to ensure a k-dimensional

subspace after the joining process

3. Let i and j be the last elements of I and J : i < j

After the subspace join the units of the new k-dimensional subspace are created. The unit

join process performs the same checks but uses the units' intervals to compare. The new

k-dimensional units need to be pruned again for their density because the monotonicity of

clusters infers that density might be lost going from a lower into a higher dimension. If

the newly generated k-dimensional subspace includes at least one dense unit it is added

to the set Dk. The process is repeated until no new k-dimensional subspace containing at

least one dense unit is found.

5.2.2 Cluster identi�cation

The �rst step of CLIQUE created a superset RD = {RD1, . . . , RDk} of subspaces that
contain dense units. A cluster is de�ned by CLIQUE as the maximum set of connected

units in a subspace. Two units U1 and U2 are connected in a subspace RI if

∃i ∈ I : {li1 = ri2 ∨ ri1 = li2|[li1, ri1[∈, U1[li2, ri2[∈ U2}

If we transform the dense units into nodes and the statement of the connection requirement

into a vertice we can reduce the problem of �nding the maximal set of connected dense

units into the connected component problem of undirected graphs.

To �nd all clusters CLIQUE now has to perform a depth �rst search for all units that have

not already been assigned to a cluster. Each unit/node that is traversed in the DFS is put

into the same cluster. The cluster assignment stops when all dense units of a subspace are

assigned. The cluster assignment is performed for all subspaces in D.

5.2.3 Cluster description generation

The goal of the �nal step is to generate the minimum amount of rectangular regions for

each subspace so that the clusters that were found in the previous step in the cluster set

C are covered. The set of generated rectangles is the cluster description. The minimal

description of a cluster would be a set of rectangles that only contain the dense connected

unit of the cluster itself. Unfortunately it is not computationally feasible to generate the

minimum set of rectangles for the minimal cluster description.

Instead of calculating the minimal cover we use a greedy algorithm to determine the max-

imum regions that the cluster covers.

The algorithm starts by randomly selecting a unit of the cluster that has not yet been

covered and propagates a new region into both directions of each dimension until it does

not �nd a connected dense unit. The right bound of the most right unit and the left bound
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of the most left unit is selected as the edge of the cover region for each dimension. The

algorithm terminates when all dense units of the cluster are covered by the descrition. The

�nal output of CLIQUE is the set of all cluster descriptions for all subspaces.

5.3 Frequent Term-Based Text Clustering

Frequent term based clustering [8] was speci�cally developed to deal with the challenges

that are posed by text clustering. It deals with the high dimensionality by constructing its

clusters bottom up, using frequent term sets as the domain for its subspaces. It does not

require the number of clusters as an input. The output of FTC is a clustering, in which

each document was assigned to excactly one of the k found non overlapping clusters.

The input for FTC is a set of word n Vectors X = {X1, X2, . . . , Xn} that represent the
documents D = {D1, D2, . . . , Dn} in the format of the boolean VSM. The vocabulary set

T contains all words that are contained in the documents of D, |T| is the dimensionality

of the word vectors. The algorithm starts by determining all relevant frequent term sets

F . It does this by �rst creating the single item term set F 1 = {F1, . . . , F|T |} from the

dictionary T . Each word is given its own term set.

After this the support for each term set is calculated. A document Di from D supports the

term set Fi if the word vector Xi has a value other than 0 in the dimension that represents

the word in Fi.

With a single iteration over the database the support for every term set in F 1 is calculated.

The results are saved in a two-tuple Supi = (Fi, Si) where Si contains all the documents

that support the term set Fi.

In addition to the support tuples for the term sets a second support set is created. This

set keeps track of how many term sets are supported by a particular document. If R is

the set of all relevant term sets the integer fj = |{Fi ∈ R|Fi ⊆ Dj}| tells us how often a

document was assigned to a di�erent relevant term set.

The function support(Supi) calculates the document support of a term set in relation to the

size of the database (|Si|/n). If support(Supi) < τ , the user-speci�ed minimum document

support, the term set Fi is removed from F 1. The now pruned term sets are used to create

the term sets of a higher cardinality similar to the subspace joining in CLIQUE.

To join two term set the tuple that represents the set support needs to be joined, too. The

operation to join two term set tuples is:

Supi ∪ Supj = (Fi ∪ Fj , Si ∩ Sj)

It is obvious why the restrictions used in the CLIQUE algorithm for the join make sense

if |Fi| = |Fj | and |Fi| − 1 items in both set are identical then |Fi ∪ Fj | = |Fi|+ 1 and the

newly found term set's cardinality grows by one in each pass over the previously generated

set F k−1 in the k-th step. After each join the newly generated term sets need to be pruned
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again in relation to the minimum support parameter because |Si ∩ Sj | ≤ min(|Si|, |Sj |).
The process of growing the frequent term sets is repeated until no new term set that can

satisfy support(Supi) < minS is found.

FTC de�nes the clustering description as a selection of terms CD ⊆ I = {1, 2, . . . , |R|}
that satis�es the condition |

⋃
i∈CD

Si| = |D| which means that every document needs to

be contained in at least one of the term sets that were selected by the cluster description.

FTC also includes the empty term set as relevant, it ensures that all documents will belong

to at least one relevant term set.

The cluster selection of FTC is guided by the goal to minimize the cluster overlap. When a

term set is selected as a cluster Ci the standard overlap with other possible clusters (term

sets) is de�ned as:

Overlap(Ci) =

∑
Dj∈Ci

fj − 1

|Ci|
The set Ci contains all the documents from Si that have not already been selected by the

cluster description. We could calculate the overlap for each term set as a cluster candidate

and pick the one with the smallest overlap as the next cluster until a cluster description is

reached.

Unfortunately the monotonicity of frequent term sets, analogous to the monotonicity of

clusters, means that a document in a term set with the cardinality m supports at least

m-1 other smaller term sets. This means that FTC using the standard overlap would

predominantly select term sets with a low cardinality.

To get around this problem FTC uses the entropy overlap [26] to determine the next cluster

candidate.

EO(Ci) =
∑
Dj∈Ci

− 1

fj
· ln(

1

fj
)

The cluster selection now consists of the following steps:

1. Calculate the entropy overlap for all remaining term sets in R

2. Remove the term set with the smallest entropy overlap out of R and select it as Ci

3. Add Ci to the cluster description and mark all documents in Ci as selected

4. Recalculate the fj for all remaining documents

This is done until a valid cluster description is found or all terms out of R are selected.

The algorithm returns a �at clustering that covers the whole database and assigns each

document to only one cluster.
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Chapter 6

Implementation

6.1 Rapidminer and EJML

In the process of classi�cation clustering is only one step out of many. Many tasks like

pre-processing, data collection, formating and result visualisation are as important as the

clustering itself to achieve a comprehensible classi�cation result.

RapidMiner provides a framework for data mining tasks running in a Java environment

[24]. Rapidminer operates under a modular paradigm, processes are built from a selection

of operators, the building blocks of Rapidminer. Operators receive, process and send the

transformed data to the next operator of the process sequence or to a result screen. The

biggest advantage of RapidMiner is its expandability. If an operation that is not already

part of the core operations of RapidMiner is required it is possible to create a new operator,

that is fully integrated into RapidMiner.

For the integration of the subspace clustering algorithms an extension was created featuring

an unique operator for each. In addition to new operators a subspace cluster input/output

object was created to make it possible for RapidMiner to process subspace clusters.

RapidMiner already features a PCA operator in its core distribution but for memory e�-

ciency the E�cient Java Matrix Library (EJML) [1] was chosen for the principal component

generation in K-Subspace.

6.2 Sparse Data Structures

As explained in the chapter about vector space models, the dimensionality of the data is

often very high because a document is represented in relation to the whole vocabulary of

the corpus. A second interesting feature, which is a direct result of this high dimensionality,

is data sparsity.

A data set is called sparse if more than half of all values in the data matrix are zero. It is

easy to see that in the case of homograph discovery data will naturally be sparse, because

27
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Regular Data Row

Att0 Att1 Att2 Att3 Att4 Att5 Att6 Att7 Att8 Att9 Att10 Att11

0 0 0 5 0 2 0 0 0 7 1 0

Sparse Data Row

Index 3 5 9 10

Value 5 2 7 1

Table 6.1: An comparison between a regular and a sparse data row

the texts that are used to create the vector space model are only document fragments e.g.

the surrounding sentences of a matched homograph. While full texts still originate from

many di�erent domains providing them with a huge vocabulary they also are long enough

to generate a signi�cant overlap with other documents. Text fragments often contain less

than �fty unique terms in a data row with more than ten thousand dimensions. The result

of the density calculation of the homograph data matrix V n×m using the measure

ρ(V ) =
|{vij 6= 0}|
m · n

came in signi�cantly lower than 1%.

Fortunately it is possible to use the sparsity of the data set to our advantage - to lower

the computational and memory cost - in the implementation of the presented subspace

clustering methods.

6.2.1 Rapidminer's Sparse Data Structure

Raw data in Rapidminer is stored in the ExampleTable. Its structure is very similar to the

data matrix of the vector space model. The data is organized in data rows, each instance of

the data set is given its own data row. An arbitrary number of these data rows is combined

into the data table, each data row therefore must have the same number of columns.

To implement sparse data RapidMiner has extended the regular data row to store data in

the compressed sparse row format. A single array, with the length of the full dimensionality

d, that stores all values of the data row, is replaced by two shorter arrays. The �rst array

stores all indeces, for which the values of the data row are di�erent from zero. The second

array stores the actual values of the indexed columns. The example in 6.1 illustrates how

the sparse data row reduces the memory footprint for any data set with ρ(V ) ≤ 50%. The

price for this reduction in memory comes at the price of increased computational complex-

ity for single value retrieval which now lies in O(logn) utilizing binary search.

It is essential for data mining tasks to put the raw data into context. For this task the

ExampleSet class is available. Operators in RapidMiner almost exclusively operate on

this layer of data representation. Each ExampleSet has a parent ExampleTable, a set of

Attributes and Examples. Attributes are used to give the raw data that is stored in a
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column of the ExampleTable context. There are two di�erent types of attributes: Regular

attributes, which indicate that the values in the column they refer to are features of the

data set. In the vector space model all values of the data matrix are in the regular attribute

space. The second type of attribute is the special attribute, which is used for additional

meta information like IDs, predictions, cluster labelling or the original text the vector was

created from. In clustering processes those special attributes are ignored.

The most important property of the ExampleSet is that it only references the Exam-

pleTable. Each Attribute of the ExampleSet includes the column number of the Exam-

pleTable it references, similarly each Example includes a reference to the DataRow of the

ExampleTable it references. These references do not need to be one to one. Figure 6.1

shows that the n-th Attribute of the ExampleSet does not neccesarily correspond with the

n-th column of the ExampleTable. The same goes for Examples.

If we want to retrieve a value of an Attribute-Example pair, RapidMiner gets the DataRow

the Example is referencing out of the parent ExampleTable, retrieves the column number

of the Attribute and returns the value of the column [23]. This method of data retrieval

presents a challenge for the implementation of sparse methods for algorithms that predom-

inantly operate on ExampleSets:

• The order of attributes does not correspond with the order of the DataRow =⇒ It

is not possible to simply use the indeces of the sparse DataRow.

• Regular and special Attributes are stored in the same DataRow =⇒ A method to

discriminate between indeces for regular or special attributes is needed.

The solution to these problems is to create a mapping between the the regular Attributes'

ordering and the columns of the ExampleTable. Using FastExample2SparseTransform we

are able to now retrieve the indeces of all regular attributes that are di�erent from zero,

for each data row, in the correct order, for operations on the ExampleSet [24].

6.2.2 Sparse CLIQUE

In the process of testing CLIQUE a problematic behavior in dealing with sparse data mate-

rialized. The algorithm always created as many dense one-dimensional subspaces as there

were dimensions in the data matrix regardless of how the density threshold parameter was

set. As a result of this, a greater than expected number of higher dimensional subspaces

was created, in some instances approaching the maximum of 2d − 1 possible subspaces.

The cause of this unwanted behavior was identi�ed in the initialization of the one-dimensional

subspaces. CLIQUE, in its standard form, treats each instance of the vector space model

as a point in the data space. If the data is sparse CLIQUE will �nd a dense region in

the interval [a, b] : a < 0 < b. These "false" dense regions and their subspaces heavily

outnumber the dense regions created by non zero instances. Furthermore false clusters
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Figure 6.1: An ExampleSet referencing an ExampleTable [23]

including a non zero region and a zero region can be created.

To eliminate this unwanted behavior this implementation of CLIQUE gives the user the

choice to perform a sparsity check on the data matrix. If the matrix is deemed too sparse

to apply the regular CLIQUE algorithm a slightly altered procedure for the initialization

that ignores all zero values is used.

6.2.3 Mean and Distance Calculation

Require: Sparse Points X = (I[k], V [k]) and dimensionality d

SUM [i] = 0 for all i = 1, 2, · · · , d
for all x ∈ X do

for j = 0 · · · k do
SUM [I[j]]← SUM [I[j]] + V [j]

end for

for all SUM [i] do

SUM [i]← SUM [i]/|X|
end for

end for

return SUM

Algorithm 6.1: Sparse Mean Calculation

Mean calculation is an essential part in the calculation of the model parameters in K-

Subspace. For the line and plane model one centroid needs to be calculated using the mean
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of all cluster points and the sphere model requires two mean calculations for its parameter.

The sparse row format gives us the opportunity to increase the speed of mean calculation.

The mean is calculated seperately for each dimension. If a point that is added to the mean

has a zero in a particular dimension it will not in�uence the mean in it. The sparse index

array of the row model therefore provides us with all dimensions that will in�uence the

mean if we add this point. Using this the time for mean calculation will be proportional

to the sparsity of the data. The algorithm 6.1 illustrates how a faster mean calculation is

achieved by utilizing the array iteration advantange of the sparse row format.

6.2.4 Initialization of Term Sets

In Frequent Term-Based Text Clustering we construct our relevant frequent term sets

similar to CLIQUE's subspace creation. Because of that we need to initialize the term sets

that only contain one item. The naive approach would be to create a single item term

set out of an attribute (the attributes of a VSM are terms) and then to iterate over all

examples adding documents that are found to contain the term, e.g. having a value greater

than zero, to the term set's support.

Unfortunatelly RapidMiner does not support the sparse column format, which would let

us directly calculate the document support by retrieving the index array size. Instead the

sparse row format is utilized to only iterate over all non zero attributes for each example.

First a single item term set for each attribute is initialized. Then for each example the

indices array is retrieved. The example is then added as document support of each term

set that corresponds to a non default index.

6.3 Notable Implementation Details

Most of the implementation work was compromised of simply translating the the oper-

ations of the algorithm into Java code. There were, however, some instances in which

additional implementation work was required to make the algorithms work in the Rapid-

Miner environment.

The next sections detail the implementation of a new cluster model object, that deals with

the challenges presented by subspace clustering tasks. In addition, a few important imple-

mentation decisions concerning the inner operations of CLIQUE and FTC are expanded

on, including the one-dimensional subspace initialization and parts of the self join process

of the APRIORY search.

6.3.1 The Subspace Cluster Model

RapidMiner already supports a broad collection of clustering algorithms. The standart

input for them is an ExampleSet and a ClusterModel object is returned as the result in
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addition to a labelled ExampleSet. In the implementation of subspace clustering algorithms

a few problems surfaced based on the structure of the ClusterModel class. ClusterModel

can only deal with �at clusterings, which makes it useless for CLIQUE. Rapidminer also

includes an extension of the cluster model for hierarchical clusterings but this model is

used for dendrogram visualisation and cannot deal with a subspace hierarchy created by

the APRIORI search of CLIQUE. For an output of a hierarchical cluster model it also has

to be �attened in advance.

Another disadvantage of the RapidMiner ClusterModel is that the cluster assignment has

to be set as a whole instead of cluster by cluster, which would lead to complications in

FTC where the next cluster assignment is dependent on the previous assignments.

SubspaceClusterModel provides more �exibility and better organization to resolve those

problems. Clusters can be added one by one using the AddCluster method. In addition

to the clusters itself additional information about the subspace is stored in the form of a

SubspaceModel class. A SubspaceModel can return the description of itself and project an

example into itself.

Internally, clusters are organized based on the subspace they reside in instead of single

list. It is possible to get a cluster assignment in a per-subspace fashion. For CLIQUE

the example set can be labbeled with all clusters. For each subspace a unique attribute is

created that contains the cluster assignment for the one subspace.

Visualization is done textually. All subspaces and all clusters residing in them are listed.

Additional information for each cluster and subspace is given, like cluster size and subspace

dimensionality.

Unfortunately RapidMiner has no evaluators that can deal with multi label data. Therefore

all evaluation measures that will be presented in the next chapter needed to be implemented

again to work with the SubspaceClusterModel.

6.3.2 Initialization of a One-Dimensional Subspace

The �rst step in the identi�cation of dense subspaces is the construction of one dimensional

subspaces. These subspaces need to satisfy multiple conditions. It needs to be possible

to identify the dimensions this axis parallel subspace covers to create a comprehensible

cluster description and to construct higher dimensional subspaces. For the representation

of the dimensional cover of the subspace the class BitSet was chosen. The BitSet can be

thought of as a dynamic binary vector. When a one dimensional subspace is created out

of a regular attribute the algorithm retrieves a unique constant integer, the attribute ID,

and sets the bit of the BitSet at this position (Algorithm 6.2 line 3).

In the next step the units of the subspace are initialized. They represent the partition of

the subspace. In the implementation of CLIQUE they are represented by the subspace they

reside in and a HashMap that maps each dimension of this subspace to an interval. Each



6.3. NOTABLE IMPLEMENTATION DETAILS 33

unit also possesses a support set in which all IDs of instances (documents) that support the

unit are saved. Lines 6-10 in 6.2 explain how the initial intervals are calculated based on

the user parameters and range of values of the dimension and the assignment of documents

to the support of units.

After the assignment of all instances of the data set is done the subspace's units are

Require: Dimension ID d− ID, values of dimension d: V , gridnumber ξ

Create dimension set D = ∅
2: D ← D ∪ {d− ID}
MIN ← minimum(V )

4: MAX ← maximum(V )

for i = 0 . . . ξ do

6: Create Unit ui with interval [MIN + MAX−MIN
ξ · i,MIN + MAX−MIN

ξ · (i+ 1)[ in

dimension d

end for

8: for all vi ∈ V do

j ← b(v −MIN) · ξ
MAX−MIN c

10: Add point belonging to vi to support of uj

end for

Algorithm 6.2: Subspace Initialization

pruned against the density threshold τ . If one or more units remain in the subspace after

the pruning the subspace is included in the set of one dimensional dense subspaces.

6.3.3 Construction of Subspaces/Frequent Term Sets

For the construction of the k-dimensional subspaces out of the (k-1)-dimensional the pre-

viously stated conditions need to be met [4]. In the implementation subspaces are put

in a list that corresponds to their dimensionality. If we want to construct the list of k-

dimensional subspaces we �rst retrieve the (k-1)-dimensional list and sort all subspaces

in their lexicographic order. We achieve this order by comparing the pair BitSets that

indicate the dimensions of the subspaces against each other. We iterate both BitSets of

the compared subspaces and compare the position of the next set bit with each other. If

the positions are equal, we continue to iterate, if we �nd di�erent positions, we stipulate

that the subspace that has the next set bit at a later position also lies lexicographically

later than the other subspace.

With the subspaces ordered we can start the self join process. First the subspace at the

beginning of the subspace list is taken and attempts to join with all subspaces remaining

in the list. A join of two subspaces will only take place if algorithm 6.3 returns TRUE. The
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Require: Dimension sets D1, D2

Dcheck ← D1 ⊕D2

2: if |Dcheck| 6= 2 then

return FALSE

4: end if

l1 = D1 ∩Dcheck, l2 = D2 ∩Dcheck

6: if l1 6= max(D1) ∨ l2 6= max(D2) ∨ l1 ≥ l2 then
return FALSE

8: end if

return TRUE

Algorithm 6.3: Join conditions check

�rst two lines of 6.3 perform the check if the two subspaces only di�er in one dimension.

An XOR (⊕) operation is performed with the BitSets of both subspaces. This is possible

because the two dimensional sets D1 and D2 have the same cardinality. If a new set from

the exclusive disjunction of both is created it will contain all the dimensions both di�er

in. A cardinality of two then means that one out of each set is di�erent. This is a neces-

sary condition to satisfy the statement that (k-1)-dimensional subspaces need to share the

�rst k-2 dimensions for a join. Line �ve and six of 6.3 perform a check for the su�cient

condition. In addition to checking that both BitSets only di�er in one dimension we also

make sure that the dimension they di�er in is the k-1-th one. The check ∨l1 ≥ l2 is added
to satisfy the lexicographic order of the subspaces. After the join the resulting subspace is

put in the list of k-dimensional subspace candidates.

The subspace that was checked against the remaining subspaces in the list is then removed

from the list. The procedure is repeated until the list of subspaces is empty.

The k-dimensional subspace candidates are then pruned for density. In the actual join op-

eration the dense units are also joined in a similar fashion. The same checks are performed

using the intervals of each unit to make sure that only units that have the same �rst k-1

intervals are joined. The support for a newly joined unit is the conjunction of the sup-

port of the units it was joined from. All joined units' support is then checked against the

density threshold and non dense units are removed from the subspace. The k-dimensional

subspace list is then created from all joined subspaces that include more than one dense

unit.

6.4 Extension Documentation

To install the plugin containing the presented algorithms the plugin jar �le needs to be

copied into the lib\plugin folder of the RapidMiner directory. For the plugin to operate
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correctly, RapidMiner needs to run on Java-SE 1.7 and the EJML library 0.22 needs to be

installed.

The subspace clustering operators all operate using the sparse data row format for data

retrieval. A user error will be thrown if the exampleset containing the cluster data is not

formated in the double sparse array format.

K-Subspace This operator creates a �at clustering based on the K-Subspace algorithm

over all regular attributes in the example set.

I/O port-name Description

I example set input The exampleset containing the vector space model of the cor-

pus for the clustering

O cluster model The �at clustering model of the exampleset

O example set The original exampleset with the cluster assignments added

as an attribute

I/O Ports of K-Subspace

Parameter Description

k The number of clusters that K-Subspace needs to �nd

eta The η parameter of the sphere model. Sphere radius r =√
σ2η

sigma The σ parameter of the sphere model. Sphere radius r =√
σ2η

max optimization steps The number of iterations of the model and cluster assignment

maximum order The maximum dimensionality of the plane model. A one di-

mensional plane is equivalent to the line model

use sphere model Toggle if the sphere model will be used for the cluster assign-

ment. If o� the algorithm performed is K-Plane

CLIQUE This operator performs the CLIQUE clustering operation for the input ex-

ampleset. Unfortunatelly RapidMiner does not support the output of regions in disjunct

normal form as a valid cluster model. The output of this CLIQUE operator consists of

all found clusters in the model each cluster contains the IDs of all instances that support

it. Additionally an individual attribute for each found subspace is created. This attribute

shows the �at cluster assignment for each subspace.
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I/O port-name Description

I example set input The exampleset containing the vector space model of the cor-

pus for the clustering

O cluster model The �at clustering model of the exampleset

O example set The original exampleset

O example set The original exampleset with the cluster assignments added

as an attribute for each subspace an individual attribute is

created

I/O Ports of CLIQUE

Parameter Description

gridnumber Indicates in how many segments of equal length each dimension needs to

be partitioned. The partitioning will take place over the value range in

each dimension.

threshold The τ parameter of CLIQUE. A unit will be seen as dense if it is supported

by more than this fraction of all instances of the dataset.

ignorezero If set, the operator will ignore zero values in its initial assignment of

instances into units in the one dimensional subspace creation.

FTC This operator performs the Frequent Term-Based Text Clustering algorithm for

the input exampleset. A �at clustering is returned as the cluster model. An attribute of

the cluster assignment is added. The name of the cluster assignment is the contents of the

frequent term set it belongs to.

I/O port-name Description

I example set input The exampleset containing the vector space model of the cor-

pus for the clustering

O cluster model The �at clustering model of the exampleset

O example set The original exampleset with the cluster assignments is

added as an attribute

The only input parameter for FTC is the required minimum support for a relevant

frequent term set. The parameter is de�ned for all values between zero and one and stands

for the fraction of examples of the exampleset that need to be in a term set for it to be

called relevant.
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Experimental Evaluation

In this chapter the previously presented subspace clustering methods will be evaluated on

the task of correctly assigning occurences of homographs in di�erent texts to their true

meaning. First the data that will be used for the empirical tests will be presented. In the

following section the neccessary pre-proccessing steps to transform the raw data into the

vector space model will be explained. After a brief overview of the preformance measure-

ments that were used for evaluation and comparison of the di�erent clustering methods

the results of the classi�cation using CLIQUE, K-Subspace, and FTC will be listed and

discussed.

7.1 Clustering Data

To perform the empirical evaluation a data set created for the task of homograph disam-

biguation will be utilized. The data was collected under the KOBRA initiative. The data

collected in this data set originates from the DWDS core corpus. A query for a known ho-

mograph was performed, in this case the homograph in question was "`Leiter"' (senses for

the German word "`Leiter"' include: leader, ladder). If a match was found the sentences

containing the match as well as the neighboring sentences were saved as a document d of

the data set D.

ID Match Texttype Date Sense Source Copyright

1 . . . Leiter. . . Article 1900-12-31 Leader Kafka, Franz. . . OR7W

Table 7.1: The format of the initial data set used for the experiments

In addition to the matching sentences the data table also includes some metadata (Table

7.1) belonging to the text the sentences was extracted from. This data is not signi�cant

for the evaluation and is removed from the table.

37
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The only important attribute of the original data other than the found match is the "Sense"

label. It contains the meaning of the homograph that was determined manually by a hu-

man. The data set used contains 1993 manually labelled occurences of the homograph

"`Leiter"'. The classes for the labels are:

• Ladder

• Electrical Conductor

• Leader

• Musical Scale

• Unknown Meaning

7.2 Preproccessing

After the homograph data has been imported it needs to be transformed into a VSM to

calculate the clustering. The text proccessing extension of Rapidminer is used to create

the VSM. Two di�erent representations are created, binary term occurrence and TF-IDF.

Both models are used to evaluate CLIQUE, the binary model is used exclusively for the

evaluation of FTC and TF-IDF is the exclusive model for K-Subspace.

In the creation of the VSM the following steps have to be performed to achieve a good

representation of the initial documents.

Tokenization and Filtering The �rst step in the creation of the VSM is to partition

the continuous text of the original data into single terms, the tokens. The easiest way to

achieve this tokenization is to simply parse the text and create a new token whenever a non

alphabetical character is parsed. Unfortunately this method is prone to create tokens that

are too small. Abbreviations containing periods, �oating point numbers or other mathe-

matical representations would either be cut into single letter tokens or ignored completely.

To solve this problem a method that tokenizes a text into its linguistic fragments is used;

it adds a set of linguistic and grammatical rules to the tokenization process such as: A sen-

tence never starts with a small letter. In addition to the application of rules the tokenizer

queries a dictionary with possibly ambiguous tokens to determine a correct partition.

After the text is tokenized a �lter is applied that removes all tokens under a certain length.

Some texts contain single letter words (indeces, �oor numbers/letters, mathematical vari-

ables). Their removal avoids possible false similarities between documents. An example

would be the token "`E"', which could stand for energy in a physics text while also marking

the ground �oor of a building (The letter E marks the ground �oor in German buildings).
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Stop Word Removal and Pruning In this step the most common words of the German

language, the stop words, are removed. Stop words like "`a"' and "`the"' (in this case their

German counterparts) have almost no value if we want to �nd discrimination criterions of

di�erent text classes, because they most likely appear within every document class. Figure

7.1 illustrates how the frequency of a word corresponds to its value in information retrieval.

This relation was �rst described by H.P.Luhn [17]. In addition to the standard stop words

the homograph term is also removed because it occurs in every document of the data set.

The second part of this step is the pruning of the least frequent terms. A term that

Figure 7.1: Word-frequency diagram. Words are arranged in order of frequency [17]

is supported by only one or two documents of the whole data set also has very little

informational value as seen in 7.1. Another reason for this pruning procedure is that the

dimensionality of the VSM is reduced dramatically even if the pruning threshold is very

low. Furthermore two of our three algorithms (CLIQUE, FTC) already use an internal

pruning procedure with thresholds that are higher than the pruning threshold applied at

the VSM creation.

In the experiments that were performed for this evaluation the pruning threshold was set

at the absolute value of 3, which is lower than the cardinality of the smallest class of the

data set.

Stemming In the last preprocessing step all terms are reduced to their stem to further

reduce the dimensionality of the VSM without using any signi�cant informational value. In

the actual data generation this step is performed between stop word removal and pruning

to ensure that the least amount of terms are pruned out of the VSM. Terms that fell under

the threshold before stemming could exceed it by merging with its di�erent conjugations.
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7.3 Evaluation Measures

Evaluation measures of a clustering can be seperated into two categories. The measure-

ments of the �rst category quantify the characteristic that objects within a correct cluster

need to be more similar to each other than objects of another cluster. The measurements

are called internal because no knowledge of the true classi�cation, no information exter-

nal to the clustering itself, is neccessary to evaluate clusters using these methods. The

most general form of an internal measure is a simple quanti�cation of the similarities of

all objects within a cluster for all clusters. This measurement is called the intra cluster

similarity. The other internal measurement compares how di�erent clusters are to each

other and generates inter cluster similarity.

In our experiments internal measurements will not be used for evaluation because they rely

on distance metrics, which fail in high dimensionality. It would be possible to compare

clusters within a subspace using internal measurements but it would be impossible to apply

an internal measurement over the whole clustering because inter measurements cannnot

be applied between di�erent subspaces and intra measurments cannot be compared in a

meaningful way.

To evaluate CLIQUE, K-Subspace and FTC a selection of external measurements was

made. The labelled data makes it possible to quantify the degree of classi�cation quality

of the clustering produced by the three algorithms. It is, however, neccessary to create a

unique set of measurements for each algorithm because they each produce a di�erent type

of clustering. K-Subspace produces a �at, hard clustering that covers all instances of the

data set with as many clusters as true classi�cation classes. FTC also produces a �at,

hard clustering but the number of clusters is not �xed and will often exceed the number of

actual classes. FTC produces a cluster for the empty term set, which can be interpreted

as an assignment to noise. CLIQUE produces a clustering for each found subspace. If we

want to evaluate the whole clustering produced by CLIQUE we need measurements that

can deal with overlapping, hierarchical clusterings.

Matching Matrix In a matching matrix each column represents the instances in a

predicted class, while each row represents the instances in an actual class. The diagonal

of the matrix shows how many true positives are in the classi�cation of the clustering [29].

A matching matrix requires that as many predicted classes (clusters) are produced as the

number actual classes, which means that it will only be used to evaluate K-Subspace.

Utilizing the matching matrix a number of essential performance measurements can be

calculated.

Precision quanti�es the degree of how many documents in a cluster actually are classi�ed
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correctly after the cluster has generated a prediction label. The precision for a cluster Ci

that for the class Kj is de�ned as

precisionKj (Ci) = p(Kj |Ci) =
|Ci ∩Kj |
|Ci|

.

Recall measures how many documents that belong to a certain class were extracted by a

cluster

recallKj (Ci) = p(Ci|Kj) =
|Ci ∩Kj |
|Kj |

.

Precision and recall can be calculated for any cluster in relation to a class but the matching

matrix makes it possible to calculate the overall accuracy of the clustering by assigning

a �xed predicted class to a cluster. The overall accuracy based on the matching matrix

where each cluster was assigned a class out of K is calculated as

accuracy(C) =
∑
Kj∈K

precisionKj (CKj ) · recallKj (CKj )

Purity A more general form of determining the classi�cation performance of a clustering

is the purity measure. Its only requirement is that the produced clustering is �at. Each

cluster is assigned to the actual class that is most frequent within it. The number of true

positives of each cluster acording to their labeled class is aggregated and then divided by

the total number of instances n.

1

n

∑
Ci∈C

max
Kj∈K

|Ci ∩Kj |.

All presented measurements until now have signi�cant disadvantages when it comes to

evaluate the classi�cation of an unbalanced data set. If there was a two class data set that

had 100 instances with 90 belonging to class A and 10 belonging to class B a classi�cation

which would put all objects into a single predicted class would still receive an accuracy and

purity measure of 90% . The simplest way to create a purity measurement that considers

unbalanced data sets is to add the additional condition that the class selection for clusters

needs to give more weight to the recall. It is added as a maximization constraint to the

original purity measure; each cluster is now assigned to the class producing the largest

recall for the cluster.

Entropy Until now performance of a cluster was measured by assigning a cluster to

one speci�c class. The ultimate goal of any classi�cation algorithm is the elimination of

uncertainty. To evaluate its performance the initial number of actual classes needs to be

taken into account because corretly assigning an instance to one of ten classes is likely a

harder task than the assignment to one out of two. Entropy provides this by measuring
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the remaining uncertainty after the clustering for each cluster over all actual classes [26].

For a single cluster the entropy is computed as

H(Ci) =
∑
Kj∈K

−p(Kj |Ci) · log(p(Kj |Ci)).

The entropy is lowest (zero) if the instances located in a cluster have no uncertainty of

belonging to a class, which is equivalent to the cluster only featuring one class of instances.

It is highest (ln(|K|)) if the objects are equally distributed over all classes.

The entropy for the whole clustering is a simple weighted aggregation of all single cluster

entropies.

H(C) =
∑
Ci∈C

|Ci|
n
·H(Ci)

F-Measure The clustering provided by CLIQUE requires a measurement that can deal

with cluster overlap and hierarchical structures. While most presented measurements work

for the evaluation of a single subspace of CLIQUE the whole clustering cannot be evaluated,

because the normalization of the measurement aggregate produces false results for non-�at

clusterings.

F-Measure [25] produces a classi�cation performance that considers both precision and

recall

Fβ = (1 + β2)
precision · recall

(β2 · precision) + recall

for a cluster. The most common F-Measure is F1 which calculates the harmonic mean

between precision and recall. For evaluation F1 and F2, which weights recall higher will

be used.

What makes F-Measure so valuable for the evaluation of CLIQUE is that its aggregation

is performed over the actual classes in contrast to clusters [30]. The aggregation for any

clustering is computed as ∑
Kj∈K

|Kj |
n

max
Ci∈C

(Fβ(Ci,Kj)).

Using this measurement a comparison between all three implemented algorithms is possible.

7.4 Results

7.4.1 CLIQUE

The �rst series of test performed on the CLIQUE operator aims to evaluate how the num-

ber of intervals each dimension is partioned in a�ects the clustering result. The input was

a TF-IDF vector space model. The density threshold τ was left constant at 0.2%.

The diagramms of 7.2 show that a increase of partitions leads to a decrease in subspaces

found especially in higher dimensions. Another interesting �nding is that the average
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Figure 7.2: The e�ects of the number of partitions on average cluster size (big diagramm) and

found subspaces (small diagramm)

cluster size of the low dimensional subspaces is not a�ected as much as the number of

subspaces found. The number of found clusters in the one dimensional subspaces predom-

inantely stayed at 1 indicating that a cluster was built over the whole TF-IDF value range

of the particular term.

The number of partitions also a�ected the overall clustering quality. Table 7.2 shows that

ξ F1(C) F2(C)

4 0.216 0.131

8 0.214 0.129

12 0.209 0.122

16 0.208 0.118

20 0.210 0.119

Table 7.2: E�ects of the partition number on the clustering quality

the clustering quality based on aggregated F-Measure got worse as the number of parti-

tions increased. The e�ect on the F2 measure was also greater indicating that a higher

partitioned space will result in a worse recall overall in text clustering. The reason for

this is that documents that share a single term set with more than one item will not be

clustered together in higher partitioned space if the single terms of the term set appear in

di�erent frequencies; especially with sparse datasets.
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To �nd all possible higher dimensional subspaces it was decided to partition the space

into only one interval. With this restricion added to the previous sparse data restricion

CLIQUE's subspace search is equivalent to the relevant term set search of FTC.

The last round of test performed on CLIQUE evaluated the a�ects of the density thresh-

old τ on the cluster quality. The results in table 7.3 show that CLIQUE returns it best

τ in % No. Subspaces F1(C) F2(C) Maximum Dimensionality

0.2 9191 0.218 0.131 12

0.3 1739 0.217 0.131 6

0.4 930 0.217 0.131 4

0.5 621 0.214 0.130 3

0.6 461 0.213 0.130 3

0.7 333 0.213 0.130 2

0.8 261 0.213 0.130 2

0.9 219 0.213 0.130 2

1.0 181 0.213 0.130 2

1.1 149 0.212 0.130 2

1.2 121 0.212 0.130 2

1.3 105 0.212 0.129 2

1.4 84 0.212 0.129 2

1.5 70 0.212 0.129 1

Table 7.3: E�ects of the density threshold

result under the F-Measurement at a completely unacceptable number of subspaces. The

clustering quality does not decrease dramatically with higher thresholds but the subspaces

found only contain one or two terms. Furthermore, the clustering produced is still overlap-

ping. The conclusion of the tests show that CLIQUE has no advantages to a simple term

fequency mining with regards to its application for homograph disambiguation.

7.4.2 Frequent Term-Based Text Clustering

The only parameter that in�uences the clustering of FTC is the minimum support for

relevant term sets. The pictures in 7.4 show that number of clusters reduces dramatically

for even a small increase in the required minimum support.

With higher minimum support FTC starts to produce a cluster that belongs to the empty

term set. For this evaluation documents that belong to this cluster are declared as unclus-

tered because no enrichement of the data took place.
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Table 7.4: The cluster number (logarithmic scale) and sizes in relation to the minimum support

An interesting point to note is that the biggest and smallest clusters do not increase

strictly monotonically with higher minimum support. This is an result of the entropy over-

lap selection. If two clusters with a high document overlap are selected after each other the

cluster that was selected �rst will contain all documents while the second only keeps its

non-overlapping documents; even high minimum support can lead to very small clusters

this way.

Figure 7.3: The di�erent evaluation measurements normalized.



46 CHAPTER 7. EXPERIMENTAL EVALUATION

Diagramm 7.3 shows the di�erent clustering quality results. The entropy measure was

normalized from its [0, ln(|K|)] value range. The "Standard Entropy" line represents the

entropy of the class distribution of the data set.

FTC produces seemingly excellent results for very small minimum supports based on the

entropy. Unfortunately the good entropy is the result of the small average cluster size.

Many clusters do not even reach a size higher than the number of classes which means that

many very small clusters produce a single cluster entropy of zero, which skews true cluster

quality based on entropy. The true measurement of cluster quality for small minimum

support values is better re�ected by F-Measure, which punishes the large amount of small

clusters better than entropy.

Another interesting observation for small minimum support values is the divergence be-

tween the regular purity measure and the purity measure based on recall, which is generally

lower. FTC seems unable to produce pure clusters for documents located in smaller classes.

The biggest problem of FTC is, however, the increasing number of unclustered documents

for higher minimum support values. While the entropy measure stays under the standard

entropy, which means a reduction in classi�cation uncertainty, it is important to note that

it only applies to a decreasing number of documents (represented by the "Clustered Docs"

line in 7.3). At a minimum support of 3% FTC still produces 14 cluster that only contain

52% of the documents. Furthermore, the term sets that produce the clusters often only

contain one item, for the same reasons CLIQUE only produces one dimensional subspaces

for higher density thresholds.

FTC has many advantages over CLIQUE like �at clustering and the correct treatment of

sparse data but the too high number of clusters make it only useful for data enrichment

and disqualify it from actual automatic homograph disambiguation.

7.4.3 K-Subspace

K-Subspace required a di�erent testing procedure because it is the only examined algorithm

that is not deterministic (initilization of the �rst assignment). For tests of K-Subspace ten

passes of clustering were performed. Boxplots were chosen for the visualization of the re-

sults.

The �rst set of test that was performed with K-Subspace regarded the radius of the Sphere

model. Using the TF-IDF for input it was discovered that even small increases in the

radius of the sphere model would decrease the classi�cation accuracy. The cause for this

reduction is that all values in TF-IDF lie in a very small interval and a sphere with even a

small radius covers a huge region of the whole data set, leading to almost all assignments

going to one sphere model. Therefore the sphere radius (de�ned by parameters σ and η)

was set as zero.
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K-Subspace still performed badly with accuracies that barely lie over random chance

Figure 7.4: Accuracy of K-Subspace classi�cation in %. Red line represents the average accuracy.

assignments. The entropy evaluation 7.5 shows that almost no uncertainty is removed by

the cluster classi�cation.

The relatively good accuracy performance around 50% for a �ve class classi�cation prob-

lem 7.4 is a result of the inbalance of the data set. The cluster purity measure of all passes

stayed at a constant 0.831, which is the fraction of documents that belong to the biggest

class.
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Figure 7.5: K-Subspace entropy. Line represents the standard entropy of the data set.

Figure 7.6: F-Measure of K-Subspace

A k-Nearest-Neighbor learner was used for comparison. K-Subspace was outperformed

in all measurements. A balanced sampling of 10% of the data set was used for training.

Accuracy Precision Recall

K-Subspace 54.29% 22.12% 18.05%

k-NN 67.08% 29.21% 40.18%

Table 7.5: Average accuracy measurements of K-Subspace in comparison to a k-NN learner.

Precision and recall are the mean weighted to the predicted class size.



Chapter 8

Summary and Conclusion

The high-dimensionality of data in text processing makes the development of subspace

clustering algorithms with good classi�cation accuracy an essential task for text mining.

This work discussed the merit of the three clustering algorithms CLIQUE, FTC, which have

a strong relation to the frequent term set search algorithm APRIORI, and K-Subspace, a

correlation clustering algorithm.

The empiric evaluation on the task of homograph disambiguation of all three algorithms

showed that both algorithms that search for axis-parallel subspaces, CLIQUE and FTC,

produce a result with too many clusters for a satisfying classi�cation. FTC showed promise

for data enrichment because the cluster descriptions, the frequent term sets, could be used

to train a supervised classi�er.

K-Subspace was able to provide a clustering that can be used as a classi�cation, but its

accuracy is too low and too dependent on the randomized initialization to be of any aid

for homograph disambiguation.

While the results were dissapointing they only represent a fraction of the current subspace

clustering methods and were only performed on a small data set. The performance of k-NN

suggest that a top down subspace clustering algorithm, which relies on local similarity for

clustering might perform better than the algorithms in this work.
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Appendix A

Apendix

Figure A.1: F-Measures of CLIQUE based on the density threshold.
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Cluster

Size

MinSupp Purity Purity

(recall)

F-

Measure

Non

Clus-

tered

#ClustersBiggest Smallest Average

0,003 0,943 0,930 0,013 0 1082 7 1 1,842

0,004 0,914 0,903 0,016 0 743 8 1 2,682

0,005 0,894 0,882 0,020 12 535 12 1 3,703

0,006 0,884 0,863 0,023 23 393 13 1 5,013

0,007 0,867 0,839 0,026 38 304 18 1 6,431

0,008 0,853 0,828 0,029 63 236 25 1 8,178

0,009 0,842 0,817 0,032 80 199 31 2 9,613

0,010 0,825 0,807 0,039 117 166 37 4 11,370

0,011 0,806 0,787 0,047 156 136 43 4 13,507

0,012 0,774 0,762 0,050 202 115 53 5 15,574

0,013 0,743 0,736 0,061 269 94 66 1 18,340

0,014 0,710 0,705 0,072 345 74 79 7 22,270

0,015 0,699 0,696 0,080 365 67 89 12 24,299

0,016 0,673 0,670 0,085 440 56 97 6 27,732

0,017 0,661 0,658 0,088 476 50 101 9 30,340

0,018 0,647 0,646 0,095 510 45 111 9 32,956

0,019 0,628 0,626 0,102 556 39 119 18 36,846

0,020 0,612 0,611 0,104 589 36 122 18 39,000

0,021 0,578 0,578 0,117 682 29 139 21 45,207

0,022 0,543 0,543 0,113 763 24 135 32 51,250

0,023 0,536 0,536 0,123 777 23 147 22 52,870

0,024 0,531 0,531 0,128 790 22 154 22 54,682

0,025 0,523 0,523 0,132 805 21 159 22 56,571

0,030 0,458 0,458 0,162 952 14 200 26 74,357

0,035 0,430 0,430 0,166 1024 11 206 53 88,091

0,040 0,389 0,389 0,164 1111 9 205 72 98,000

0,045 0,369 0,369 0,179 1153 8 225 64 105,000

0,050 0,280 0,280 0,177 1344 5 222 90 129,800

Table A.1: Result data of FTC experiments
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