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Neuroblastoma is a common childhood tumor comprising
cases with rapid disease progression as well as sponta-
neous regression. Although numerous prognostic factors
have been identified, risk evaluation in individual patients
remains difficult. To define a reliable prognostic predictor
and gene signatures characteristic of biological subgroups,
we performed mRNA expression profiling of 68 neuro-
blastomas of all stages. Expression data were analysed
using support vector machines (SVM-rbf), prediction
analysis of microarrays (PAM), k-nearest neighbors
(k-NN) algorithms and multiple decision trees. SVM-rbf
performed best of all methods, and predicted recurrence of
neuroblastoma with an accuracy of 85% (sensitivity 77%,
specificity 94%). PAM identified a classifier of 39 genes
reliably predicting outcome with an accuracy of 80%. In
comparison, conventional risk stratification based on
stage, age and MYCN-status only reached a predictive
accuracy of 64%. Kaplan–Meier analysis using the PAM
classifier indicated a 5-year survival of 20 versus 78%
for patients with unfavorably versus favorably predicted
neuroblastomas, respectively (P¼ 0.0001). Significance
analysis of microarrays (SAM) identified additional genes
differentially expressed among subgroups. MYCN-ampli-
fication and high expression of NTRK1/TrkA demon-
strated a strong association with specific gene expression
patterns. Our data suggest that microarray-derived data
in addition to traditional clinical factors will be useful for
risk assessment and defining biological properties of
neuroblastoma.
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Introduction

Neuroblastoma is a common childhood tumor derived
from primitive sympathetic neuroblasts and charac-
terized by its clinical and biological heterogeneity.
Contemporary treatment protocols achieve long-term
event-free survival (EFS) rates of approximately 30%
for advanced stage neuroblastoma (Matthay et al.,
1999). Numerous studies have demonstrated that mole-
cular and cytogenetic features of clinically aggressive
neuroblastomas differ from those observed in tumors
associated with a favorable outcome (Schwab et al.,
2003). Staging and risk assessment currently rely on
histopathology and determination of a few clinical
and biological risk factors including patient’s age,
tumor stage, amplification of the MYCN-oncogene,
allelic deletions of regions in chromosomes 1p, 3p, 11q
and 14q as well as differential expression of the neuro-
trophin receptors TrkA/TrkB and other genes (reviewed
in Schwab et al., 2003). Additionally, amplification of
chromosome 17q is frequent in neuroblastoma and is
associated with a poor prognosis (Caron, 1995; Bown
et al., 1999). MYCN-amplification correlates with high
tumor stage and poor prognosis (Brodeur et al., 1984),
and is used worldwide as a treatment stratification
parameter in clinical neuroblastoma trials. Accordingly,
patients with MYCN-amplified tumors receive a more
intense treatment.

Accumulating evidence suggests that at least three
biological subtypes of neuroblastoma can be distin-
guished (Maris and Matthay, 1999; Brodeur, 2003). The
first group, characterized by hyperdiploid karyotype,
lack of structural chromosomal changes, high TrkA
expression and low tumor stage, is concomitant with a
favorable prognosis. A second group of intermediate
prognosis includes patients with near-diploid or tetra-
ploid tumors, low TrkA expression, and structural
chromosomal anomalies, but lacking MYCN-amplifica-
tion. The last group exhibits highly malignant clinical
behavior, and is characterized by MYCN-amplification,
1p deletion and elevated TrkB expression. In particular,
the intermediate neuroblastoma type is still a biologically
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heterogeneous group, which has to be more clearly
subdivided by specific gene signatures.

Consistent with its genetic diversity, the hallmark of
neuroblastoma is its clinical heterogeneity. Surgery
combined with little or no adjuvant therapy is sufficient
for curing children with localized disease (Yamamoto
et al., 1998) or infants with a unique pattern of
disseminated disease, often demonstrating complete
spontaneous regression (stage 4s). In contrast, for the
majority of older patients with metastatic disease, the
outcome is usually fatal due to relapse within 3 years of
diagnosis, despite good responses to first-line therapy.

Although risk stratification according to broad
biological subgroups has led to marked therapeutic
improvements, outcome prediction still remains unsa-
tisfactory. To avoid overtreatment of spontaneously
regressing tumors and undertreatment in aggressive
neuroblastomas, precise prediction of tumor behavior
and risk assessment of each individual patient at
diagnosis is a major goal of current neuroblastoma
research.

With the recent development of cDNA microarrays,
it is now possible to take a genome-wide approach
for improving neuroblastoma classification and/or risk
prediction. In the current study, oligonucleotide-based
microarray analysis was assessed as a tool for better risk
stratification of neuroblastoma. This could serve as a
prerequisite to a more individualized, patient-tailored
therapy based on expression patterns characteristic of
biological subgroups and/or associated with therapy
response. The main goals of this study were prediction
of EFS or early relapse and identification of subgroups
defined by clinical or biological features.

Results

Prediction of early recurrence in neuroblastoma

We first assessed the correlation of known major risk
factors with overall survival in our patient group. In
agreement with previous studies, Kaplan–Meier analysis
revealed a significant association of MYCN-amplifica-
tion (P¼ 0.008) and tumor stage (P¼ 0.02) with reduced
overall survival, as well as a strong trend for 1p LOH to
correlate with overall survival (P¼ 0.07) (data not
shown). However, for prediction of early relapse neither
of these risk factors alone could be reliably used as
determined by Fisher’s exact test in our data set
(Table 1). Combined conventional risk stratification
based on stage, age and MYCN-status according to the
German neuroblastoma trial NB-97 only reached a
predictive accuracy of 64% for relapse within 2 years of
diagnosis (¼ ‘early relapse’) in the patient cohort of this
study. Patients with early relapse due to aggressive
disease represent the highest challenge in neuroblastoma
treatment. If identified at the time of diagnosis, this
patient group might benefit most from more aggressive
or additional treatment approaches. We, therefore,
aimed at defining a reliable predictor for EFS or early
relapse by expression profiling. Expression profiles from

68 primary neuroblastoma specimens were obtained
using Affymetrix U95Av2 chips. For appropriate
adjustment for known predictors, patients with no
evidence of disease (NED) within 2 years of diagnosis,
but demonstrating MYCN-amplification or 1p deletion,
were excluded from training sets. These patients have a
high risk for later relapse and interfere with prediction
accuracy when grouped as favorable outcome. A total
of 44 patients (Table 1), comprising 13 patients with a
clinically defined event (relapse group) and 31 patients
with NED and a sufficient follow-up time of >2 years
(NED group), were eligible for predictor building.
Exclusion of patients receiving chemotherapy prior to
mRNA expression analysis did not improve prediction
sensitivity. Using balanced sample numbers (n¼ 10
randomly chosen from both NED and relapse group),
SVM-rbf correctly predicted early relapse in 85% of
cases in the training set, while PAM resulted in 80% and
multiple decision trees in 77% prediction accuracy.
Class assignments using k-NN varied markedly between
independent rounds of cross validation, resulting in a
high standard deviation of prediction accuracy (data not
shown). In all, two patients with recurrent disease were
consistently misclassified as NED by all methods, resul-
ting in a sensitivity of 77% and a specificity of 94% in
terms of relapse prediction and reflecting the homo-
geneous gene expression patterns in the NED group.

All patients who died of disease were correctly
predicted as relapse patients. Closer examination of
the clinical follow-up revealed that the two patients
wrongly classified as ‘NED’ had demonstrated localized
recurrence of disease, but were in complete remission
(CR) or very good partial remission (VGPR), respec-
tively, after a second round of treatment. Patients with
NED but remission time o2 years (n¼ 15) were not
included in the training set, but were classified as NED
for 13 out of 15 stage 1/2 patients and as ‘early relapse’
for four out of six patients with stage 3/4 when used as
an independent test set. In multivariate analyses (logistic
regression analysis), the SVM predictor proved to be
independent of MYCN-amplification and 1p LOH.
Interestingly, Kaplan–Meier analysis using the SVM
predictor indicated a 5-year survival of 22 versus 80% of
unfavorably versus favorably predicted neuroblastomas,
respectively (P¼ 0.007, Figure 1a).

Supervised analysis using PAM with leave-one-out
cross validation identified a 41-probe set classifier as the
optimal set of genes resulting in the minimum classifica-
tion errors. These 41 probe sets represented 39 genes (37
known genes and two expressed sequence tags) and
reliably distinguished tumors with early relapse from
those associated with EFS >2 years with an accuracy of
80% (Figures 1b and 3e). Two of the genes, NME1 and
PFN2, were represented by two independent oligonu-
cleotide probes and, hence, acted as internal validation
for these genes. We also validated the top-ranked 24 of
the 37 known genes by quantitative reverse transcription
PCR (data not shown). Only five of the 37 genes have
previously been implicated in neuroblastoma biology
(LDHA, LDHB, NME1, NME2 and HSPCA). Kaplan–
Meier analysis using the PAM classifier indicated a
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5-year survival of 20 versus 78% of unfavorably versus
favorably predicted neuroblastomas, respectively (P¼
0.0001, Figure 1b). Of the patients, 23% with event were
correctly predicted only by the PAM classifier, but not
by conventional risk stratification. We additionally
performed univariate cox regression analysis for each
of the 41 probe sets in the PAM signature, and the
expression values for all probe sets except one were
significantly associated with EFS (log-rank, Po0.05). In

contrast, when drawing 40 genes randomly from the
12 000 genes on the chip, none was associated with survi-
val (data not shown). We also validated the 15 top-
ranked genes of the PAM classifier by real-time PCR in
tumors which were not used for predictor building. All

Table 1 (a) Clinical characteristics of neuroblastoma patients and (b)
correlation of clinical parameters with recurrent disease as determined

by Fisher’s exact test

(a) Characteristics of 68 neuroblastoma patients included in this study

Age (year) Number (% of total) No. of profiles
used for SAM

analyses

o1 34 50.0 30
>1 34 50.0 28

INSS stasge
1 20 29.4 20
2 16 23.5 16
3 7 10.3 NA
4 15 22.1 9
4s 10 14.7 9

MYCN status
Normal 59 86.8 45
Amplified
(>10 copies)

9 13.2 9

Status of
chromosome 1p
No LOH 1p 40 58.8 37
LOH 1p 14 20.6 9
Undetermined 14 20.6 NA

Recurrence of
disease within
2 years following
first-line therapy

No. of profiles
used for predictor

building

No evidence of
disease >2 years

31 45.6 10

Recurrent
disease

13 17.6 10

(b)

Early
relapse

No evidence of
disease >2 years

P-value

MYCN (normal –
amplified)

9–3 26–5 0.66

1p (normal – 1p
LOH)

5–6 17–11 0.48

Age (o1 year – >1
year)

3–9 14–17 0.30

Stage 1, 2 – Stage 4 5–5 15–5 0.23
Stage 4 – Stage 4s 5–0 5–7 0.044

INSS staging was performed by local pathologists and confirmed
independently. MYCN-amplification and 1p-LOH was determined by
Southern blotting and fluorescence in situ hybridization (FISH),
respectively. Patients receiving prior chemotherapy were excluded
from SAM analysis. To predict EFS or relapse, patients with NED and
follow-up o2 years were excluded. NA: not applied. ‘Early
relapse’¼ recurrent disease within 2 years of diagnosis

Figure 1 (a and b) Kaplan–Meier analyses for patients stratified
by microarray-based predictions. Analysis was performed on 68
patients included in this study as outlined in Materials and
methods. The application of an SVM-based predictor (a) and a
PAM-based predictor (b) trained for predicting event-free survivors
(EFS) versus relapse patients is shown. (c) Box plots of quantitative
real-time PCR results. As a representative example, mRNA
expression of PSMD10 and NEDD8 (top-ranked genes of the
PAM-based predictor) was validated in 32 neuroblastomas, which
were not used for PAMmodel building and had a follow-up time of
>2 years. Expression of both genes was significantly different in
patients with EFS versus patients with relapse (P¼ 0.01 for
PSMD10 and P¼ 0.05 for NEDD8)
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but one gene (PFN2) was differentially expressed bet-
ween EFS and relapse patients as predicted by the PAM
classifier. According to univariate analysis, differential
mRNA expression in EFS versus relapse patients was
statistically significant for two genes (PSMD10 and
NEDD8, Po0.05, Figure 1c).

Interestingly, patients with stage 4 could not be
reliably distinguished from those with stage 4s using
either SVM-rbf, PAM, k-NN or multiple decision trees.
A training set learned by k-NN analysis resulted in a
predictor failing to assign stage 4 patients correctly in an
independent data set (data not shown).

Correlation of biological and clinical parameters with
expression patterns

We used significance analysis of microarrays (SAM;
Tusher et al., 2001) for molecular characterization of
neuroblastoma subgroups of known biological and
clinical relevance. Patient numbers for each group are
depicted in Table 1. Scatter plots illustrate that bio-
logical parameters of prognostic relevance including
MYCN-amplification (Figure 2a), expression level of
TrkA/NTRK1 (Figure 2b) and 1p LOH (data not
shown) were strongly associated with broad specific
gene signatures. A strong association with specific gene

signatures was also found for local (stage 1þ 2) versus
metastatic (stage 4) disease (Figure 2c). In contrast,
pairwise comparison of other clinically defined groups
of prognostic relevance including stages 4 versus 4s
(Figure 2d) and age o1 year versus >1 year (data not
shown) resulted in only a few significantly discriminat-
ing genes when the false discovery rate (FDR) was
adjusted to 0.1 (Table 2). The 30 top-ranked genes
distinguishing between the subgroups mentioned above
are displayed as heatmaps (Figure 3a–d). Interestingly,
TrkA was associated with the highest number of regu-
lated genes compared to all other biological or clinical
factors analysed. More than 1000 genes were coregu-
lated with TrkA/NTRK1 at an FDR o0.1, when the 20
tumors with highest TrkA/NTRK1 expression were com-
pared to those 20 with lowest TrkA/NTRK1 expres-
sion. Classification of these genes on the basis of gene
ontology (GO) revealed neurogenesis, cell adhesion and
protein phosphorylation as major biological processes
regulated by TrkA/NTRK1 expression (data not shown).

Discussion

Although microarray technology is now available to
many researchers, methods for evaluation and inter-
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Figure 2 Scatter plots reveal differential expression of genes in pairwise comparisons of neuroblastoma subgroups: (a) tumors with
MYCN-amplification versus tumors with normal MYCN, (b) 20 tumors with the highest TrkA/NTRK1-expression versus 20 tumors
with the lowest TrkA-expression, (c) patients with stage 1 or 2 (localized) versus stage 4 (metastatic) neuroblastoma (d) patients with
stage 4 versus stage 4s. Observed: observed relative difference; expected: expected relative difference; D values correspond to an FDR of
o5% for (a–c) and o20% for (d) in the respective analyses
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Figure 3 Visualization (heat map) of the 30 top-ranked genes identified by SAM analysis (a–d) and the 39 top-ranked genes identified
by PAM analysis (e) to discriminate tumors with: (a) MYCN-amplification versus normalMYCN (genes known to be coamplified with
MYCN are shown in red); false discovery rate (FDR¼ 2.1%). (b) High TrkA/NTRK1 expression versus low TrkA/NTRK1 expression;
(FDR¼ 1.6%). (c) Stage 1/2 versus stage 4 (FDR¼ 2.2%). Note that stage 3 tumors have either characteristic signatures of stage 4 or
stage 1/2. (d) Stage 4 versus stage 4s (FDR¼ 30%); (e) EFS versus early relapse (FDR was incalculable)

Table 2 Absolute gene numbers differentially expressed in pairwise comparison of clinically or biologically defined subgroups

Biological subgroups Clinical subgroups

FDR (90th
percentile)

1p LOH/
normal

MYCN ampli-
fied/normal

TrkA high/low Stage 1 or 2/
Stage 4

Stage 4/
Stage 4s

Ageo1 year/
>1 year

Recurrent
disease/NED

o20% 517 1349 3108 956 8a 13 0
o10% 155 660 2359 364 0 0 0
o5% 65 360a 1661a 208a 0 0 0

FDR: false discovery rate. aDepicts analyses visualized in Figure 2
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pretation of microarray data are still evolving. To date,
most microarray studies presented from clinical settings
concentrated on classification and/or pattern recogni-
tion for discrimination among different tumor types or
subgroups. Prediction of clinical outcome has only
recently come into the focus of microarray studies
(Pomeroy et al., 2002; van de Vijver et al., 2002; Ntzani
and Ioannidis, 2003; Nutt et al., 2003). Most recently, a
data set has been published, in which 19 genes were
sufficient to predict outcome in high-risk neuroblastoma
(Wei et al., 2004). Since these data were obtained in a
limited number of tumor samples (28 training samples
and 21 test samples), there is clearly a need for testing
this predictor prospectively in a larger study cohort.
Other published microarray studies for neuroblastoma
have dealt with group discrimination by the biological
features, MYCN-amplification (Alaminos et al., 2003),
telomerase activity (Hiyama et al., 2003) or expression
of fyn kinase (Berwanger et al., 2002). Additionally, two
studies identified gene expression patterns characteristic
of favorable and unfavorable neuroblastomas (Hiyama
et al., 2004; Ohira et al., 2003).

Here, we generated expression profiles of 68 tumors
using HG-U95Av2 chips (Affymetrix) to characterize
the neuroblastoma transcriptome comprising all clinical
stages. We focused on molecular definition of clinical
and biological subgroups as well as prediction of EFS or
recurrent disease within 2 years of first-line therapy
(‘early relapse’). As neither known clinical risk factors
nor SAM analyses were suitable to reliably discriminate
between NED and ‘early relapse’ in our data set, the
need for applying prediction tools based on machine
learning was evident. We demonstrate the value of
SVM-rbf and PAM for outcome prediction based on
microarray data, in particular for the small sample size
available for this study. Owing to the relatively small

number of patients with clinically defined events
(n¼ 13), for both methods the predictors were built
based on crossvalidation rather than division of the data
into training and test groups. As previously described,
10 independent rounds of crossvalidation are rigorous
enough to obtain a robust assessment of a predictor
even in small sample sets, and are more accurate than
leave-one-out crossvalidation (Quinlan, 1993; Witten
and Frank, 2002). We evaluated k-NN, SVM-rbf, PAM
and multiple decision trees for predictor building in
neuroblastoma. k-NN-based class assignment had the
disadvantage of being most variable during independent
rounds of crossvalidation (data not shown). SVM-rbf,
PAM and multiple decision trees were more robust in
our model, with SVM-rbf yielding the highest accuracy
of class assignment (85%, PAM: 80%, multiple decision
trees: 77%). However, class prediction by SVM-rbf does
not allow the identification of a specific group of genes
characterizing each group, which is important for the
confirmation of our data by future independent studies.
We therefore applied PAM analysis to generate a
reliable classifier consisting of a specific gene signature.
The PAM classifier identified here consisting of 39 genes
provided a marked improvement in prediction over the
conventional risk stratification currently used in the
German neuroblastoma trial, as 23% of the patients
with event were correctly predicted only by this PAM
classifier, but not by conventional risk stratification.
In particular, the additional partition of stratified high-
risk patients by the PAM classifier into two subgroups
according to their survival status has to be validated
prospectively in a larger study cohort, before the
statement of a major clinical implication of the 39
predictor genes identified here is justified.

Of the 37 known predictor genes (Figure 3e), seven
genes have been previously reported to be expressed
in neural tissue and/or during neuronal development
(NEDD8, HSPD1, PSMC1, PRPS1, PFK, TKT and
SCHIP-1) and five genes have been implicated in
tumorigenesis (NME1, NME2, HSPCA, TCEB1,
PGK1 and SCHIP-1). A remarkable amassment of
predictor genes in the fields, ‘proteasome’ (PSMC1,
PSMB5, NEDD8, PSMA6, PSMD10, GA17) and ‘heat
shock response’ (HSPCA, HSPD1, AHA-1, HSPCB),
suggests that these areas may be promising targets for
novel therapeutic approaches. Of additional interest is
the chromosomal localization of five predictor genes,
which map to regions frequently deleted or amplified
in neuroblastoma: NDUFAB1 (16p12), NME1 and
NME2 (17q21), TKT (3p14) and HSPCA (14q32). Most
recently, a 19-gene predictor for neuroblastoma was
identified using artificial neural networks (Wei et al.,
2004). Owing to the overall low numbers of neuroblas-
toma patients being treated each year, both expression-
profiling studies were conducted using relatively limited
sample sizes (49 primary neuroblastomas in the study by
Wei et al. (2004) and 69 primary neuroblastomas in this
study). Meta-analysis or validation of the predictors
identified in both studies in an independent sample set
would be most desirable. However, as two different
microarray platforms and different data interpretation

Figure 3 Continued
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methods have been used for the two studies, and nine of
the 19 predictor genes identified by Wei et al. (2004)
were not present on the Affymetrix array used here, a
direct comparison of the results for validation is not
possible. Expression of DLK1, the top-ranked gene of
the 19-gene classifier, was not significantly different in
the EFS versus early relapse group of our study cohort
(as measured by Affymetrix arrays as well as quantita-
tive real-time PCR, data not shown). Together with the
fact that there is no overlap of the predictor genes
identified in both studies, this indicates a strong
influence of the choice of microarray platform, data
interpretation method and study cohort on the results of
expression profiling studies aiming to predict outcome in
primary tumors. The obvious differences in the methods
and the results of the studies performed here and by Wei
et al. (2004) strongly emphasize the importance of a
prospective analysis of both predictors in an indepen-
dent larger study cohort. In a very recent paper, Ohira
et al. (2005) reported on the prognosis of intermediate
risk neuroblastomas predicted by expression profiling.
Although this study was also performed using a
different technological platform, we identified two
genes, AHCY and TKT, as associated with unfavorable
outcome in our analysis as well.

For all methods tested in this study, two patients with
clinically defined events were consistently misclassified.
These patients were wrongly assigned ‘EFS’, however,
after a second round of treatment they had either VGPR
or CR according to INSS criteria (Brodeur et al., 1993).
This implies that patients with clinically defined events
but good response to second-line therapy might be
indistinguishable from patients with NED by our
current predictor. However, both tumors were also not
identified by any known clinical factor of adverse
prognosis. The failure to identify the elevated relapse
risk in these tumors by clinical and molecular ap-
proaches suggests that these tumors are biologically
more similar to tumors from patients with NED. In
contrast, all patients who died of disease were correctly
classified as ‘relapse’ by all methods applied. Testing the
predictors with independent data sets from tumors not
included in the training sets grouped two of three relapse
patients correctly, while nine out of twelve patients with
NED and a follow-up >2 years were predicted as NED.
Owing to the small number of events these prediction
assignments need to be verified after extension of the
follow-up time of all patients >3 years. At that time, the
data of this study should also be reanalysed with regard
to survival itself as an end point. This will enable us to
further test the validity and develop our model predictor
for clinical use in the future.

Surprisingly, reliable discrimination between patients
with stages 4 and 4s tumors (all prior to chemotherapy)
in our data set was not feasible by supervised learning
methods. This may reflect biological heterogeneity in
either group. SAM analysis identified a few differentially
expressed genes between stages 4 and 4s only when
the FDR was set to values X0.2. Many of these genes
are upregulated in stage 4s tumors and code for inte-
gral plasma membrane proteins involved in cell–cell

interaction (NRCAM, ALCAM) or for membrane-
bound receptors linked to cellular signalling path-
ways (PTPRH, AGTR1; Figure 4). The angiotensin II
receptor (AGTR1) was previously described to interfere
with cell proliferation by inactivating ERK2 signaling in
a neuroblastoma cell line (Elbaz et al., 2000). Never-
theless, the overall similarity of stages 4 and 4s tumor
expression profiles was striking. Expression analyses of
larger study cohorts are needed to validate our data. We
conclude that mechanisms causing progression (stage 4)
or regression (stage 4s) of metastatic neuroblastoma are
either not detectable by microarray analysis or not
represented within the B12 000 genes present on the
HG-U95Av2 array. Genetic components such as differ-
ent innate immune responses or changes only detectable
on the protein level, such as dysregulation in apoptotic
or differentiation pathways, may account for the
divergent clinical phenotypes of stages 4 and 4s tumors.

Using SAM analysis, we demonstrated a tight
association between broad sets of genes and MYCN-
amplification, 1p LOH or TrkA/NTRK1 expression
(Table 2, Figures 2 and 3). MYCN-amplification was
concomitant with the overexpression of other genes
mapping to chromosome 2p24-2p25, including ODC,
NCYM and DDX1 (Figure 3a), confirming previous
data (Godfried et al., 2002; Scott et al., 2003). This
underscores the accuracy of patient assignment as well
as the robustness of the data analysis. Interestingly,
genes involved in global DNA methylation (AHCY and
MTHFR2) were found to be significantly upregulated in
MYCN-amplified tumors. Since aberrant methylation of
a variety of genes including caspase-8 (Teitz et al., 2000)
was previously shown in unfavorable neuroblastomas,
the study of these genes may provide interesting insights
into the role of DNA methylation patterns in neuro-
blastoma.

As expected, many genes located on chromosome 1
were differentially expressed in tumors with normal 1p
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compared to 1p LOH. Expression scanning of chromo-
some 1p (Figure 5) revealed highest expression differ-
ences for the recently identified CHD5 (Thompson et al.,
2003). This gene was mapped to 1p36.3, a core region of
1p deletion in neuroblastoma. Median gene expression
was more than twofold higher in normal 1p versus 1p
LOH tumors for PTPRF/LAR (1p34), PRDM2 (1p36),
CDC42 (1p36.13), ICAT (1p36.22), and CAMTA1
(1p36.3). CAMTA1 was recently suggested as a putative
tumor-suppressor gene in neuroblastoma (Katoh, 2003).
In addition to the established major core region of
1p deletion at 1p36.3, at least a second core region
has been postulated. Our data also show 1p36.3 as a
cluster of elevated gene expression, as well as a second
cluster between the PTPRF and CDC42 loci on 1p34
and 1p36.1, respectively (Figure 5). Although tumor-
suppressor genes cannot be mapped by expression
profiling alone, these findings support the idea of at
least two core regions commonly deleted in tumors with
1p LOH. Recently, this approach, which can be termed
as ‘positional expression mapping’, led to the identifica-
tion of rare 12q amplifications in neuroblastoma (Su
et al., 2004).

One of the most striking features of our study was the
impact of TrkA/NTRK1 expression on the neuroblas-
toma transcriptome. The tremendous number of di-
versely expressed genes in TrkA-high versus TrkA-low
tumors suggests that these groups represent different

molecular diseases, as has recently been proposed for a
subset of B-cell lymphomas based on expression
profiling data (Rosenwald and Staudt, 2002). Striking
differences are observed in particular for the cell
adhesion molecules, NCAM (coding for CD56), AL-
CAM (coding for CD166), TLN2 and CNTNAP2,
which are highly upregulated in TrkA-high tumors,
while RELN, THBS1 and FN1 are upregulated in TrkA-
low tumors. The contribution of these genes to the
biological phenotypes of neuroblastoma cells should be
analysed in more detail.

Taken together, this analysis provided new insights
into neuroblastoma biology, and defined interesting
novel target genes, which need to be functionally
characterized in further studies. We presented evidence
that SVM-rbf and PAM are suitable tools for the
reliable prediction of clinical outcome in neuroblastoma,
adding improved accuracy to conventional risk stratifi-
cation (85 and 80% accuracy, respectively, versus 64%
accuracy). Both might also prove useful for outcome
prediction based on expression profiling in other
diseases, in particular if the sample size available for
analysis is rather limited. The practical usefulness and
predictive power of the 39 top-ranked genes in our PAM
classifier in comparison to established clinical risk
factors should be evaluated prospectively in a larger,
independent study as well as in the same patient cohort
once a follow-up time of >5 years is reached. Precise
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risk assessment using gene expression data in addition to
clinical factors may be most valuable to clinicians faced
with treatment decisions.

Materials and methods

Sample acquisition and patient cohort

The 70 primary neuroblastoma specimens from 68 patients
analysed in this study were from tumor banks in Heidelberg,
Marburg, Cologne or Essen. All patients were diagnosed
between 1993 and 2002 and treated according to the German
neuroblastoma trials NB90, NB95 or NB97. Median and mean
follow-up time was 1108 and 1149 days, respectively, with an
interquartile range of 810 days. Written informed consent was
obtained from patients or their parents. The selection of
tumors for study was based on the availability of a sufficient
amount of high-quality RNA. As many patients had been
identified by the general neuroblastoma screening (Schilling
et al., 2002), a high number of cases with favorable biology and
prognosis had to be included in this study. The investigators
were blinded to all clinical data until mRNA-analysis
completion. Patient characteristics are shown in Table 1.

RNA preparation

Representative areas of histologically confirmed, snap-frozen
neuroblastomas were cut on dry ice. No preselection for tumor
cell fraction or microenvironment was performed. Tumor
pieces were mixed with Lysing Matrix D microbeads
(Qbiogene, Carlsbad, CA, USA) and 700 ml RTL buffer
(Qiagen, Hilden, Germany), and were homogenized using
FastPrep FP220 (Qbiogene). RNA was isolated using the
RNeasy Mini Kit (Qiagen) according to the manufacturers’
instructions. RNA quality was controlled by gel electropho-
resis and spectrophotometric measurement of OD260/280.
Samples of high quality were further processed and hybridized
to an HG-U95Av2 array (Affymetrix, Santa Clara, CA, USA).

Array hybridizations

Fragmentation of cRNA, hybridization to HG-U95Av2
microarrays, washing, staining and scanning of the arrays in
a GeneArray scanner (Agilent, Palo Alto, CA, USA) were
performed as previously described (Schulte et al., 2003). Signal
intensities and decision calls for further analysis were
determined using the GeneChip Microarray Suite (MAS) 5.0
software (Affymetrix). Scaling across all probe sets of a given
array to an average intensity of 1000 units compensated
for variations in the amount and quality of the cRNA
samples and other experimental variables. Reproducibility
was ensured by analysis of independent replicates of three
tumor samples, which were then excluded from any further
data analysis.

Data processing and analysis

Expression data and gene annotations were stored in a
relational database, iCHIP, developed at DKFZ Heidelberg,
which complies with MIAME (minimal information about a
microarray experiment) guidelines. Annotation was obtained
from public databases, for example, Unigene, (http://www.
ncbi.nlm.nih.gov/entrez/-query.fcgi?db¼ unigene) and Netaffx
(Affymetrix, http://www.affymetrix.com/-analysis/index.affx).
Data Mining Tool (DMT) 3.0 (Affymetrix) and scripts called
within R environment (http://www.r-project.org/) were used

for gene filtering and normalization. Gene ontology annota-
tions were obtained using ‘Onto-Express’ (Draghici et al.,
2003).

Significance analysis of microarrays

Normalized and log-transformed (base 2) expression data
served as input for SAM. We used our own implementation
of the published SAM method (Tusher et al., 2001) and
the Microsoft Excel Add-In obtained from http://www-stat.
stanford.edu/~tibs/SAM (version 1.21). Parameters were set as
follows to analyse two-class, unpaired data: 1000 permuta-
tions, k-nearest neighbour imputer with 10 neighbours and
newly initialized random number seeds for each analysis. FDR
was varied between 0.05 and 0.2 for evaluation of changes in
the number of significant genes.

Class prediction

We used four different methodological approaches for class
prediction: support vector machines (SVM), prediction analy-
sis of microarrays (PAM), neighborhood analysis and multi-
ple-tree models. These supervised learning methods render it
possible to automatically build classifiers that distinguish
among specimens on the basis of predefined class label
information. We used the libsvm implementation by Chang
and Lin (2001) for classification by SVM, applying the radial
basis function kernel (SVM-rbf). The hyperparameters C and
gamma were tuned by cross-validating parameter combina-
tions in a grid search over a two-dimensional parameter space
with ranges from 25 to 215 and from 2�25 to 2�15, respectively.
In order to assess the classifiers produced by SVM and

multiple decision trees we performed 10 iterations of a 10-fold
crossvalidation to obtain a reliable estimate of the class
prediction accuracy. No variable preselection was performed
prior to classifier construction. The model-building process
included a threefold crossvalidation for hyperparameter tuning
(Figure 6), and was repeated in each crossvalidation training
set, as recommended by Simon et al. (2003). This procedure
allows for maximal reliability if no independent data set or
only a few samples are available for model validation. For the
use of multiple-tree models, we proceeded as described
previously (Schoch et al., 2002). To build a classifier, a number
of decision trees (n¼ 30) was generated using the C5.0
algorithm (Quinlan, 1993). Once a variable was selected for
construction of a decision tree, it was excluded from
construction of successive trees, thus utilizing each variable
only once. The predictions from this set of decision trees were
aggregated by a vote-by-majority rule. In order to avoid
overfitting, the number of trees used in the resulting classifier
was optimized by crossvalidation. Similarly, we applied PAM
using the default settings of the program in R (‘pamr’),
including training, crossvalidation and testing of the model
predictor (Tibshirani et al., 2002). Additionally, we used an
‘off-the-shelf’ program using k-nearest neighbors algorithms
(GeneCluster 2.0, Whitehead Institute, Cambridge, MA, USA;
(Golub et al., 1999)). Normalized data were log-transformed
(base 10) before predictor building and application. Permuta-
tion between n¼ 5 and n¼ 25 was performed for optimal
feature number selection (with k¼ 3).

Statistical analysis

We used Fisher’s exact test to analyse correlation of clinical
and biological factors with recurrence and non-recurrence
after first-line therapy. Kaplan–Meier analysis was performed
to assess association of MYCN-amplification, 1p LOH and
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tumor stage with overall survival. We investigated indepen-
dence between our predictor and known risk factors using
logistic regression analysis. All data were analysed using the
implementation of the respective tests in ‘R’ (source code
available at www.r-project.org). A P-value o0.05 was
considered as significant.

Real-time PCR

For detection of gene expression, ‘Assays on demand’ (Applied
Biosystems’) were performed for PSMD10 (Assay ID
Hs00829508_s1) and NEDD8 (Hs00362398_m1) using RNA
from the neuroblastoma specimen described in this study.
Expression values were normalized by geometric averaging of
four housekeeping genes (SDH, GAPDH, UBC and HPRT) as
proposed by Vandesompele et al. (2002). Correlation of gene
expression and patient data was calculated using programs
within the ‘survival’-package of ‘R’ (www.r-project.org).

Abbreviations

AWD, alive with disease; CR, complete remission; EFS, event-
free survival; FDR, false discovery rate; k-NN, k-nearest
neighbors; NED, no evidence of disease; PAM, prediction
analysis of microarrays; SAM, significance analysis of micro-
arrays; SVM-rbf, support vector machines with a radial basis
function kernel; VGPR, very good partial remission.
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