
Scalable and Accurate Knowledge Discovery
in Real-World Databases

Dissertation

zur Erlangung des Grades eines

DOKTORS DER NATURWISSENSCHAFTEN

der Universität Dortmund
am Fachbereich Informatik

von

Martin Scholz

Dortmund

2007

Tag der mündlichen Prüfung: 25.4.2007

Dekan: Prof. Dr. Peter Buchholz

Gutachter/Gutachterinnen: Prof. Dr. Katharina Morik
Prof. Dr. Gabriele Kern-Isberner
Prof. Dr. Stefan Wrobel

Danksagung

Ich möchte mich an dieser Stelle bei den vielen Menschen bedanken, die zu dieser Arbeit, jede(r)
auf eine eigene Weise, einen Beitrag geleistet haben.
Dies gilt in erster Linie für das gesamte LS8-Team der letzten Jahre. Ich danke allen herzlich für
ein kollegiales Arbeitsumfeld, viele anregende Diskussionen, und nicht zuletzt, für eine schöne
Zeit am Lehrstuhl. Katharina Morik danke ich für ein Umfeld, in dem es mir leicht fiel, mich mit
spannenden wissenschaftlichen Fragestellungen auseinanderzusetzen, sowie für visionäre Ideen
und stets konstruktive Kritik, die diese Arbeit fortlaufend begleitet haben. Timm sei für seinen
kontinuierlichen Englischunterricht in Form unermüdlichen und instruktiven Korrekturlesens
gedankt, ohne den diese Arbeit vermutlich nicht lesbar wäre. Herzlichen Dank auch an Ingo, für
den stets enthusiastischen Support bei jedweder Frage rund um die Wunderwelt von YALE. Ich
danke allen WiMis für die wissenschaftlichen und unwissenschaftlichen Diskussionen “neben-
bei”, die mir stets eine willkommene Quelle der Inspiration bzw. Regeneration waren. Mein
Dank gilt auch allen NiWiMis und HiWis für den organisatorischen und technischen Support.
Schließlich danke ich noch allen Aktivisten der LS8 Fußballbewegung für einen recht indirekten,
schwer messbaren Beitrag zu dieser Arbeit.
Gabriele Kern-Isberner und Stefan Wrobel danke ich für die schnelle Bereitschaft meine Disser-
tation zu begutachten.
Mein Dank gilt auch den Mitarbeitern des SFB 475 für inspirierende Gespräche und eine ergänzende
Sichtweise auf die Wissensentdeckung in Datenbanken.
Schließlich (aber sicherlich “not least”) möchte ich noch meiner Familie für vielerlei Unter-
stützung in den letzten Jahren danken.

iv

Contents

Contents v

List of Figures ix

List of Tables xi

List of Algorithms xii

1. Introduction 1
1.1. Motivation . 1
1.2. Scalable knowledge discovery . 3
1.3. A constructivist approach to learning . 4
1.4. Outline . 5

2. Machine Learning – Some Basics 7
2.1. Formal Framework . 7
2.2. Learning Tasks . 9

2.2.1. Classification . 9
2.2.2. Regression . 9
2.2.3. Subgroup discovery . 10
2.2.4. Clustering . 11
2.2.5. Frequent itemset and association rule mining 12

2.3. Probably Approximately Correct Learning . 13
2.3.1. PAC learnability of concept classes 13
2.3.2. Weakening the notion of learnability 16
2.3.3. Agnostic PAC learning . 16

2.4. Model selection criteria . 17
2.4.1. General classifier selection criteria . 18
2.4.2. Classification rules . 20
2.4.3. Functions for selecting rules . 21

2.5. ROC analysis . 24
2.5.1. Visualizing evaluation metrics and classifier performances 25
2.5.2. Skews in class proportions and varying misclassification costs 28

2.6. Combining model predictions . 32
2.6.1. Majority Voting . 32
2.6.2. A NAÏVEBAYES-like combination of predictions 34
2.6.3. Combining classifiers based on logistic regression 36

v

Contents

3. Sampling Strategies for KDD 41
3.1. Motivation for sampling . 41
3.2. Foundations of uniform sub-sampling . 42

3.2.1. Sub-sampling strategies with and without replacement 42
3.2.2. Estimates for binomial distributions 44

3.3. Iterative refinement of model estimates . 48
3.3.1. Progressive sampling . 48
3.3.2. Adaptive sampling . 51

3.4. Monte Carlo methods . 56
3.4.1. Stratification . 56
3.4.2. Rejection Sampling . 64

3.5. Summary . 68

4. Knowledge-based Sampling for Sequential Subgroup Discovery 69
4.1. Introduction . 69
4.2. Motivation to extend subgroup discovery . 70
4.3. Knowledge-based sampling . 72

4.3.1. Constraints for re-sampling . 73
4.3.2. Constructing a new distribution . 74

4.4. A knowledge-based rejection sampling algorithm 75
4.4.1. The Algorithm . 76
4.4.2. Analysis . 78
4.4.3. Discussion . 87

4.5. Sequential subgroup discovery algorithms . 88
4.5.1. KBS-SD . 88
4.5.2. Related work: CN2-SD . 97

4.6. Experiments . 98
4.6.1. Implemented operators . 98
4.6.2. Objectives of the experiments . 98
4.6.3. Results . 99

4.7. A connection to local pattern mining . 103
4.8. Summary . 104

5. Boosting as Layered Stratification 107
5.1. Motivation . 107
5.2. Preliminaries . 108

5.2.1. From ROC to coverage spaces . 108
5.2.2. Properties of stratification . 110

5.3. Boosting . 111
5.3.1. AdaBoost . 111
5.3.2. ADA2BOOST . 113
5.3.3. A reformulation in terms of stratification 117
5.3.4. Analysis in coverage spaces . 119
5.3.5. Learning under skewed class distributions 124

5.4. Evaluation . 125
5.5. Conclusions . 128

vi

Contents

6. Boosting Classifiers for Non-Stationary Target Concepts 131
6.1. Introduction . 131
6.2. Concept drift . 132

6.2.1. Problem definition . 132
6.2.2. Related work on concept drift . 132

6.3. Adapting ensemble methods to drifting streams 133
6.3.1. Ensemble methods for data stream mining 133
6.3.2. Motivation for ensemble generation by knowledge-based sampling . . . 135
6.3.3. A KBS-strategy to learn drifting concepts from data streams 136
6.3.4. Quantifying concept drift . 138

6.4. Experiments . 140
6.4.1. Experimental setup and evaluation scheme 140
6.4.2. Evaluation on simulated concept drifts with TREC data 140
6.4.3. Evaluation on simulated drifts with satellite image data 145
6.4.4. Handling real drift in economic real-world data 145
6.4.5. Empirical drift quantification . 146

6.5. Conclusions . 148

7. Distributed Subgroup Discovery 149
7.1. Introduction . 149
7.2. A generalized class of utility functions for rule selection 150
7.3. Homogeneously distributed data . 151
7.4. Inhomogeneously distributed data . 151
7.5. Relative local subgroup mining . 157
7.6. Practical considerations . 158

7.6.1. Model-based search . 159
7.6.2. Sampling from the global distribution 159
7.6.3. Searching exhaustively . 160

7.7. Distributed Algorithms . 161
7.7.1. Distributed global subgroup discovery 161
7.7.2. Distributed relative local subgroup discovery 165

7.8. Experiments . 167
7.9. Summary . 168

8. Support for Data Preprocessing 171
8.1. The KDD process . 171
8.2. The MiningMart approach . 175

8.2.1. The Meta-Model of Meta-Data M4 176
8.2.2. Editing the conceptual data model . 178
8.2.3. Editing the relational model . 180
8.2.4. The Case and its compiler . 181
8.2.5. The case-base . 183

8.3. Related work . 186
8.3.1. Planning-based approaches . 187
8.3.2. KDD languages – proposed standards 188
8.3.3. Further KDD systems . 190

8.4. Summary . 192

vii

Contents

9. A KDD Meta-Data Compiler 195
9.1. Objectives of the compiler . 195
9.2. M4 – a unified way to represent KDD meta-data 196

9.2.1. Abstract and operational meta-model for data and transformations . . . 197
9.2.2. Static and dynamic parts of the M4 model 197
9.2.3. Hierarchies within M4 . 199

9.3. The MININGMART compiler framework . 200
9.3.1. The architecture of the meta-data compiler 200
9.3.2. Reducing Case execution to sequential single-step compilation 201
9.3.3. Constraints, Conditions, and Assertions 202
9.3.4. Operators in MiningMart . 209

9.4. Meta-data-driven handling of control- and data-flows 217
9.4.1. The cache – an efficient interface to M4 meta-data 218
9.4.2. Operator initialization . 221
9.4.3. Transaction management . 222
9.4.4. Serialization . 224
9.4.5. Garbage collection . 226
9.4.6. Performance optimization . 226

9.5. Code at various locations . 227
9.5.1. Functions, procedures, triggers . 227
9.5.2. Operators based on Java stored procedures 228
9.5.3. Wrappers for platform-dependent operators 229

9.6. The interface to learning toolboxes . 230
9.6.1. Preparing the data mining step . 231
9.6.2. Deploying models . 231

10.Conclusions 233
10.1. Principled approaches to KDD – theory and practice 233
10.2. Contributions . 234

10.2.1. Theoretical foundations . 234
10.2.2. Novel data mining tasks and methods 236
10.2.3. Practical support by specific KDD environments 241

10.3. Summary . 242

A. Joint publications 245

B. Notation 247

C. Reformulation of gini index utility function 251

Bibliography 253

viii

List of Figures

1.1. Important data mining topics . 2

2.1. Confusion matrix with definitions . 25
2.2. Basic ROC plot properties . 26
2.3. Flipping predictions in ROC space . 26
2.4. ROC isometrics of accuracy . 27
2.5. ROC isometrics of precision . 27
2.6. ROC isometrics for typical utility functions 28
2.7. Soft classifiers in ROC space . 31

3.1. Illustration of the connection between AUC and WRACC 63
3.2. Rejection sampling example . 65

4.1. Empirical evaluation of knowledge-based rejection sampling 84
4.2. Subgroup mining results for quantum physics data 101
4.3. Subgroup mining results for adult data . 101
4.4. Subgroup mining results for ionosphere data 101
4.5. Subgroup mining results for credit domain data 101
4.6. Subgroup mining results for voting-records data 101
4.7. Subgroup mining results for mushrooms data 101

5.1. Nested coverage spaces . 109
5.2. How ADA2BOOST creates nested coverage spaces 120
5.3. The reweighting step of KBS-SD in coverage spaces. 121
5.4. Coverage space representation of correctly and misclassified example pairs . . 122
5.5. Boosting results for the adult data set . 126
5.6. Boosting results for the credit domain data set 127
5.7. Boosting results for the mushrooms data set 127
5.8. Boosting results for the quantum physics data set 127
5.9. Boosting results for the musk data set . 127
5.10. Experiment comparing skewed to unskewed ADA2BOOST 128

6.1. Slow concept drift as a probabilistic mixture of concepts. 135
6.2. Model weights over time for slowly drifting concepts 139
6.3. Relevance of topics in different concept change scenarios 141
6.4. TREC data, scenario A – Error rates of previous methods over time 142
6.5. TREC data, scenario A – Error rates of new method over time 143
6.6. TREC data, scenario B – Error rates of new method over time 144
6.7. TREC data, scenario C – Error rates of new method over time 144
6.8. Example for quantification of slow drift with KBS 147
6.9. Example for quantification of sudden drift with KBS 148

ix

List of Figures

7.1. Estimating global from local utilities with bounded uncertainty 156
7.2. Evaluation of global vs. local utilities on a synthetic data set 157
7.3. Communication costs for distributed global subgroup mining 167
7.4. Skew vs. communication costs for global and local subgroup mining 167

8.1. The CRISP-DM model . 172
8.2. MININGMART Meta Model . 177
8.3. Overview of the MININGMART system . 178
8.4. MININGMART Concept Editor . 179
8.5. MININGMART Statistics Window . 179
8.6. Example Step . 181
8.7. MININGMART Case Editor . 182
8.8. MININGMART Case base . 184
8.9. MININGMART Business Layer . 185

9.1. MININGMART system overview . 198
9.2. Screenshot concept taxonomies . 200
9.3. Active modules during case compilation . 201
9.4. Taxonomy of ConceptOperators . 211
9.5. Taxonomy of FeatureConstruction operators 213
9.6. Code for maintaining relations between M4 classes 220

x

List of Tables

2.1. Example for asymmetric LIFT values . 36

3.1. Confidence bounds for different utility functions 53

4.1. Characteristics of benchmark data sets . 100
4.2. Performance of different subgroup discovery algorithms. 102

6.1. Error rates for TREC data and simulated drifts 141
6.2. Error rates for satellite image data . 145
6.3. Prediction error for business cycle data . 146

7.1. Utility bounds based on theorem 11 . 157
7.2. An example for which distributed learning fails. 159

9.1. Example specification in tables OPERATOR_T and OP_PARAMS_T 205
9.2. Example Operator instantiation . 206
9.3. Example specification in table OP_CONSTR_T 207
9.4. Example specification in table OP_COND_T 207
9.5. Example specification in table OP_ASSERT_T 208
9.6. Specification of operator LinearScaling . 215
9.7. Example of a looped Step . 216

xi

List of Algorithms

1. Knowledge-based rejection sampling . 77
2. Algorithm KBS-SD . 89

3. ADABOOST for y ∈ {+1,−1} . 112
4. ADA2BOOST for y ∈ {+1,−1} . 118
5. Skewed ADA2BOOST for y ∈ {+1,−1} . 125

6. Algorithm KBS-Stream . 137

7. Distributed Global Subgroup Mining (at node j) 164

xii

1. Introduction

1.1. Motivation

Knowledge Discovery in Databases (KDD) is a comparatively new scientific discipline, lying
at the intersection of machine learning, statistics, and database theory. It aims to systematically
discover relevant patterns that are hidden in large collections of data and are either interesting
to human analysts or valuable for making predictions. Depending on the underlying business
objectives, KDD tasks may accordingly either be addressed by descriptive or predictive tech-
niques.

The main goal of descriptive data mining is to identify interpretable results that summarize a
data set at hand, and point out interesting patterns in the data. A general descriptive data mining
task that plays an important role in this work is supervised rule discovery. It aims to identify in-
teresting patterns that describe user-specified properties of interest. The range of corresponding
KDD applications is very diverse. One important domain is marketing. Important business goals
in this domain include the identification of specific customer groups, for example customers
that are likely to churn, or of segments of the population that contain particularly many or few
perspective customers, which helps in designing targeted marketing strategies. An example of a
challenging medical application is the identification of pathogenic factors.

The goal of predictive data mining is to induce models that allow to reliably derive relevant
properties of observations that are not explicitly given in the data. This includes the prediction
of future events and classification problems. Even the most prominent examples span many dif-
ferent domains. Information retrieval techniques, for example, aim to predict which documents
match a user’s information need, based on a query. Fraud detection is another important appli-
cation. It aims to identify fraudulent behavior, for example fraudulent credit card transactions,
often with real-time constraints and a vast amount of data. In the finance business, the separation
of “good” from “bad” loans is a typical example of a predictive task.

As a consequence of the variety of applications, the field of KDD has recently gained much
attention in both academia and industry. In the academic world, this trend is reflected by an in-
creasing number of publications and a growing participation in annual conferences like the ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining and the IEEE In-
ternational Conference on Data Mining. For both descriptive and predictive analysis tasks a
plethora of well understood techniques that apply to the core analytical problems is available in
the scientific literature. The industrial commitment leveraged a rapidly growing market of KDD
software environments during the last few years. Even the major modern database management
systems come nowadays shipped with a set of basic data mining algorithms, reflecting a growing
customer demand.

It turns out, however, that most KDD problems are not easily solved by just applying those
data mining tools. As the amounts of data to be analyzed as part of daily routines drastically
increased over the last decade, new challenges emerged, because standard algorithms that were
designed for data of main memory size are no longer applicable. At the same time, even more
challenging data mining problems emerged continuously, like the analysis of huge gene se-
quences, the classification of millions of web sites and news feeds, and recommending countless

1

1. Introduction

Figure 1.1.: The most important data mining topics due to a KDnuggets survey in 2005.

products to huge customer bases based on behavioral profiles. Comparing the orders of mag-
nitude of the number of data records involved to the response time of systems tolerable in the
specific contexts, the challenging problem of addressing such complex tasks with scalable KDD
techniques seems inevitable.

Besides, for most KDD applications the data will not be stored in a single database table, but
rather be organized in terms of a complex database schema that will most likely be distributed
over a large number of geographically distant nodes. In particular larger companies will often
store their data locally at each branch or in each major city, but analysis tasks may still refer
to global properties, e.g., the global buying behavior of customers. If a single full table-scan
takes several days, which is not uncommon in modern data warehouses, then transferring all
the data to a single site clearly is no attractive option. Another important aspect that is not well
supported by existing solutions is that in many cases new data becomes continuously available.
Data mining results may quickly become outdated if they are not adapted to the newest available
information. Continuously training from scratch is computationally very demanding, but only
very few data mining techniques have successfully been adapted to naturally address this kind
of dynamic input directly.

Among all the burdens mentioned above, the large amount of data to be analyzed is most
critical for modern KDD applications. This was recently confirmed by a survey (cf. figure 1.1) of
the popular forum KDnuggets1; scalability was named as the most important data mining topic.
This thesis is mostly motivated by scalability aspects of data mining, while favoring generic
solutions that can as well be used to tackle the other burdens named above. Hence, variants
of the scalable solutions that will be proposed in this work will be discussed for data streams
and distributed data. The final part of this work is dedicated to some practical issues of data
preprocessing.

1http://www.kdnuggets.com/

2

1.2. Scalable knowledge discovery

1.2. Scalable knowledge discovery

Scalability aspects can roughly be characterized as being of a technical, or of a theoretical na-
ture. As a constraint on the technical side, most data mining toolboxes require the data to be
analyzed to fit into main memory. This allows for very efficient implementations of data mining
algorithms that often drastically outperform solutions that, e.g., access the data via the inter-
faces of a database management system. However, the dominating constraint that truly hinders
practitioners to scale up data mining algorithms to the size of large databases is the super-linear
runtime complexity of the core algorithms themselves. For example, even the simple task of se-
lecting a single best classification rule that e.g., conditions on only a single numerical attribute
value and compares it to a threshold causes computational costs in Ω(n log n) for sample size
n. The reason is that the selection involves a step of sorting the data.

In sheer contrast to this observation, mastering data analysis tasks from very large databases
requires algorithms with sub-linear complexity. It is understood that, in order to meet this con-
straint, only subsets of the available data may be processed.

One valuable line of research on scalability, most prominently hosted in the frequent item-
set mining community2, tries to minimize the runtime complexity of individual data mining
algorithms by exploiting their specific properties, e.g., by designing specific data structures, or
by investing much time into technical software optimization. Despite the continuous progress
in this field, algorithms that are always guaranteed to find exact solutions clearly cannot scale
sub-linearly.

Another approach to foster scalability, more common in practice, is to consider only a small
fraction of a database that – in its original form – would be too costly to be analyzed by the
chosen data mining algorithm. It is crucial to understand the properties of sampling techniques
in specific analytical contexts when following this approach. We still want to be able to give
guarantees regarding the quality of our data mining results when working only on a subset of the
data. The difference to training from all the data should be marginal.

The main motivation of this work is to provide generic techniques that improve the scalability
of data intensive KDD without perceptibly compromising model performance. This thesis will
demonstrate that for many data mining tasks sampling is more than a temporary solution that
fills the gap until algorithms of better scalability are available. It will be illustrated how a solid
theoretical understanding that includes both the statistical foundations of sampling and the na-
ture of the optimization problems solved by data mining techniques helps to avoid the caveats
of commonly seen ad hoc sampling heuristics, i.e., techniques that do not allow to provide rea-
sonable guarantees. This thesis establishes a sampling-centered view on learning, based on the
insight that the available training data usually is a sample itself.

At the methodological level, this view allows to derive novel practically relevant algorithms,
like preprocessing operators that allow to i) enhance the predictive power of existing learning
schemes without modifying them, or to ii) explicitly mine patterns that optimize novelty in de-
scriptive settings, where novelty is measured in terms of deviation from given prior knowledge or
expectation. Unlike for handcrafted solutions that improve one particular data mining algorithm
at a time, the sampling-centered approaches are inherently generic. Later parts of this thesis ana-
lyze the predictive power of the presented methods in detail, and investigate their applicability to
a broader set of practically important settings, including drifting concepts and distributed data.

2For example, the FIMI website hosts a repository of fast implementations and benchmark datasets:
http://fimi.cs.helsinki.fi/

3

1. Introduction

1.3. A constructivist approach to learning

Data mining subsumes diverse learning tasks and a variety of techniques and algorithms to solve
them. It can be expected that novel tasks will continuously emerge in the future, accompanied
by specific techniques that address very characteristic aspects. On the analytical side, this work
hence follows a more principled approach towards tackling data mining tasks. It is based on
discovering similarities between tasks and methods at an abstract, yet operational level. The
goal is to gain a thorough understanding of the principles underlying data mining problems by
decomposing the diverse variety of data mining tasks into a small set of theoretically well-based
building blocks. Identifying such components at a proper level of abstraction is a promising
approach, because it allows to (re-)compose them in a flexible way to new principled tasks. As
an intuitive motivation, a constructive way of reducing one problem to another one at an abstract
level may prevent us from wasting efforts on the development of redundant techniques. This
raises the question what the right theoretically well-based building blocks for data mining tasks
are, and how they can be utilized as novel problems emerge.

Some questions that will naturally emerge in the context of this thesis and that will be analyzed
using the approach sketched above include:

• What is the inherent difference between descriptive supervised rule discovery and classi-
fier induction?

• Which effects do class skews have on utility functions that are used to evaluate models?

• Can stratification be utilized to improve the performance of ensemble techniques?

• What is the inherent difference between optimizing error rate and rankings?

Along the objectives outlined above, this thesis does not cover any individual full case studies;
it rather aims to derive building blocks that can easily be compiled into a variety of different
scalable, yet accurate knowledge discovery applications. The utility of the established theoretical
view will be demonstrated by deriving novel, practically relevant algorithms that address the
problems discussed in the last section in a very generic way. Empirical studies on benchmark
datasets will be provided to substantiate all claims.

4

1.4. Outline

1.4. Outline

This thesis divides into three parts. Part I provides theoretical foundations along with related
work (chapters 2 and 3), part II presents novel data mining methods (chapters 4-7), and part III
presents a system designed to simplify data preprocessing for KDD (chapters 8 and 9).

Theoretical foundations

Before going into the technical details of machine learning and data mining, this thesis starts
(chapter 2) with an overview of existing algorithms and fundamental principles which are cen-
tral to later parts. The focuses of this thesis is the scalability of data mining applications. Since
most learning algorithms cannot cope with huge amounts of data directly, it is common prac-
tice to work on sub-samples that fit into main memory and allow to find models in reasonable
time. Chapter 3 discusses the foundations of sub-sampling techniques and practically relevant
algorithms exploiting them. As will be discussed, uniform sub-sampling can be used to speed
up most data mining procedures run on large data sets with a bounded probability to select
poor models. The success of ensemble methods like boosting illustrates that sampling from non-
uniform distributions may often be an attractive alternative. A short introduction to the family
of Monte Carlo algorithms will be given. These algorithms constitute the most important tools
when sampling with respect to altered distributions.

Novel supervised learning methods

In chapter 4 the novel concept of knowledge-based sampling is presented. This strategy allows
to incorporate prior knowledge into supervised data mining, and to turn pattern mining into a
sequential process. An algorithm is presented that samples directly from a database using rejec-
tion sampling. It is very simple but still allows to “sample out” correlations exactly, which do
not have to be qualified by probabilistic estimates. The low complexity of this algorithm allows
to apply it to very large databases. A subsequently derived variant for sequential rule discovery
is shown to yield small diverse sets of well interpretable rules that characterize a specified prop-
erty of interest. In a predictive setting these rules may be interpreted as an ensemble of weak
classifiers.

Chapter 5 analyzes the performance of a marginally altered algorithm focusing on predictive
performance. The conceptual differences between the corresponding algorithm and the most
commonly applied boosting algorithm ADABOOST are analyzed and interpreted in coverage
spaces, an analysis tool similar to ROC spaces. It is shown that the new algorithm simplifies and
improves ADABOOST at the same time. A novel proof is provided that illustrates the connection
between accuracy and ranking optimization in this context.

In chapter 6 the novel technique is adapted to streaming data. The refined variant naturally
adapts to concept drift and allows to quantify drifts in terms of the base learners. If distributions
change slowly, then the technique decomposes the current distribution, which helps to quickly
adapt ensembles to the changing components. Sudden changes are addressed by continuously
re-estimating the performances of all ensemble members.

In chapter 7 the task of supervised rule discovery is analyzed for distributed databases. The
complexity of the resulting learning tasks, formulated in very general terms to cover a broad vari-
ety of rule selection metrics, is compared to the complexity of learning the same rules from non-
distributed data. Besides, a novel task that aims to characterize differences between databases
will be discussed. The theoretical results motivate algorithms based on exhaustively searching
the space of all rules. Two algorithms are derived that apply only safe pruning and hence yield

5

1. Introduction

exact results, but still have moderate communication costs. Combinations with knowledge-based
sampling are shown to be straightforward.

Support for data preprocessing

Besides being huge, real-world data sets that are analyzed in KDD applications typically have
several other unpleasant characteristics. First, the data quality tends to be low, e.g. information is
missing, typing errors and outliers compromise reliability, and semantically inconsistent entries
do not allow to induce models satisfying the business demands. Second, the data usually cannot
directly be fed into data mining algorithms, because most KDD applications make use of data
that were originally collected for different purposes. This means that the representation of the
data is highly unlikely to fit the demands of a data mining algorithm at hand. As an obvious
example, data is often stored in relational databases, but most of the commonly applied data
mining techniques require the data to be in attribute-value form, that is, they apply only to inputs
taking the form of a single database table.

The last part of this thesis hence discusses the practical embedding of the data mining step
into real-world KDD applications. Chapter 8 sketches the general notion of a KDD process,
illustrates its iterative nature, and identifies preprocessing as the missing link between data min-
ing and knowledge discovery. The chapter provides an overview of an integrated preprocessing
environment called MININGMART; it focuses on setting up and re-using best-practice cases of
preprocessing for very large databases.

In chapter 9 several details about MININGMART’s meta-data driven software generation are
discussed. The MININGMART meta model storing all the meta-data of preprocessing cases is
operationalized by a module called the M4 compiler, large parts of which were designed and
implemented by the author of this thesis. It is illustrated how different levels of abstraction are
involved when running the compiler, that is, how very different types of information interact.
Synergy effects between the preprocessing environment MININGMART, running on real-world
databases to yield a representation that allows for data mining, and the main memory based
learning environment YALE used in the data mining part of this thesis are pointed out.

6

2. Machine Learning – Some Basics

This chapter introduces the most basic concepts from the fields of machine learning and data
mining that will be referred to throughout this thesis. It starts with the commonly used for-
mal statistical framework in section 2.1, which applies to supervised and unsupervised learning
tasks. In supervised learning, classified examples are supplied to an algorithm, which tries to
find an appropriate generalization. Often the goal is to classify previously unseen examples.
Assumptions about the data generating process help to define appropriate selection criteria for
models, e.g. the error rate of models for samples. For descriptive tasks, similar assumptions al-
low to decompose a set of observations by assigning each observation to one of a set of different
generating processes.

The formal framework used throughout the remainder of this thesis is introduced in sec-
tion 2.1. Section 2.2 provides an overview of relevant learning tasks. For supervised learning
the paradigm of probably approximately correct (PAC) learning allows to analyze learnability of
“target concepts” from specific classes from a given set of models (hypothesis language) in this
framework. This paradigm is briefly discussed in section 2.3. Along with the learning scenarios
of rule induction and of discovering “interesting” rules some formal criteria for model selection
are introduced in the subsequent section 2.4. Section 2.5 explains the differences between rule
selection criteria using the receiver operator characteristics (ROC), a tool recently rediscovered
by machine learning researchers. Furthermore, it discusses more general learning scenarios than
those assumed in section 2.3. In subsequent chapters, learning algorithms often yield sets of dif-
ferent rules or other kinds of models. Section 2.6 discusses some general techniques that allow
to combine their associated predictions.

2.1. Formal Framework

The overall goal in machine learning is to construct models from classified or unclassified ex-
ample sets, that allow for a deeper understanding of the data, the data generating process, and/or
to predict properties of previously unseen observations.

Different representations of examples lead to learning scenarios of different complexity. The
most common representation is derived from propositional logics, leading to data in attribute-
value form. In a relational database, attribute-value representations can be thought of as single ta-
bles consisting of boolean, nominal, or continuous attributes. Some machine learning algorithms
may directly be applied to relational data, because they are capable of “following” foreign key
references on demand. If the data is split into several relations of a relational database, then the
learning scenario is referred to as relational or multi-relational. More expressive representations,
like full first order logics, are not discussed in this thesis.

The set of examples can be considered as a subset of an instance space X , the set of all
possible examples. Starting with propositional data and representations based on attribute-value
pairs, the instance space can be defined as the Cartesian product of all d available domains
(attributes) Aj, 1 ≤ j ≤ d, where each domain is a set of possible attribute values. The instance
space is hence defined as

X := A1 × . . .×Ad.

7

2. Machine Learning – Some Basics

In the case of supervised learning, there is an additional set of possible labels or continuous
target values Y . A set of n classified examples is denoted as

En = {(x1, y1), . . . , (xn, yn)}, where

(xi, yi) ∈ X × Y for i ∈ {1, . . . , n}.

Please note that, although examples have indices and are generally given in a specific order,
this order has no effect on most of the algorithms studied in the following chapters. For the few
algorithms that depend on the order it may generally be assumed in the studied contexts that
the examples have been permutated randomly, with any two permutations of examples being
equally probable. For this reason, the common but imprecise notion of example sets is used,
even if referring to ordered sequences of examples.

In the machine learning literature the data for training and validation is usually assumed to
follow a common underlying probability distribution with probability density function (pdf) D :

X → IR+. Examples are sampled independently from each other, and are identically distributed
with respect to this function D. This assumption is referred to as sampling i.i.d. in the literature.
Sampling n examples i.i.d. from D is equivalent to sampling a single instance from the product
density function Dn : Xn → IR+,

Dn(x1, . . . , xn) :=

n∏
i=1

D(xi), (∀x ∈ {1, . . . , n}) : xi ∈ X ,

because each single example is independently sampled from D.
One of the crucial prerequisites of the probably approximately correct learning paradigm

(Valiant, 1984; Kearns & Vazirani, 1994) discussed in section 2.3 is that both the training data
used for model selection, and the validation data used to assess the quality of models, are sam-
pled i.i.d. from the same underlying distribution.

The case of multi-relational data is more complex, in particular because the notion of a single
example is less clear. Each example may be spread over several relations, and may thus be rep-
resented by sets of tuples. For this reason explicit distributional assumptions are not as common
in this field, or examples are defined using a single target relation, as in the case of propo-
sitional data. In the latter case, the target relation has associated relations that are considered
when searching for intensional characterizations of subsets.

In the simple case of a finite instance space X , or of a finite subset of X with positive weight
under D, the probability to observe an (unclassified) example x ∈ X under D is denoted as
Prx∼D(x). The shorter notation PrD(x) is used, if the variable is clear from the context. If the
underlying distribution is also obvious, then all subscripts are omitted.

Even if X is not finite, for typical data mining applications the formal requirements are still
not very complex. The total weight of X may be assumed to be finite, and there are relevant
subsets of X that have a strictly positive weight. The probability to observe an instance from a
compact subset W ⊆ X is denoted as PrD [W]. It is equivalent to

PrD [W] =

∫
x∈W

D(x) dx =

∫
D

I[x ∈ W] dx,

where I : {true, false}→ {1, 0} denotes the indicator function. This function evaluates to 1, iff its
argument evaluates to true. IfX is continuous, then the considered density functions are assumed
to be well-behaved throughout this work, in the sense specified in the appendix of (Blumer et al.,
1989). This property requires not only that for the probability distribution induced by the density

8

2.2. Learning Tasks

function all considered subsets of X are Borel sets, but also that specific differences between
such sets are measurable. This should not narrow the applicability of the presented results in
practice, and is not explicitly mentioned, henceforth.

2.2. Learning Tasks

In the machine learning literature a variety of different tasks have been studied. Traditionally,
the considered learning tasks are referred to as either supervised or unsupervised. For the former
kind of tasks there are known classes of observations which are represented by a target attribute
Y , assigning a class label to each observation. The family of unsupervised problems contains
all kinds of tasks for which no classes are given a priori, and for which the identification of
regularities in the data, e.g. patterns, classes, or an hierarchical organization of observations, is
up to the learner.

2.2.1. Classification

The most intensively studied task in machine learning is classification. The goal is to fit a clas-
sifier (function) h : X → Y to a given set of training data, aiming at an accurate classification
of unclassified observations in the future. This supervised learning problem can be addressed in
different frameworks. Logical learning approaches typically aim at the identification of a set of
valid rules or other kinds of discrete models. Each model, like a rule stated in a restricted form
of first order logic, makes a prediction for a subset of the universe of discourse. It is correct, if
and only if all of its predictions fit the data. For many domains the identification of perfectly
matching models is unrealistic, which motivates a relaxation of this framework. The most suc-
cessful relaxation assumes that the data is the result of a stationary stochastic process. In this
setting, the goal is to fit a model to the data, that has a low risk (probability) to err. The training
data can be considered to be a sample drawn from a distribution underlying the universe of dis-
course, typically referred to as an instance space X in this case. This space contains all possible
observations that may be sampled with respect to the density function D : X → IR+. In this
setting, there is usually a risk that the learner is provided with a poor sample, which inevitably
may lead to a poor model. Details on this learning framework are discussed in section 2.3.

2.2.2. Regression

A straightforward generalization of the task of classification does no longer require the target
quantity (or label) Y to be a nominal attribute, but also allows for continuous targets, e.g. Y = IR.
In this case, the problem is to fit a function h : X → IR to the training data, which deviates as
least as possible from the true target values of future observations x ∈ X . Unlike for classifica-
tion, a prediction is no longer just correct or wrong, but there is a continuous degree of deviation
of predictions from true values. For an example (x, y) this degree of deviation is captured by a
so-called loss function

L(h(x), y) 7→ loss ∈ IR+,

mapping each tuple of a predicted target value h(x) and true value y to a single positive loss that
penalizes errors of the model h. This learning problem is referred to as regression. The empirical
risk Remp of a model (hypothesis) h is the total loss when evaluating on a training set E :

Remp(h, E) :=
∑

(x,y)∈E

L(h(x), y).

9

2. Machine Learning – Some Basics

Similar to probably approximately correct learning (cf. section 2.3), this task usually assumes a
fixed but unknown probability density function D underlying the space X × Y . This function
specifies the density of each observable (x, y) ∈ X × Y , and it is also used to define the true
risk

RD(h) :=

∫
D

L(h(x), y) dx dy,

which is to be minimized by learning algorithms when selecting a model h. On the one hand,
classification is subsumed as a specific case of regression when choosing the 0/1 loss function.
This function penalizes each misclassification by assigning a loss of 1, while it defines the loss
of correct predictions to be 0. On the other hand, if the costs of misclassifications vary, or if the
goal is to fit a classifier that estimates the conditional probabilities of each class y ∈ Y for each
observation x ∈ X , then the task of classification requires loss functions that are more complex
than 0/1 loss. In this case, the task of classification shares several aspects of regression. Some
corresponding loss functions and utility functions are discussed in section 2.4.

2.2.3. Subgroup discovery

Subgroup discovery (Klösgen, 2002) is a supervised learning task that is discussed at several
points in this work. It aims to detect well interpretable and interesting rules.

Formal framework

In the formal framework of subgroup discovery there is a property of interest; it is basically
identical to nominal class labels in the field of classifier induction. Often the property of inter-
est is boolean, for example “customer responds to mailing campaign” or “driver was recently
involved in a car accident”. For simplicity, it is also referred to as a class label and denoted as
Y . The property of interest can hence be thought of as an attribute generated by a target func-
tion f : X → Y , where f assigns a label to each unclassified instance x ∈ X . The function f

is assumed to be fixed but unknown to the learner, which aims to find a good approximation.
The functional dependency of Y on X is not required, and basically only introduced to simplify
formal aspects. The same concepts apply for probabilistic dependencies.

In contrast to classification and regression, the rules found by subgroup discovery are mainly
used for descriptive data analysis tasks. Nevertheless, such rules are also useful in predictive
settings.

The factors considered to make rules interesting depend on the user and application at hand.
Among the subjective factors often named in this context are unexpectedness, novelty, and ac-
tionability. A rule is unexpected, if it makes predictions that deviate from a user’s expectation.
This aspect is similar to novelty. A rule is novel, if it is not yet known to a user. Finally, not all
rules offer the option to take some kind of beneficial actions. Actionability generally depends
on the user’s abilities and on the context, which suggests to use an explicit model accounting for
these aspects.

In practice different heuristics are used for discovering interesting rules. Measures for rule
interestingness are formally stated as utility or quality functions, a specific type of rule selection
metric that can be considered to be a parameter of the learning task itself. Let H denote a set
of syntactically valid rules (or any broader class of models, respectively), and let (X × Y)IN

denote the set of all finite sequences of examples from X × Y . Then a utility function Q̂ :

H× (X ×Y)IN → IR maps each tuple (r, E) of a rule r ∈ H and example set E to a real-valued
utility score. A typical subgroup discovery task is to identify a set H∗ ⊂ H of k best rules with

10

2.2. Learning Tasks

respect to any given utility function Q̂; in formal terms:

(∀r ∈ H∗)(∀r ′ ∈ H \ H∗) : Q̂(r, E) ≥ Q̂(r ′, E). (2.1)

For subgroup discovery, classification rules (cf. Def. 13, p. 21) are the main representation lan-
guage. The interestingness of rules and the requirements rule metrics should meet have been
discussed by various authors, e.g. by Piatetsky-Shapiro (1991), Klösgen (1996), Silberschatz
and Tuzhilin (1996), and Lavrac et al. (1999). Section 2.4 provides an overview of the most
relevant evaluation criteria.

Existing approaches

Eqn. (2.1) above formulates subgroup discovery as an optimization problem. Three different
strategies of searching for interesting rules have been proposed in the literature on subgroup
discovery, exhaustive, probabilistic, and heuristic search.

Exhaustive EXPLORA by Klösgen (1996) and MIDOS by Wrobel (1997) are examples for
tackling subgroup discovery by exhaustively evaluating the set of rule candidates. The
rules are ordered by generality, which often allows to prune large parts of the search
space. Only safe pruning based on optimistic estimates is applied. An algorithm recently
proposed by Atzmüller and Puppe (2006) for mining subgroups from propositional data
follows a two-step approach; it builds up an FP-growth data structure (Han et al., 2000)
adapted to supervised settings in the first step, which can then be used to efficiently ex-
tract a set of best subgroups in the second. The advantage of all these exhaustive search
strategies is that they allow to find the k best subgroups reliably.

Probabilistic Finding subgroups on uniform sub-samples of the original data is a straight-
forward method to speed up the search process. As shown by Scheffer and Wrobel (2002),
most of the utility functions commonly used for subgroup discovery are well suited to be
combined with adaptive sampling. This sampling technique reads examples sequentially,
and continuously updates upper bounds for the sample errors based on the data read so
far. That way probabilistic guarantees not to miss any of the approximately k best sub-
groups can be given much quicker than when following exhaustive approaches. This line
of research is discussed in subsection 3.3.2.

Heuristic Heuristic search strategies are fast, but do not come with any guarantee of finding the
most interesting patterns. One recent example implementing a heuristic search is a variant
of CN2. By adapting its rule selection metric to a subgroup discovery utility function,
the well known CN2 classifier has been turned into CN2-SD (Lavrac et al., 2004b). As
a second modification, the sequential cover approach of CN2 has been replaced by a
heuristic strategy to reweight examples. This algorithm will be discussed in more detail in
section 4.3.

When allowing for broader model classes, the task of classifier induction is subsumed by sub-
group discovery; predictive accuracy is just one specific instance of a utility function. Hybrid
learning tasks that lie between classical subgroup discovery and classification will be discussed
in chapter 4.

2.2.4. Clustering

In several domains there is no a priori target attribute, but – similar to subgroup discovery –
the goal of learning is to identify homogeneous subsets of reasonable size, showing different

11

2. Machine Learning – Some Basics

variable distributions than those observed for the overall population. A corresponding machine
learning task referred to as clustering has been derived from statistical cluster analysis. Classi-
cal approaches to clustering yield (disjoint) partitions C1, . . . , Ck of the supplied example sets,
so that

⊎k
i=1 Ci = E . Compared to classification, it is harder to assess the quality of cluster-

ings; a priori there is no clear objective. To overcome this problem, a variety of formal objective
functions have been proposed in the literature on clustering. They primarily aim to define sim-
ilarity, and to trade-off between (i) the average similarity of instances sharing a cluster and (ii)
the average difference between instances of different clusters. For a given distance measure
∆ : X × X → IR+, with 0 denoting the highest similarity, and a given number k of clusters, a
simple formulation of the clustering task is to partition E into disjoint subsets C1, . . . , Ck in a
way that minimizes the function

k∑
i=1

∑
xm,xn∈Ci|m>n

∆(xm, xn).

Clustering is not directly addressed in this thesis. It is mainly mentioned for completeness, and
because it shows some interesting similarities to subgroup discovery. Formally the main dif-
ference is, that clustering does neither require nor support a designated target attribute; it is an
unsupervised learning task.

2.2.5. Frequent itemset and association rule mining

Another well-recognized unsupervised learning task is frequent itemset mining (Agrawal &
Srikant, 1994). Most approaches for frequent itemset mining require all attributes to be boolean,
i.e. A1 = . . . = Ad = {0, 1}, where 0 means absence and 1 represents presence of an event. For
a given example set E the goal is to identify all subsets I of {A1, . . . , Ad} (itemsets) for which
the support

sup(I, E) :=
|{ (∀Aj ∈ I) : Aj(e) = 1 | e ∈ E }|

|E |

exceeds a user-given threshold min_sup. These frequent itemsets I can be used in a second step
to generate the set of all association rules. Such rules need to exceed a user-given precision (or
support) min_fr, which is defined as the fraction of examples that are classified correctly by such
a rule. A more detailed definition is provided in section 2.4.3.

Association rule mining also shows some similarities to subgroup discovery. It yields sets of
rules that might be considered interesting. Its unsupervised nature can be circumvented, so that
only rules predicting values for a specific target attribute are reported, or it can be seen as a
generalization that considers each attribute to be a potential target attribute. An intrinsic differ-
ence to subgroup discovery is, that association rule mining is a constraint-based search problem,
rather than on optimization problem. The size of the resulting rule set is not known in advance,
and association rule mining does not optimize subgroup utility functions. As a consequence,
running an association rule mining algorithm to generate candidates for subgroup discovery will
usually yield a large superset of the k best subgroups. Moreover, there is even a risk that some of
the best subgroups will still not be contained in such a large set of candidate rules. In chapter 7
this issue will be discussed in more detail.

Finally it should be noted that, although there is a close connection between several learning
tasks, there is no taxonomy of tasks in terms of true generalization. For example, regression may
be considered to subsume the task of classification, but as the large number of publications on
specific classification techniques illustrates, general regression techniques do not perform well

12

2.3. Probably Approximately Correct Learning

in classification domains. In turn, regression is sometimes addressed by classification techniques
after a step of discretization, that is, after mapping the continuous responses to a discrete set of
intervals. Subgroup discovery, clustering, and association rule mining have several properties
in common, and are in theory, tackled using a similar catalog of methods. However, the task
definitions differ, so the same catalog of methods is compiled into different algorithms, following
different objectives, and having implementations with different strengths and weaknesses. One
of the objectives of this work is to identify common theoretically well-based building blocks of
data mining tasks that allow to generalize specific results, or to even address tasks by re-using
algorithms that were tailored towards different tasks.

2.3. Probably Approximately Correct Learning

Most parts of this work address supervised learning tasks. The most successful theoretical frame-
work for supervised machine learning has been formalized by Valiant (1984). The model of
probably approximately correct (PAC) learning allows to investigate the complexity of classifi-
cation problems. A learner is not required to identify the target concept underlying a classified
example set exactly, as e.g., in the identification in the limit paradigm known from language
identification (Gold, 1967). For a PAC learner it is sufficient to yield a good approximation of
the target concept with high probability instead.

Only the most important definitions and some results of the PAC model are summarized in this
section, since this field has been discussed elaborately by various authors. For example, Kearns
and Vazirani (1994) and Fischer (1999) provide compact introductions.

The original version of the PAC model is described in 2.3.1. It depends on some assumptions
that ease the analysis of learning algorithms, but are rather unrealistic from a practical point of
view. A weaker definition of learnability, particularly useful in the context of boosting classifiers,
is given in subsection 2.3.2. Additionally, another generalization of the learnability framework
is presented, the so-called agnostic PAC model. It is based on more realistic assumptions that
can basically be shown to hamper learnability.

2.3.1. PAC learnability of concept classes

There are different possible assumptions of how a target attribute Y may depend on an instance
space X . The original PAC learning framework assumes a functional dependency between each
instance x and its label y. This dependency can formally be represented in terms of a target
function f : X → Y . The label Y is assumed to be boolean, so each target function simply dis-
tinguishes positive from negative examples. This motivates the simplification of target functions
to concepts c ⊆ X that contain exactly the positive examples. The learner may rely on the fact
that the target function comes from a concept class C. Boolean expressions of a specific syntac-
tical form, hyperplanes in Euclidian spaces, and decision trees are typical examples of concept
classes.

The target class c, e.g. a decision tree that perfectly identifies the positive examples, is of
course unknown to the learner. Hence, the goal is to select a model, referred to as a hypothesis in
PAC terminology, from a hypothesis space H, which approximates the unknown target concept
well. Just as the concept class, the hypothesis space H is a subset of the powerset P(X) of
the instance space X . The quality of an approximation is stated with respect to an unknown
probability density function (pdf) D underlying the data, rather than with respect to the available
training data.

13

2. Machine Learning – Some Basics

Definition 1 For a given probability density function D : X → IR+, two concepts

c ⊆ X and h ⊆ X

are called ε-close for any ε ∈ [0, 1], if

PrD [(c \ h) ∪ (h \ c)] ≤ ε.

The learner’s choice of a model depends on the training set, of course, which is assumed to be
sampled i.i.d. Samples always bear a small risk of not being informative, or of even being mis-
leading. For example, it may happen that the sample suggests a much simpler than the correct
target concept c, because an important subset of the instance space is drastically underrepre-
sented. The reader may want to think of a very extreme case: a single example might be sampled
over and over again. It consequently cannot be expected that a learner always selects a good
model when being provided with only a finite number of examples. The PAC model takes the
risk of poor samples into account by allowing that the learner fails with a probability of at most
δ ∈ (0, 1), an additional confidence parameter.

A crucial assumption of PAC learning is, that the model is deployed in a setting that shares the
(unknown) pdf D underlying the training data. Assumptions about D are avoided by requiring
that PAC algorithms succeed for any choice of D with a probability of at least 1 − δ. The
following definition states these ideas more precisely1.

Definition 2 A concept class C ⊆ P(X) is said to be PAC learnable from a hypothesis space
H ⊆ P(X) if there exists an algorithm A that, for any choice of δ, ε ∈ (0, 1), any c ∈ C and
every probability distribution D over X , outputs with probability at least 1 − δ a hypothesis
h ∈ H that is ε-close to c, if A is provided with an i.i.d. sample E ∼ Dm (of size m), where m

is upper-bounded by a polynomial in 1/ε and 1/δ.

Please note that definition 2 is based solely on the information about a target class that can be
derived from samples of a specific size. An algorithm is simply considered to be a recursive
function, mapping sets of classified samples toH. If the information extractable from samples is
not sufficient to identify the target class, then it is not necessary to consider specific algorithms in
order to prove non-learnability. If learning is possible, however, then one is interested in concrete
algorithms and their efficiency. Definition 2 does not demand polynomial time complexity for
the identification procedure that yields an ε-close hypothesis; hence, this notion of learnability
induces a broader complexity class (unless NP=RP) than that which corresponds to efficiently
learnable target classes as defined below.

Definition 3 A concept class C ⊆ P(X) is called efficiently PAC learnable from a hypothe-
sis class H ⊆ P(X) if it is PAC learnable from H and one of the algorithms satisfying the
constraints given in Def. 2 has a runtime polynomially bounded in 1/ε and 1/δ.

An example of a concept class C which – choosingH = C – is PAC learnable, but not efficiently,
is k-term DNF2. For a set of boolean variables a DNF (disjunctive normal form) is a disjunction
of conjunctions of literals. The class k-term DNF consists of all DNF formulae containing at
most k conjunctions. It is interesting to note, that k-term DNF is efficiently PAC learnable using
another hypothesis language, namely k-term CNF, consisting of all conjunctions of disjunctions
that contain at most k literals. These results indicate that the information theoretic concept of

1P(X) denotes the power set of X .
2To be precise: This statement holds for all k ≥ 2.

14

2.3. Probably Approximately Correct Learning

learnability (Def. 2) does not imply the concept of efficient learnability (Def. 3), and that even for
these well structured base problems of machine learning the choice of an appropriate hypothesis
space (or model class) has a serious impact on learnability.

The most fundamental results for PAC learnability are based on the Vapnik-Chervonenkis
dimension of hypothesis spaces.

Definition 4 The Vapnik-Chervonenkis dimension of a concept classH, denoted as VCdim(H),
is defined as the cardinality |E | of a largest example set E ⊆ X meeting the following constraint:
For each potential assignment of labels to E there exists a consistent hypothesis in H, formally:

VCdim(H) ≥ v :⇔ (∃E ∈ X , |E | ≥ v)(∀c ∈ P(E))(∃h ∈ H) : E ∩ h = c

If the above property holds for arbitrarily large E , then we define VCdim(H) :=∞.

It is easily seen that any finite concept class has a finite VCdim, but the same holds for many prac-
tically relevant infinite concept classes. An example of the latter are halfspaces in IRn (classes
separable by hyperplanes); they have a VCdim of n + 1.

Blumer et al. (1989) proved the following theorem, which is one of the foundations of algo-
rithmic learning theory.

Theorem 1 Any concept class C ⊆ P(X) with finite VCdim is PAC learnable from H = C.
Any algorithm that outputs a concept h ∈ C that is consistent with any given sample S labeled
according to a concept c ∈ C is a PAC learning algorithm in this case. For a given maximal
error rate ε, confidence parameter δ, and sample size

|S| ≥ max
(

4

ε
log

2

δ
,
8 · VCdim(C)

ε
log

13

ε

)
it fails to select a hypothesis that is ε-close to c with a probability of at most δ.

There is a corresponding negative result shown by the same authors:

Theorem 2 For any concept class3 C ⊆ P(X), ε < 1/2, and a sample size

|S| < max
(

1 − ε

ε
ln

1

δ
, VCdim(C) · (1 − 2(ε(1 − δ) + δ))

)
every algorithm must fail with a probability of at least δ to yield an ε-close hypothesis. No
concept class with infinite VCdim is PAC learnable from any hypothesis space.

For concept classes with infinite VCdim there is often a natural structure of H and C, inducing
a complexity measure for hypotheses. In this case, the VCdim is often finite, if only hypotheses
up to a specific maximal complexity are considered. In other terms, if the sample complexity is
allowed to grow polynomially in a complexity parameter, like the maximal considered depth of
decision trees, then PAC learnability (defined slightly different) can often be shown, although
the VCdim of the embedding concept class is infinite. For brevity, this aspect is not discussed
here. For proofs and further reading please refer to (Kearns & Vazirani, 1994).

3To be precise, it is necessary to claim that C is non-trivial, i.e. that it contains at least 3 different concepts.

15

2. Machine Learning – Some Basics

2.3.2. Weakening the notion of learnability

The definitions provided in the last subsection address tasks in which each target concept in C
can be approximated arbitrarily well by a concept taken fromH. Practical experiences made with
most learning algorithms indicate, that it is unrealistic to expect arbitrarily good performances.
Still, for real-world datasets the induced models almost always perform significantly better than
random guessing. The notion of weak learnability seems to reflect this observed capability of
learning algorithms to a certain extent. The following definition is simpler than e.g., the one
used by Kearns and Vazirani (1994). It does neither distinguish between hypotheses of different
length, nor does it exploit a complexity structure over H, like the depth of decision trees. One of
the consequences is, that the required sample size m may be any constant.

Definition 5 A concept class C ⊆ P(X) is said to be weakly PAC learnable from a hypothesis
class H ⊆ P(X) if there exists an algorithm A, with fixed ε < 1/2 and δ ∈ (0, 1], so that for
any c ∈ C, and for every pdf D over X , algorithm A provided with an i.i.d. sample of any fixed
size outputs with probability at least 1 − δ a hypothesis h ∈ H that is ε-close to c.

Although this notion of learnability seems far less restrictive at the first sight, weak and strong
learnability have constructively been shown to be equivalent by Schapire (1990) when the choice
of H is not fixed. Boosting algorithms increase the predictive strength of a weak learner by
invoking it several times for altered distributions, that is, in combination with a specific kind
of sub-sampling or in combination with example weights (cf. section 3.4.2). The result is a
weighted majority vote over base models predictions (cf. section 2.6), which usually implies
that the boosting algorithm selects its models from a hypothesis space that is more expressive
than the one used by its base learner. Although this learning technique is very successful in
practice, the early theoretical assumptions of weak learnability, which originally motivated it,
are obviously violated in practice. One point is, that target functions usually cannot be assumed
to lie in any a priori known concept class. Another one is, that the target label is usually rather
a random variable than functionally dependent on each x ∈ X . This implies, that there is often
a certain amount of irreducible error in the data, regardless of the choice of any specific model
class. Boosting will be discussed more elaborately in chapter 5.

2.3.3. Agnostic PAC learning

With their agnostic PAC learning model, Kearns et al. (1992) try to overcome some aspects of
original PAC learning that are unrealistic in practice. The main difference, apart from various
generalizations of the original model, is that the assumption of any a priori knowledge about
a restricted target concept class C is weakened. The agnostic learning model makes use of a
touchstone class T instead; it is assumed that any target concept c ∈ C can be approximated
by a concept in T , without any further demands on C. The notion of a target concept class is
basically dropped.

As a second difference to the original PAC-learning model, it is no longer required to approx-
imate the target concept arbitrarily well. It is sufficient if the learner outputs a model h from any
hypothesis classH which is ε-close to the best model in T , while in the original PAC model h is
required to be ε-close to the target concept c itself. The constraint of ε-closeness needs to hold
with a probability of at least 1 − δ, where ε and δ are again parameters of the learner, and the
number of training examples m is bounded by m̃(1/ε, 1/δ) for a fixed polynomial function m̃.

As a third point, Kearns et al. (1992) extend the PAC model to be capable of capturing prob-
abilistic dependencies between X and Y , while the original PAC model assumes functional de-
pendencies. In this more general setting the learner models the conditional distribution Pr(y | x)

16

2.4. Model selection criteria

for each label y ∈ Y and example x ∈ X , or tries to yield a model close to Bayes’ decision
rule, which predicts the most probable class for each x ∈ X . The extension of the PAC model is
formally achieved by distinguishing between a true label Y ′ and an observed label Y . The same
extension allows to model different kinds of noise, which have also been studied as extensions
to the original PAC model: White noise at a rate of η means, that with a probability of η the label
of the (boolean) target attribute is flipped. White noise changes the data unsystematically, so it
can be tolerated up to a certain rate by several learners. Malicious noise is a model for system-
atic errors of the worst kind, only bounded by the noise rate η. The reader may want to think
of this kind of noise as an “opponent”, who analyzes the learning algorithm and the training
sample at hand. The opponent then selects a fraction of up to η of all the examples and flips the
corresponding labels, following the objective to make the learning algorithm perform as badly
as possible. For these noise models Fischer (1999) summarizes some important results on PAC
learnability and the corresponding increase in sample complexity.

Kearns et al. (1992) show that learnability in their agnostic PAC-learning model is at least
as hard as original PAC-learning with the class label altered by malicious noise. This means
that, unless NP=RP, the rather simple problem of learning monomials over boolean attributes is
already intractable. As illustrated by the algorithm T2 by Auer et al. (1995), the agnostic PAC
model still allows for practically applicable learners. Exploiting one of the results presented
in (Kearns et al., 1992), an efficient algorithm selecting any model in H that has a minimal
disagreement (training error) is an agnostic PAC learning algorithm, if H has a finite VCdim,
or a VCdim polynomially bounded in an input complexity parameter. The VCdim of depth-
bounded decision trees is finite. T2 exhaustively searches the space of all decision trees with a
depth of 2, so it guarantees to output a tree from this class that minimizes the disagreement.

It is no surprise that minimizing the training error is a reasonable strategy for minimizing
the generalization error, unless the model class allows to fit arbitrarily complex models to the
data. The fact that many unrealistic assumptions were removed from this last PAC learning
model is attractive on the one hand, but consequently makes it much harder to derive strong
results, on the other. This is one of the implications of the no free lunch theorem by Wolpert and
Macready (1997): No reasonable guarantees on the performance of learning algorithms can be
given without introducing any assumptions or exploiting any domain-specific knowledge. Please
note that sampling i.i.d. from the same underlying distribution at training and at application time
remains as one of the last assumptions in the agnostic PAC learning model. Thus, the weak
results that can be derived in this framework apply to the very general class of problems that
share this assumption. Most of the sampling-based techniques discussed in this thesis make no
further assumptions either, so they can well be analyzed in frameworks similar to the PAC model.

2.4. Model selection criteria

The induction of models from classified examples has been studied extensively in the machine
learning literature throughout the last decades. A variety of metrics like predictive accuracy,
precision, or the binomial test function have been suggested to formalize the notions of inter-
estingness and usefulness of models. There are several learning tasks that can be formulated as
optimization problems with respect to a specific metric. Classifier induction and subgroup dis-
covery are two important examples. The following paragraphs provide definitions of the most
relevant selection metrics.

17

2. Machine Learning – Some Basics

2.4.1. General classifier selection criteria

The goal when training classifiers in general is to select a predictive model that accurately sepa-
rates positive from negative examples.

Definition 6 The (predictive) accuracy of a model h : X → Y with respect to a pdf D : X×Y →
IR+ is defined as

ACCD(h) := Pr(x,y)∼D [h(x) = y] .

The error rate of h is defined as ErrD(h) := 1 − ACCD(h).

These definitions allow to formulate the classifier induction task – previously discussed in the
setting of PAC learning – in terms of a formal optimization problem.

Definition 7 For a hypothesis space H, an instance space X , a nominal target attribute Y , and
a (usually unknown) density function D : X × Y → IR+, the task of classification is to find a
model h ∈ H that maximizes ACCD(h), or that minimizes ErrD(h), respectively.

For the process of constructing such models in a greedy general-to-specific manner, but also to
evaluate complete models, impurity criteria have successfully been applied. In the best case,
a model can reliably separate the different classes of Y . This corresponds to a constructive
partitioning of X with subsets that are pure with respect to the classes. If none of the candidates
separates the classes perfectly, then choosing a candidate with highest resulting purity is one
way to select classifiers. Top-down induction of decision trees (e.g., Quinlan (1993)) is the most
prominent, but not the only learning approach that applies impurity criteria. This approach starts
to partition the data recursively, each time selecting a split that leads to the purest possible
subsets.

The entropy is the best-known impurity criterion. It is an information-theoretic measure (Shan-
non & Weaver, 1969), evaluating the expected average number of bits that are required to encode
class labels. If class i occurs with a probability of pi, then it can be encoded by log 1

pi
= − log pi

bits in the best case. Weighting these encoding lengths with the probability of each class we reach
at the well-known entropy measure.

Definition 8 For a nominal target attribute Y the entropy of an example set E is defined as

Ent(E) = −
∑
y ′∈Y

|{y = y ′ | (x, y) ∈ E}|

|E |
· log

(
|{y = y ′ | (x, y) ∈ E}|

|E |

)
.

To evaluate the utility of splitting E into v disjoint subsets, E (1), . . . , E (v), the entropy of each
subset is weighted by the fraction of covered examples:

Ent({E (1), . . . , E (k)}) =

v∑
i=1

|E (i)|

|E |
· Ent(E (i)).

The same criterion can be stated with respect to a pdf underlying the data, e.g. to capture the
generalization impurity of a model:

Definition 9 Let D : X × Y → IR+ denote a pdf, T : X → {1, . . . , v} be a function that
partitions X into v disjoint subsets {C(1), . . . , C(v)}, and let

pi,y := PrD(y = y ′ | (x, y ′) ∈ C(i))

18

2.4. Model selection criteria

abbreviate the conditional probability of class y ∈ Y in partition C(i). Then the generalization
entropy is defined as

EntD(T) := −

v∑
i=1

PrD

[
C(i)

]
·

∑
y∈Y

pi,y log pi,y

 .

The decision tree induction algorithms C4.5 (Quinlan, 1993), as well as the WEKA reimplemen-
tation J48 (Witten & Frank, 2000) used in later parts of this thesis, are based on the principle
of heuristically minimizing entropy at the leaves of a small decision tree. Large trees are known
to overfit to the training data, which means that the training error is considerably lower than
the generalization error. For this reason, most of the intelligence of decision tree induction al-
gorithms addresses questions like “When to stop growing a tree?”, or “How to prune, so that
predictive accuracy is not compromised by overfitting?”.

Another important impurity metric is the Gini Index, which is known from various statistical
contexts, but may be used to induce decision trees, as well.

Definition 10 For an example set E and nominal target attribute Y the Gini index is defined as

Gini(E) :=
∑

yi,yj∈Y,yi 6=yj

|{y = yi | (x, y) ∈ E}|

|E |
·
|{y = yj | (x, y) ∈ E}|

|E |

= 1 −
∑
yi∈Y

(
|{y = yi | (x, y) ∈ E}|

|E |

)2

.

Similar to entropy, the Gini index for splits E (1), . . . , E (v) partitioning E into disjoint subsets is
defined by weighting the individual subsets by the fraction of examples they contain:

Gini({E (1), . . . , E (v)}) :=

v∑
i=1

|E (i)|

|E |
· Gini(E (i)).

Decision trees are also used for estimating conditional class probabilities, i.e. for predicting
PrD(yi | x) for all examples x ∈ X and classes yi ∈ Y . A simple method is to use the class
distributions of the training set at each leaf, and to assume that they reflect the true conditional
distributions at those leaves. For fully grown trees these estimates are highly biased, however,
because the splits are chosen as to minimize impurity, which systematically favors splits that
lead to overly optimistic estimates.

A popular technique to reduce this effect is known under the name Laplace estimate (Cestnik,
1990): For any example subset, the counter of examples observed from each class is initialized
with a value of 1, which reflects high uncertainty when computing estimates from small sam-
ples. For increasing sample sizes the impact of the constant offsets vanishes. This technique
reduces overfitting in a heuristic manner, which does not allow to give probabilistic guarantees
like confidence bounds for the true value of PrD(yi | x).

An alternative is to utilize hold-out sets, which allows to compute unbiased estimates and con-
fidence bounds for class distributions; an unbiased estimator has the property that the expected
estimated value equals the true target value. As a disadvantage, hold-out sets reduce the number
of examples available for training. Evaluating model performances and computing confidence
bounds will be discussed in detail in chapter 3.

Probabilistic estimates can hardly be measured using the metrics defined so far. For this pur-
pose several metrics have been proposed in the literature. The similarity of probabilistic pre-
dictions to regression tasks suggests to apply loss functions that are used for continuous target

19

2. Machine Learning – Some Basics

labels. The most common of these loss functions is the mean squared error, averaging the indi-
vidual losses LSQ(h(x), y) = (h(x) − y)2.

Definition 11 For a density function D : X × Y → IR+, a boolean target attribute Y =

{0, 1}, and a probabilistic (or “soft”) classifier h : X → [0, 1] that approximates conditional
probabilities PrD(Y = 1|x), the root mean squared error (RMSE) of h is defined as

RMSED(h) =

√∫
D

(h(x) − y)2 dx dy.

It is well known that Bayes’ decision rule is the best way to turn soft classifiers into “crisp” ones
that take the form h : X → Y . For estimated class probabilities P̂r this decision rule predicts the
mode

ŷ := arg max
y∈Y

P̂r(y | x),

which is the most likely class ŷ ∈ Y for each x ∈ X .
Another family of metrics that is applicable to the task of selecting probabilistic classifiers

measures the goodness of example rankings. The best known of these metrics is the area under
the ROC curve (AUC), which is only discussed for boolean classification tasks. The origin of the
name of this metric will become clear in subsection 2.5.2. The following definition of the AUC
is based on the underlying distribution, and hence is appropriate when the task is to generalize
the training data.

Definition 12 For a soft classifier h : X → [0, 1] and a pdf D : X × Y → IR+ the area under
the ROC curve metric is defined as the probability

AUCD(h) := Pr(x,y),(x ′,y ′)∼D2

[
h(x) ≥ h(x ′) | y = 1, y ′ = 0

]
that a randomly sampled positive example is ranked higher than a randomly sampled negative
one.

For a given example set E , the empirical AUC for this set E can be computed by ordering all
examples by their estimated probabilities (or confidences) to be positive. For sets that are ordered
in this fashion, the AUC can be shown to be proportional to the number of switches between
neighboring examples, in the sense of the bubble sort algorithm, that are required to “repair” the
ranking; for repaired rankings all positive examples are ranked higher than all negative examples.
More precisely, let Λ(h, E) denote the number of required switches for an example set E ordered
according to the predictions made by h. Let further denote E+ the subset of positive examples
and E− the subset of negative ones. Then the AUC of h for E is

AUC(h, E) :=
Λ(h, E)

|E+| · |E−|
.

As this definition illustrates, the AUC metric is invariant to monotone transformations of h.

2.4.2. Classification rules

Logical rules are well interpretable models, commonly used to formulate complete programs in
languages like PROLOG (Sterling & Shapiro, 1994), and to represent background knowledge
for a domain, if the reasoning process needs to be communicated to domain experts (Scholz,
2002b). This kind of background knowledge can be exploited by some Inductive Logic Program-
ming approaches (Muggleton, 1995). A restriction of Horn logics allows for tractable inference
and induction.

20

2.4. Model selection criteria

Definition 13 A classification rule consists of an antecedent A, which is a conjunction of atoms
over A1, . . . , Ak, and a consequence C, predicting a value for the target attribute. It is notated
as A → C. If the antecedent evaluates to true for an example, the rule is said to be applicable
and the example is said to be covered. If the consequence also evaluates to true, the rule is said
to be correct.

The syntactical form of rules is of minor importance in this work. In numerical domains, atoms
usually take the form Ai ⊕ θ, with Ai denoting an attribute, θ being a threshold from the cor-
responding domain, and ⊕ ∈ {<,≤,≥, >} being an operator that compares attribute values to
thresholds. In boolean and nominal domains it is common to check for equality only, i.e. to use
atoms of the form Ai = θ.

The function Ext will sometimes be used for the sake of clarity in the context of rules, e.g.,
to point out that set operations do not refer to syntactical elements. Ext maps antecedents A and
consequences C to their extensions Ext(A) ⊆ X and Ext(C) ⊆ X , those subsets of the instance
space for which the expressions evaluate to true.

For many applications, rules cannot be expected to match the data exactly. It is sufficient if
they point out interesting regularities in the data, which requires to refer to the underlying pdf
D. In this setting, antecedents and consequences are considered to be probabilistic events, e.g.,

PrD [A] := PrD [Ext(A)] .

The intended semantic of a probabilistic rule A→ C is to point out that the conditional prob-
ability PrD [C|A] is higher than the class prior PrD [C]; in other terms, the events represented by
antecedent and conclusion are correlated. Probabilistic rules are sometimes annotated with their
corresponding conditional probabilities:

A→ C [0.8] :⇔ PrD [C | A] = 0.8

The usefulness of such rules, and hence the reasons to prefer one probabilistic rule over an-
other, may depend on several task-dependent properties. The next paragraphs provide a brief
introduction to rule evaluation metrics.

2.4.3. Functions for selecting rules

Performance metrics are functions that heuristically assign a utility score to each rule under con-
sideration. Different formalizations of the notion of rule interestingness have been proposed in
the literature, see e.g. (Silberschatz & Tuzhilin, 1996). Interestingness is interpreted as unex-
pectedness throughout this work. The following paragraphs discuss a few of the most important
metrics for rule selection.

First of all, the notion of accuracy can be translated to classification rules A → C in boolean
domains by making the assumption that a rule predicts any class C when it applies, and the
opposite class C, whenever it does not.

Definition 14 The accuracy of a rule A→ C is defined as

ACC(A→ C) := Pr [A,C] + Pr
[
A,C

]
However, in prediction scenarios rules are generally not considered to make any prediction if
they do not apply, but only for the subset Ext(A). The precision is a metric similar to accuracy,
that only considers the subset Ext(A) which is covered by a rule.

21

2. Machine Learning – Some Basics

Definition 15 The precision of a rule reflects the conditional probability that it is correct, given
that it is applicable:

PREC(A→ C) := Pr [C | A]

In contrast to predictive accuracy, misclassifications due to examples from class C that are not
covered are not accounted for. However, when assuming that a rule predicts the negative class
if it does not apply, accuracy is equivalent to the naturally weighted precisions of a rule for the
subsets Ext(A) and Ext(A):

ACC(A→ C) = Pr [A,C] + Pr
[
A,C

]
= Pr [C | A] · Pr [A] + Pr

[
C | A

]
· Pr

[
A
]

= Pr [A] · PREC(A→ C) + Pr
[
A
]
· PREC(A→ C)

The notion of confidence, equivalent to precision, is common in the literature on mining frequent
itemsets (Agrawal & Srikant, 1994). For classification rules, the precision may also be referred
to as the rule accuracy (e.g., in (Lavrac et al., 1999)), suggesting that a final classifier consists
of a disjunction of such rules. This confusing notion is avoided in this work.

A short-coming of the precision metric is that it does not take into account class priors Pr [C].
This is an important information, however, to quantify the advantage of a rule over random
guessing. The following metric captures a kind of information that is similar to precision, but
overcomes this drawback. Its origins are rooted in the literature on frequent itemset mining (Brin
et al., 1997). In supervised contexts it measures the difference in the target attribute’s frequency
for the subset covered by a rule, compared to the prior.

Definition 16 For any rule A→ C the LIFT is defined as

LIFT(A→ C) :=
Pr [A,C]

Pr [A]Pr [C]
=

Pr [C | A]

Pr [C]
=

PREC(A→ C)

Pr [C]

The LIFT of a rule captures the value of “knowing” the prediction for estimating the probability
of the target attribute:

• LIFT(A→ C) = 1 indicates that A and C are independent events.

• With LIFT(A→ C) > 1 the conditional probability of C given A increases,

• with LIFT(A→ C) < 1 it decreases.

The LIFT may be considered to be a version of PREC that has been normalized with respect to
the class skew. It will show that, for selecting and combining rules, considering the LIFT is often
more convenient and informative, in particular because even random guessing may yield a high
PREC for skewed datasets.

A comparable measure, well-known from subgroup discovery (Klösgen, 1996), is the bias,
which reflects the linear deviation of a rule’s precision to the precision of random guessing.

Definition 17 The bias of a rule A → C, C ∈ Y under pdf D is defined as the difference
between the conditional probability of C given A and the prior of class C:

BIASD(A→ C) := PrD [C | A] − PrD [C] = PrD [C] · (LIFTD(A→ C) − 1)

Rules that cover only a few examples are generally not relevant for data mining. In descriptive
settings such rules are are often valid just by chance, hence misleading, which can formally
be shown by significance tests. Consequently, such rules also tend to generalize poorly. The
coverage is a useful criterion to avoid the selection of such rules.

22

2.4. Model selection criteria

Definition 18 The coverage (COV) of a rule A → C is defined as the probability that it is
applicable for an example sampled from the underlying pdf D:

COVD(A→ C) := PrD [A]

The coverage of a rule is identical to its support defined in section 2.2, which is the term tradi-
tionally used in the context of frequent itemset and association rule mining (Agrawal & Srikant,
1994).

Besides taking care that the discovered rules all have a large coverage, the significance of rules
can directly be considered as a rule selection criterion. This prevents us from reporting rules that
bear a high risk of performing well just by chance. Rules not worth to be reported perform
about as well as random guessing. This means that the conditional probability Pr [C | A] of the
predicted class C, given that the rule applies, is approximately identical to the class prior Pr [C].
Please note that rules with a lower conditional probability can easily be turned into interesting
rules by just inverting their predictions, e.g. from C to C.

One popular example of a significance test is the binomial test. It allows to compute the prob-
ability of the null hypothesis Pr [C | A] = Pr [C] that a rule A → C under consideration does
not contribute any information. For i.i.d. samples the probability Pr [C | A] is fixed. We con-
sider a subsample that contains m observations from Ext(A). Let X1, . . . , Xm denote Bernoulli
random variables, with Xi = 1 if the class of example i is C, and 0 otherwise. Let further
Y := 1

m

∑m
i=1 Xi denote the mean of these variables. According to the central limit theorem

this distribution (binomial) is approximately normal for large samples. If the null hypothesis is
correct, then we have

E(Y) =
1

m

m∑
i=1

E(Xi) =
1

m
(m · Pr(C | A)) = Pr(C),

and a standard deviation of

σ(Y) =

√√√√ m∑
i

σ2(Xi/m) =

√
Pr(C) · (1 − Pr(C))

m
.

Normalizing Y to mean 0 and standard deviation of 1 for the assumed values E(Y) and σ(Y) of
the null hypothesis above yields the binomial test function:

f(Y, Pr(C),m) :=
Y − Pr(C)√

Pr(C) · (1 − Pr(C))/m
(2.2)

Referring to the normal approximation, this gives us the standard z-score (inverse standard nor-
mal distribution) of the null hypothesis. Hence, we may compute (e.g., table look-up) the quan-
tile z(α) of the standard normal distribution for any significance level α and accept rules only if
e.g. f(Y, Pr(C),m) < z(α), which corresponds to a one-sided test. Alternatively, the values of f

can be used to define a preference order over the set of rule candidates. This prefers significant
rules over less significant ones, while still leaving the option of considering further criteria in
parallel.

For any significance test it is important to take into account the number of evaluated rule
candidates, i.e. the cardinality of the hypothesis space H, because otherwise even reasonably
low significance levels may not help to prevent any of the poor rules from passing. This issue is
discussed in more detail in subsection 3.3.2.

A commonly used class of utility functions in the scope of subgroup discovery is captured by
the following definition.

23

2. Machine Learning – Some Basics

Definition 19 For a given parameter α and underlying probability density function D, the utility
(or quality) Q

(α)
D of a rule r ∈ H is defined as

Q
(α)
D (r) := COVD(r)α · BIASD(r).

The parameter α allows for a data and task dependent trade-off between coverage and bias. Def-
inition 19 covers various relevant metrics. With α = 0.5 we reach at a metric factor-equivalent
to the binomial test function: In eqn. (2.2) the quantity m denotes the number of examples in a
subset Ext(A), while the random variable Y corresponds to the fraction of examples of class C

in Ext(A). For a considered rule r : A → C this allows to rewrite the binomial test function in
terms of the previous definitions:

f(Y, Pr(C),m) =
Y − Pr(C)√

Pr(C) · (1 − Pr(C))/m
=

Pr(C|A) − Pr(C)√
Pr(C) · (1 − Pr(C))/(COV(r) · |E |)

=
√

COV(r) · (Pr(C | A) − Pr(C)) ·

√
|E |

Pr(C) · (1 − Pr(C))︸ ︷︷ ︸
=:c (constant)

=
√

COV(r) · BIAS(r) · c = c · Q(0.5)(r)

The total number of examples |E | and the class priors Pr(C) and Pr(C) are constants, so they can
be ignored for rule selection problems. For simplicity, we will prefer Q(0.5) over the binomial
test function in the remainder of this work.

Choosing α = 2 in definition 19, we reach at a function commonly used to put higher empha-
sis on the bias. The choice of α = 1 yields a popular utility function for subgroup discovery that
will be used at several occasions throughout this work:

Definition 20 For an underlying pdf D the weighted relative accuracy of a rule r ∈ H is

WRACCD(r) := COVD(r) · BIASD(r).

WRACC can be considered a default metric for subgroup discovery, e.g. applied in the early
system EXPLORA (Klösgen, 1996) and the algorithm MIDOS (Wrobel, 1997).

Finally, it should be mentioned that the usage of a variety of metrics for different purposes has
a long tradition in the rule learning community. For brevity, several metrics were omitted; for a
broader overview please refer to Fürnkranz (1999).

2.5. ROC analysis

As discussed in the last section, the performances of classifiers can be measured in terms of
different metrics. The receiver operator characteristics (ROC) are a useful tool for analyzing the
differences between these metrics, and for visualizing the performances of different classifiers.
The framework of ROC analysis has its roots in signal detection theory, but has recently gained
much attention in the machine learning community, leading e.g. to several focused workshops,
like (Hernández-Orallo et al., 2004; Ferri et al., 2005). The following paragraphs provide only
the most relevant aspects for the remainder of this work. Fawcett (2003) provides a more exten-
sive introduction to ROC graphs for data mining.

24

2.5. ROC analysis

C C
A : TP FP

A : FN TN∑
: P N

C C
∑

PREC

A : 63 11 74 ≈ 85%
A : 32 121 153 ≈ 79%∑

: 95 132 227

Figure 2.1.: Columns of contingency matrices are defined with respect to the true labels, rows with
respect to the predictions. The left table illustrates the defined abbreviations, the right an
example, where PREC refers to the precisions of A→ C and A→ C.

2.5.1. Visualizing evaluation metrics and classifier performances

Traditional ROC analysis in machine learning addresses boolean classification problems. Models
make predictions for the label of each element of an example set E . In the case of crisp classifiers
the range of predictions is equal to the set of labels Y , here assumed to contain the two classes
y+ (pos.) and y− (neg.). As in PAC learning theory, the extension of a classifier h is defined as
Ext(h) := {h(e) = y+ | e ∈ E}, the subset of example set E for which the classifier predicts the
positive class. Regardless of whether the classifier is a rule or any other kind of model, the set
Ext(h) is said to be covered.

The absolute number of covered examples that are in fact positive (true positives) is denoted
as

TP := |{y = y+ | (x, y) ∈ Ext(h)}|.

Accordingly, the negative examples that were covered “by mistake” are referred to as the false
positives, so FP := |h| − TP. All examples in h = E \ h are not covered, and, for most model
classes, may be assumed to be predicted negative. In this case, the number of those examples
that are in fact negative is denoted as TN (for true negatives), the number of uncovered positives
defines the false negatives, FN. Finally, the absolute numbers of positives in E are denoted as
P, the absolute numbers of negatives as N. Table 2.1 summarizes these quantities in a so called
contingency matrix.

For ROC analysis the true and false positive rates are of special interest. These quantities
allow to establish a view on the performances of classifiers that abstracts from the class skew
P/N, simply by normalizing TP with respect to P and FP with respect to N:

Definition 21 For a boolean crisp classifier that predicts (exactly) all examples from a subset
Ext(h) ⊆ E of a given example set E as positive, and that has TP true positives and FP false
positives, the true positive rate TPr and the false positive rate FPr are defined as

TPr := TP/P =
|{y = y+ | (x, y) ∈ Ext(h)}|

|Ext(h)|
and

FPr := FP/N =
|{y = y− | (x, y) ∈ Ext(h)}|

|Ext(h)|
,

respectively. The true positive rate of a model is also referred to as its recall.

ROC plots provide two-dimensional visualizations of classifier performances. Each point in
a ROC plot refers to a false positive rate (x-axis) and a true positive rate (y-axis), and thereby
reflects the fractions of correctly and incorrectly covered examples. Figure 2.2 shows a ROC plot
with three points, each of which represents a different classifier performance. The diagonal with
slope 1 in ROC diagrams represents the expected classifier performances that can be achieved
by plain random guessing. The two (FP, TP) points (0, 0) and (1, 1) represent the two default

25

2. Machine Learning – Some Basics

Figure 2.2.: Basic ROC plot properties: The
diagonal corresponds to the per-
formance of random guessing,
points in the upper left triangle
perform better. The point (0, 1)

represents perfect predictions.

Figure 2.3.: Inverting predictions of models
in the lower right triangle mirrors
its performance along the diago-
nal. The green point refers to a
useful model; it can be interpo-
lated with (0, 0) and (1, 1).

hypotheses, the former predicting all examples as negative, the latter as positive. Any point
in between represents a probabilistic combination of these default hypotheses. This does not
require to inspect the data at all. More generally, any point lying within the convex hull of
classifier performances anywhere in ROC space can be reached by (probabilistic) interpolation
of classifiers.

Any classifier showing a performance in the upper left triangle of a ROC plot performs better
than random guessing. Optimal classifiers predict always correctly, and hence have a true pos-
itive rate of 1 and a false positive rate of 0. This corresponds to the point (0, 1) at the upper
left edge. Since such classifiers cover exactly the positives, they do, in turn, cover none of the
negatives. The same principle applies to less well performing classifiers. This illustrates why
the complete contingency matrix is represented by ROC plots, although only the performance
on the covered subset Ext(h) is visualized explicitly. Points lying in the triangle below the di-
agonal perform worse than random guessing. However, if the performance of such a classifier
is known, the predicted label can simply be flipped. The geometric effect in ROC plots is that
the point is mirrored at the diagonal, so that the performance of the corresponding rule is on the
“good” (upper left) side afterwards. This is illustrated in figure 2.3. Keeping this in mind, the
worst case are points lying on (or close to) the diagonal. The corresponding classifiers do not
provide much information on how the class labels are distributed in the example set.

As discussed in section 2.4, how to decide which classifiers to select is an important question
in machine learning. For each evaluation metric the corresponding preference ordering can well
be illustrated in terms of ROC plots. We will start with the classification error. Decomposing the
absolute number of errors into misclassified positives and misclassified negatives, the total error
εabs (number of misclassified examples) is

εabs = (1 − TPr) · P + FPr ·N. (2.3)

26

2.5. ROC analysis

Figure 2.4.: The isometrics of ACC without
class skew (green) and with 80%
positives (red). In both cases the
slope of isometrics is N/P. Iso-
metrics are shown for ACC of
25%, 50%, and 75%.

Figure 2.5.: Isometrics for PREC of 25%,
50%, and 75%, without skew
(green) and with 80% positives
(red). Because of the high skew,
the red line performances are
worse than random guessing.

Rearranging terms, it directly follows that in this case two classifiers with true and false positive
rates (FPr1, TPr1) and (FPr2, TPr2) perform equally well, if and only if

TPr2 − TPr1

FPr2 − FPr1
=

N

P
=: c. (2.4)

For any known class skew c, which corresponds to the ratio Pr(y−)/Pr(y+), this defines linear
isometrics with a slope of c in ROC space. An isometric is a line in a ROC diagram that consist
of performances for which a considered metric yields the same score. Hence, all classifiers
lying on the same isometric line are exchangeable when optimizing with respect to this metric.
In this setting, the goal of classifier induction, the maximization of ACC, translates into the
identification of a model that lies on an isometric line with slope N/P that intercepts the y-axis
as closely as possible to the point (0, 1).

Based on visualizing ROC isometrics, Fürnkranz and Flach (2003) analyzed and compared
several important classifier evaluation metrics. Figure 2.44 shows the isometrics for accuracies
of 25%, 50%, and 75%. For unskewed data these isometrics have a slope of N/P = 1, and
are hence parallel to the diagonal that connects the point (0, 0) to (1, 1). For 80% positives
and 20% negatives the isometrics are much flatter parallel lines. The precision metric does not
consider the coverages of rules, but only the ratio of covered positives to covered negatives. This
ratio does not change along any of the lines crossing the origin of a ROC plot, which explains
the different geometry of the isometrics shown in Fig. 2.5 compared to Fig. 2.4. Again, the
isometrics are shown for values of 25%, 50%, and 75% for unskewed data, and for 80% positives.
It is interesting to note that even a precision of 75% leads to an isometric line in the lower right

4The plot was produced using the ROCOn software:
http://www.cs.bris.ac.uk/Research/MachineLearning/rocon/

27

2. Machine Learning – Some Basics

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
P

FP

(a) α = 1/2, binomial test

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6

T
P

FP

(b) α = 1, WRACC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
P

FP

(c) α = 2

Figure 2.6.: ROC isometrics of Q(α) utility functions for different values of α.

triangle, because at the given skew level the default classifier that always predicts positive labels
results in a precision of 80%. However, as discussed before, any model with a precision of e.g.,
25% can be turned into a well performing model by just inverting its predictions. Figures 2.6(a)-
2.6(c) show the isometrics in ROC space for three members of the family of utility functions
Q

(α)
D (r) used for subgroup discovery (Def. 19). Please recall, that α = .5 is factor equivalent to

the binomial test function, which hence has the same geometry of ROC isometrics. A comparison
between the plots for α = .5 and 2 illustrates the role of the coverage, which increases along
each of those lines with an increasing distance to the origin. The choice of α = 1 leads to the
weighted relative accuracy, which has the interesting property that its isometrics have the same
geometry, parallel lines with a slope of 1, for all class skews. This indicates invariance against
skewed class distributions. As shown in figure 2.4, this is different for the accuracy metric. Flach
(2003) systematically studies the behavior of different metrics for varying class skews in a three-
dimensional variant of ROC spaces, where the third dimension represents the degree of skew.
For unskewed class distributions, i.e. P = N, WRACC and ACC rank models identically. There
is a similar connection between LIFT and PREC; the former is a skew-invariant variant of the
latter. Stronger connections between WRACC and ACC than pointed out here will be derived in
chapter 3.

Finally it is worth to note, that the isometrics of entropy are very similar to the isometrics
of predictive accuracy, which implies that in most cases both metrics will suggest to select the
same model. A more detailed discussion, including implications of the results for separate-and-
conquer rule induction can be found in (Fürnkranz & Flach, 2005).

2.5.2. Skews in class proportions and varying misclassification costs

In the scope of classifier induction, the idea of sampling identically and independently from a
single distribution during training and at application time is often unrealistic. Depending on the
kind and degree of violations, viable solutions range from ignoring the changing nature of the
data generating processes to changing the model class and learning strategy. As pointed out by
Provost and Fawcett (1997), one of the advantages of ROC analysis is that it allows to decouple
classifier performances from specific class distributions and cost assumptions. In particular, ROC
plots have the appealing property of being invariant to skewed class proportions, because true
positive and true negative rates are normalized in this respect. In practice, a sceptical position
regarding this invariance is advisable, however; for some domains a changing class skew may
indicate additional effects, which may change the performance of a classifier drastically. This

28

2.5. ROC analysis

issue has recently been discussed controversially by Webb and Ting (2005) and Fawcett and
Flach (2005).

The following paragraphs identify different ways in which the i.i.d. assumption might be
violated:

Skewed class distributions A moderate violation of the i.i.d. assumptions underlying the
presented learning framework is given, if the concepts underlying the data remain, but the
class priors may vary over time. In particular, the case in which the class priors at applica-
tion time are unknown during training is relevant for practical applications. Tackling this
case robustifies models against minor changes in the underlying distribution. The fraction
of spam emails when applying a spam filter is typically unknown during the off-line train-
ing phase, for example, and is likely to increase over time. A desirable feature in such a
setting is that selected models work well at all reasonable skew levels, no matter whether
e.g. 5% or 99.9% of incoming emails are spam.

Cost-sensitive learning Closely related to changing priors – from a technical point of view
– is the fact that (i) misclassification costs are often different for positive and for negative
examples, (ii) can often hardly be stated exactly, and (iii) may also change over time.
Discarding a non-spam email may be much worse than not to detect a large fraction of
the incoming spam, for example. This implicitly means that misclassification costs are
asymmetric in this application domain, and they are obviously of a subjective nature. In
many real-world domains misclassification costs change over time. For a spam filter this
happens, for example, if a user waits for an exceptionally important email, or if she decides
to forward all incoming emails to a pager for a while.

Arbitrarily changing distributions Even for given sample independence the underlying
distribution may be known not to be stationary, but to change over time. Models used
to detect fraud, network intrusions, or spam emails will generally make use of older ex-
ample sets. Such sets cannot be expected to reflect the current distributions well, due to the
quickly changing nature of these domains. Either the underlying target concepts change
over time, or the distribution gives higher weight to poorly modeled subsets. An example
of the former kind of change are users suddenly considering the posts on specific mailing
lists as spam, an example of the latter are spammers adapting their emails maliciously to
the detection capabilities of available filters. Learning from non-stationary target distribu-
tions is also referred to as learning under concept drift and will be addressed in chapter 6.

The issue of different class skews underlying a data set has already been raised in subsec-
tion 2.5.1. Eqn. (2.4) captures the connection between this skew N/P and the slope of the corre-
sponding ROC isometrics for accuracy. This can be considered as a specific case of cost-sensitive
learning, where the misclassification of each example causes the same costs (or losses), e.g. of 1.
In more general settings these costs may depend on the true label of the misclassified example,
leading to asymmetric loss-functions.

Let Lc : Y × Y → IR+ denote a loss function depending on the target attribute Y , with
Lc(y, y) = 0 for all y ∈ Y , and costs Lc(y, y ′) := l(y) ≥ 0 for true label y and predicted
label y ′, where l(y) is a constant that depends on the true class, only. In this case eqn. (2.3) for
computing the total error of a classifier on a given data set can be generalized to capture the total
cost. Let TP denote the true positives and FP the false positives of a classifier h : X → Y . Then

29

2. Machine Learning – Some Basics

its total misclassification costs on an example set E are∑
(x,y)∈E

Lc(y, h(x)) = (1 − TPr) · P · ly+︸ ︷︷ ︸
Misclassified positives

+ FPr ·N · ly−︸ ︷︷ ︸
Misclassified negatives

It is easily seen that the slope of ROC isometrics N/P derived in eqn. (2.4) can be adapted to the
asymmetric loss function in a straightforward manner: For misclassification costs ly+ and ly−

two classifiers with true and false positive rates (FPr1, TPr1) and (FPr2, TPr2) perform equally
well, if and only if

TPr2 − TPr1

FPr2 − FPr1
=

N · ly−

P · ly+

=: c. (2.5)

This implies that the class skew and asymmetric misclassification costs can be combined to a
single kind of skew c underlying the data, defining the slope of the linear isometrics, which is
handled as a parameter of the learning task of classifier induction. As discussed before, for a
known slope the best classifier has a performance which lies on an isometric line as close as
possible to the upper left point (0, 1). The practically relevant case of varying slopes can be
understood and addressed by ROC analysis as well.

First of all, it is interesting to investigate the behavior of boolean soft classifiers that associate
confidence scores to their predictions. For boolean Y , the (crisp) predictions can be replaced by
a single confidence score per example, e.g. the confidence that the example is positive. When
normalizing confidence scores to the interval of [0, 1], soft classifiers are functions of the form
h : X → [0, 1]. A predicted value of 1 (0) corresponds to a most confident prediction of class
y+ (y−). Most classifiers in use are able to yield confidence-rated predictions, which allows to
address a broader variety of prediction problems, like finding and ranking the n documents that
are probably most interesting to a user. Any soft classifier can be turned into a crisp one by
applying a threshold function; such functions map all confidence scores below a fixed threshold
θ to a negative prediction, and all others to a positive one.

ROC analysis supports the visualization of soft classifiers and the selection of a threshold with
corresponding minimal misclassification costs. Ranking the examples by their confidence scores
and increasing the threshold as to cover one more example at a time results in |E | + 1 different
classier performances (FPr, TPr). A plotting procedure may start with a threshold that covers no
examples and hence has a performance of (0, 0). Each time a positive example is added to the
set of covered examples the corresponding point has the same FPr and a higher TPr score, which
shows as a (small) vertical move in ROC space. Analogously, adding a negative example leads
to a step to the right. If sets of p positive and n examples share the same confidence score, then
these examples are aggregated in ROC space. This results in a (usually non-axis parallel) line
with slope n/p.

In practice the ideal slope for classifier and threshold selection is often unknown in advance,
e.g., because misclassification costs and class skews may vary. In this case it is desirable to have
low expected costs for various slopes. Figure 2.7 shows an example of a soft classifier visualized
in ROC space. The plot allows to identify an optimal threshold for any slope c defined by a
given class skew N/P and asymmetric loss function Lc for incorporating misclassification costs.
Optimality is defined in terms of the expected overall misclassification costs. Assuming (for
now) that the slope c was known at each point in time, but that it changed continuously, we could
always pick an optimal threshold for each classification by choosing the one that corresponds
to a point lying on the best possible isometric line with slope c. The depicted slopes of 0.5 and
2 could have been caused by different combinations of cost ratios and class proportions. The

30

2.5. ROC analysis

Figure 2.7.: The ROC plot shows the performances of a decision tree soft classifier (red) for
different thresholds (yellow). Thresholds are plotted so that they correspond to the
ROC curve for each fixed FPr. In the left plot, the assumed data skew leads to a
slope of 0.5. The optimal threshold of about 0.1 can be found by intersecting the
red with the blue line and projecting this point to the yellow curve. No line closer to
(0, 1) and parallel to the plotted blue line has any intersection with the red curve. In
the right plot, the slope is 2. The best possible isometric line intersects with the red
ROC curve for a threshold of about 0.35.

former slope could e.g. be the result of having twice as many negatives than positives at equal
misclassification costs. The latter may be the result of having a cost ratio ly+ : ly− of 4 : 1 for
the same class skew.

One noticeable property is that only thresholds with points on the edge of the convex hull of
the ROC plot need to be considered, because the performance for every other threshold will be
dominated by one lying on this edge for any slope. As discussed before, the points on the edge
of the convex hull can be interpolated by randomly switching between the corresponding crisp
classifiers, which allows to reach any point lying on the edge of the hull. How to compute (and
visualize) the variance of such curves in a meaningful and reliable way is still an active field of
research, see e.g. (Mackassy et al., 2005).

If a classifier needs to perform well for different class skews and costs, then the area under
the ROC curve (AUC) provides a good scalar measure for classifier selection. As the name
suggests, the AUC is proportional to the area under the curve of soft classifier performances
in ROC space; in figure 2.7, these are the areas under the red curves. The plots illustrate why
selecting a soft classifier maximizing this area will perform well on average for changing slopes,
and why such a classifier will often dominate most other classifiers for any slope.

The convex hull in ROC space can also be utilized for selecting a single best soft classifier
and threshold taken from a set of candidates, in order to minimize the expected misclassification
costs under varying slopes (Provost & Fawcett, 2001). The first step is to plot the performances
of all classifiers under consideration for all thresholds in a single ROC diagram and to compute
the convex hull of all those points. All classifiers that do not contribute a single point to this
hull may be ignored. The others are stored, and whenever a point in the ROC space turns out
to be optimal for a given slope at hand, the corresponding classifier and the threshold related to
that point are used for making predictions. For this kind of application ROC spaces can easily

31

2. Machine Learning – Some Basics

be transformed into so-called cost curves, depicting the expected misclassification costs for each
slope (Drummond & Holte, 2006). Please note, that such techniques still select a single classifier
and threshold for each slope, which is inherently different from ensemble methods that combine
base model predictions.

2.6. Combining model predictions

In the last section it was discussed how to select a single classifier from a collection of models
under varying class skews and/or misclassification costs. Given a variety of different models for
a classification task at hand, it is intuitively not necessarily the best choice to rely on the predic-
tions of only one of these classifiers, even if it promises to have the best performance in ROC
space. There are many popular approaches that combine the predictions of several base classi-
fiers based on voting. The most simple case of uniform voting is discussed in subsection 2.6.1.
As an alternative to voting, subsection 2.6.2 illustrates how to combine arbitrarily many base
classifier predictions based on the NAÏVEBAYES assumption of conditional independence. To
overcome this unrealistic assumption, a generalized approach based on logistic regression is
finally discussed in subsection 2.6.3.

2.6.1. Majority Voting

Many machine learning algorithms are known to produce classifiers that are sensitive to minor
changes in the training set. One example are decision trees. The syntactical structure, but also
the predictions of specific trees produced by algorithms like CART (Breiman et al., 1984) or
C4.5 (Quinlan, 1993) will usually change remarkably when trained on different subsets of the
training data. Repeatedly applying a learner to subsets of a training set is also referred to as
bootstrapping.

In more technical terms, the variance of commonly applied decision tree learners is high,
which is an unpleasant effect for practical applications, because the predictions for individual
examples as well as the overall generalization performances of the resulting classifiers are not
reliable (or “robust”). A simple ensemble strategy that helps to reduce the variance, and that
often even leads to an increased accuracy of the resulting model is to combine the models trained
from bootstraps of the original training sets by means of voting. Breiman (1996) proposed and
analyzed the so-called bagging approach: Each model is trained on another bootstrap sample,
i.e. on another uniform subsample of constant size of the training set.

If ht(x) ∈ Y denotes the prediction of the classifier that was trained in iteration t, and if k

classifiers are trained, then the final prediction ŷ of the ensemble is

ŷ := argmax
y∈Y

(
k∑

t=1

I[ht(x) = y]

)
, or ŷ := sign

(
k∑

t=1

ht(x)

)
(2.6)

for Y = {−1,+1}, respectively. The function I[·] above refers to the indicator function again; it
is 1, if the argument evaluates to true, and 0, otherwise. If k is chosen as an odd number, then
the result is unique for boolean Y . The ensemble members can be considered to vote on the final
prediction, with each model having the same impact. As mentioned above, the same approach
applies to multi-class problems, but it can even be extended to cover regression. In this case, all
predictions ht(x) ∈ IR are simply averaged.

The main disadvantage of bagging is that only a subset of the available data is used for training
each classifier. Bootstraps are often generated by sampling with replacement, but even if the

32

2.6. Combining model predictions

samples contain the same number |E | of examples as the original datasets (due to containing
duplicates) each example will be contained in the bootstrap sample with a probability of

1 −

(
1 −

1

|E |

)|E |

≈ 1 − exp(−1) ≈ 0.632.

Hence, the number of different instances used for training will still be significantly lower than
|E |. For unstable learners, i.e. learners yielding quite different classifiers in each iteration, this
is compensated well by the procedure, however; the generalization performance improves while
the variance decreases. As summarized by Breiman (1996) and confirmed by other researches
(e.g., Grandvalet (2004)), bagging unstable classifiers usually improves them, while bagging
stable classifiers might not be a good idea.

The notion of classifier stability is similar to the notion of ensemble diversity, which has re-
cently gained much attention in the machine learning community. When combining an arbitrary
number of classifiers, which are not necessarily the result of a single learner, then any combi-
nation of accurate classifiers with a high disagreement rate will produce an accurate ensemble
classifier. Hence, reducing the overlap between different rules or the agreement of classifiers
in general, has been recognized as one of the most important criteria in ensemble construction.
Cunningham and Carney (2000) summarize corresponding results for regression and confidence-
rated classification based on the root mean squared error, which allow to constrain the error rate
of final ensemble classifiers. Based on these results they suggest different notions to measure
diversity (or ambiguity) for plain classification problems. The entropy of predictions is one pos-
sible measure of ensemble diversity. The soft predictions of k classifiers can be stored in a vector
of k · |Y | estimates per example, if |Y | denotes the number of classes. If pt,j(e) denotes the esti-
mate of classifier t for class j for an example e, then an entropy-based definition of the diversity
for example e is

H(e) :=

|Y |∑
j=1

(
1

k

k∑
t=1

pt,j(e)

)
·

(
k∑

t=1

− log pt,j(e)

)
,

where the factor in the left brackets reflects the prediction for class j averaged over all classi-
fiers, and the logarithmic term represents the encoding length of each individual prediction. The
entropy for a training set E is simply the average of all example entropies, so

H(E) := |E |−1
∑
e∈E

H(e).

Please note, that this diversity measure does not depend on the true labels. In later work Tsymbal
et al. (2003) studied the behavior of several different diversity measures empirically for ensem-
ble construction via feature subset selection. Several other approaches to maximize diversity
of ensemble classifiers have recently been studied, e.g. constructing artificial examples to en-
force diversity of constructed ensembles (Melville & Mooney, 2003). Zhang et al. (2006) take a
semi-definite programming approach to prune existing classifier ensembles based on ensemble
diversity and individual classifier accuracies. They state that in their experiments the common
diversity measures performed about equally well. An analysis by Tang et al. (2006) shows that
– assuming a fixed weighted base classifier accuracy – maximizing diversity leads to the largest
margin in theory, which has been shown to correspond to low generalization error rates.

Besides maximizing diversity, assigning an appropriate weight to each ensemble member is
important for improving the accuracy. Weighted voting is a straightforward extension of uniform

33

2. Machine Learning – Some Basics

voting. Each classifier has a different impact on the final prediction in this case. If classifier t

has a weight of wt, then eqn. (2.6) in the multi-class case translates into

ŷ := argmax
y∈Y

(
k∑

t=1

wtI[ht(x) = y]

)
, or into ŷ := sign

(
k∑

t=1

wtht(x)

)

for Y = {−1,+1}, respectively. Weighted voting is often used in combination with altering ex-
ample weights during training. The most popular corresponding learning technique, referred to
as boosting (Freund & Schapire, 1997), is discussed in detail in chapter 5. This technique iter-
atively induces a set of base classifiers, changing example weights after each learning step. Ex-
amples that are misclassified by the ensemble of previously selected classifiers receive a higher
weight in the next iteration, so that subsequent learning steps prefer models that help to correct
remaining errors of the ensemble.

2.6.2. A NAÏVEBAYES-like combination of predictions

In the last paragraphs the simple concept of voting has been discussed to combine the predic-
tions of a set of base classifiers. In this subsection, each classifier can rather be thought of as
a constructed feature. For example, each rule A → C in a two-class prediction problem either
applies (antecedent A evaluates to true), or it does not. This can be represented as a boolean
feature, taking the values of 1 and 0, respectively. To combine classifier predictions we can use
an arbitrary classifier on top of these constructed features.

The following ideas are based on Bayes’ theorem, which is used to compute the conditional
distribution of the label. The underlying assumption of NAÏVEBAYES (John & Langley, 1995) is
that all attributes are conditionally independent given the class. Hence, the approach presented
next does not take interactions between features into account, but just exploits the correlations
between each feature and the label separately. NAÏVEBAYES classifiers work surprisingly well
in practice, often even if the underlying independence assumption is known to be violated.

In our setting, the goal is to predict for each x ∈ X conditional class probabilities Pr [y | x],
for any class y ∈ Y , based on the predictions of a set of k classifiers.

Let ~h(x) := (h1(x), . . . , hk(x)) ∈ Yk denote the predictions of models {ht | 1 ≤ t ≤
k} in the form of a vector. Then, for a given example x ∈ X and corresponding vector ~y =

(y(1), . . . , y(k)) of predictions, the NAÏVEBAYES classifier estimates the conditional probability
of any class y ∈ Y given x as

Pr
[
y | ~h(x) = ~y

]
=

Pr [y]

Pr
[
~h(x) = ~y

] · Pr [(h1(x), . . . hk(x)) = ~y | y]

≈ Pr [y]

Pr
[
~h(x) = ~y

] · ∏
1≤t≤k

Pr
[
ht(x) = y(t) | y

]
(2.7)

=
Pr [y]

Pr
[
~h(x) = ~y

] ∏
1≤t≤k

Pr
[
y | ht(x) = y(t)

]
Pr [y]

∏
1≤t≤k

Pr
[
ht(x) = y(t)

]
.

The conditional independence assumption is only required in eqn. (2.7); before and afterwards
exact transformations based on Bayes’ theorem are applied. The latter of these application leads
to a more convenient form of this classifier, because usually our individual model performance

34

2.6. Combining model predictions

estimates are of the form Pr
[
y | ht(x) = y(t)

]
. Defining5

α(x) :=

∏
1≤t≤k Pr

[
ht(x) = y(t)

]
Pr
[
~h(x) = ~y

]
allows to rewrite the equation above as

Pr
[
y | ~h(x) = ~y

]
= α(x) · Pr [y] ·

∏
1≤t≤k

LIFT((ht(x) = y(t))→ y),

substituting LIFT((ht(x) = y(t))→ y) for Pr
[
y | ht(x) = y(t)

]
/Pr [y] (Def. 16, p. 22).

For boolean Y = {y+, y−} it is easier to consider the odds ratios

β(x) :=
Pr
[
y+ | ~h(x) = ~y

]
Pr
[
y− | ~h(x) = ~y

]
=

Pr [y+]

Pr [y−]

∏
1≤t≤k

LIFT((ht(x) = y(t))→ y+)

LIFT((ht(x) = y(t))→ y−)
, (2.8)

as α(x) cancels out, but it is still possible to recompute

Pr
[
y+ | ~h(x) = ~y

]
=

β(x)

1 + β(x)
. (2.9)

based on eqn. (2.8). So, following the conditional independence assumption it is possible to
combine rules to predict class probabilities, just knowing their LIFT values (Def. 16) and the
class priors. In the case of prediction rules, these may also be considered to make predictions if
they do not apply. This is justified by the following lemma.

Lemma 1 For Y = {y+, y−} the following connection between any rule A → y+ and its dual
rule A→ y− holds:

LIFT(A→ y+) > 1 ⇔ LIFT(A→ y−) > 1

The precisions and LIFT values of rule and dual rule may differ.

Proof
We have

Pr(A,y+) > Pr(A) · Pr(C) ⇔ Pr(A) − Pr(A,y+) < Pr(A) − Pr(A) · Pr(y+)⇔ Pr(A,y−) < Pr(A) − Pr(A) · (1 − Pr(y−))⇔ Pr(A,y−) < Pr(A) · Pr(y−),

and analogously

Pr(A,y−) < Pr(A) · Pr(y−) ⇔ Pr(y−) − Pr(A,y−) > Pr(y−) − Pr(A) · Pr(y−)⇔ Pr(A,y−) > Pr(y−) − Pr(y−) · (1 − Pr(A))⇔ Pr(A,y−) > Pr(A) · Pr(y−).

5The term cancels out, but has an intuitive meaning. A generalized version of the LIFT applied to sets of events.
α−1 measures the degree of correlation in the ensemble in terms of this generalized LIFT.

35

2. Machine Learning – Some Basics

true
y+ y−

∑
A (y+) 0.2 0.1 0.3predicted
A (y−) 0.3 0.4 0.7∑

0.5 0.5 1.0

Table 2.1.: The contingency table shows an example for which the LIFTs of the two rules A →
y+ and A→ y− differ.

Rewriting the inequalities in terms of the LIFT yields

LIFT(A→ y+) > 1⇔ LIFT(A→ y−) < 1⇔ LIFT(A→ y−) > 1,

which simply reflects a positive correlation between predictions and label.
It is easy to construct a case in which the precisions and LIFT values of a rule and its dual rule

differ. For example, the contingency matrix depicted in table 2.1 has the values

Pr(A,y+) = 0.2, Pr(A,y−) = 0.4, Pr(A) = 0.3, and Pr(y+) = 0.5.

This implies

PREC(A→ y+) = Pr(y+ | A) =
0.2

0.3
= 2/3 ≈ 0.67

PREC(A→ y−) = Pr(y− | A) =
0.4

0.7
= 4/7 ≈ 0.57

LIFT(A→ y+) =
PREC(A→ y+)

Pr(y+)
= 4/3 ≈ 1.33

LIFT(A→ y−) =
PREC(A→ y−)

Pr(y−)
= 8/7 ≈ 1.14

So even if considering the model class of classification rules, each rule (A → y+/−) can well
be considered to partition the instance space into Ext(A) and Ext(A), implicitly making a pre-
diction for both subsets. Basically, any LIFT value different from 1 is useful to improve a soft
classifier ensemble. This will be shown in chapter 5. The more critical aspect of the approach
discussed above is the conditional independence assumption. The following section shows a way
to combine predictions that does not require this assumption.

2.6.3. Combining classifiers based on logistic regression

Logistic regression is a well-known and approved classification technique with a long history of
successful applications. It applies to multi-class problems, but can easier be illustrated for binary
classification problems. For a more detailed discussion, including the mathematical foundations
and improved optimization techniques, please refer to (Komarek, 2004). A more compact in-
troduction that includes multi-class extensions and a detailed discussion of generalized additive
models can be found in (Hastie et al., 2001).

For mathematical simplicity, the target attribute Y is assumed to take values in {0, 1} in this
section, while the range of corresponding estimates P̂r(Y = +1 | x) is [0, 1]. First, the under-
lying ideas of logistic regression are discussed in general, before the applicability to combining
classifier predictions is illustrated.

36

2.6. Combining model predictions

Logistic regression for continuous attributes

In the general case, the explaining attributes A1, . . . , Ad are assumed to be numerical. As before,
each example is of the form (x, y) with x ∈ X = A1 × . . .×Ad and y ∈ Y . For each example
the value of Y can be considered to be a random variable. Analogously, A1, . . . , Ad are random
variables, where the value of At is denoted as xt. The expected value (or mean) of the target
variable Y is denoted as µ(x), a function of x.

As a straightforward goal, one could directly try to approximate µ(x) in terms of a function
linear in x. It is clear, however, that in this case the range of linear functions will generally
not be constrained to [0, 1]. As a solution, a link function g that transforms the values of µ(x)

is introduced. The functions linear in A1, . . . , Ad are then chosen as to approximate g(µ(x)).
Denoting by βt the factor for attribute At, and by β0 the offset at the origin, the resulting
estimate ĝ(µ(x)) for g(µ(x)) is hence

ĝ(µ) = β0 +

d∑
t=1

βtxt.

After extending x by an additional constant x0 = 1, the function can be rewritten as βTx, where
βT denotes the vector (β0, . . . , βd). The characteristic of logistic regression is the usage of a
specific link function, the so called logit link function, defined as

logit(x) := log
(

µ(x)

1 − µ(x)

)
= log

(
Pr(Y = 1)

Pr(Y = 0)

)
. (2.10)

For any linear model logit(x) ≈ βTx that yields real-valued estimates we can easily compute
corresponding estimates

P̂r(Y = +1 | x) = µ̂(x) :=
exp[βTx]

1 + exp[βTx]

for the conditional distribution of Y . The optimization step selects parameters β that yield a
maximum-likelihood model. By definition, such models maximize the likelihood

IL(E , β) :=
∏

(x,y)∈E

P̂r(Y = y | x) =
∏

(x,y)∈E

(
µ̂(x)y · (1 − µ̂(x))1−y

)
,

that is, the probability that the assumed model produced the labels of training set E . This opti-
mization problem is convex, but unfortunately cannot be solved in closed form. In practice it is
tackled by computationally complex gradient-descent search strategies.

An adaptation for combining crisp classifier predictions

Besides uniform voting, weighted voting, and NAÏVEBAYES-like combinations, the framework
of logistic regression provides a further alternative to combine the predictions of different base
classifiers. The following paragraphs discuss why the generalized additive modeling framework
does not fit this task sufficiently well. Subsequently it is shown that logistic regression on top
of crisp base classifier predictions simplifies to a more precise NAÏVEBAYES-like combination,
with basically both kinds of models sharing a single model class. Finally, the main advantages
and disadvantages of both alternatives are discussed.

37

2. Machine Learning – Some Basics

Generalized additive models A common approach found in the literature extends the lo-
gistic regression framework sketched above to generalized additive modeling. In this case, re-
gression is not based on the original attributes, but each original attribute At is first transformed
by a well-chosen function ft. The remaining framework is not changed, so we still aim to find a
maximum-likelihood model by selecting a vector β for estimating

l̂ogit(µ(x)) = β0 +

d∑
t=1

βtft(xt)

close to the true values logit(µ(x)). The functions ft are usually used to incorporate non-linear
dependencies to a certain degree.

Generalized additive models seem to allow for flexible combinations of base classifier pre-
dictions, which are also functions defined over x, but combining classifiers differs in three ways
from this kind of modeling. First, we do not have one base classifier per attribute, but most classi-
fiers depend on several attributes. In turn, each attribute may be used by several classifiers, or by
none. Second, the number of considered base classifiers is not necessarily equal to the number of
attributes. Third, classifiers are assumed to make crisp predictions. Hence, for boolean classifi-
cation tasks the regression can be assumed to be based on attributes taking only the values 0 and
1. This simplifies the setting compared to the case of generalized additive models considerably.
The latter are usually based on functions taking continuous values.

NaïveBayes versus logistic regression When using only the predictions ht(x) ∈ {0, 1}

of base models as explaining variables (attributes), then the kind of logistic regression that is
applicable to the problem of combining base classifiers is very similar to NAÏVEBAYES. This can
easily be seen when considering a logarithmic form of NAÏVEBAYES and comparing eqn. (2.10)
to eqn. (2.8). The connection is that

logit(x) = log
(

Pr(Y = +1)

Pr(Y = −1)

)
= log β ′(x),

where β ′(x) refers to the odds ratios used by NAÏVEBAYES. This leads to the following formula
based on eqn. (2.8):

l̂ogit(x) = log
(

Pr [y+]

Pr [y−]

)
︸ ︷︷ ︸

β0

+
∑

1≤t≤k

log

(
LIFT((hi(x) = y(t))→ y+)

LIFT((ht(x) = y(t))→ y−)

)
︸ ︷︷ ︸

βt·ht(x)

(2.11)

This is a linear function for estimating logit(x), in the same syntactical form that is used by
logistic regression. However, two differences between NAÏVEBAYES and logistic regression re-
main. First, logistic regression selects a maximum-likelihood model, while NAÏVEBAYES uses a
coarse heuristic or the unrealistic assumption of conditional independence, respectively. Second,
the reformulation does not work as simple as the under-braces of eqn. (2.11) suggest. Logistic
regression models provide just one factor βt per base classifier; NAÏVEBAYES uses different
estimates for Pr(Y = +1 | h(x) = 1) and Pr(Y = +1 | h(x) = 0), leading to (almost) ar-
bitrarily different LIFT ratios depending on whether a base model predicts the positive or the
negative class. For boolean prediction tasks, NAÏVEBAYES models can be transformed accord-
ingly, however, by “shifting” a constant offset to β0 for each base model, so that a single weight
per classifier suffices. This is further discussed in subsection 5.3.2. Please note, that the result

38

2.6. Combining model predictions

of this transformation is a weighted voting scheme. Hence, for boolean classification tasks all
the discussed combination techniques, namely NAÏVEBAYES, logistic regression, and voting
schemes, basically use the same class of models, but may assign different weights to models.

Hybrid solutions The illustrated connection between NAÏVEBAYES and logistic regression
suggests, that the logistic regression framework is more precise than – or even subsumes – the
NAÏVEBAYES-like strategy for combining base model predictions. It can be used to compute
maximum-likelihood models based on a number of base classifiers without the problematic con-
ditional independence assumption. This assumption is not justified in most cases. Moreover,
unlike linear discriminant analysis and other simpler variants, logistic regression has the advan-
tage to not introduce further assumptions, e.g., regarding the underlying distributions. Even the
linear dependency assumption between the explaining attributes and logit(x) is meaningless for
boolean attributes.

The main disadvantage of logistic regression is that computing maximum-likelihood models
is computationally expensive. The parameters are usually optimized by gradient-based search
strategies, exploiting the convexity and the fact that the objective function is continuously differ-
entiable. In contrast, NAÏVEBAYES classifiers require only a single scan over the training set to
compute all the required probability estimates. This is a very desirable property when learning
from very large databases. Another advantage of NAÏVEBAYES-like combinations is, that they
are easily understood by a human analyst, because complex interactions between rules are not
considered. This means that each rule weight can be interpreted without the context of other
rules, which might sometimes be preferable in descriptive data analysis.

In later parts of this thesis base classifiers are mainly combined using a hybrid strategy. This
property is shared by several weighted voting schemes. For reasons that will become obvious
later, the models can be considered to be descendingly ordered by their abilities to separate
classes given the preceding base classifiers. As a substantial simplification, the factors or weights
(βt) of the preceding classifiers 1 to k − 1 are not changed, and βt is chosen as 0 for each t > k

during the computation of the factor for base classifier k. Exploiting the connection between
NAÏVEBAYES and logistic regression reflected by eqn. (2.11), βk can then be optimized during
a single scan over the example set. This may include an update of β0. Iterating just once over
the set of classifiers yields a set of parameters that is usually a sufficiently close approximation
to the optimal weight vector β with respect to generalization performances.

In subsequent chapters this hybrid technique is shown to work well for sequential subgroup
discovery (chapter 4) and boosting (chapter 5). Chapter 6 will illustrate that it even applies to
classification tasks with changing target concepts, so-called concept drifts. The techniques will
be presented taking a sampling-centered view, because sampling (i) provides a sound theoretical
foundation of data mining, (ii) allows for large-scale applications, and (iii) is a powerful prepro-
cessing operator at the same time. Before going into details, the next chapter hence provides a
general overview of sampling techniques in the context of KDD.

39

2. Machine Learning – Some Basics

40

3. Sampling Strategies for KDD

3.1. Motivation for sampling

The most challenging aspect of modern KDD applications is scaling up traditional data mining
algorithms to rapidly growing volumes of data, sometimes in the order of terabytes. Volumes
that do not allow to perform experiments in main memory become more and more important in
practice, due to the increasing amounts of data collected, but with these applications a number of
novel technical and conceptual problems emerge. The raw data that is subject to the analysis is
usually stored in a relational database, in order to ensure data integrity and to establish a generic
and efficient interface to various kinds of applications. Modern relational database management
systems (RDBMSs) offer an optimized access, but it turns out that SQL interfaces do not neces-
sarily meet the demands of data mining algorithms. The main problem is that most algorithms
require to process the same example very often, in more or less random order.

From a practical point of view, it is reasonable to preprocess the data in an RDBMs (cf. chap-
ter 8). However, one usually gains performance in the next step by caching the preprocessed
training data in flat files, unless it fits into main memory. There are a good reasons in gen-
eral to restrict data mining to subsamples in order to circumvent DBMS overhead. The first
reason is of a technical nature; the communication overhead and several services provided by
RDBMSs considerably slow down the data access in the context of data mining. Sarawagi et al.
(1998) compare different ways of accessing data for mining association rules from databases.
In essence, in their experiments caching the data in a file system clearly outperformed SQL-
based solutions, stored-procedures, and an optimized implementation using a vendor specific
programmer’s interface to the relational database under consideration. Rüping (2002) describes
a SUPPORT VECTOR MACHINE running as a JAVA stored procedure in an ORACLE database.
The author points out that such an implementation may be useful for specific applications, but
that it is not competitive if runtime is a major issue. Musick and Critchlow (1999) analyze sce-
narios that are typical for scientific applications: a computationally complex analysis of large
high-dimensional datasets with high I/O rates. They report that solutions based on native code
clearly outperformed DBMS-based queries in their experiments.

Besides the more technically motivated reasons to perform the data mining step outside the
DBMS, there is a second, even stronger constraint in practice: Since most state of the art machine
learning algorithms scale super-linearly, even training data that easily fits into main memory
may cause unreasonably high computational costs, so exceeding main memory size drastically
seems inappropriate. For example, a single experiment that evaluated boosted decision trees (10
iterations) by 10fold cross-validation took several (> 3) days for the Quantum Physics data set
of the KDD Cup 20041. This set contained only 40 MB of training data. YALE (Mierswa et al.,
2006) was used as the learning environment, run on an AMD ATHLON MP 2100+ double
processor machine.

Sampling is a general technique to tackle these problems. As this and following chapters will
illustrate, there is a large spectrum of benefits that can be achieved by sophisticated sampling

1http://kodiak.cs.cornell.edu/kddcup/

41

3. Sampling Strategies for KDD

strategies. The most commonly applied strategy is uniform sub-sampling, aiming at a speed-
up of the data mining step, and at a reduction of main memory consumption. Based on a few
reasonable assumptions, theoretically sound sub-sampling strategies allow to give probabilistic
guarantees that the induced models are close to models trained from all the data. Section 3.2 dis-
cusses the theoretical foundations; practically relevant counterparts are described in section 3.3.

For many applications, further benefits can be achieved by sampling from another distribution
than the one originally underlying the data. Appropriately resampled subsets are the input to
the data mining step in this case. Some useful techniques that allow to sample from altered
distributions are introduced in section 3.4. The most important strategies in this context are
stratification (subsection 3.4.1) and rejection sampling (subsection 3.4.2), which are both shown
to have a variety of interesting applications in the scope of KDD. The former strategy allows to
simplify subgroup discovery when choosing the WRACC metric; this will come in handy in the
next chapter. The latter strategy constitutes the basis for knowledge-based sampling, which is
also introduced in chapter 4, and will further be discussed in subsequent parts of this work; it
is a generic way of making supervised data mining algorithms sensitive to probabilistic prior
knowledge.

3.2. Foundations of uniform sub-sampling

Unless noted otherwise, in KDD the term sampling usually refers to uniform sub-sampling from
a given set of examples. The goal of this kind of sampling is to construct a smaller training
set without altering the distribution underlying the data. This section provides a few basic def-
initions, and it discusses important techniques that allow to compute confidence-intervals for
estimated performances when training models from sub-samples.

3.2.1. Sub-sampling strategies with and without replacement

When discussing sub-sampling strategies, one should keep in mind that throughout this thesis
(except for chapter 6) any complete example set is merely assumed to be an i.i.d. sample from
an unknown probability density function (pdf) D defined over an instance space X , or over an
instance space with a designated target attribute, X × Y , respectively. The following definition
provides a starting point for discussing sub-sampling in general.

Definition 22 (Sub-sampling) Any deterministic or probabilistic algorithm A that takes a sam-
ple E ∼ Dn of arbitrary size n from D as its input and outputs a subset E ′ ⊆ E of user-specified
size m ≤ n is called a sub-sampling algorithm. Each such algorithm A implicitly defines a
distribution with joint pdf DA : (X × Y)m → IR+ depending on the input pdf D and (just)
operationalizes the transformation algorithmically.

Please note that in general, following definition 22, the resulting samples are no longer i.i.d.
For instance, pdf DA may not correspond to the product density function (D ′)m of any pdf
D ′. The algorithm might e.g., have a bias towards selecting sets of similar examples. For sub-
sampling uniformly, however, there are additional constraints. The main concern in this case is
to avoid the introduction of a bias. This means that the distribution implicitly defined by the
algorithm over samples of target size m has to match the resulting distribution if sampling m

examples i.i.d. from D; in more technical terms this translates into D ′
A = Dm, which obviously

requires sampling m instances of X independently as stated by the following constraint.

42

3.2. Foundations of uniform sub-sampling

Constraint 1 For any algorithm that sub-samples a set Em uniformly from an input example
set E , the probability Pr(e ′ ∈ Em) to select an example e ′ ∈ E has to be independent of the
selection of other examples:

(∀e ′ ∈ E)(∀S ⊂ E \ e ′) : Pr(e ′ ∈ Em | S ⊂ Em) = Pr(e ′ ∈ Em)

If the same example e ′ occurs multiple times in E , e.g. as e1 and e2, then the independence
constraint requires that both occurrences are not considered identical, hence e2 ∈ E \ e1.

The following class of algorithms satisfies the necessary condition of preserving sample inde-
pendence as demanded by constraint 1. It covers all sub-sampling strategies discussed in this
thesis, not only uniform sub-sampling.

Definition 23 (I.i.d. preserving) A sub-sampling algorithm A is called i.i.d. preserving if it
outputs i.i.d. sub-samples of specified size from a distribution DA whenever the input example
set is an i.i.d. sample from a distribution D. The target distribution DA depends on D and is
implicitly defined by the algorithm A.

Focusing on i.i.d. preserving sub-sampling simplifies matters a lot. The initial distribution and
hence the target distribution are in fact generally i.i.d., which allows to describe the target distri-
bution much more intuitively in one of the following two ways.

density function In contrast to D ′
A (definition 22), the target DA describes the probability to

sample a single example. DA is defined over X , or over X ×Y , respectively, and does not
depend on the target sample size or on the context of other examples being selected.

transformation Since DA depends on D it is straight-forward to describe it in relative terms,
for instance as a function of D.

For sub-sampling uniformly, providing a description of the latter kind is trivial, since by defi-
nition the transformation of D is the identity. Before discussing the properties and benefits of
uniform sub-sampling, it is worth to discuss some basic algorithmic aspects.

For illustration we consider the case of (sub-)sampling from a database. If the i.i.d. assumption
is justified and all of the available data are stored in random order or in the timely order they
were sampled, then e.g., returning just the first m examples meets the requirements of a uniform
sub-sampling algorithm. However, this most simple case is seldomly found in practice, since all
the data in a database usually follow a semantically oriented or time-depended order.

Sub-sampling with replacement

When each example of an example set E is sub-sampled with the same probability, then repeat-
edly selecting a single example at random results in uniform sub-sampling with replacement.
This is, because each element e ∈ E may occur several times in the resulting target sample. The
probability of duplicates, and hence the bias introduced by this practically common sampling
technique, depends on the ratio between the size of the original database and the target sample
size. The phenomenon that a small number of m suffices to have a duplicate with high proba-
bility is sometimes referred to as the birthday paradox. For a database containing n tuples the
probability pm to have at least one duplicate in a sample of size m is

pm = 1 −
n

n
· n − 1

n
· n − 2

n
. . .

n − m + 1

n
= 1 −

n!

(n − m)! · nm
.

Hence, the probability to have no duplicates (1−pm) decreases exponentially fast with growing
target sample size m.

43

3. Sampling Strategies for KDD

Sub-sampling without replacement

Uniform sampling without replacement requires to sample each example at most once, which
means to eliminate duplicates. It is easy to see that this strategy yields uniform sub-samples
Em ∼ Dm without a bias whenever the input set En, n ≥ m, has been sampled i.i.d. from the
initial distribution D: Uniform sub-sampling selects a subset of size m < n, so each example of
En has the same chance m

n of being selected, and all examples are selected independently. Please
note that without the i.i.d. assumption of the initial distribution this is not necessarily the case,
for instance if the probability to select a specific example depends on the previously selected one
in the input set En.

Sampling without replacement is more precise, as it does not introduce a bias. The main
disadvantage lies in an increase of the computational overhead. No matter whether the primary
key values of all selected examples are stored in memory2 or duplicates are eliminated after
sorting, in any case the asymptotic runtime for sampling increases by a logarithmic cost factor
in the target sample size. As stated before, the main motivation when sampling uniformly, for
example in the scope of predictive modeling, is to reduce the runtime of the applied learning
algorithm. Most learning algorithms scale super-linearly. Hence, sampling techniques that are
complex with respect to their runtime complexities are usually tolerable.

3.2.2. Estimates for binomial distributions

From a theoretical point of view, the common assumption of sampling independently from an
unknown but stationary distribution (sampling i.i.d.) and sub-sampling from a given example
set E have similar properties. In both cases, the sample is considered to provide an incomplete
view, while the goal of data mining techniques is to identify models or patterns that are at least
approximately optimal in terms of the complete data set or an unknown underlying distribution,
respectively. Many of the relevant optimization and estimation problems of data mining can be
formulated in terms of binomial distributions in this setting. This subsection discusses important
techniques for estimating crucial quantities that emerge in the context of uniform sub-sampling.
The common goal of these techniques is to provide probabilistic guarantees regarding the devi-
ation of estimated from true values.

For boolean target attributes some useful theorems known as Chernoff bounds (Chernoff,
1952) and Hoeffding bounds (Hoeffding, 1963) have successfully been applied to a variety of
analytical problems. These bounds apply to binomial distributions.

As a motivating example, the reader may think of estimating the accuracy of a hypothesis
given a sub-sample. For a given sample size, both Chernoff and Hoeffding bounds allow to com-
pute confidence bounds that reflect how likely the empirically observed values are “close” to the
true values. For practical applications the utility of such estimates can be improved significantly
by continuously computing more precise estimates after seeing parts of the data. Corresponding
techniques are known under the names of progressive and adaptive sampling and are discussed
in section 3.3.

We will reconsider the setting introduced in the context of the binomial test function (p. 23).
Let p denote the probability of success in the underlying Bernoulli experiments, i.e. that an
example is sampled from the subset for which a hypothesis makes a correct prediction. For
i.i.d. samples, p is obviously a constant for each hypothesis. For a target sample of size m, we
define boolean random variables Xi, 1 ≤ i ≤ m, to be 1 in the case of a success, and 0 otherwise.
Let Y := 1

m

∑
Xi denote the fraction of successes for these m independent Bernoulli random

2To check whether a primary key is in the dictionary requires logarithmic time in the dictionary size.

44

3.2. Foundations of uniform sub-sampling

variables. Y follows a binomial distribution with

IE(Y) = p and σ(Y) =

√
p(1 − p)

m
,

and m repetitions; this is denoted as Y ∼ B(m,p).

Theorem 3 (Chernoff bounds) For any parameter λ ∈ [0, 1] and random variable Y ∼ B(m,p)

the following inequalities hold:

Pr(Y ≥ (1 + λ)p) ≤ exp(−λ2mp/3) (3.1)

Pr(Y ≤ (1 − λ)p) ≤ exp(−λ2mp/2) (3.2)

The term (1± λ)p reflects a multiplicative deviation of Y from its expected value p.
As an example, consider the task to estimate the risk that a hypothesis with a true accuracy

(p = ACC) of 75% performs no better than random guessing on an i.i.d. sample of size m. The
estimated accuracy ÂCC of a hypothesis is the fraction of correctly classified examples in this
sample. We are interested in computing a sample size m, for which this risk is bounded by a
fixed confidence parameter δ.

In the example, the deviation is λ = 1/3, because (1 − 1/3) · ACC = 50%. This allows to
apply eqn. (3.1) to compute

Pr(ÂCC ≤ (1 − 1/3) · ACC) ≤ exp(−(1/3)2m · ACC/2)

⇔ Pr(ÂCC ≤ 1/2) ≤ exp(−
1

9
m

3

8
) = exp(−

m

24
).

A sufficient criterion to fail (Âcc ≤ 50%) with a probability of e.g., at most δ := 5% can now
easily be derived:

exp(−
m

24
) ≤ δ⇔ −

m

24
≤ ln δ = − ln

1

δ
⇔ m ≥ 24 ln

1

δ
= 24 ln 20,

which is true for all sample sizes m ≥ 72. In other words, the risk of sampling 72 examples
i.i.d. for which a 75% accurate (or better) model misclassifies at least half of the examples is
lower than 5%.

Hoeffding bounds are of a similar nature, but they address additive deviations of random
variables from their true mean. Hence, they are also known under the name of additive Chernoff
bounds. In the presented form they apply to binomial distributions, but also to other independent
observations of m random variables with range [0, 1]. Any bounded random variable can be
normalized to this range.

Theorem 4 (Hoeffding bounds) For any parameter ε ∈ IR+ the following inequalities hold for
random variables Y ∼ B(m,p) :

Pr(Y − p ≥ ε) ≤ exp(−2ε2m) (3.3)

Pr(Y − p ≤ −ε) ≤ exp(−2ε2m) (3.4)

Pr(|Y − p| ≥ ε) ≤ 2 exp(−2ε2m) (3.5)

A typical data mining application is to compute confidence bounds for the true accuracy ACC,
given only an empirical estimate ÂCC. A major advantage of Hoeffding bounds for this appli-
cation, when comparing the inequalities to those derived from theorem 3, is that the bounds are
independent of the true value to be estimated, e.g. ACC.

45

3. Sampling Strategies for KDD

For illustration, let the goal be not to over- or underestimate the true accuracy ACC of a given
model by an additive constant of more than 10% when relying on a sample estimate ÂCC. An
application of eqn. (3.5) yields the following bound:

Pr(|ÂCC − ACC| ≥ 0.1) ≤ 2 exp(−2 · (0.12)m) ≤ 2 exp(−0.02m).

Now, a sufficient sample size m for a confidence parameter δ = 5% can be derived:

2 exp(−0.02m) ≤ 0.05⇔ −0.02m ≤ ln
1

40
⇔ 0.02m ≥ ln 40⇔ m ≥ 50 ln 40 ≈ 184.44

For both Chernoff and Hoeffding bounds, δ decreases exponentially fast for a growing sample
size m. The bounds are especially relevant for analytical settings, where the aim usually is to give
asymptotical guarantees. Hoeffding bounds are also exploited by some data mining algorithms,
e.g., by VFDT proposed by Domingos and Hulten (2000). However, the bounds are known to
be rather loose, which increases the sample complexity of such algorithms unnecessarily. The
following way of computing estimates yields better bounds when candidate sample sizes are in
the range of a hundred or more observations.

Referring to the central limit theorem, the normal distribution approximates the binomial dis-
tribution sufficiently well, unless considering a very small number of samples. Let σ denote the
standard variation of a binomial random variable V ∼ B(µ(V), |E |). Then, for sufficiently large
sample sizes |E |, the deviation of estimated from true mean, normalized with respect to standard
deviation, approximately follows a standard normal distribution:

V ′ :=
V − µ

σ
∼ N(0, 1).

This directly allows to derive a two-sided confidence interval for the event that the mean of the
sample deviates from the true mean of V by more than a fixed additive constant z ∈ IR:

Pr(|V − µ| > z) < δ ⇔ Pr(V − µ > z) < δ/2⇔ Pr(V ′ > z/σ) < δ/2⇔ Pr(V ′ < z/σ) > 1 − δ/2

The inverted standard normal distribution allows to solve for z at a given confidence level δ. It
can e.g., be utilized by table look-ups. For a standard normal random variable X, the term zp

refers to the value z for which Pr(X < z) = p. In contrast to Chernoff and Hoeffding bounds,
this method yields tight confidence-bounds up to the (quickly vanishing) difference between
binomial and normal distribution.

It should be noted that using this technique for computing confidence bounds based on empir-
ically observed values is unreliable for small samples, however. Poor samples may yield overly
optimistic confidence bounds if the empirical standard deviation is used, which does not allow
to give strong guarantees. The reason is that the standard deviation observed in a sample is a
random variable itself. This shall be illustrated by the following example: When flipping a fair
coin a few times, one may observe a series of only heads showing up. The sample frequency of
heads is 1, and the sample variance is 0. Referring to the normal distribution and substituting
the estimated values is very misleading now, because it indicates that our estimate of 1 is correct
with arbitrary confidence. This is clearly wrong, because the true value is 1/2.

Student’s t-distribution is more precise when estimating the mean of a normally distributed
random variable. This distribution correctly handles the standard deviation observable in a sam-
ple as a random variable, and thus has one degree of freedom less than sampled examples. It

46

3.2. Foundations of uniform sub-sampling

better reflects the extractable information for normally distributed variables, i.e. the confidence
bounds for the estimated mean. The problem in our setting is, that for small sample sizes the
normal distribution is a poor approximation of the binomial distribution. Revisiting the coin flip
example above, using Student’s t-distribution yields the same value of 1 as an estimate for the
mean, with an arbitrarily small confidence interval. With increasing degrees of freedom (larger
samples) the approximation improves, because the difference between binomial and normal dis-
tribution vanishes very quickly. However, the same holds true for Student’s t-distribution and
the normal distribution, so using the latter for large sample sizes is sufficiently precise and more
convenient.

There are several approaches of different complexity to circumvent any problems with small
sample sizes, e.g. substituting the worst-case variance for binomially distributed random vari-
ables in the equations, using Hoeffding bounds, or the formula presented by Kohavi (1995).
Scheffer and Wrobel (2002) suggest to take the size of samples into account, and to use Hoeffd-
ing bounds for evaluating on small samples and the estimates based on the normal distribution
for evaluating on large samples. For sample sizes of 100 and more examples the latter can be
considered reliable, except for means lying very close to 0 or 1.

As a more complex application of such bounds, let us consider the problem of association rule
mining. At a reasonably high support level this task is well suited to be combined with sampling.
The first reason is, that only rules for which a high fraction of examples provides evidence are
considered relevant, the second is, that precision (alias confidence) is a metric based on counting
the fraction of examples in subsets.

An early approach that exploits sampling for association rule mining has been presented by
Toivonen (1996). As common in the literature, he tackles the problem of association rule min-
ing using a two-stage approach. The first stage addresses the more crucial part of detecting all
frequent itemsets, while the second derives the corresponding association rules, based on the
results of the first.

He presents a sampling-based approach for mining frequent itemsets that exploits the lattice
structure of all itemsets induced by set inclusion. Based on a uniformly drawn sub-sample the
border between frequent and non-frequent itemsets is identified. Those itemsets in the lattice
that are not frequent themselves, but all of their strict subsets are, are referred to as the negative
border. After analyzing a sample, one subsequent full database scan is sufficient to validate the
correctness of the corresponding negative border and to compute precise counts for all frequent
itemsets.

In the case of sufficiently representative samples, the border can be identified correctly and this
procedure yields all frequent itemsets at low computational costs. The procedure fails whenever
an itemset is frequent in the database, but not in the considered sample. By definition this is
the case if at least one frequent itemset lies on the wrong side of the negative border. For each
frequent set the probability of the support follows a binomial distribution, because there is a
fixed probability to sample an example that supports the itemset under consideration. Chernoff
bounds allow to constrain the risk of errors, as illustrated by the following result provided by
Toivonen (1996).

Proposition 1 Let I denote a set of itemsets, and let δ, ε ∈ (0, 1) denote two parameters. Then,
for a uniform random sample of size

m ≥ 1

2ε2
ln

2|I |

δ
,

the probability that for any of the itemsets in I the relative frequency in the sample and in the
complete database differ by at least ε is at most δ.

47

3. Sampling Strategies for KDD

Itemsets that are frequent in the sample but not in the database do not pose a problem, because
the counts are explicitly computed in the next step. This fact can be exploited to reduce the
probability of the other kind of error, simply by setting the minimum frequency threshold to
a lower value than that which was originally specified by the user. Toivonen (1996) illustrates
how to precisely reduce the threshold in order to meet a user given confidence not to err on the
negative border:

Proposition 2 Let min_fr denote an original threshold, low_fr be a lowered threshold, and
δ ∈ (0, 1) be a user-given confidence parameter. If these variables satisfy the constraint

low_fr < min_fr −

√
1

2m
ln

1

δ
,

then the probability that a frequent set in the database is not frequent in a sample of size m is at
most δ.

Clearly, decreasing the threshold increases the number of itemsets. Hence, in settings where
the number of database scans is not the only critical issue, it should also be taken care that the
number of candidate itemsets does not increase unnecessarily. An alternative sampling strategy
for frequent itemset mining is discussed at the end of subsection 3.3.1.

3.3. Iterative refinement of model estimates

The last section introduced the most important techniques for estimating relevant quantities in
the context of uniform sub-sampling. This section will illustrate how these techniques can be
applied to a variety of different data mining problems. Subsection 3.3.1 will discuss the issue
of finding an appropriate trade-off between computationally complex model induction based
on large samples, on the one hand, and a reduction in accuracy when training on smaller sub-
samples, on the other. Exploiting confidence-rated estimates for a larger class of data mining
applications, e.g. subgroup discovery with different utility functions, is the subject of subsec-
tion 3.3.2. The benefits of explicitly integrating the sampling procedure into learning algorithms
will be illustrated by presenting algorithms from the literature, some of which will re-occur in
subsequent chapters.

3.3.1. Progressive sampling

When training a single classifier on a sub-sample, the decrease in runtime is generally bought at
the price of a decrease in accuracy. For practical applications, it can be assumed that the gain in
runtime is much higher than the decrease in model performance. This is because the runtimes of
most learning algorithms scale super-linearly with the size of the samples, while at the same time
the increase in accuracy rapidly slows down with each new example added to the training set, and
practically may be assumed to level off at a specific but unknown sample size. A learning curve
depicts the expected accuracy of a model selected by a specific learning algorithm depending on
the sample size. John and Langley (1996) state that the following power law provides a good fit
to learning curves according to experiments in machine learning and psychology:

E (ACC(m)) ≈ a − bm−α.

In this formula E (ACC(m)) denotes the (expected) model accuracy for a uniform random sam-
ple of size m, and a, b, and α are parameters, which for specific learning tasks may be estimated

48

3.3. Iterative refinement of model estimates

from empirically observed accuracies. Such curves may also be used to extrapolate learning
curves, in order to find a value of m that yields models satisfying specific constraints, like being
ε-close (Def. 1, p. 13) to a model that is trained from all the data.

Progressive sampling techniques train models iteratively, using an increasing sample size.
The procedure continues as long as the performances of the corresponding models increase.
This requires the assumption that learning curves are monotone, which usually holds true in
practical applications. For incremental learning algorithms like NAÏVEBAYES it is comparably
easy to augment the training sample by one example at a time, since each update is cheap. In
the more general case of learners that learn “from scratch” each time, this strategy is too costly,
which motivates the notion of a sampling schedule.

Definition 24 For a training set of size n, a sampling schedule is a set {m0,m1, . . .mk} of k+1

increasingly indexed integers satisfying 0 < m0, mk ≤ n. In iteration i a progressive sampling
strategy trains and evaluates models with sample size mi until convergence, which is assumed
to be detectable.

This approach directly addresses the fact that most learning algorithms scale super-linearly. The
costs of inducing models from small samples are hence neglible, while it will usually just take
a few costly iterations to identify an approximately optimal model. For complex learners and
large samples this strategy can be expected to often outperform a single training step based on
an unnecessarily large sample.

A sample size that is sufficiently large can only be found experimentally in practice, because
this property depends on the combination of a specific data set and learning algorithm at hand.
Thus, an interesting question is how to construct efficient sampling schedules.

Two instances that have been discussed in the literature are the arithmetic and the geometric
sampling schedules.

Definition 25 An arithmetic schedule for an example set of size n starts with a sample of size
m0, which is iteratively increased by a fixed number c of examples. This results in schedules of
the form

Ma := {m0,m1, . . . , mk}, mi := min(m0 + c · i, n), k := d(n − m0)/ce

for given parameters m0, c ∈ IN≤n.

Assuming an unknown minimal sample size mopt that leads to (almost) optimal expected per-
formance, the arithmetic schedule may result in many training iterations if the selected constants
turn out to be inappropriate, e.g. m0 � mopt and c chosen too small. Guessing bad constants
is less problematic for geometric schedules.

Definition 26 For an example set of size n the geometric schedule Mg for m0 ∈ IN, 0 < m0 ≤
n and c ∈ IR+ is defined as

Mg := {m0,m1, . . . , mk}, mi := min(dci ·m0e, n), k := dlogc

n

m0
e

Progressive sampling has been applied in various data mining contexts. For example, Domingo
et al. (2001) report experiments with an algorithm that performs progressive sampling using a
geometric schedule, especially for boosting decision stumps (cf. chapter 5). They conclude that –
without any decrease in accuracy – progressive sampling helps to decrease runtime performance
significantly, even if the considered dataset is of main memory size.

49

3. Sampling Strategies for KDD

Provost et al. (1999) provide a proof that for super-linear (non-incremental) learning algo-
rithms geometric sampling schedules are asymptotically optimal regarding runtime, assuming
that convergence (mi ≥ mopt) is detectable after learning from a sufficiently-sized sample.
However, the authors point out that in practice detecting convergence remains a crucial issue,
since running a learner on a number of samples that are larger than mopt will generally degrade
the overall runtime performance compared to progressive sampling until mopt.

More recent work by Leite and Brazdil (2004) addresses the problem of estimating mopt

by meta-learning. The authors report experiments with a database of learning curves from 60

benchmark datasets. For a new dataset, classifiers were trained for the first sample sizes of a
geometric schedule. Based on the resulting accuracies and other criteria of the datasets the most
similar learning curves from the database were retrieved in a k-nearest neighbor fashion. The
value of mopt was estimated by averaging the corresponding values of the retrieved curves.
Leite and Brazdil (2004) report a decrease in runtime of about one order of magnitude, because
often several iterations of running the base learner could be skipped. In some cases, the accuracy
decreased, however, because the learning process was stopped too early. Adaptive sampling
seems to benefit from meta-learning, but several issues are not yet well understood. In particular,
there are several constants to be set in the reported approach, the roles and impacts of which need
to be evaluated in more detail.

Progressive sampling also applies to unsupervised learning tasks. Chen and Yang (2005) ex-
ploit a corresponding technique to estimate the sampling error in the context of frequent itemset
mining. For a given example set E they define the sampling error (SE) of a single item Ai in a
sample Sm of size m as

SE(Ai, Sm) :=

∣∣∣∣ |{Ai(x) | x ∈ Sm}|

m
−

|{Ai(x) | x ∈ E}|

|E |

∣∣∣∣ = |BIASDE (Sm → Ai)| ,

where Ai(x) denotes the event that example (or tuple) x contains item Ai, and DE denotes
the uniform distribution of E . In the scope of this thesis the idea of a “complete” database –
and thus exact frequencies – can be generalized to probabilities of seeing specific items when
sampling from an underlying distribution D. For a set of d different items A∗ := {A1, . . . , Ad}

the individual sampling errors on samples Sm are aggregated, which is captured by the following
definition:

A_SE(A∗, Sm) :=

√∑d
j=1 SE(Ai, Sm)2

d
.

Chen and Yang (2005) argue that the sampling error dominates the model accuracy of associa-
tion rules, so any schedule that minimizes the sampling error up to a small fraction can basically
also be expected to allow for reliable association rule mining. The authors present an algorithm
that scans a database once, collects the counts for all single items, and simultaneously simulates
sampling with different target sample sizes. To simulate the relevant aspects of sampling it is
sufficient to maintain counts for the selected items. This information is used in the next step to
estimate the sampling errors of all samples. An appropriate sample size is identified and used for
progressive sampling. For the specific task of association rule mining, the algorithm will gener-
ally provide a cheap solution, requiring a single database scan in advance. The authors assessed
the performance using an arithmetic schedule, but it can easily be replaced by a more efficient
geometric schedule as described above.

It is worth noting that the sampling error computation is a heuristic approach, based on specific
properties of the frequent itemset mining task. The tasks of detecting convergence and of finding
optimal schedules remain crucial issues when sampling progressively in more general settings.

50

3.3. Iterative refinement of model estimates

3.3.2. Adaptive sampling

Progressive sampling techniques treat learning algorithms as black boxes, evaluate their learning
curves for specific sample sizes and stop as soon as they have enough evidence that the curves
are saturated. Although this kind of sampling is practically relevant, it has two disadvantages.
First, the observed saturation can be misleading due to statistical fluctuations, so there is an
uncontrolled risk of stopping too early. Second, when using the black box approach, valuable
information is wasted. In many settings the evaluation procedure can effectively be integrated
into the learners, which helps to rule out poor model candidates early on with high confidence.

The idea of adaptive sampling is mainly illustrated for the task of subgroup discovery (Klös-
gen, 1996), because the most interesting aspect is how to give probabilistic guarantees for dif-
ferent potential evaluation metrics, while the class of models that is used by an algorithm is of
minor importance. As stated before, optimizing utility functions (Def. 19, p. 24) that formalize
the degree to which a rule (or more generally: “model”) is deemed interesting covers a broad
class of machine learning tasks.

Confidence bounds for rule evaluation metrics

For large databases it is attractive to compute quality estimates of candidate rules with respect to
uniformly drawn sub-samples. Formally, this defines a different family of evaluation functions
that are not based on the true density function D underlying X × Y .

Definition 27 (Estimator function) Let QD : H → IR be a utility function that assigns a real-
valued score to each rule h from any hypothesis space H with respect to any underlying density
function D. Let further for each sample E the term DE denote the uniform distribution of E .
Then the estimator function Q̂ : H× (X × Y)IN → IR of QD is defined as

Q̂(h, E) := QDE (h).

In the general case D is unknown, so we have to rely on estimates computed from samples. The
definition above is very general, and subsumes two different important scenarios. In the first,
the complete data set is in fact considered to be an i.i.d. sample, and the goal is to learn about
the underlying joint pdf D. This is a classification setting, aiming at generalizing the data and
making predictions in the future. In the second scenario, we sub-sample from a large database,
so we define D as the uniform distribution of all examples contained in that database. In this
case, evaluating on all the data would yield precise results, but might simply be too expensive.
Hence, it is desirable to get utility estimates based on sub-samples that reflect the values of the
large superset. This is rather a descriptive learning task.

In its original formulation, the task of subgroup discovery is to exactly find the k best rules
with respect to a user-specified utility function. Now, the goal is to provide guarantees that rule
utilities estimated on samples are close to the true utilities. In a sampling context there is always a
risk of facing a misleading sample, so the formal learning problem has been adapted accordingly.
Similar to the PAC learning framework (cf. section 2.3), the sample complexity is estimated for
the problem of finding the approximately k best rules with high confidence (Scheffer & Wrobel,
2001):

Definition 28 (Approximately k-best rules problem) Let δ ∈ (0, 1) denote a given confidence
parameter and ε ∈ IR+ denote a highest acceptable error interval. Then the approximately k-
best rules problem for utility function QD is to identify a set G of k rules, G ⊆ H, such that, with

51

3. Sampling Strategies for KDD

confidence (probability) of at least 1 − δ:

(∀h ′ ∈ H \ G) : QD(h ′) ≤ min
g∈G

(QD(g) + ε) .

Scheffer and Wrobel (2002) provide a detailed analysis of the sample complexity for different
utility criteria. The different nature of the corresponding functions is reflected by the fact that
confidence bounds for individual rules are function-dependent. The notion of a utility confidence
interval plays an important role in this context.

Definition 29 (Utility confidence interval) A function E : IN × IR → IR+ is called a utility
confidence interval, if for all m ∈ IN and 0 < δ ≤ 1 with a probability of at least 1 − δ

an i.i.d. sample E ∼ Dm of size m misleads the empirical estimate Q̂(h, E) of QD by at most
E(m, δ):

(∀h ∈ H) : PrE∼Dm(|Q̂(h, E) − QD(h)| ≤ E(m, δ)) ≥ 1 − δ (3.6)

As in the PAC model, the bounds must apply at each confidence level δ. One of the results is
that – for successful applications of adaptive sampling – it has to be possible for each δ > 0 to
shrink the utility confidence intervals E(m, δ) to arbitrarily small values ε > 0 by increasing
the sample size m. A surprising negative implication is, that for some practically relevant utility
measures it is not possible to provide sufficiently strong probabilistic guarantees at all, regardless
of the sample size. One of these measures is the Gini index, known e.g. from decision tree
induction (Breiman et al., 1984). This measure is order-equivalent3 to

f(A→ C) :=
COV(A→ C)

1 − COV(A→ C)
· BIAS(A→ C)2. (3.7)

A publicly available proof seems to be lacking, so please refer to a proof by the author in ap-
pendix C, showing that these two utility functions are identical up to a constant additive term4.
This directly implies that the Gini index and the utility function in eqn. (3.7) have identical con-
fidence bounds, because, as definition 29 shows, additive constants have no effect on E(m, δ).
For a detailed analysis of the utility function above, please refer to (Scheffer & Wrobel, 2002).

Before discussing how to exploit the confidence bounds algorithmically, an overview of such
bounds for different utility functions is given. All the considered functions can be rewritten
as combinations of binomially distributed random variables, basically the coverage and bias
of rules. For these random variables the techniques outlined in subsection 3.2.2 allow to give
estimates with associated confidence-bounds. Chernoff and Hoeffding bounds are not very tight,
but still reliable when the empirical estimates are based on small samples. The corresponding
bounds are not further discussed at this point, because the utility of adaptive sampling seems
to be low for small samples. For larger samples the normal distribution is a sufficiently precise
approximation of the binomial distribution. This allows to compute precise estimates of the
random variables’ means, but also of their standard deviations.

There are three relevant standard deviations when computing confidence intervals: ACC is
estimated by averaging the 0/1-losses (cf. p. 10) of examples. There is just one random variable
for this metric, and hence just one standard deviation, referred to as σh. For selecting rules, ACC

is not a common metric, but functions based on the coverage and on the bias of the covered subset
are preferred. The standard deviation of the coverage is referred to as σg. The standard deviation

3Two utility functions are called order-equivalent, if they always induce the same preference ordering of rule sets
or model candidate sets.

4In the context of selecting an attribute for splitting, the class priors are constants.

52

3.3. Iterative refinement of model estimates

Utility function Confidence bound E(m, δ) and rule-dependent version Er(m, δ)

ACC E(m, δ) =
z1−δ/2

2
√

m

Er(m, δ) = z1−δ/2σh

WRACC E(m, δ) =
z1−δ/4√

m
+

(z1−δ/4)2

4m

Er(m, δ) = z1−δ/4(σg + σp + z1−δ/4σgσp)

Q(0.5) E(m, δ) =
√

z1−δ/4

2
√

m
+

z1−δ/4

2
√

m
+
√

z1−δ/4

2
√

m

z1−δ/4

2
√

m

Er(m, δ) =
√

σgz1−δ/4 + σpz1−δ/4 +
√

σgz1−δ/4σpz1−δ/4

Q(2) E(m, δ) = 3
2
√

m
z1−δ/2 + m+

√
m

4m
√

m
(z1−δ/2)

2 + 1
8m

√
m

(z1−δ/2)
3

Er(m, δ) = (2σg + σp)z1−δ/2 + (σ2
g + σgσp)(z1−δ/2)

2 + σpσ2
g(z1−δ/2)

3

Table 3.1.: Utility functions and their corresponding confidence bounds E(m, δ) for large values
of m (Scheffer & Wrobel, 2002). All values Er(. . .) exploit properties of specific
rules, basically their standard deviations σg, σp, and σh. Lemma 2 shows that, in
fact, the tighter bounds for ACC also apply for WRACC.

of another random variable, counting the number of examples for which a rule is applicable
and correct, is denoted as σp. This corresponds to the standard deviation of the bias. Whenever
we are computing intervals for a specific rule, estimates of these parameters help to compute
tighter bounds. Without any specific rule under consideration it is still possible to substitute the
worst-case deviations. This yields two different confidence intervals for each utility function.

Table 3.1 lists corresponding bounds for large sample sizes. The bounds shown for ACC even
hold for a much broader class, the class of so-called instance-averaging functions.

Definition 30 (Instance-averaging) A utility function QD : H→ IR is called instance-averaging,
if there is a function f : H×X × Y → [0, R], with R ∈ IR+, so that QD can be rewritten as

QD(h) =

∫
D

f(h, x, y) dx dy.

The corresponding estimator function is

Q̂(h, E) =
1

|E |

∑
(x,y)∈E

f(h, x, y).

With f chosen as the 0/1 loss, ACC is just one example of an instance-averaging function. It has
a range of [0, 1], which is required for the upper (rule-independent) bound in table 3.1, and for
confidence intervals derived from Hoeffding bounds (not shown). All loss functions that share
this range, e.g. the root mean squared error (Def. 11, p. 20), can be substituted for f without
losing any of these guarantees.

As the following proof by the author shows, this class is even broader than one might expect.

Lemma 2 For known class priors the WRACC metric is instance averaging.

Proof
Let the constant πc denote the known class prior Pr [C], and for each rule A → C let Ext(A),
Ext(C) ⊆ X × Y denote the extensions of the antecedent A and consequence C, respectively.

53

3. Sampling Strategies for KDD

Defining

w(A→ C, x, y) :=

1 − πc, for x ∈ Ext(A) ∧ y ∈ Ext(C)

0 − πc, for x ∈ Ext(A) ∧ y /∈ Ext(C)

0 , for x /∈ Ext(A)

for each (x, y) ∈ X × Y allows to rewrite WRACC as

WRACCD(A→ C) = COVD(A→ C) · BIASD(A→ C)

= PrD [A] · (PrD [C | A] − PrD [C])

= PrD [A,C] − PrD [A] · PrD [C]

=

∫
D

w(A→ C, x, y) dx dy, (3.8)

and its estimator function as

ŴRACC(A→ C, E) =
1

|E |

∑
(x,y)∈E

w(A→ C, x, y).

Substituting w in eqn. (3.8) is valid, because the first term of w (0 or 1) computes Pr [A,C], and
the second one (−Pr [C] or 0) computes −Pr [A] · Pr [C] for known Pr [C]. In order to rescale
the range, we can finally add the constant prior πC, leading to a new instance-averaging utility
function

WRACC ′(A→ C) := WRACC(A→ C) + πC

with the desired range of [0, 1]. Transforming a utility function by additive constants has no
effect on its confidence intervals. The function WRACC ′ inherits the bounds of ACC, which
hence also hold for WRACC.

This result simplifies computations, yields tighter bounds than those derived by Scheffer and
Wrobel (2002) (cf. table 3.1), and hence reduces the sample complexity of adaptive sampling
algorithms. Please note, that class priors are global properties of the data; if they are unknown
it is cheap to get precise estimates with high confidence. Subsection 3.4.1 discusses further
connections between ACC and WRACC, providing a simple explanation for lemma 2.

Algorithms for adaptive sampling

Most of the popular utility functions can be evaluated in an adaptive sampling framework, us-
ing the confidence bounds discussed above. For this class of functions, the generic sequential
sampling (GSS) algorithm by Scheffer and Wrobel (2002) allows to give probabilistic guaran-
tees to find approximately optimal rules in the sense of definition 28. It usually requires far less
examples than any static approach that computes the worst-case sample complexity in advance.

The hypothesis space H is required to be finite for GSS, because for each element of H a
separate estimate is maintained: After each sampled example the algorithm updates the counts
for covered positives and negatives for each rule in H (still) under consideration5, and computes
the corresponding utility scores. As the sample size increases, some rules will usually receive

5For more general tasks the full contingency matrix is stored.

54

3.3. Iterative refinement of model estimates

a very low score compared to others, which allows to discard them as soon as the confidence
bounds are tight enough. This requires to keep track of the k empirically best rules in H. Def-
inition 29 allows to compute an upper-bound for the probability that a “good” rule is discarded
by mistake. Based on the union bound, the algorithm distributes half of the tolerable probability
of failure (δ/2) to the iterations and rules: For an upper-bound of m examples that need to be
sampled in the worst case, each of the |H| rule evaluations is allowed to fail with a probability
of at most δ/(2m|H|). Applying this confidence parameter at each local evaluation, the risk of
discarding any of the best rules is upper-bounded by δ/2. The algorithm terminates as soon as
there are at most k rules left, which are then known to be approximately optimal (up to an ε)
with a probability of at least 1 − δ.

A upper-bound m based on the static sample complexity of the task is computed as a fallback.
This allows to terminate the search after a pre-computed number of examples. If GSS does not
terminate due to ruling out all but k candidates after m iterations, then it is valid to output the
empirically k best rules at that time. This bound is also of a probabilistic nature, of course,
so the algorithm “reserves” the “remaining” probability of failure, namely δ/2, for this second
termination criterion.

The asymptotic sample bound m for the approximately k-best rules problem computable in
advance (static) is

m = O

(
1

ε2
log

|H|

δ

)
(3.9)

for the measures ACC and q(α)(A→ C) = COVα(A→ C) · BIAS(A→ C), α > 0.
The rule-specific confidence bounds exploited by GSS will usually reduce the sample com-

plexity drastically. Referring to an empirical study, the authors report substantial improvements
over the sample complexities computable from eqn. (3.9). This is a consequence of the fact
that the utilities of rules in H will usually vary over the full range. The worst-case is a large
number of equally well performing rules. In this case, adaptive sampling may fail to reduce the
required sample size, so the bound above is at the same time a worst-case bound for the sample
complexity of adaptive sampling.

Further algorithms based on adaptive sampling have been proposed by (Hulten & Domin-
gos, 2002). They also make use of Hoeffding bounds, but implicitly confine themselves to the
evaluation of instance-averaging functions in a framework similar to the approximately k-best
rules problem. The interesting aspect is, that they point out the broad applicability of adaptive
sampling. One of their algorithms, the VFDT decision tree learner (Domingos & Hulten, 2000),
decides which attribute to split on by comparing the best alternatives in an adaptive sampling
framework. As for GSS: If two decision tree splitting candidates perform very differently, then it
is easy to identify the better one; if both candidates perform about equally well, then an adaptive
sampling algorithm may select any of them with just a small expected loss in accuracy. Strong
probabilistic guarantees are provided for the constant time and memory algorithm VFDT. They
state that its results will often be very close or identical to the tree that would have been se-
lected after processing all the data. This algorithm is also capable of mining from data streams
(cf. chapter 6), a result of its sampling-based nature.

As (Hulten & Domingos, 2002) point out, the idea of applying Hoeffding bounds also applies
to incremental or active learning tasks. Basically any kind of discrete search based on instance-
averaging evaluation functions can be addressed by estimating the scores of all candidates in
a progressive sampling framework by applying Hoeffding bounds and by selecting the single
or k approximately best solutions at each step. Exemplarily, this strategy has been applied to
the problem of inducing a Bayesian network from very large training sets. The key observation

55

3. Sampling Strategies for KDD

when taking the sampling approach is that the main decision of which network structure per-
forms best can be decomposed. Estimates can be computed by averaging over a sample for the
selected learner (Heckerman, 1995). For huge training sets, the learning task can hardly be ad-
dressed without sampling. As for VFDT, the proposed strategy allows to give strong asymptotic
guarantees that the network is close to the one trained from all the data.

As mentioned above, the methods used by Hulten and Domingos (2002) allow only to estimate
instance-averaging functions in settings where the underlying optimization problem is close to
the approximately k-best rules problem. Hoeffding bounds do not apply to discrete search prob-
lems that require optimal solutions or have inherently complex utility functions. An impressive
example of the latter issue is decision tree learning based on the popular Gini index. Precisely
evaluating utility functions that are equivalent to eqn. (3.7) is intractable when using incomplete
samples, regardless of their size. As discussed, the Gini index is order-equivalent to this utility
function and inherits the intractability result, because the confidence bounds do not vanish for
large sample sizes.

3.4. Monte Carlo methods

The previous sections illustrated the utility of uniform sub-sampling techniques for different
data mining tasks. The main benefit in KDD is a decrease in runtime paired with probabilistic
guarantees not to miss any relevant pattern, or to induce a model close to one a data mining
algorithm would output after processing all the data, respectively.

This section discusses more general sampling strategies. With Monte Carlo sampling tech-
niques it is possible to sample exactly from a new distribution, which is defined in terms of the
distribution originally underlying the data. Only two very simple Monte Carlo techniques are
applied in this work. The first one is stratification, which is discussed in subsection 3.4.1. The
second technique is called rejection sampling and will be discussed in subsection 3.4.2. It is
very general, but sometimes lacks efficiency. Mackay (1998) and Neal (1993) provide compact
introductions to Monte Carlo sampling methods, also covering more sophisticated techniques,
which are of minor relevance to this work, however. Rejection sampling provides the theoretical
foundation for knowledge-based sampling, a novel technique that will be proposed in the next
chapter. Stratification will be utilized in this context to simplify knowledge-based sampling for
sequential subgroup discovery, and it is also a major foundation of a derived boosting technique
discussed in chapter 5.

3.4.1. Stratification

Probably the simplest randomized method that effectively samples from another than from the
original distribution is stratification. Unless mentioned otherwise, the term stratification de-
scribes the process of altering a distribution, so that all classes are equally likely; other target
class distributions can be constructed using the same techniques. The following definition shows
how to accordingly define a new probability density function based on the original pdf underly-
ing the data.

Definition 31 For D : X × Y → IR+ the stratified random sample density function D ′ of D is
defined as

D ′(x, y) :=
D(x, y)

|Y | · Pr(x ′,y ′)∼D [y = y ′]

for each (x, y) ∈ X × Y .

56

3.4. Monte Carlo methods

If Y functionally depends on X , with f : X → Y , then this definition simplifies to

D ′(x) :=
D(x)

|Y | · PrD [f(x)]
.

In less technical terms, D ′ is defined by rescaling D by a constant factor for each class, so that
the classes are equally like with respect to D ′ (or follow any other specified ratio), but the density
of each instance, when conditioning on the class, does not change from D to D ′. The following
paragraphs discuss stratification techniques and typical data mining applications.

Classical objectives

A typical application of stratification is to reduce certain kinds of biases in the training data. If
for example, in a poll only a fraction of 10% of all responses were made by men, although it
should be about 50%, then stratification may be a well-suited technique to correct this simple
kind of sample selection bias. The result is a sample with a gender ratio that is approximately
identical to the ratio observed in the overall population. Stratification is a sound modification
if both, the underrepresented 10% group and the overrepresented 90% group are proportional
(“representative”) sub-samples of their classes.

Another problem with many real-world datasets is that class distributions are often highly
skewed. Among the typical examples are the detection of fraud, network intrusion, and medical
applications. If the fraction of fraudulent credit card transaction is e.g. 1%, then even the default
classifier always predicting “no fraud” has an accuracy of 99%. In section 2.5, a general analysis
framework based on ROC analysis has been discussed, which allows to consider varying class
skews and misclassification costs as part of the classifier selection procedure. For varying skews
and costs, maximizing the AUC to rank examples by their risk of being positive is a straightfor-
ward optimization goal for highly imbalanced datasets. Stratification has been reported to work
well in such settings (Chawla et al., 2002).

In turn, for any fixed slope in ROC space defined by costs and skews, a separate specially
targeted classifier can be trained after a specific step of stratification. As illustrated before, asym-
metric costs can be handled just as implicitly changed class skews. This implies that a technique
that is able to transform a skew-sensitive classification problem into a plain accuracy maximiza-
tion problem allows to incorporate skews and costs in a very generic fashion, without any need to
adapt base learning algorithms. At the end of this subsection (p. 63) it is shown that stratification
is well-suited to address this problem.

Methods

The next paragraphs show how to operationalize the stratification specified by Def. 31. For a
procedure that samples from D it is easy to design a Monte Carlo algorithm for sampling m

examples from D ′. If the target attribute is binary, then one can simply flip a coin m times
and decide to include as many positive examples as heads showed up, say m+, and choose the
number of negatives as m− := m−m+, the number of tails. To construct a sample from D ′ now,
it is sufficient to discard all but the first m+ positives and first m− negatives. As required, the
class probabilities are both 1/2, and the conditional probabilities (or densities) to see a specific
example given the class under D ′ are by definition and construction identical to the probabilities
of D. Hence, this simple technique samples exactly from the new distribution D ′ introduced
by definition 31. It is easily seen that this algorithm also preserves the assumed i.i.d. nature
of D in the sense of definition 23 (p. 43). This kind of sampling also applies if |Y | > 2; it

57

3. Sampling Strategies for KDD

is sufficient to replace the “coin” by another appropriate uniformly distributed (multinomial)
random experiment.

To guarantee highly informative samples it is common practice to avoid the internal random
experiment, but to sub-sample the same number of examples from each class uniformly without
replacement. The rationale behind this simpler strategy is that usually a learner aims to approx-
imate the pdf D ′ by choosing an appropriate model. This seems easier without additional vari-
ance introduced by an internal random experiment. Nevertheless, the technique sketched above
samples from D ′ exactly.

Both variants have one disadvantage in common; they exclude examples that are available in
the original sample from the stratified sample. An alternative that avoids to discard information
in the case of small datasets is to use example weights. An example having a weight of w

represents a set of w examples. One can simply use the denominators of definition 31 as weights
in order to stratify a data set. Intuitively, this is even better suited to reflect the densities defined
by D ′. The main disadvantages of this approach are that (i) all subsequently applied operators
are required to be capable of interpreting such a representation, and (ii) that it increases the risk
of overfitting if examples are allowed to have weights greater than 1, because they simply cannot
provide the information of more than one example; such weights can e.g. compromise results if
a learner computes confidence intervals based on the weighted supports of subsets.

This short discourse already illustrates that even for the most simple non-uniform sub-sampling
scenario of stratification there are several alternative operationalizations, each having its own
application-dependent weaknesses. Hence, different authors have studied the behavior of several
stratification techniques empirically. The sub-sampling strategies sketched above are referred to
as under-sampling the majority class in the literature. Alternatively, one can sample more exam-
ples of the minority class with replacement, which is referred to as over-sampling. Chawla et al.
(2002) give a broader overview and provide several pointers to the literature. They conclude that
over-sampling is generally inferior to under-sampling, but propose a new kind of over-sampling
without replacement that constructs examples artificially instead. Their algorithm, called SMOTE

(for synthetic oversampling technique) works by repeatedly sampling an example emin from the
minority class, selecting a nearest neighbor emaj from the majority class, and constructing a new
example with the same class as emin at a randomly chosen point in between. They report that
this strategy worked better than the traditional stratification techniques for several benchmark
datasets, using NAÏVEBAYES, decision trees, and a rule induction algorithm as their test bed.
This can be explained by the fact that after constructing the artificial examples the learners favor
decision boundaries that keep a certain distance between the supporting positive and negative
examples. This is similar to margin maximization, the theoretical foundation of support vector
machines (Schölkopf & Smola, 2002).

Stratification is an important part of the novel algorithms that will be presented in chapter 4
and 5. The algorithms can basically be combined with any of the discussed stratification tech-
niques. Regarding the empirical evaluation it is important to note that the publicly available
benchmark data sets easily fit into main memory. This does not hold for the data of many real-
world applications. For small data sets the information loss caused by sampling is usually severe,
while sub-sampling is an inevitable preprocessing step when mining from very large databases.
Example weighting is the preferred method in the experiments reported in subsequent chap-
ters, but not recommended for large-scale applications. SMOTE will not be used, because it is
based on a heuristic, which makes the evaluation of the studied effects more difficult. Moreover,
constructing artifical examples implicitly changes the underlying distribution.

58

3.4. Monte Carlo methods

Transformation of learning tasks

An interesting aspect of stratification is, that it allows to transform subgroup discovery confined
to the utility function WRACC into the better supported task of classifier induction. This con-
nection has first been shown by the author in (Scholz, 2005b). It simplifies subgroup discovery
with its most popular utility function from a practical point of view, which will be utilized in
section 4.5.

The goal when inducing a classifier from data generally is to select a predictive model that
separates positive and negative examples with high predictive accuracy. Many algorithms and
implementations exist for this purpose (Mitchell, 1997; Witten & Frank, 2000), basically differ-
ing in the set of models (hypothesis spaceH) and search strategies. Subgroup discovery requires
to define a property of interest, which we assumed to be present in the form of a target attribute.
In this sense, this task is also supervised. The process of model selection is guided by a utility
function. The following definition simplifies subgroup discovery a bit; the goal here is to find
just a single most interesting rule.

Definition 32 Let H denote the set of candidate models (rules) considered by a learning al-
gorithm, and let D denote a probability density function of X . When referring to empirical
performances, the uniform distribution DE of a training set E is substituted.
The task of classifier induction is to find the most accurate model

h∗ := argmax
h∈H

(ACCD(h)) .

For a given utility function Q evaluating model candidates with respect to D, the task of sub-
group discovery is to identify a model (rule) h∗ of highest utility:

h∗ := argmax
h∈H

(QD(h)) .

If the target attribute is boolean, then common classifier induction algorithms do not benefit
from finding rules with a precision below 50%. In contrast, for subgroup discovery it is sufficient
if a class is observed with a frequency that is significantly higher than in the overall population.
In more technical terms, the precision of the rule needs to be higher than the prior of the predicted
class. In cases of skewed class distributions the frequency in the covered subset might still be far
below 50% for the most interesting rules. Choosing the utility function WRACC we can trans-
form subgroup discovery as defined above into classifier induction by means of stratification.
Definition 31 allows to state the following theorem.

Theorem 5 For every rule A → C the following equalities hold if D ′ is a stratified random
sample density function of D:

ACCD ′(A→ C) = 2WRACCD ′(A→ C) + 1/2

= WRACCD(A→ C) · 1

2PrD [C] · PrD

[
C
] + 1/2︸ ︷︷ ︸

irrelevant for ranking rules

.

Proof
Let H denote a set of classification rules. The antecedent of a rule candidate under consideration
is denoted as A, its head as C. Substituting the definitions of the metrics, the two optimization
problems are:

59

3. Sampling Strategies for KDD

Classification Find an (A→ C) ∈ H that maximizes predictive accuracy:

ACC(A→ C) = Pr [A,C] + Pr
[
A,C

]
Subgroup Discovery with WRAcc Find an (A→ C) ∈ H that maximizes

WRACC(A→ C) = Pr [A] · (Pr [C | A] − Pr [C])

The correctness of the theorem is shown based on two lemmas.

Lemma 3 The two tasks are equivalent, if and only if the priors of both class labels are equal:

Pr [C] = Pr
[
C
]

= 1/2

Proof
First we rewrite predictive accuracy:

ACC(A→ C) = Pr [A,C] + Pr
[
A,C

]
= Pr [A,C] +

(
Pr
[
A
]
− Pr

[
A,C

])
= Pr [A,C] + Pr

[
A
]
− (Pr [C] − Pr [A,C])

= 2Pr [A,C] + Pr
[
A
]
− Pr [C]

= 2Pr [C|A]Pr [A] + 1 − Pr [A] − Pr [C]

= 2Pr [A] (Pr [C|A] − 1/2) + Pr
[
C
]

(3.10)

The order of rules according to this metric does not change if we drop the constant additive terms
P(C) and the constant factor of 2 in eqn. (3.10), so

argmax
(A→C)∈H

ACC(A→ C) = argmax
(A→C)∈H

(Pr [A] · (Pr [C | A] − 1/2)) .

Obviously, the second term is equivalent to WRACC, if and only if Pr [C] = 1/2. In this case
ACC and WRACC induce the same ranking of rules.

Lemma 3 basically just reflects a previously (p. 27) mentioned property of WRACC formally:
The geometries of ROC isometrics are identical for ACC and WRACC if the data is stratified.

If the condition of lemma 3 is violated for the density function D originally underlying the
data, then we can perform stratified sampling as captured by definition 31:

D ′(x, y) :=
D(x, y)

|Y | · Pr(x ′,y ′)∼D(y = y ′)
(3.11)

Considering a sample from D ′ as defined by (3.11) we expect PrD ′ [A] and PrD ′ [C|A] to differ
from PrD [A] and PrD [C|A], respectively. As the following lemma states, such samples are
nevertheless appropriate for rule selection.

Lemma 4 The preference ordering of a rule set H induced by the WRACC metric is equivalent
for two probability density functions D and D ′ if eqn. (3.11) holds.

60

3.4. Monte Carlo methods

Proof
Let us first exploit eqn. (3.11) to rewrite PD ′(A) in terms of D:

PrD ′ [A] =
PrD [A,C]

2PrD [C]
+

PrD

[
A,C

]
2PrD

[
C
]

=
PrD [A]

2

(
PrD [A,C]

PrD [A]PrD [C]
+

PrD

[
A,C

]
PrD [A]PrD

[
C
])

= PrD [A] · 1

2

(
LIFTD(A→ C) + LIFTD(A→ C)

)
︸ ︷︷ ︸

=:α

(3.12)

Having PrD ′ [A] = PrD [A] · α allows to reformulate WRACCD ′ :

WRACCD ′(A→ C)

= PrD ′ [A] · (PrD ′ [C|A] − PrD ′ [C])

= PrD ′ [A] ·
(

PrD ′ [A,C]

PrD ′ [A]
− 1/2

)

= PrD [A] · α ·

 PrD[A,C]
2PrD[C]

PrD [A] · α
− 1/2

= PrD [A] · α ·

(
1

2

PrD [A,C]

PrD [A] · PrD [C] · α
− 1/2

)
=

1

2
PrD [A] (LIFTD(A→ C) − α) (3.13)

Formula (3.13) can be simplified by rewriting α, exploiting that

LIFTD(A→ C) =
PrD

[
C|A

]
PrD

[
C
] =

1 − PrD [C|A]

PrD

[
C
]

=
1

PrD

[
C
] −

PrD [C]

PrD

[
C
] · LIFTD(A→ C) (3.14)

After plugging (3.14) into α we have

α = 1/2 ·

(
LIFTD(A→ C) +

1

PrD

[
C
] −

PrD [C]

PrD

[
C
] · LIFTD(A→ C)

)

= 1/2 ·

((
1 −

PrD [C]

PrD

[
C
]) LIFTD(A→ C) +

1

PrD

[
C
])

=
1

2PrD

[
C
] · ((PrD

[
C
]
− PrD [C]

)
LIFTD(A→ C) + 1

)
=

1

2PrD

[
C
] · ((1 − 2PrD [C]) LIFTD(A→ C) + 1)

which can now be substituted into (3.13):
1

2
PrD [A] · (LIFTD(A→ C) − α)

=
1

2
PrD [A] ·

(
LIFTD(A→ C) −

(1 − 2PrD [C]) LIFTD(A→ C) + 1

2PrD

[
C
])

61

3. Sampling Strategies for KDD

=
1

2
PrD [A] ·

(
LIFTD(A→ C)

(
1 −

1 − 2PrD [C]

2 − 2PrD [C]

)
−

1

2PrD

[
C
])

=
1

2
PrD [A] ·

(
LIFTD(A→ C)

1

2 − 2PrD [C]
−

1

2PrD

[
C
])

=
1

4PrD

[
C
] · PrD [A] · (LIFTD(A→ C) − 1)

=
1

4PrD

[
C
]
· PrD [C]

· PrD [A] · (PrD [C|A] − PrD [C])

=
1

4PrD

[
C
]
· PrD [C]︸ ︷︷ ︸

irrelevant

·WRACCD(A→ C) (3.15)

The constant factor on the left does not change the ranking of rule sets. We may drop it and end
up with the definition of the WRACC metric for D, which completes the proof of lemma 4.

Combining eqn. (3.15) and eqn. (3.10) yields

ACCD ′(A→ C) = 2PrD ′ [A] (PrD ′ [C|A] − 1/2) + PrD ′
[
C
]

= 2PrD ′ [A] (PrD ′ [C|A] − PrD ′ [C]) + 1/2

= 2WRACCD ′(A→ C) + 1/2

=
1

2PrD

[
C
]
· PrD [C]

· WRACCD(A→ C) + 1/2,

which proves theorem 5.

As a consequence of theorem 5, subgroup discovery tasks with utility function WRACC can
as well be solved by rule induction algorithms that optimize predictive accuracy after stratified
resampling, or after reweighting, respectively (cf. section 3.4.2). In any case, the induced ranking
of rules will be identical to that induced by WRACC. The close connection between ACC and
WRACC provides an intuitive explanation for lemma 2 (p. 53), i.e. that WRACC is an instance-
averaging function and shares the confidence bounds of ACC in adaptive sampling scenarios. The
simplification of WRACC will turn out useful in the next chapter for deriving a simple sequential
subgroup discovery algorithm based on common ACC-maximizing rule discovery algorithms.

Lemma 2 also provides an explanation for a property mentioned briefly on page 57, that strat-
ification helps to optimize the area under the ROC curve, whenever the chosen learners optimize
predictive accuracy. The reason is, that maximizing accuracy after stratification is identical to
directly maximizing the WRACC. The latter, in turn, can easily be shown to be identical to AUC
optimization in the specific case of a binary classifier. This is illustrated in Fig. 3.1. The isomet-
rics of the WRACC metric are parallel lines to the main diagonal. A classifier that maximizes
this metric, exemplarily depicted by a green dot in the figure, will hence be as far as possible
from the diagonal. The AUC can be decomposed into the area below the diagonal and the en-
closed triangle above, connecting the green point with (0, 0) and (P,N). Clearly, the area of the
triangle is half the area of the shaded rectangle for all points that share the same isometric line.
Since the area of the rectangle grows monotonically as the isometric line approaches the optimal
point of (0, P), the AUC grows strictly monotonically with an increasing WRACC.

62

3.4. Monte Carlo methods

Figure 3.1.: The green point shows a classifier performance in ROC space. WRACC isometrics
are lines parallel to the main diagonal. The area of the enclosed rectangle above the
main diagonal, and hence the AUC, only depend on the WRACC of the classifier.

This connection can easily be exploited for greedily maximizing the AUC with decision tree
soft classifiers that use only binary splits. Each leaf covers a set of examples for which the same
soft prediction is made. After a step of stratification the utility of accuracy maximizing splits
grow monotonically with the WRACC, which means that the learner tries to “shift” examples as
far as possible to the point (0, P) in ROC space with each split. If each subset is stratified before
selecting the splitting criterion, then splits based on accuracy maximization will implicitly fa-
vor AUC maximizing trees. In other words: Recursively stratifying (approximately) transforms
AUC maximization into WRACC maximization in the context of binary decision trees.

The task gets more complex in the general case, which also covers non-binary splits. The
SMILES algorithm by Ferri et al. (2002) fits AUC maximizing trees by computing and compar-
ing the resulting AUC scores of split candidates. The authors report that, averaged over several
benchmark datasets, AUC maximization also led to better classification performances than clas-
sical impurity criteria.

There is another interesting result that can be derived from lemma 3. Accuracies under dif-
ferent misclassification costs or class skews can be maximized based on stratification. The only
difference between WRACC and ACC maximization is that the slope of the isometrics is 1 for
the former in ROC space, while the slope of the latter is N/P. After a step of stratification that
yields new values P ′ and N ′, the optimization of accuracy is based on the new slope of iso-
metrics, N ′/P ′ = 1. Hence, the only effect of stratification for accuracy optimization problems
is that it in fact changes the slope of the isometrics. This property holds regardless of the tar-
get proportions. We can as well introduce class skews by changing the ratio of N ′/P ′, using the
same stratification techniques with different pre-defined target class proportions. This means that
any target slopes, reflecting asymmetric misclassification costs or skews, may be used to define a
new target class ratio. That way we can train a classifier with any common accuracy-maximizing
learner for any user-given slope in ROC space. This idea is further illustrated in subsection 5.3.5.
From a technical point of view, the corresponding sampling strategy can be subsumed under the
notion of rejection sampling, a technique with a broader scope, which is discussed in the next
subsection.

63

3. Sampling Strategies for KDD

3.4.2. Rejection Sampling

The overall purpose of Monte Carlo sampling techniques is to sample from complex distribu-
tions. This is operationalized by internal random experiments. For stratification it depends on
details of the analytical setting whether internal random experiments are beneficial. Otherwise,
as discussed in the last subsection, it can be addressed by simpler techniques, which one would
not necessarily subsume under the notion of Monte Carlo sampling.

The Monte Carlo method of rejection sampling is considerably more general. It allows to
sample exactly from almost arbitrarily complex target distributions if some comparably weak
assumptions are met. It is a useful technique for very different problems, but the way it is used
in this thesis, and in the contexts of primary interest, is different from the typical use in the statis-
tical literature (Mackay, 1998; Neal, 1993). The first part of this subsection discusses the strategy
in general, its assumptions, typical application scenarios, possible shortcomings and more so-
phisticated strategies. The second part reviews some applications in the context of supervised
learning. Rejection sampling is a theoretical foundation of the knowledge-based sampling tech-
nique, which will be presented in chapter 4.

Sampling from complex distributions

Assume that we want to draw samples x ∈ X with respect to a complex density function P :

X → IR+. If we only have random bits to operationalize this procedure, then this is a hard
challenge for many functions. Please note that P may have very unpleasant properties, e.g., it
might be high-dimensional and non-continuous, have irregular dependencies between different
components of X etc. We only assume that we can compute P(x) for each x ∈ X . Now assume
that we further know a much simpler density function Q : X → IR+, for which we have an
efficient sampling procedure and another procedure to compute Q(x) for each x ∈ X . If there is
a constant c ∈ IR+ with the property that

(∀x ∈ X) : c ·Q(x) ≥ P(x),

then rejection sampling provides the means to sample from P(x). The idea is to combine two
random experiments. The first one is to sample an example x ∼ cQ, which is not sufficient, of
course, because the two functions will deviate for most subsets of X . Hence, the second random
experiment is designed to correct the errors of the first one by rejecting examples “proportionally
to the error”. Therefore, another internal Bernoulli random experiment with p = P(x)/(c·Q(x))

is performed. If this random experiment “succeeds” (probability is p) the example is accepted,
otherwise it is rejected and the procedure is repeated. Both random experiments are independent,
so effectively the resulting density D(x), x ∈ X , defined by the procedure is

D(x) = c ·Q(x) · P(x)

cQ(x)
= P(x),

which proves the correctness of the approach. The procedure is illustrated in Fig. 3.26. The
red curve is the target density function, the green curve shows a normal distribution, where the
scaling constant c is chosen large enough. A Bernoulli experiment after sampling x = −2 from
cQ is depicted as a vertical line, where the intervals [0, P(x)] and [P(x),Q(x)] are proportional
to the probability of acceptance and rejection, respectively. The efficient sampling procedure
samples proportionally to the area under the red curve, while the internal experiment can be

6The picture and additional material on different Monte Carlo sampling techniques can be found at
http://www.inference.phy.cam.ac.uk/itprnn/code/mcmc/

64

3.4. Monte Carlo methods

Figure 3.2.: A schematic example of rejection sampling: It is easy to sample from Q(x), but
hard to sample directly from P(x). Since c ·Q(x) > P(x) the procedure can simply
sample from Q(x) and accept x with probability P(x)/(c ·Q(x)). The points lying
below the red line are accepted, the points above are rejected.

considered to uniformly add a second vertical dimension to each point, reaching up to the red
line. Only the points below the red line are accepted. As the figure illustrates, this may lead to
much smaller samples if P and Q are not similar, that is, if c is large.

This gives rise to more complex procedures, subsumed under the name of Markov Chain
Monte Carlo (MCMC) algorithms. Such algorithms construct chains of examples (x(0), x(1), . . .)

based on internal random experiments. The chains converge to the true distribution P. Such
methods are applicable to a broad variety of problems, ranging from (i) sampling from a com-
plex distribution, over (ii) estimating the expected value of a response for a given functional de-
pendency between response and random variable X , up to (iii) estimating posteriors in Bayesian
settings, e.g., to compute the posterior distributions for unobserved variables of a given Bayesian
network model (Pearl, 1991). None of the more complex MCMC techniques are applied in this
thesis. The interested reader may want to refer to (Mackay, 1998) for a compact introduction
and to (Neal, 1993) for a broader discussion with a focus on probabilistic inference.

Applications in the context of supervised learning

The example applications of rejection sampling discussed so far have in common that it is pos-
sible to construct sample points arbitrarily, e.g., in a space X like IRn, n ∈ IN, because the
responses (if any) can easily be computed for each x ∈ X . For supervised data mining appli-
cations the situation is different. The functional or probabilistic dependency between X and Y
is not known a priori, but it is the goal of a learner to find a good approximation of this depen-
dency by selecting an appropriate model from a given class. In this setting, we can usually just
select a subset of the instances from the training set, while the construction of new instances is
not possible. Approaches like SMOTE (p. 58) are an exception to this rule, but technically they
sample from yet another distribution, need to apply heuristics, and hence may fail to improve
the performance for several combinations of learner and dataset.

Please recall, that we consider the full example set E itself to be an i.i.d. sample from a fixed
pdf D. Using the previously discussed technique we can sub-sample from a different pdf D ′

now, that is defined with respect to D. Translated to the previously sketched rejection sampling
notation we have D = Q and want to sample from D ′ = P. Hence, the first kind of random
experiments that are part of the rejection sampling procedure, namely sampling from Q, has

65

3. Sampling Strategies for KDD

already been performed in advance. Now we need to find a constant c, as small as possible,
while meeting the constraint cQ(x) > P(x) for all x ∈ E , and we need the ratios P(x)/(cQ(x))

alias D ′(x)/(cD(x)). We can then select a subset of E using rejection sampling by perform-
ing a Bernoulli experiment based on these ratios. Clearly, unless c = 1 the total sample size
will decrease in this case. Unlike for other typical applications of rejection sampling, like sam-
pling from posterior distributions, this does not result in a waste of time in the first place, but
rather in a waste of information. For this reason rejection sampling should only be considered in
cases where the amount of available training data is large, and where the rejection rate reflected
by the constant c is reasonably low. In other cases one can use example weights instead. The
problems and advantages are similar to those discussed for stratification. In any case, a sound
understanding of the principles underlying rejection sampling fosters a better understanding of
the semantics of example weights; the weight of each example x ∈ E can simply be interpreted
as the ratio D ′(x)/D(x), the acceptance ratio scaled by a normalization constant c. In several
cases referring to changes of the underlying distributions, as operationalized by rejection sam-
pling, eases the analysis of data mining algorithms. There are several approaches in the literature
that explicitly refer to this kind of transformation. Three of them are exemplarily discussed in
the next paragraphs; they are all related to this thesis.

Cost sensitive learning In section 2.5 and subsection 3.4.1 the incorporation of misclassifi-
cation costs into learning has been shown to be possible by sampling or weighting, even
if the used machine learning algorithm is not capable of incorporating costs. However, a
required underlying assumption was that misclassification costs only depend on the true
label of an example. Zadrozny et al. (2003) extended this framework, assuming that for
each example a specific attribute contains the (positive) costs that are caused by misclas-
sifying the example. They apply rejection sampling to provide an appropriately altered
sample to the learner. Each example from the original training set is sampled proportion-
ately to the associated costs. The acceptance rate for an example with misclassification
costs (loss) l is hence l/lmax, where lmax denotes the highest costs observed for any
example in the training set. That way, the learning algorithm selects a model minimiz-
ing costs without being “aware” of the cost-sensitive component, just as discussed for the
simpler cost-sensitive classification framework in subsection 3.4.1. As an interesting the-
oretical result the authors provide a proof that in the agnostic PAC-learning framework
(see subsection 2.3.3) the asymptotic sample complexity does not decrease in combina-
tion with cost proportional rejection sampling, although this sampling technique reduces
the number of examples that are available for training. They take advantage of the gain in
runtime (caused by the sample reduction) by training several base classifiers and combin-
ing them in a bagging-like fashion (cf. subsection 2.6.1). This approach led to convincing
performances in an empirical study. Cost proportional sampling can be combined with
any of the sampling strategies discussed in subsequent parts of this thesis.

Sample selection bias A crucial problem, especially in descriptive learning scenarios, is
that the process of collecting the data is usually biased. In other words, the example set
is not a sample from an underlying pdf D we would like to learn about, but a sample
from a biased pdf that changes the class ratio, systematically puts higher weight on some
subsets of the data, or even changes the probabilistic dependencies between X and Y .
These effects can be modeled by introducing an additional random variable S ∈ {0, 1}

that determines whether an example sampled from the “true” distribution is included in
the example set or not (Zadrozny, 2004; Fan et al., 2005). This means to effectively sample
from D : X × Y × S → IR+, where the goal is to analyze the marginal distribution over

66

3.4. Monte Carlo methods

X × Y , but the presented example set contains only the subset with S = 1. The case in
which S is independent of X and Y is the unbiased case. The case where S only depends
on Y has been discussed before, and can be addressed by stratifying the resulting example
set. Without independence of any kind, the learning task becomes intractable. Rejection
sampling can be used to address the last case, in which S depends onX and is independent
of Y given X . This holds e.g., for labels that functionally depend on the vector x ∈ X ,
but approximately also in many other practically relevant settings. The following pdf D ′

corrects the bias of D:

D ′(X = x,Y = y,S = s) ∝ Pr(S = 1) · D(X = x,Y = y,S = s)

Pr(S = 1 | X = x)
.

By construction, when conditioning on S = 1 the random variables X (and Y) are dis-
tributed under D ′ as the marginal distributions under D, that is, without conditioning;
this is achieved by dividing the density of each x ∈ X by the conditional probability
Pr(S = 1 | X = x) of showing x if it is sampled. As a result, the conditional probability
to show a sampled example is identical for each x ∈ X , which yields an unbiased sample.
Pr(S = 1) is an irrelevant normalization constant.

In settings where it is possible to get estimates of Pr(S = 1 | X = x), rejection sampling
can be applied in a straightforward manner. Zadrozny (2004) shows that the expected loss
for any hypothesis under consideration is identical when (i) sampling from the marginal
distribution over X × Y and when (ii) sampling examples with a domain of X × Y ×
S, discarding all example with S = 0 and subsequently performing a step of rejection
sampling to correct the sample selection bias.

Getting estimates for Pr(S = 1 | X = x) is not unrealistic. For example, in a poll it
is possible to compare several quantities observed in the overall population to the subset
of people that actually responded. Analogously, if in medical datasets specific kinds of
values from a laboratory are only available for subsets of patients then the characteristics
of such subsets can be compared to the characteristics of the set of all patients, in order
to estimate the bias. As for cost-proportionate sampling, changing the pdf underlying the
data to overcome known biases can be combined with any of the subsequently discussed
sampling strategies.

Boosting Changing the distribution underlying a training set was the key idea of the first
boosting algorithm. Although this kind of boosting proposed by Schapire (1990) has only
limited practical relevance, the proof of its correctness settled the open question of whether
weak and strong learnability define different classes of learning problems in the PAC
framework or not (cf. section 2.3).

The core of the algorithm induces three weak learners that only need to perform slightly
better than random guessing (most of the time). The reliability of the weak base learner,
reflected by the parameter δ in the PAC framework, can easily be increased by repeating
the learner several times and performing uniform voting (cf. subsection 2.6.1). With a
linear number of repetitions the probability of failure δ decreases exponentially fast. The
critical property is hence the error rate ε, while we can assume a moderate failure rate δ,
if necessary as the result of simply running the base learner repeatedly.

The first of the three learners mentioned above is applied to a training set sampled from
the original distribution. The distribution is then changed for the second learner, so that
one out of two examples becomes misclassified by the first learner. This change of the

67

3. Sampling Strategies for KDD

distribution is operationalized by rejection sampling. When applying the first model to the
new distribution the expected error rate is 1/2. Weak PAC learnability implies that the base
learner yields (with probability 1−δ) a model which is at least slightly better than random
guessing for any distribution. For this reason the second model will capture dependencies
between the target variable Y and the instance space X that were not captured by the first
model. For the third classifier all examples are rejected for which the first two models
agree. Intuitively, it is used to break ties. The final model is established on top of the three
base model predictions in terms of a uniform voting scheme.

It was proved by Schapire (1990) that the algorithm sketched above reduces the expected
error rate sufficiently well. It is possible to apply this algorithm recursively, substitut-
ing the base model by combinations of three models or three aggregated models in each
step. Omitting the involved technical details, the main implication is that by combining
weak learners to an ensemble one can reach at an efficient (polynomial runtime) arbitrar-
ily strong learner satisfying the ε/δ-criterion of PAC learning (summarized by Def. 3,
p. 14). Hence, the concepts of weak and strong learnability are identical. In later work the
practically more efficient boosting algorithm ADABOOST has been proposed (Freund &
Schapire, 1997), which is discussed in chapter 5. It changes the underlying distribution in
a similar fashion as the discussed algorithm does before calling the second learner. ADA-
BOOST is usually applied in combination with example weighting, but it can as well be
used in combination with rejection sampling.

3.5. Summary

This chapter illustrated the variety of possible applications for sampling techniques in the con-
text of KDD applications. The most obvious benefit of sampling is, that it allows to speed up
the learning process. Even if considering only a small fraction of the data, for many learning
tasks statistical estimates allow to give guarantees that models induced by learning techniques
are close to the corresponding models trained from all the available data. The gain depends on
the specific data and learning task at hand; for subgroup discovery the specific choice of a utility
function has a serious impact on sample complexity and confidence bounds, but for most prac-
tically relevant utility functions adaptive sampling allows to reduce the complexity of discovery
tasks significantly.

Sampling has been shown to be a powerful preprocessing operator; it is possible to transform
learning problems just by applying specific sampling techniques, as illustrated for subgroup
discovery with the WRACC utility function, which can be solved by common rule induction
algorithms after a step of stratification. Similarly, AUC maximization in the context of decision
tree induction can to a large extent be reduced to WRACC maximization. Other data mining
problems that can be handled by sampling rather than by adjusting learning algorithms contain
the incorporation of misclassification costs, corrections of sample selection biases, the reduction
of model variance, and the increase of ensemble accuracy. Even if not mentioned explicitly,
any of the above-mentioned and subsequently presented sampling techniques can be combined
arbitrarily.

The next chapter will discusses how to incorporate prior knowledge into supervised learning
by means of sampling.

68

4. Knowledge-based Sampling for
Sequential Subgroup Discovery

4.1. Introduction

The goal of knowledge discovery in databases (KDD) can be stated as to identify useful and
novel patterns hidden in huge amounts of real-world data. Commonly recognized problems when
applying existing data mining techniques are that these techniques either yield an unmanageable
number of patterns, e.g. frequent itemsets, or that they report only “obvious” patterns, that are
already known to domain experts.

In this thesis it is assumed, that each pattern is interesting to the degree to which it deviates
from expectation (Guyon et al., 1996). This chapter addresses the discovery of patterns that
can be represented by probabilistic rules. This leads to a setting similar to subgroup discov-
ery (cf. subsection 2.2.3), for which the interestingness of rules is measured in terms of utility
functions. The goal of subgroup discovery is to identify subsets of the population that show an
unusually high (or low) frequency of a specified property of interest. This kind of task naturally
emerges in very different domains, ranging from medical applications over marketing to spatial
data mining (Lavrac et al., 2004a; Atzmüller et al., 2005; Klösgen & May, 2002).

In this chapter a technique is presented that helps to guide the search for interesting patterns in
the presence of prior knowledge without any need to adapt underlying data mining algorithms.
The main ideas published in the literature on subgroup discovery are adopted, but extended to
respecting prior knowledge. This novel technique naturally allows to search for patterns itera-
tively. For a given target variable the absence of any pattern is assumed to be equivalent to its
independence of all the other variables. In the presence of prior knowledge, however, absence
of further patterns is given if the prior knowledge precisely models the conditional distribution
of the target variable. In turn, a pattern may be defined as a regular deviation from the assumed
independence, or from a given prior model, respectively. It can be observed as a correlation be-
tween the given target attribute and other variables. The most obvious patterns may either be
elicited from domain experts beforehand, or they may be the result of a first application of data
mining tools. The main objective in the proposed iterative data mining framework is to prepro-
cess the data in such a way that subsequent steps do not report previously found patterns again,
but automatically focus on interesting, uncorrelated, and novel patterns.

As a running toy example, the task of characterizing groups of car drivers with an unusually
high risk of accidents is considered in this chapter. Assuming that the prior of this risk is about
1% per year, sufficiently large subgroups having a risk of 5% might be interesting to insurance
companies. In descriptive settings, the prior of a class is simply the fraction of corresponding
examples in the complete data set.

The example illustrates a major difference to classifier induction; the subset above represents
an interesting pattern in terms of subgroup discovery, but not in terms of classification, because
in the latter only rules predicting the mode are useful. The mode of both the overall population
and the subset is “no accident”, so knowing about the subgroup does not help to make a crisp
prediction. In turn, common rule induction algorithms do not discover subgroups for which the

69

4. Knowledge-based Sampling for Sequential Subgroup Discovery

corresponding rule has a low precision. Nevertheless, the revealed close connection between
subgroup discovery and common rule induction for predictive tasks (cf. theorem 5, p. 59) will
allow to remove this obstacle.

This chapter is organized as follows: In order to motivate the novel approach, some drawbacks
of existing work on subgroup discovery are discussed in section 4.2. The main contribution of
this chapter is a generic sampling technique that makes subgroup discovery techniques sensitive
to prior knowledge. It is presented in section 4.3 and operationalized in terms of a rejection sam-
pling technique in section 4.4. In section 4.5, an algorithm for sequential subgroup discovery is
derived, which is empirically evaluated in section 4.6. The utility of knowledge-based sampling
for local pattern mining is briefly outlined in section 4.7. Section 4.8 summarizes the results
presented in this chapter.

4.2. Motivation to extend subgroup discovery

Subgroup discovery (cf. subsection 2.2.3, p. 10) is a supervised learning task that aims at finding
interesting subsets of an example set. Interestingness is usually defined in terms of coverage and
deviations of class distributions from those in the overall population (bias). When considering
the resulting example set constructed by the subsequently presented knowledge-based sampling,
the building blocks of utility functions, coverage and bias, are adapted in an intuitive way: The
coverage of rule candidates remain. At the same time, the biases of rule candidates are turned
into relative biases, that is, into deviations from predictions derived from prior knowledge, rather
than deviations from the class priors. Please note that the class priors provide a first kind of
prior knowledge for subgroup discovery as well. The effect of knowledge-based sampling is,
that subsequently applied subgroup discovery algorithms prefer rules that explain deviations of
empirical from expected class distributions.

It is natural to consider previously discovered rules as prior knowledge, as well. This interpre-
tation will help to overcome short-comings of classical approaches, which are discussed in the
next paragraphs.

Drawbacks of classical approaches

The first drawback of subgroup discovery, a lack of expressiveness, shows e.g., when rules have
interesting exceptions. These exceptions are hardly found by standard techniques, for mainly
two reasons:

First, due to the syntactical structure imposed by classification rules (Horn logics) it is often
hard to exclude exceptions from rules, even if this would improve the score assigned by a utility
function. The syntactical form is still reasonable, however, because results are required to be
interpretable, and because it is the main reason for diversity within the k best subgroups. Without
any strong syntactical restrictions the second best subgroup would usually be the best one after
adding or removing a single example. This syntactical restriction alone is not sufficient to avoid
results containing many similar rules, however. Redundancy filters are a common technique to
overcome this problem (Klösgen, 1996). Overlapping patterns like exceptions to rules are not
found reliably that way. However, exceptions could still be represented by separate rules. This
fails for the second reason, namely that utility functions evaluate rules globally. Interactions
between rules do not affect their scores.

For the task of finding exception rules, some efficient algorithms have been proposed by
Suzuki (2004). They focus on mining pairs of rules, one strong rule and a corresponding ex-
ception. This setting is very specific, however; subgroups do not necessarily have exceptions,

70

4.2. Motivation to extend subgroup discovery

and they may overlap in arbitrary ways.
Lavrac et al. (2004b) suggested to use a ROC-based strategy as described by Fawcett (2001)

(cf. subsection 2.5.2) for pruning rule sets and combining them to an ensemble classifier. Re-
ferring to their false positive and false negative rates, all rules are plotted in ROC space. Only
rules lying on the convex hull are deemed relevant. Turning these rules into a single classifier
by weighted majority vote has a major drawback, however; one of two rules covering disjoint
subsets and having almost the same performance are systematically discarded. As soon as one
of these rules is superior in both true positive and false negative rates the other rule is consid-
ered to be redundant. This is not desirable in descriptive scenarios, as the only rule covering a
specific subset of the instance space should not easily be discarded, nor for predictive settings,
as diversity is crucial for achieving high predictive accuracy (cf. subsection 2.6.1).

Incorporation of prior knowledge

A way to improve the interestingness and diversity of rule sets is to make use of previously found
patterns and formalized prior knowledge during the selection procedure. Incorporating prior
knowledge into existing data mining techniques, e.g., in the form of a Bayesian network (Pearl,
1991), is an active field of research. Popular classifier induction and regression algorithms like
C4.5 (Quinlan, 1993), the SUPPORT VECTOR MACHINE (SVM) (Burges, 1998), NEURAL

NETS, and NAÏVEBAYES (Mitchell, 1997) are only capable of exploiting domain and prior
knowledge if the user encodes it into the representation of the examples or chooses the hypoth-
esis space appropriately. An example of the latter is the choice of a polynomial SVM kernel for
known feature interaction. Some Inductive Logic Programming algorithms like PROGOL (Mug-
gleton, 1995) are able to incorporate background knowledge given in the form of restricted first
order logic formulae directly. However, these algorithms are often designed to find rules match-
ing the given data exactly, which is usually too strict for real world problems. Some approaches
like (Wu & Srihari, 2004; Schapire et al., 2002) utilize prior knowledge to compensate for a lack
of data. In these scenarios, the models are fitted to both the prior knowledge and the data at hand.
In contrast, the goal of subgroup discovery is to find rules that contradict expectation, as this is
assumed to indicate interestingness.

As a first consequence, subgroups should be identified by their extensions rather than by their
syntactical descriptions. This makes a substantial difference, because many databases allow to
identify the same or similar sub-populations using correlated attributes, but these correlations
are often not subject to the data mining step. For example, the subgroup of young drivers is
almost identical to the subgroup of people that recently acquired their driver license. If the
former subgroup is known to have a high risk of accidents, then the same can be expected for
the latter. Hence, there is no need to report both rules. Classical subgroup discovery algorithms
systematically report rules with similar extensions, because the k best rules just need to be
syntactically different. In contrast, we usually expect sets of rules to be more interesting if they
are extensionally different; it is desirable that each rule captures a different pattern observable in
the data.

Subgroup patterns may even be interesting only relative to prior knowledge, as illustrated by
the following example:

Pr [C | A] = Pr [C] = 0.5 for a rule A→ C.

Class C is distributed in A just as in the overall population, so this rule would not be deemed
interesting by any reasonable utility function. Now, assume that in the prior knowledge there is

71

4. Knowledge-based Sampling for Sequential Subgroup Discovery

a statement about a superset of A:

A ′ → C [0.9] with Ext(A) ⊂ Ext(A ′).

This rule predicts a higher conditional probability of C given A ′. Considering this context, the
rule (A → C) becomes interesting as an exception to the prior knowledge, because one would
rather expect Pr [C | A] ≈ Pr [C | A ′].

In the framework proposed in this chapter, any available information that allows to compute
estimates of the user’s expectation may help to refine the metric for selecting interesting rules.
A similar idea has recently (but independently) been proposed in the scope of frequent itemset
mining (Jaroszewicz & Simovici, 2004).

To the best of the author’s knowledge, the only approach towards incorporating available
knowledge into subgroup discovery reported in the literature prior to the work presented in this
thesis (going back to 2004), is the ILP system RSD by Lavrac et al. (2002b; 2006). It uses
background knowledge exclusively to propositionalize multi-relational data, a step which is out
of the scope of this work. For the learning step itself CN2-SD is used.

An approach recently published by Atzmüller et al. (2005) uses background knowledge in
the form of constraints to narrow down the search space, information on the estimated impor-
tance of attributes for focusing a beam search, and a discrete abnormality score for attribute
values. Large parts of what the authors refer to as incorporating background knowledge is con-
sidered to be part of the preprocessing phase in this thesis, following the CRISP-DM model
(cf. section 8.1). This contains refinements of the data representation, for example by construct-
ing features or by discretizing them to reflect semantically meaningful categories. Other parts of
the background knowledge are used by Atzmüller et al. (2005) to restrict and focus the search,
in order to improve the results of the heuristic learner by focusing on interesting literals, and by
excluding well-known or meaningless patterns. Besides, applying data mining is simplified by
classical inferences for deriving constraints on the fly that guide the search. Structuring concep-
tual domain knowledge for mining only rules that meet specific type constraints was e.g., already
supported by the early machine learning workbench MOBAL (Morik et al., 1993).

The work of Atzmüller et al. (2005) is complementary to the technique presented in this chap-
ter, the knowledge-based sampling approach. The latter allows to implicitly “empower” arbitrary
utility functions to prefer rules that are unexpected with respect to prior probabilistic knowledge.
This frees users from reformulating constraints until reaching at unexpected patterns. Existing
models can be refined by incorporating the data mining results iteratively. This allows to iden-
tify small diverse sets of probabilistic rules, each characterizing novel aspects of a property of
interest. If prior knowledge is available, then it is utilized appropriately.

4.3. Knowledge-based sampling

After a first rough analysis or a step of formalizing domain knowledge, the input to the data
mining step consists of a training set and a set of patterns. The most crucial question in such
an iterative data mining framework is how to preprocess the training data, so that subsequent
learning steps do not just report the same patterns or parts of the prior knowledge again. In other
words, the goal is to find uncorrelated new patterns, so that the resulting rule set is compact,
but still allows for a precise characterization of the target attribute. The two example subgroups
mentioned in the introduction, one containing all young drivers, and the other containing all per-
sons who recently acquired their driver license, illustrates how a stand-alone evaluation of each
rule may result in highly overlapping rule sets. This bears the risk of finding many redundant
rules.

72

4.3. Knowledge-based sampling

The algorithm proposed in this chapter allows to focus on previously undiscovered patterns
by means of sampling. Target samples are constructed in a way that does not allow to rediscover
the available prior knowledge, because after sampling the target attribute is independent of the
available predictions, but any undiscovered pattern remains observable.

The next subsections discuss the theoretical foundation of a generic sampling-based technique
that allows to incorporate prior knowledge into subgroup discovery, and basically into supervised
data mining algorithms in general. Section 4.3.1 narrows down the choice of a new distribution
by introducing a set of constraints. These constraints are shown to define a unique distribution
in 4.3.2, which is operationalized in section 4.4. In section 4.5, an algorithm is proposed that
sequentially discovers subgroups relative to prior knowledge, and that directly augments the
prior knowledge after the discovery of each new subgroup.

4.3.1. Constraints for re-sampling

The notation and formal framework used in this chapter are based on the definitions provided
in section 2.1 and 2.2. This contains the notions of example sets E , an instance space X , and
probability density functions D underlying X . To simplify formal aspects, X is assumed to be
finite in this section, but all results can easily be generalized to continuous domains.

The idea of removing prior knowledge by means of sampling can well be stated in terms
of constraints. Obviously, any procedure for knowledge-based sampling will have to implicitly
sample from a different distribution than that originally underlying the data. As discussed in
subsection 3.2.1 (p. 42), i.i.d. preserving sampling procedures can be specified by the transfor-
mation of the probability density function they operationalize. This specification is the subject
of this section, while section 4.4 addresses algorithmic aspects of the transformation.

The original probability density function (pdf) is denoted as D, while the new pdf to sample
from is denoted as D ′ in this chapter. The new pdf should be as close as possible to D, in order
not to disturb any of the yet undiscovered patterns. At the same time it should be “orthogonal”
to the estimates produced by the available prior knowledge. The goal is that the previously
discussed rule selection metrics – when applied to samples from D ′ – are “blinded” regarding
the parts of rules that could already be concluded from prior knowledge. All that should be
accounted for is the unexpected component of each candidate rule.

To illustrate the setting, the simplified case of prior knowledge consisting only of a single rule

r : A→ C

is considered. The distribution to be constructed should no longer support rule r, so as a first
constraint, A and C should be independent events under D ′:

PrD ′ [C | A] = PrD ′ [C] (4.1)

If r predicts a higher accident probability for young drivers, for example, then in the constructed
sample this subgroup should share the class priors of accidents.

As further constraints, the probabilities of events part of the rule should not change, because
it is sufficient to remove their correlation. This means that the class priors and the probability of
r being applicable to a randomly drawn instance need to be equal for both distributions:

PrD ′ [A] = PrD [A] (4.2)

PrD ′ [C] = PrD [C] (4.3)

73

4. Knowledge-based Sampling for Sequential Subgroup Discovery

For the example rule, the probability of accidents and the probability of seeing a young driver
will not change from the original training set to the constructed sample if these constraints are
met.

Finally, within each partition sharing the same class and prediction of r the new distribution is
defined proportionally to the initial one. The simple reason is that having just r as prior knowl-
edge all instances within one partition are indistinguishable. Changing conditional probabilities
within one partition would mean to prefer some instances over others, despite their equivalence
with respect to the available prior knowledge. For the boolean rule r these constraints translate
into the following equalities:

PrD ′(x | A,C) = PrD(x | A,C) (4.4)

PrD ′(x | A,C) = PrD(x | A,C) (4.5)

PrD ′(x | A,C) = PrD(x | A,C) (4.6)

PrD ′(x | A,C) = PrD(x | A,C) (4.7)

Hence, if the probability of sampling a specific driver halves from the original to the new distri-
bution, then the same will happen to all other drivers sharing both, the property of being young
or not, and the property of having had an accident or not. All that changes are the marginal
probabilities of the four partitions. Further interesting patterns – even if they overlap with r – are
still observable when sampling from D ′. For instance, LIFTs of subgroups that are subsets of
Ext(A) and have an even significantly higher or much lower LIFT than rule r are just rescaled
proportionally. If e.g., unexperienced persons driving a specific kind of car tend to be involved in
accidents even more frequently than young drivers in general, then this more specific rule can be
found in a subsequent step. As motivated in section 4.2, various kinds of exceptions to previously
found rules as well as patterns overlapping in some other way can be found analogously.

4.3.2. Constructing a new distribution

In subsection 4.3.1 the idea of sampling with respect to an altered distribution function has been
proposed. Intuitively, prior knowledge and known patterns are “filtered out”. This subsection
proves that the proposed constraints (4.1)-(4.7) induce a unique target distribution. The following
definition just eases notation.

Definition 33 The LIFT of an example x ∈ X for a rule (A→ C) is defined as

LIFT(A→ C, x) :=

LIFT(A→ C), for x ∈ Ext(A) ∩ Ext(C)

LIFT(A→ C), for x ∈ Ext(A) ∩ Ext(C)

LIFT(A→ C), for x ∈ Ext(A) ∩ Ext(C)

LIFT(A→ C), for x ∈ Ext(A) ∩ Ext(C)

There are at most four different LIFT values associated with each rule.

Theorem 6 For any initial distribution D and given rule r the constraints (4.1)-(4.7) are equiv-
alent to

Prx∼D ′(x) = Prx∼D(x) · (LIFTD(r, x))−1 ,

so they induce the target distribution D ′ : X → IR+ uniquely.

74

4.4. A knowledge-based rejection sampling algorithm

Proof
Let r : A → C denote the rule under consideration. The proof is exemplarily shown for the
partition Ext(A)∩Ext(C), in which the rule under consideration is both applicable and correct.
Assuming that the constraints hold, D ′ can be rewritten in terms of D and LIFTD(A→ C):

(∀x ∈ Ext(A) ∩ Ext(C)) : PrD ′(x) = PrD ′(x,A,C)

= PrD ′(x | A,C) · PrD ′ [A,C]

= PrD(x | A,C) · PrD ′ [A] · PrD ′ [C]

=
PrD(x,A,C)

PrD [A,C]
· PrD [A] · PrD [C]

= PrD(x) · PrD [A] · PrD [C]

PrD [A,C]

= PrD(x) · (LIFTD(A→ C))−1

The other three partitions can be rewritten analogously. In turn, it can easily be validated that D ′

as defined by theorem 6 is in fact a distribution satisfying the constraints:

PrD ′ [A,C] = PrD [A,C] · (LIFTD(A→ C))−1

= PrD [A,C] ·
(

PrD [A,C]

PrD [A] · PrD [C]

)−1

= PrD [A] · PrD [C] ,

and analogously for the other partitions. This directly implies constraints (4.1)-(4.3) by marginal-
izing out. Constraints (4.4)-(4.7) are met, because for all four partitions D ′ is defined propor-
tionally to D.

Please recall from section 3.4.2 that the LIFT simply reflects the factor by which a class is over-
represented in a considered subset with respect to the class prior. For the example rule the LIFT

is 5, because the risk for young drivers is 5 times higher than for the average driver. Hence, the
probability to see a specific young driver who had an accident in the target sample is reduced by a
factor of 1/5 compared to the original data. Each of the four partitions, defined by a combination
of prediction and true label, is rescaled in the same fashion.

Theorem 6 defines a new distribution to sample from, given a single rule r as prior knowledge.
The same result allows to incorporate more complex forms of prior knowledge. As long as the
prior probabilistic knowledge is used to make discrete predictions, a LIFT for each combination
of prediction and true class can be computed. The prior knowledge can be reformulated as a
classifier h : X → Y in this case, and its contingency matrix allows to compute the LIFTs and to
refer to the same definition of the new distribution. Hence, separating hyperplanes or ensembles
of base classifiers like Horn logic rules are supported background theories.

Please note that no assumptions about the considered utility function were made. In fact,
any utility function can be used in combination with knowledge-based sampling, although sec-
tion 4.4.2 will reveal reasons to prefer metrics that scale at most linearly with the coverage of
rules.

4.4. A knowledge-based rejection sampling algorithm

This section will demonstrate that the knowledge-based sampling technique can easily be real-
ized by a specific kind of rejection sampling (cf. subsection 3.4.2). The algorithm presented for

75

4. Knowledge-based Sampling for Sequential Subgroup Discovery

this task applies to more general settings than those meeting constraints (4.1)-(4.7): First, nomi-
nal class labels are supported, which are only for parts of the subsequent sections assumed to be
boolean. Second, X may be continuous and the functional dependency of Y on X is no longer
assumed, so we refer to the general case of a probability density function D : X × Y → IR+.
Third, any prior knowledge in the form of a hypothesis partitioning the instance space may
be utilized. This kind of hypothesis space is chosen, because it applies to a broad number of
potential settings:

Crisp classifiers: If the prior knowledge is given in the form of a classifier h : X → Y , then
h is used to define equivalence classes with respect to the predictions; each subset of X
for which h predicts the same class constitutes a separate partition. The total number of
partitions is hence equal to the number of classes |Y |, in this case.

Models partitioning X : Another supported case are models that explicitly partition the in-
stance space, e.g., following the objective to minimize an impurity criterion like entropy
or the Gini index. For example, the leaves of a decision tree (cf. p. 19) partition X , be-
cause each example is propagated to exactly one leaf. For each leaf a separate estimate of
the target attribute’s class distribution can be computed, which may indicate high impu-
rity at some leaves, and almost perfect class discrimination at others. This difference can
be exploited by the knowledge-based rejection sampling algorithm; the partition indices
defined by the tree (e.g., the leaf numbers) may be used instead of the class predictions
y ∈ Y above.

Soft classifiers: As an alternative to analyzing the partitioning behavior of a classifier, e.g. to
identify leaf numbers of decision trees, one might prefer to define partitions as subsets of
X for which the same soft prediction is made. For a decision tree the resulting number
of partitions is bounded by the number of leaves. In more general cases, similar predic-
tions can be aggregated (discretization), so that the number of resulting partitions becomes
tractable. The impact of the number of partitions on the proposed algorithm will become
clear from an analysis in section 4.4.2.

These different settings are unified by considering models of the form h : X → {1, . . . , v}, where
v denotes the number of partitions. No estimates associated with the partitions are required.
The only hard constraint for knowledge-based sampling is that none of the partitions may be
“pure” with respect to conditional class distributions. More precisely, for none of the partitions
the conditional probability to sample an example from any of the classes may be 0, because
otherwise the LIFT of a corresponding rule would also be 0, leading to an undefined inverse
LIFT. In section 4.4.3 a solution to this problem will be proposed and applicability aspects of
knowledge-based sampling will be discussed.

4.4.1. The Algorithm

Examples are again just assumed to be sampled i.i.d. with respect to any unknown (initial) prob-
ability density function D. Algorithm 1 shows a knowledge-based rejection sampling technique
that allows to sample example sets i.i.d. from pdf D ′ as defined in theorem 6. It employs a given
subroutine EXD that provides classified examples sampled from D; for any given training set,
EXD just needs to operationalize uniform sub-sampling (cf. subsection 3.2.1).

If all LIFT values of the prior knowledge with respect to pdf D were known, then it would
be easy to directly realize an efficient step of rejection sampling. This is usually not the case,
so the algorithm takes an indirect approach. It exploits that under D ′ the class priors and the

76

4.4. A knowledge-based rejection sampling algorithm

Algorithm 1 Knowledge-based rejection sampling
Given:
• A subroutine EXD providing classified samples e ∼ D.
• Prior knowledge h : X → {1, . . . , v} partitioning X .
• A set πY that specifies the class prior πy of each y ∈ Y .
• A number m of examples to be sampled from D ′.
Output:
• An example set E ∼ (D ′)m, where D ′ is defined as in theorem 6 (p. 74)

Procedure EXD ′(h, m, πY):
Initialize a queue Qi,y := ∅ for each 1 ≤ i ≤ v and class y ∈ Y .
for i = 1 to m do

sample e = (x, y) by calling EXD

randomly choose label y∗ ∼ πY
if (y∗ 6= y) then // Find an example of class y∗, instead.

let i := h(x) // New example from partition i required.
enqueue(Qi,y)← e // Store for later usage.
while (Qi,y∗ = ∅) do // Wait for example with label y∗ and h(x) = i.

sample e ′ := (x ′, y ′) by calling EXD

enqueue(Qh(x ′),y ′)← e ′ // Store at end of corresponding queue.
end while
e← dequeue(Qi,y∗) // Remove first example from queue.

end if
output e.

end for

probability that a randomly sampled example falls into a specific partition are defined as under D

(constraints (4.2) and (4.3)), and that labels are independent of partitions (constraint (4.1)). The
consequence of the indirect approach is a high rejection rate, which is compensated by storing
and re-using rejected examples. To this end, the algorithm makes use of queues, an abstract data
structure that provides two constant-time operations, enqueue and dequeue. The former stores an
example in a queue, the latter removes the example from a queue that has been stored first, and
returns it. In the initialization step, an empty queue is prepared for each combination of partition
(e.g., prediction) i ∈ {1, . . . , v} and (true) label y ∈ Y .

Technically seen, knowledge-based rejection sampling establishes a procedure EXD ′(m) that
outputs example sets of size m from D ′. For simplicity, the class priors πy are assumed to be
known in the pseudo-code. Besides the target sample size m and the model h that defines D ′, the
procedure EXD ′ hence has πY as a further input parameter. Class priors can well be estimated
from large data sets, unless one class is extremely rare.

The idea of algorithm 1 is to de-correlate partitions and labels by means of an internal random
experiment. The partitions of examples sampled from D are combined with randomly assigned
labels. Each iteration of the outer loop of the algorithm yields one example e independently
sampled from D ′, so m iterations are required. Loops start by requesting a reference example e

from EXD. Then, a target class label y∗ is randomly chosen, using the probability distribution
imposed by the class priors. If the class of e is y∗, then e can be output and the loop ends. Other-
wise, the algorithm waits for an example from class y∗ that shares the partition of the reference
example defined with respect to model h. If e.g., h is a crisp classifier, then the predictions of h

77

4. Knowledge-based Sampling for Sequential Subgroup Discovery

for the reference and for the target example need to be identical. The queues serve as example
caches. Each example that cannot be output is appended to a queue “responsible” for the specific
combination of true label and partition. The algorithm does not have to wait for a specific kind
of example if there are examples in the corresponding queue. In this case, the first example is
retrieved and returned. If the queue for a required label and partition is empty, then the algorithm
reads (and caches) examples from EXD until one is found that matches the specification.

The fact that examples are requested sequentially from EXD and that each iteration yields one
example sampled from D ′ illustrates the applicability to streaming data. The capacity of queues
can be constrained, in this case. When sub-sampling from a database instead, a set containing
all output examples may as well be returned after termination of algorithm 1.

As an advantage, the algorithm does not require any probability estimates, except for the class
priors; still it exactly transforms D into D ′ or EXD into EXD ′ , respectively. This will be shown
in section 4.4.2. For completeness it should be mentioned, that even the assumption of known
class priors can be avoided without losing the property of having an exact transformation. It is
sufficient to replace the random selection of a target class y∗ by defining it to be the class of a
second, independent reference example requested from EXD.

An interesting aspect is, that knowledge-based rejection sampling can be simplified consid-
erably when simultaneously considering a step of stratification. In this case, the class priors for
guiding the random target class assignment can be replaced by uniform priors. For boolean la-
bels this means to assign the target class y∗ by simply flipping a fair coin. This variant of the
algorithm samples exactly from the stratified random sample density function of D ′ (cf. Def. 31,
p. 56). This is a useful property, because theorem 5 (p. 59) states that stratification transform the
optimization problem of subgroup discovery with the WRACC metric into a common classifier
induction problem. This technical simplification will be utilized in section 4.5.

4.4.2. Analysis

In the next paragraphs the correctness of the presented algorithm in terms of the previously
motivated constraints is shown. Crucial properties of the algorithm are its runtime and sample
complexity. Obviously, these quantities are asymptotically identical for the presented algorithm
if assigning uniform costs (O(1)) to each call of EXD. After proving its correctness, the sample
complexity of the algorithm will be analyzed.

Correctness

Proposition 3 Algorithm 1 returns a sample from the probability density function D ′ that satis-
fies constraints (4.1)-(4.7).

Proof
Each iteration starts by sampling a reference example e = (x, y) and randomly selecting a label.
A first property of the algorithm is that the example e = (x∗, y∗) that is returned at the end of
each iteration satisfies the constraints h(x) = h(x∗) and y = y∗: If the class of the reference
example e is identical to the randomly selected class, then e satisfies both constraints and is
returned; if the classes y and y∗ differ, then an example taken from queue Qh(x),y∗ is returned.
Only examples sharing partition h(x) and label y∗ are appended to this queue, so the returned
example again satisfies both constraints.

The probability to sample an example of any specific class y∗ ∈ Y in any iteration is (by
construction of the internal random experiment) identical to the probability that an example e

78

4.4. A knowledge-based rejection sampling algorithm

returned by EXD has label y∗. This implies constraint (4.3), that the class priors under D ′ –
implicitly defined by the algorithm – need to be identical to the class priors under D:

(∀y ∈ Y) : PrD ′ [y] = PrD [y]

Analogously, the probability to sample an example from any specific partition, e.g., so that
h(x) = i for a given i ∈ {1, . . . , v}, is equivalent to the probability of sampling an example
from that partition from EXD. In more formal terms this means

(∀i ∈ {1, . . . , v}) : Pr(x,y)∼D ′ [h(x) = i] = Pr(x,y)∼D [h(x) = i] ,

which is the required generalization of constraint (4.2) for D : X × Y → IR+ and an arbitrary
(finite) number of partitions.

Selecting y∗ at random guarantees that the label is independent of the partition (or predicted
label, respectively), so constraint (4.1) is also met.

The last constraints (4.4)-(4.7) require, that the conditional distributions of examples, given
a specific pair of partition and label, do not change from D to D ′. Obviously, the resulting
distribution D ′ is not affected by switching the first two lines, so that the target label y∗ is chosen
first. If the reference example e = (x, y) sampled from D shares the chosen class (y = y∗), then
e is directly propagated and the constraint is met. If the class of reference example e is not y∗,
then the first example (x∗, y∗) with h(x∗) = h(x) is returned from Qh(x),y∗ . It is an example that
belongs to partition (h(x), y∗) and did not match a randomly selected class. This obviously does
not skew the conditional distribution either, because (i) when enqueuing, the random experiment
is independent of the specific examples in each partition, and because (ii) when dequeuing, the
i.i.d. property of EXD implies that each permutation of examples in Qh(x),y∗ is equally likely.
Hence, the example finally returned by the algorithm has been sampled from D conditioned on
h(x) and y∗, as required. This completes the proof.

As shown in subsection 4.3.2, constraints (4.1)-(4.4) induce pdf D ′ uniquely.

Corollary 1 The knowledge-based rejection sampling algorithm (algorithm 1) operationalizes
theorem 6 properly by means of rejection sampling.

Computational Complexity

The runtime complexity of the algorithm is linear in the number of instances requested from its
subroutine EXD, because in each inner loop exactly one example is requested. For this reason
the analysis focuses on sample complexity.

Some abbreviations will ease notation in the following paragraphs. For each tuple (i, j) with
i ∈ {1, . . . , v} being a partition defined with respect to h and j ∈ {1, . . . , |Y |} being the index of
a label from Y , the term1

lifti,j := LIFTD((h(x) = i)→ yj),

refers to the corresponding LIFT under pdf D. The minimum of all these LIFTs under D is
denoted as liftmin. Further, pmin denotes the probability of the least probable combination of
class y ∈ Y and partition i ∈ {1, . . . , v} with respect to pdf D, and analogously, p ′min refers to
the probability of the least probable combination with respect to D ′.
The following lemma provides an upper bound on the sample complexity of algorithm 1:

1By construction, the corresponding LIFTs under D ′ are all 1, so no subscript “D” is required.

79

4. Knowledge-based Sampling for Sequential Subgroup Discovery

Lemma 5 Let h : X → {1, . . . , v} be a model partitioning the instance space X , let Y denote
the target label, and let D denote a corresponding probability density function.
If, for a given confidence parameter δ ∈ (0, 1),

m ≥ 3 · ln(v) + ln(|Y |) + ln 2 + ln(1/δ)

p ′min

examples are requested from D ′ defined by theorem 6, then with a probability (confidence) of
at least (1 − δ) the knowledge-based rejection sampling algorithm does not request more than
(4m/liftmin) examples from EXD.

Proof
For a given confidence parameter δ and given target sample size m, we identify sufficient criteria
for the algorithm not to request more than n examples from EXD. To this end we assume that
only a sample of size n is available, which is sampled from D in advance, and that no more
examples are provided afterwards. When sampling from D ′, examples are simply taken from the
corresponding queues. The algorithm basically just deviates from this scenario in that it reads the
examples from EXD on demand. It “succeeds” if it does not read more examples from any of the
queues than are available after the n examples have been distributed to the queues. Considering
the reference example as a sample candidate is the second point in which the algorithm differs
from the setting above. This will usually lead to a small advantage regarding expected sample
sizes, but as a consequence, we may not assume independence between the number of samples
in each queue and the corresponding number of requests.

For h : X → {1, . . . , v} there are v · |Y | queues. Each example (x, yj) ∈ X × Y , i := h(x),
is stored in queue Qi,j, where yj simply denotes the jth class from Y , referring to an arbitrary
but fixed order. The set of all q := v · |Y | queues used by the algorithm is denoted as Q. For any
queue Qi,j ∈ Q we have a fixed probability pi,j of an example randomly sampled from D to be
appended to Qi,j, and another probability p ′i,j of sampling an example from D ′ that triggers a
corresponding request from Qi,j.

Let Y
(t)
i,j denote the binomially distributed random variable that specifies the fraction of ran-

domly sampled examples that belong to queue Qi,j if the absolute number of sampled examples
is t. The corresponding distribution, D or D ′, is given in the context, but also by the superscript:
A sample size of n always refers to pdf D, while m indicates pdf D ′.

We are going to investigate the probability of two events, in order to derive probabilistic
bounds on the sample complexity of the algorithm. The first event occurs, if after distributing
the n examples requested from EXD to queues, there are at least half the expected number of
examples in each of the queues. The second event occurs, if m examples are sampled from D ′ by
the algorithm, but from all the queues at most double the expected number is requested. We can
give bounds on the probabilities of both events according to Chernoff (cf. section 3.2.2, p. 45),
with λ = 1 and λ = 1/2, respectively:

(∀Qi,j ∈ Q) : PrD

(
Y

(n)
i,j ≤ ED[Y

(n)
i,j]/2

)
≤ e−(n·pi,j)/8

(∀Qi,j ∈ Q) : PrD ′

(
Y

(m)
i,j ≥ 2ED ′ [Y

(m)
i,j]

)
≤ e−(m·p ′

i,j)/3

The following inequality is an upper bound on the risk that any of the queues does not contain
at least half as many examples as expected after distributing n examples sampled from D:∑

Qi,j∈Q
PrD

(
Y

(n)
i,j ≤ ED[Y

(n)
i,j]/2

)
≤
∑

Qi,j∈Q
e−(n·pi,j)/8 ≤ q · e−(n·pmin)/8

80

4.4. A knowledge-based rejection sampling algorithm

To upper-bound the risk by δ/2 that any of the queues contains too few elements, the union
bound allows to derive the following sufficient sample complexity n:

q · e−(n·pmin)/8 ≤ δ/2 ⇔ n ≥ 8 · ln q + ln 2 + ln(1/δ)

pmin
(4.8)

Analogously, a risk of at most δ/2 for the event of requesting more than 2ED ′ [Y
(m)
i,j] examples

from any queue when sampling from D ′ can be guaranteed when the target sample size m is at
least

q · e−(m·p ′
min)/3 ≤ δ/2 ⇔ m ≥ 3 · ln q + ln 2 + ln(1/δ)

p ′min
. (4.9)

The risk is bounded by δ/2 for both kinds of failure, so with a probability of at least (1 − δ)

none of these events occurs. Please note that we again make use of the union bound at this point,
which does not require any of the variables Y

(m)
i,j to be independent of the vector of variables

Y
(n)
i,j . We hence just exploit that the algorithm samples from D ′ (Prop. 3) to derive eqn.(4.9).
If none of the two kinds of failures occurs, the number of examples requested from each

queue is at most twice as high as expected, while at the same time each queue contains no less
than half the expected number of examples. Hence, it is sufficient if, after distributing the n

examples sampled from EXD, the expected number of examples in each queue is 4 times higher
than the expected number of requests when sampling m examples from D ′. For each individual
queue this criterion can be reformulated in terms of n, m, and the corresponding LIFT, because
theorem 6 implies p ′i,j = pi,j · (lifti,j)−1:

n · pi,j = ED[n · Y(n)
i,j] ≥ 4 · ED ′ [m · Y(m)

i,j] = 4m · p ′i,j

⇔ n ≥ 4m ·
p ′i,j
pi,j

= 4m ·
pi,j · (lifti,j)−1

pi,j
=

4m

lifti,j
.

This set of constraints can obviously be simplified; any sample size n that meets the constraint
for queues having a LIFT of liftmin will meet the constraint for all queues:

(∀Qi,j ∈ Q) : ED[n · Y(n)
i,j] ≥ 4 · ED ′ [m · Y(m)

i,j] ⇔ n ≥ 4m

liftmin
(4.10)

The minimal sample size n for any given confidence level δ is hence constrained by eqn. (4.8)
and eqn. (4.10). From theorem 6 we can derive

p ′i,j = pi,j · (lifti,j)−1 ⇒ p ′i,j ≤ pi,j · (liftmin)
−1

for each queue Qi,j, and hence

p ′min = min
i,j

(p ′i,j) ≤ min
i,j

(pi,j) · (liftmin)
−1 = pmin · (liftmin)

−1.

If m is lower-bounded by eqn. (4.9), as assumed, then eqn. (4.10) is the dominating constraint,
and eqn. (4.8) is redundant:

p ′min ≤ pmin · (liftmin)
−1

⇔ 1

liftmin · p ′min
≥ 1

pmin

⇔ 1

liftmin
· ln q + ln 2 + ln(1/δ)

p ′min
≥ ln(q) + ln 2 + ln(1/δ)

pmin

⇒ 4m

liftmin
≥ 8 · ln q + ln 2 + ln(1/δ)

pmin

81

4. Knowledge-based Sampling for Sequential Subgroup Discovery

Combining eqn. (4.10) with eqn. (4.9) and the definition of q yields the lemma.

The factor of 4 in lemma 5 is pessimistic, but as shown next, a linear dependency on (liftmin)
−1

holds in fact. In contrast to lemma 5, the following proposition directly addresses the expected
sample complexity.

Proposition 4 The asymptotic expected sample and runtime complexity of the knowledge-based
rejection sampling algorithm for a target sample size of m is

E(n) = Θ

(
m

liftmin

)
.

Proof
The proof of lemma 5 implicitly provides an asymptotic bound of O(m/liftmin) for E(n): With
a growing target sample size m the probability to require more than (4m/liftmin) samples from
D vanishes; all considered random variables Y

(t)
i,j are binomially distributed and converge to the

normal distribution with a variance of 0 in the limit. Hence, in the limit the fraction of examples
associated to each individual queue meets the expected value, and the expected sample size
“converges” to values no larger than (4m/liftmin). Formally we have:

lim
m→∞

(
E(n)

4m · (liftmin)−1

)
≤ 1.

Convergent sequences are bounded, so deviations from the expected value E(n) vanish as a
constant factor in the asymptotic notation.

To derive a loose lower-bound on E(n) it suffices to consider a queue Qi∗,j∗ with lifti∗,j∗ =

liftmin. On average, sampling m examples under D ′ requires ED ′ [Y
(m)
i,j] examples from each

queue Qi,j. For a given m we consider a sample size ñ that is characterized by having in expec-
tation the same number of examples stored in Qi∗,j∗ as are expected to be requested:

ED[ñ · Y(ñ)
i∗,j∗] = ED ′ [m · Y(m)

i∗,j∗] ⇔ ñ · pi∗,j∗ = m · p ′i∗,j∗ ⇔ ñ = m ·
p ′i∗,j∗

pi∗,j∗
.

The algorithm “fails” for a sample size ñ, if ñ · Y(ñ)
i∗,j∗ < m · Y(m)

i∗,j∗ , that is, if more examples
are requested than are available. For large m we can again refer to an approximation of these
binomially distributed random variables by normal distributions. Because of the symmetric form
of the normal distribution we can conclude that the risk δ of failure is at least 1/2, if Y

(ñ)
i∗,j∗ and

Y
(m)
i∗,j∗ are independent.
Let the random variable n reflect the number of actually required samples for any fixed target

sample size m. Since n ≥ 0 and Pr(n > ñ) ≥ 1/2, we have E(n) ≥ ñ/2. In the limit,
the number of examples requested from Qi∗,j∗ is determined only by the corresponding weight
under D ′ (cf. Prop. 3), and Y

(m)
i∗,j∗ is in fact independent of Y

(n)
i∗,j∗ . This implies

lim
m→∞

(
E(n)/

(
ñ

2

))
≥ 1 ⇒ lim

m→∞
(

E(n)/

(
m

2
·
p ′i∗,j∗

pi∗,j∗

))
≥ 1.

82

4.4. A knowledge-based rejection sampling algorithm

After rewriting the denominator in terms of liftmin = pi∗,j∗/p ′i∗,j∗ we get the result

E(n) = Ω

(
m

liftmin

)
,

which completes the proof.

Proposition 4 states that the asymptotic sample complexity of the knowledge-based rejection
sampling algorithm is linear in the number of requested samples and the reciprocal minimal
LIFT. Clearly, for practitioners the constant factors not visible in the asymptotic notation are
also of interest. The factor of 4 derived in lemma 5 seems a bit pessimistic, while the factor of
1/2 seems to be too optimistic. This is discussed in the following paragraphs.

First of all, the results are compared to much simpler kinds of rejection sampling. As men-
tioned above, if the true LIFT values of the prior knowledge were known, then we could directly
apply rejection sampling in a straightforward manner, i.e without relying on reference exam-
ples. Optimal rejection sampling applies the maximal scaling factor c (cf. subsection 3.4.2) to
D ′/D that meets the constraint to yield well-defined acceptance probabilities. It is easily seen
that this is the case for c := liftmin, because for each x contained in the corresponding sub-
set we have the highest value D ′(x)/D(x) = (liftmin)

−1; after multiplying with c, the corre-
sponding probabilities of acceptance are 1, and no larger than 1 for all other subsets. The pdf
D ′(x) := D(x) · (LIFT(x, h))−1 for any given model h has a total weight of 1. By rescaling we
increase the expected sample complexity by a factor of c−1 = (liftmin)

−1, because the average
probability to accept an example is c afterwards. This implies that an optimal direct rejection
sampling algorithm has an expected sample complexity of E(n) = m/liftmin.

Figure 4.1 illustrates that knowledge-based rejection sampling has a very similar sample com-
plexity. The expected complexity only depends on the contingency matrix of the prior knowl-
edge, so the knowledge-based sampling algorithm was evaluated based on a synthetic procedure
EXD and partitioning models h with fixed performances. Please keep in mind that the sample
complexities of optimal rejection sampling are only depicted for reference. As discussed, this
approach is not feasible in practice, because it requires the true contingency matrix to be known.
For the experiments this information was supplied to the procedure. Each point in the figures
is the result of averaging 10 repetitions of sampling a fixed number of examples from D ′. The
y-axis refers to the numbers of examples requested from EXD for this purpose.

Figure 4.1(a) and 4.1(b) show the sample complexities n divided by the expected values of
m/liftmin to illustrate that the true factor “missing” in the asymptotic result of Prop. 4 is very
close to 1. In Fig. 4.1(a), prior knowledge in the form of a boolean classifier is sampled out. Its
precision is 90% when predicting the positive and the negative class, and both of these predic-
tions are equally likely. The additional constant factor of knowledge-based rejection sampling
is about 1.1 for a very small target sample size m of 100 examples, and it converges to 1 with
growing m. In Fig. 4.1(b) the performance of the model is 95% for the covered, and 55% for
the uncovered subset. The coverage is only 10%. In this case, knowledge-based rejection sam-
pling performs differently; its average sample complexity is about m/liftmin (factor: 1) for all
evaluated sample sizes, but the variance for small m is much higher than for larger m. Opti-
mal rejection sampling has a lower average sample complexity in the former experiment, but
the advantage vanishes with an increasing value of m. Its variance is significantly lower in both
figures.

83

4. Knowledge-based Sampling for Sequential Subgroup Discovery

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

50000250005000100

sa
m

pl
es

 fr
om

 D
 r

el
at

iv
e

to
 m

 /
lif

tm
in

size m of sample requested from D’

KBS rejection sampling
rejection sampling

(a) Sampling out a boolean classifier with 90% precision
on both covered and uncovered subset. The coverages are
both 50%.

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

50000250005000100

size m of sample requested from D’

KBS rejection sampling
rejection sampling

(b) Sampling out a boolean classifier with 95% precision
and 10% coverage. The precision on the uncovered subset
is 55%.

1.4M

1.2M

1M

800K

600K

400K

200K

25K
 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

sa
m

pl
e

co
m

pl
ex

ity
 (

ca

lls
 to

 E
X

_D
)

error rate of both partitions

KBS rejection sampling
rejection sampling

(c) Error rate for both predictions (balanced coverage)
vs. absolute number of samples required from D to sam-
ple 25.000 examples from D ′.

170K

165K

160K

155K

150K

145K

140K

135K

130K

125K

120K
 0 10 20 30 40 50 60 70 80 90 100

number of partitions

KBS rejection sampling
rejection sampling

(d) Varying number of partitions with precision of 90%
vs. absolute number of samples required from D to sam-
ple 25.000 examples from D ′.

Figure 4.1.: Empirical evaluation of the sample complexity of knowledge-based rejection sam-
pling (algorithm 1). The plots depict the complexities for prior knowledge with dif-
ferent precisions and for a varying number of partitions.

Figure 4.1(c) illustrates the impact of model accuracy on the sample complexity measured in
absolute terms. To this end, the experimental setting underlying Fig. 4.1(a) was adapted: Both
predictions of a boolean model are equally likely in the experiment, and have the same precision
(or error rate, respectively). The target sample size was chosen to be m=25.000. It shows that
both algorithms have almost the same performance.

For error rates above 35%, the rejection sampling algorithm has slightly lower sample com-
plexities, but the knowledge-based algorithm is also very close to the value of 25.000 exam-
ples. The plot confirms the theoretical finding that very accurate prior knowledge increases the
required number of samples significantly. For example, if class priors are uniform, then an ac-
curacy of 99% leads to acceptance rates of one out of 50 samples. This is still tractable when
mining from very large databases, especially when comparing to the super-linear time consump-
tion of rule or model induction algorithms.

Figure 4.1(d) confirms another theoretical finding: The number of partitions has a low im-
pact on the algorithm. Even if each partition has the same high precision of 90%, the sample

84

4.4. A knowledge-based rejection sampling algorithm

complexity of knowledge-based rejection sampling increases moderately, e.g. about 30% when
increasing the number of partitions from 2 to 100. By construction, the number of partitions has
no effect on optimal rejection sampling. It is worth noting that substituting estimated perfor-
mances, e.g. estimated class distributions at the leaves of decision trees, may easily increase the
complexity of direct rejection sampling. Optimistic estimates based on the training data naturally
result in a lower value of liftmin.

How knowledge-based sampling affects subgroup discovery

Algorithm 1 changes the distribution underlying a data set so that the label is conditionally
independent of any given prior knowledge. This is a consequence of sampling from D ′, a pdf
which meets eqn. (4.1) (p. 73). The following proposition helps to understand the effect of
changing the distribution on subsequently applied subgroup discovery algorithms in more detail.

Proposition 5 Let Si denote partition i ∈ {1, . . . , v} defined with respect to a model h : X →
{1, . . . , v}, let C be a specified target class, and let C refer to an aggregation of the remaining
classes to a single negative class. If in a subset Ext(A ∩ Si) ⊆ Ext(Si) the odds ratio under D

is s ∈ IR+ times higher than in the complete partition Ext(Si), formally

PrD(C | A, Si)

PrD(C | A, Si)
= s · PrD(C | Si)

PrD(C | Si)
, (4.11)

then the subset Ext(A, Si) has a LIFT ratio of

βD ′ [(A, Si)→ C] :=
LIFTD ′(A, Si → C)

LIFTD ′(A, Si → C)
= s.

under the probability density function D ′ defined by theorem 6 (p. 74).

Proof
First we define

s(+) :=
PrD(C,A, Si)

PrD(C, Si)
and s(−) :=

PrD(C,A, Si)

PrD(C, Si)
.

Rearranging terms in eqn. (4.11) we see that s = s(+)/s(−). According to theorem 6 we have
D ′(x) = D(x)/LIFTD(Si → C) for x ∈ Ext(Si, C). This allows to rewrite probabilities with
respect to pdf D in this subset:

PrD ′ [C,A, Si] =
PrD [C,A, Si]

LIFTD(Si → C)
=

s(+) · PrD(C, Si)

PrD [C | Si] /PrD [C]

= s(+) · PrD [C] · PrD [Si] (4.12)

From D ′(x) = D(x)/LIFTD(Si → C) for x ∈ Ext(Si, C) we can analogously derive

PrD ′
[
C,A, Si

]
= s(−) · PrD

[
C
]
· PrD [Si] . (4.13)

Combining the definition of the LIFT, eqn. (4.12), and (4.13) yields the result:

βD ′ [(A, Si)→ C] =
LIFTD ′(A, Si → C)

LIFTD ′(A, Si → C)
=

PrD ′ [C,A, Si] /PrD ′ [C]

PrD ′
[
C,A, Si

]
/PrD ′

[
C
] =

s(+)

s(−)
= s

85

4. Knowledge-based Sampling for Sequential Subgroup Discovery

As proposition 5 illustrates, each rule r : A → C with PrD(C | A, Si) = PrD(C | Si) for
a partition Si of a prior model has a LIFT ratio βD ′ [(A, Si) → C] = 1 in the intersection of
Ext(A) and Ext(Si). This implies a BIAS of 0 in Ext(A, Si) with respect to D ′. The weighted
relative accuracy (WRACC) is a weighted combination of the biases of subsets. For subsets Si,
1 ≤ i ≤ v, the WRACC of a rule candidate r : A→ C can be rewritten as

WRACC(A→ C) = COV(r) · BIAS(r) =

v∑
i=1

Pr [A, Si] · BIAS((A, Si)→ C).

This shows that extending a subgroup by an additional subset with no bias does not change the
utility score, so whenever the conditional class distribution in a partition Si meets the corre-
sponding distribution in Si when conditioning on A (or “A performs on Si as predicted”), this
subset is implicitly ignored by the WRACC metric under D ′.

In turn, proposition 5 states that an increasing odds ratio for a partition Si under D when condi-
tioning on A leads to a proportional increase in the LIFT ratio under D ′ for Ext(A, Si). The BIAS

is a fundamental quantity of most utility functions. It is identical to the precision (Pr(C | A, Si))
up to an additive constant term. WRACC maximizes the BIAS Pr(C | A) − Pr(C) weighted
by the individual coverages of partitions, so it implicitly maximizes the average precision, and
hence the odds ratio (Pr(C | A)/Pr(C | A)). This means that – when mining based on WRACC

under D ′ – the degrees of deviation between predicted and true conditional class distributions
induce the preference order for rule selection. This incorporates deviation from prior knowledge
into the concept of optimizing with respect to unexpectedness; conditioning on (a subgroup) A

should change the class distribution as much as possible. Due to the other constraints that mo-
tivated the choice of D ′, the resulting samples are not skewed unnecessarily. In particular, the
coverages of all partitions remain, so the individual deviations from expectation are weighted
as by D when averaging2 over the WRACC of all partitions. In subsection 4.5.1 this will be
further investigated for sequential subgroup mining, and it will be complemented by an analysis
for predictive settings in subsection 5.3.4.

Other utility functions may also be used in combination with knowledge-based sampling. An
attractive choice is the function Q(0.5)(r) which is factor-equivalent to the binomial test function
(cf. eqn. (2.2), p. 23). The difference to WRACC can be seen after rewriting

Q(0.5)(r) =
√

COV(r) · BIAS(r) =
WRACC(r)√

COV(r)
.

This connection to WRACC reveals that including unbiased subsets into the extension of a rule
r even decreases the utility score of this metric, given an initial score above 0: As discussed
above, WRACC is invariant against including unbiased subsets, but such a step increases the
coverage. Apart from this difference both metrics are identical, so Q(0.5) also favors rules for
which conditioning on the antecedent changes the class distribution.

The situation is different for Q(2), which can easily be seen to multiply WRACC with COV(r);
including unbiased subsets hence increases the utility score of Q(2). Moreover, even including
subsets with a negative BIAS, which decreases the average BIAS, may often increase the score

2Please recall from lemma 2 (p. 53), that WRACC is an instance averaging function, so the total WRACC is a
coverage-weighted average of the WRACC of all partitions.

86

4.4. A knowledge-based rejection sampling algorithm

due to an over-compensation by an increasing coverage. This is a counter-intuitive behavior in
the scope of knowledge-based sampling, because it compromises the discovery of unexpected
patterns. It seems reasonable to exclude functions like Q(α) with α > 1 from consideration in
this context. The experiments in this chapter will focus on WRACC, as it provides the most
straightforward criterion for unexpectedness.

4.4.3. Discussion

Knowledge-based sampling can be considered to preprocess the data by “sampling out” the prior
knowledge. In section 4.4.2 rejection sampling (cf. section 3.4.2) has been shown to be capable
of constructing samples that correspond to the previously defined distribution D ′. This distribu-
tion is very intuitive due to the set of motivating constraints, but also due to the simple function
that transforms the initial into the new distribution. The resulting samples of knowledge-based
sampling do not contain any example weights, so arbitrary data mining algorithms may be ap-
plied subsequently; this includes rule or decision tree learners, as discussed in subsection 4.3.2 or
in (Scholz, 2005a), respectively.

To discover subgroups in the presence of prior knowledge, a straightforward way to proceed
after knowledge-based sampling is to apply an algorithm like MIDOS to the constructed sample.
MIDOS (Wrobel, 1997) is based on the WRACC metric, so it will ignore rules with an extension
for which the class distribution can be predicted from prior knowledge; the LIFT of any rule hav-
ing exactly the expected precision will be 1 after knowledge-based sampling, leading to a BIAS

and hence utility of 0. Rules that e.g., overlap with previously found rules have their odds ratios
divided by the expected odds ratios, which means that only their additional contribution will be
accounted for. In other words, rules are ranked according to their deviation from expectation.

In a sub-sampling scenario in which the complete data set is an i.i.d. sample itself, we may be
interested in giving probabilistic guarantees. In particular, we may want to provide confidence
bounds and guarantees that the rules are ε-close to the best rules in our hypothesis space. In this
case, we may simply make use of the data streaming capability of knowledge-based rejection
sampling, and “pipe” the examples sampled from the new distribution into an adaptive sampling
algorithm (cf. subsection 3.3.2), e.g. GSS (Scheffer & Wrobel, 2002). This algorithm solves the
approximately k-best rules problem (Def. 28, p. 51) regardless of the underlying distribution, so
it also yields reliable confidence bounds for the altered subgroup discovery task.

A remarkable property of knowledge-based rejection sampling is, that it does not require the
LIFTs or any other performance indicators of models with respect to the unknown underlying
distribution to be known, but it still exactly provides samples from D ′, a pdf for which the label
is uncorrelated with prior knowledge.

As the analysis in subsection 4.4.2 illustrates, knowledge-based sampling with respect to dis-
crete prediction models, but also with respect to functions partitioning the instance space based
on impurity-criteria, is efficiently possible. From proposition 5 it can be seen, that the numbers of
partitions and classes have a neglible influence for (reasonably) large target sample sizes. Intu-
itively, the main bottleneck for knowledge-based rejection sampling is the combination of class
and prediction (or partition) which is biased the most, in the sense that the label is highly under-
represented in the corresponding partition; the asymptotic sample complexity is proportional to
the largest reciprocal LIFT value.

From an application point of view, the main constraint is hence the accuracy of the prior
knowledge. The higher the accuracy of our knowledge or model is, the harder it is to construct
uncorrelated samples. This aspect of the sampling technique is consistent with our intuition:
If the prior knowledge is highly accurate, then the required evidence (sample complexity) for

87

4. Knowledge-based Sampling for Sequential Subgroup Discovery

any significant novel findings is higher than in the case without any prior knowledge. More
precisely, since the sampling algorithm is only concerned with partitions and the true classes,
problems arise if partitions are almost pure, or if at least one of the classes does not appear in one
of the partitions at all. In such cases the LIFT of the corresponding queue is close to or equals
0, so (liftmin)

−1 becomes very large, or even undefined. A straightforward solution is to follow
the sequential covering approach for binary target attributes in this case, which means to simply
remove the “covered” examples, because they are fully “explained” by the model. Removing the
covered examples changes the marginal probability of the corresponding partition to 0, which
violates constraint (4.2) (p. 73). In chapter 5 it will be shown that, with respect to predictive
performance, this violation is not critical.

In the presence of precise base models, the rejection rates of algorithm 1 may become high,
resulting in small sample sizes, unless sampling from very large data sets. An attractive alterna-
tive to rejection sampling is to use example weights, as discussed in subsection 3.4.2. Weighting
has been reported in the literature to work well for applications like boosting (cf. chapter 5), but a
drawback of this solution is, that it requires all subsequently applied machine learning algorithms
to be capable of using weight-annotated data. Another drawback is, that single points, including
noise, may receive high weights. This results in poor approximations of the target distribution.
In fact, a known problem of ADABOOST (Freund & Schapire, 1997) is that weights may in-
crease exponentially, which has been reported to occur in particular for noisy data (Domingo &
Watanabe, 2000). Hence, re-sampling is a more precise alternative and helps to avoid overfitting,
but the amount of remaining training data should correspond to a point close to convergence in
the learning curve of the model induction algorithm (cf. section 3.3.1). Otherwise, any serious
sample size reduction due to rejection sampling might be detrimental to the quality of models,
so reweighting is preferable. Learning curves are usually unknown, and detecting convergence
remains a crucial problem for real-world applications. A reasonable heuristic is to use sub-
sampling if the data does not fit into main memory or the computational costs for learning need
to be reduced, and to use weights, otherwise.

4.5. Sequential subgroup discovery algorithms

Previous sections of this chapter introduced the notion of knowledge-based sampling, in particu-
lar for prior knowledge that implicitly partitions the instance space. This important class of prior
knowledge contains all discrete classifiers, impurity minimizing decision trees, and classification
rules. All these models can be sampled out exactly, without requiring any performance estimates.
This section discusses an extension of the presented framework, that allows to sequentially mine
unexpected patterns.

4.5.1. KBS-SD

The crucial observation underlying the subsequently proposed sequential subgroup discovery is,
that each time a new pattern is identified it can be assumed to refine the prior knowledge. When
mining the next pattern, all subsequently identified patterns may be referred to as given. This
fosters diversity in reported rule sets. The focus of this section is on how transforming the un-
derlying pdf and combining rules to an ensemble may be utilized to improve data mining results.
This discussion can be decoupled from scalability aspects. The technique proposed next may be
referred to as a representative of a larger family of algorithms, all sharing the underlying goal
of sequentially mining relative to all previously discovered patterns. More complex alternatives

88

4.5. Sequential subgroup discovery algorithms

Algorithm 2 Algorithm KBS-SD
Input:
• E = (x1, y1), . . . , (xn, yn)

• number of iterations k

Output:
• Set of k classification rules

KBS-SD(E , k):
Let D0 denote the uniform distribution over E .
for each y ∈ Y do

π(y) := 1
n

∑n
i=1 I[yi = y] // compute class priors, I denotes indicator function

end for
Let D1(xi) := π(yi)

−1 for i ∈ {1, . . . , n}. // D1: stratified version of D0

for t = 1 to k do
rt ← RULEINDUCTION(Dt, E)
Compute contingency matrix for rt // . . . from E weighted wrt. Dt

Compute LIFT values for rt // . . . from contingency matrix (Def. 33, p. 74)
Let Dt+1(xi) := Dt(xi) · (LIFTDt(rt, xi))

−1 for i ∈ {1, . . . , n}.
end for
Output the set of rules {r1, . . . , rk} and their LIFTs.

may be considered if e.g., predictive performance is of higher importance than intuitive distri-
butions. A variant tailored towards high predictive accuracy will be discussed and analyzed in
chapter 5.

For mainly three reasons the following algorithm is presented only for the weighted relative
accuracy (WRACC, Def. 20, p. 24). First, WRACC is the most popular utility function for sub-
group discovery in practice. It is used as the default evaluation metric for subgroup discovery
since the early systems EXPLORA (Klösgen, 1996) and MIDOS (Wrobel, 1997). Second, for this
function theorem 5 (p. 59) provides a simple way of transforming the corresponding formal data
mining problem into a classifier induction problem. This simplifies the evaluation in practice,
because it allows to tackle the problem by using a common rule induction algorithm from any of
the machine learning libraries. The third reason is, that it is sufficient to compare the presented
approach to the reweighting schemes proposed for subgroup discovery so far (Lavrac et al.,
2004b).

Description of the algorithm

The following paragraphs describe a straightforward extension of knowledge-based sampling
for sequential subgroup discovery. To ease presentation, this algorithm is stated in terms of an
example reweighting rather than sampling strategy, because the sampling step can be realized as
discussed before, but adds additional complexity to the pseudo-code. The discussion will point
out how sampling techniques can be substituted.

The knowledge-based sampling for sequential discovery algorithm (KBS-SD) depicted in
algorithm 2 iteratively selects a single rule that corresponds to a subgroup with high WRACC,
updates the distribution according to theorem 6, and selects the next rule based on the updated
distribution. The function3 Dt+1 : X → IR+ implicitly defined in iteration t by this strategy

3Again, the deterministic dependency of Y of X is not required, but eases notation.

89

4. Knowledge-based Sampling for Sequential Subgroup Discovery

for the complete instance space X is the result of transforming the most recent function Dt by
applying theorem 6 to sample out the rule rt that was discovered in iteration t. The reweighting
strategy of the pseudo-code changes the weights of all available examples accordingly in each
iteration; the weight of example (x, y) after iteration t is hence chosen as Dt+1(x), following the
discussion in subsection 3.4.2 (p. 66) on the relation between rejection sampling and example
weights.

Theorem 5 (p. 59) implies that high predictive accuracy on stratified samples directly trans-
lates into high WRACC on the original data. To utilize this simplification, the first lines of the
algorithm compute a distribution D1 by reweighting the training examples E with respect to
Def. 31 (p. 56). Each of the subsequent loops induces a single rule with high predictive accu-
racy by calling a procedure RULEINDUCTION(Dt, E). This procedure is assumed to be capable
of processing an example set E that is weighted with respect to a supplied function Dt. Each
resulting rule characterizes a separate subgroup.

As KBS-SD computes distribution updates according to theorem 6, all constraints defined in
Subsec. 4.3.1 hold. Constraint (4.3) implies that all subsequently defined distributions share the
stratification property of D1. It is mathematically equivalent to (i) compute the example weights
with respect to (generally unstratified) distributions D1, . . . , Dk, which leaves the stratification
step to the rule induction algorithm, and to (ii) integrate stratification into the definition of D1,
as the algorithm does, and to compute subsequent distributions based on this stratified version.
In the latter case, the corresponding unstratified counterparts can simply be reconstructed by
rescaling the class fractions, so that the original class priors are re-established. This corresponds
to an inversion of the initial step of stratification.

To operationalize KBS-SD by sampling, we may build upon the knowledge-based rejection
sampling (algorithm 1) presented in section 4.4.2. It was shown how to realize the transformation
of D into D ′ as described by theorem 6 by constructing a procedure EXD ′ that utilizes another
procedure EXD. This idea can be applied recursively. Each EXDt+1

required in iteration t + 1

can be realized by sampling from Dt utilizing the procedure EXDt established in iteration t.
In this case, no example weights are required in algorithm 2; each iteration t starts with a step
of (stratified) sampling based on procedure EXDt , followed by a step of inducing a rule and
estimating LIFTs on the sample. As a final step, it is required to prepare a procedure EXDt+1

to
be used in the next iteration.

For predictive purposes, rules selected by KBS-SD annotated by their LIFTs can be combined
to an ensemble classifier applying any of the techniques discussed in section 2.6 (p. 32). All rules
rt are of the form A(t) → C, or A(t) → C, respectively, if the property of interest is boolean4,
with each A(i) denoting an antecedent. The following definition eases notation for the prediction
rules used in this chapter.

Definition 34 The LIFT ratio of an example x ∈ X for a rule (A→ C) is defined as

LR(A→ C, x) :=

LIFT(A→C)

LIFT(A→C)
, for x ∈ Ext(A)

LIFT(A→C)

LIFT(A→C)
, for x ∈ Ext(A)

Using this notation, an application of the hybrid NAÏVEBAYES / logistic regression strategy for

4This restriction is only made for simplicity, as it is always possible to substitute one-against-all estimates. In such
a case, the resulting probability estimates just need to be normalized appropriately.

90

4.5. Sequential subgroup discovery algorithms

combining predictions (cf. Subsec. 2.6.2, p. 34) yields

β̂(x) =
PrD0

(C)

PrD0
(C)

·
∏

1≤t≤k

LRDt((A
(t) → C), x) (4.14)

as an estimate for the odds ratios (eqn. (2.8), p. 35).
Estimating each LR with respect to the corresponding pdf Dt prevents poor approximations of

the conditional target distribution in case of violated conditional independence (cf. Subsec. 2.6.3,
p. 36). For descriptive settings, performance criteria of discovered rules evaluated with respect
to the original distribution can be reported to end users, which is more intuitive; the estimates
based on the altered pdfs Dt above may be used for making predictions, and for illustrating the
individual impact of each rule in the context of an ensemble.

Eqn. (4.14) is not applicable whenever a selected rule has a precision of 1. This should not
pose a problem, however; following the argument on page 88, fully explained subsets may sim-
ply be removed from further consideration.

In prediction scenarios, significance tests help to avoid overfitting, in a descriptive settings
they avoid to report rules that could easily appear interesting just by chance. For simplicity,
significance tests during rule selection are avoided in the subsequent experiments, but a similar
effect is achieved by controlling the number of iterations k; rules are selected with respect to
WRACC, a metric proportional to coverage, so rules are not expected to overfit for small k. Al-
ternatively, the binomial test function could be used in combination with a reasonable confidence
threshold. Please note that precise significance tests require more efforts, i.e. to (i) evaluate on
a hold-out set, which allows to utilize the confidence bounds for Q(0.5) depicted in table 3.1
(p. 53), or to (ii) consider the expressiveness of the hypothesis space in terms of the VCdim
(Def. 4, p. 15), respectively.

Properties of KBS-SD

The subsequent paragraphs discuss the proposed combination of rules to an ensemble classifier
in the context of knowledge-based sampling. Obviously, the ensemble of rules described above
makes soft predictions, while KBS-SD and the proposed knowledge-based rejection sampling
algorithm are designed to “sample out” models that make discrete predictions, or define boolean
assignments to partitions, respectively. The most crucial question is hence, whether the dis-
tributions defined by KBS-SD match the prediction strategy above. In other terms: Does the
sampling procedure realize a step of sampling out the soft predictions of the ensemble, and do
additional rules help to improve the predictions of the resulting ensemble?

First of all it should be mentioned, that the prediction rule above is a compromise between
model complexity, computational complexity, and model accuracy. As discussed in section 2.6,
there are many alternatives for combining model predictions for predictive data mining tasks.
A precise (but naïve) combination of the k individual rule estimates based on Bayes’ theo-
rem requires exponentially (2k) many estimates, one for each intersection of subsets. Another
naïve approach, NAÏVEBAYES, assumes conditional independence, which results in models that
consider the performance of each rule separately. This model class is tractable and can easily
be interpreted by human analysts. In practice the performance will usually be compromised
by the independence assumption not being met, however. Please recall from the discussion in
subsection 2.6.3 (p. 36) that a more precise logistic regression-like framework requires higher
computational efforts, but in return, it yields a maximum likelihood weight vector as a tractable
compromise between model complexity and accuracy. Computing the weights of rules sequen-
tially, without reconsidering previously chosen weights, is a very cheap greedy approximation

91

4. Knowledge-based Sampling for Sequential Subgroup Discovery

strategy. In combination with i.i.d. data streams and single-pass algorithms (random permuta-
tion assumed) it has another appealing property worth being mentioned: It is possible to sample
exactly from the target distributions without knowing the performances of rules, simply by uti-
lizing rejection sampling-like algorithms as discussed above. Performances required for making
predictions may be refined continuously based on subsequently read data. The robustness of this
approach, but realized in terms of example weighting, will be exploited in chapter 6, where it is
applied to data streams inhibiting concept drift.

For some kinds of tasks, other combination strategies than those discussed here may be prefer-
able. As will be outlined at a later point in this section, they can easily be substituted, but at the
price of requiring performance estimates before being able to select additional models.

The analysis starts with sets of conditionally independent rules. Clearly, this is the most de-
sirable case: The individual contribution of each rule to the ensemble can be identified without
considering the context of other rules, and the simple NAÏVEBAYES prediction rule yields opti-
mal conditional class estimates. The following result shows, that this case is well supported by
the algorithm. In detail it illustrates, that (i) the pdfs sequentially defined by KBS-SD do not
interfere with conditional independence, and that (ii) we may always refer to the altered pdfs Di

when estimating LIFTs, or LIFT ratios, respectively, because for conditional independent rules
the estimates are identical to the estimates with respect to D0.

Proposition 6 If a sequence of rules R := (r1, . . . , rk) is conditionally independent with respect
to an initial distribution D0, then we have

(∀ri ∈ R)(∀x ∈ X) : LIFTDi
(ri, x) = LIFTD0

(ri, x),

where D1, . . . , Dk denote the pdfs sequentially defined by KBS-SD based on R.

Proof
First, we observe that the stratified distribution D1 is defined by rescaling D0, changing the ex-
ample weights of each class by a constant factor. Considering the definition of the LIFT (Def. 16,
p. 22) we see, that this metric is invariant to changing class skews, because of the class prior in
the denominator. To be precise, this property requires that the constraints defined in subsec-
tion 4.3.1 – except for maintaining the class priors – are met, that is, that we only change the
class priors. This is given, so the invariance implies that the LIFTs of rules in R with respect
to D0 and D1 are identical. It is hence sufficient to prove the equivalence of LIFTs under Di,
1 < i ≤ k, to the LIFTs under D1. Clearly, changing the class priors does not introduce con-
ditional dependencies between rules, so the rules in R are also conditionally independent with
respect to D1.

The proof is shown for two rules r1 : A(1) → C and r2 : A(2) → C only; the case of more
rules can be handled analogously. By construction of D2 we have

PrD2
[As] =

PrD1
[As]

LIFTD1
(A(1) → C)

and PrD2

[
A ′

s

]
=

PrD1
[A ′

s]

LIFTD1
(A

(1) → C)

for each As and A ′
s with Ext(As) ⊆ Ext(A(1) ∧ C) and A ′

s ⊆ Ext(A
(1)

∧ C), respectively.
Now we show, that the probability of A(2) ∧ C under D2 is identical to the probability of the

same event under D1, if A(2) is conditionally independent of A(1) under D1:

PrD2

[
A(2), C

]
= PrD2

[
A(1), A(2), C

]
+ PrD2

[
A

(1)
, A(2), C

]
=

PrD1

[
A(1), A(2), C

]
LIFTD1

(A(1) → C)
+

PrD1

[
A

(1)
, A(2), C

]
LIFTD1

(A
(1) → C)

92

4.5. Sequential subgroup discovery algorithms

Exploiting the conditional independence and LIFT(A→ C) = Pr [A | C] /Pr [A] we get

PrD2

[
A(2), C

]
=

PrD1

[
A(1) | C

]
· PrD1

[
A(2), C

]
LIFTD1

(A(1) → C)
+

PrD1

[
A

(1)
| C
]
· PrD1

[
A(2), C

]
LIFTD1

(A
(1) → C)

= PrD1

[
A(2), C

]
·

 PrD1

[
A(1) | C

]
PrD1

[
A(1) | C

]
/PrD1

[
A(1)

] +
PrD1

[
A

(1)
| C
]

PrD1

[
A

(1)
| C
]
/PrD1

[
A

(1)
]

= PrD1

[
A(2), C

]
·
(
PrD1

[
A(1)

]
+ PrD1

[
A

(1)
])

= PrD1

[
A(2), C

]
.

By substituting other antecedents A(2) and conclusions C we can show, that the remaining en-
tries of the contingency matrix (e.g., Pr

[
A

(2)
, C
]
) are also identical under D1 and D2. This

implies equal LIFTs of r2 under both distributions.

Conditionally dependent rules are much less convenient, but should still be supported well
by data mining algorithms. The following results describe properties of KBS-SD if conditional
independence is lacking. First, Prop. 5 is adapted to ensembles of rules reported by KBS-SD in
combination with prediction rule eqn. (4.14) from page 91.

Definition 35 A subset S ⊆ X is called an atomic subset with respect to a set of classification
rules R, if for each (A→ C) ∈ R either S ⊆ Ext(A) or S ∩ Ext(A) = ∅.

Atomic subsets have the property, that the prediction rule eqn. (4.14) yields the same estimate
for each of its instances.

Theorem 7 Let R = {ri | 1 ≤ i ≤ k} be a set of rules output by the KBS-SD algorithm. Let
further antecedent S refer to an atomic subset Ext(S) with respect to R, and let β̂(S) denote
the corresponding odds ratio estimate of prediction rule eqn. (4.14). If the (true) odds ratio in
Ext(S) under D for a target class C is s · β̂(S) for any s ∈ IR+, then under the final pdf Dk+1

constructed by KBS-SD the odds ratio of Ext(S) is

PrDk+1
[C | S]

PrDk+1

[
C | S

] = s.

Proof
We start with an analysis of prediction rule eqn. (4.14). The predicted odds ratio β̂(x) for an
example x ∈ X is:

β̂(x) =
PrD0

(C)

PrD0
(C)

·
∏

1≤i<k

LRDi
(ri, x). (4.15)

For notational simplicity we assume without loss of generality that the antecedents of all rules
ri : A(i) → C apply for each x ∈ S. In this case we may substitute

LRDi
(ri, x) =

LIFTDi
(A(i) → C)

LIFTDi
(A(i) → C)

93

4. Knowledge-based Sampling for Sequential Subgroup Discovery

in eqn. (4.15) to receive a product of fractions. Let

γ+(S) := PrD0
(C) ·

∏
1≤i<k

LIFTDi
(A(i) → C)

denote the product of all the resulting enumerators, and

γ−(S) := PrD0
(C) ·

∏
1≤i<k

LIFTDi
(A(i) → C)

be the product of denominators.
The algorithm starts with a step of stratification. Up to a constant factor this is equivalent to

dividing the initial weights of positives by PrD0
(C) and the weights of negatives by PrD0

(C).
In each subsequent iteration i the weight of all positive examples in Ext(S) are divided by

LIFTDi
(A(i) → C), while weights of negatives are divided by LIFTDi

(A(i) → C). For a con-
stant c > 0, the final weight of each positive example in Ext(S) is hence c/γ+(S), while the
weight of each negative example is c/γ−(S).

From β(S) = γ+(S)/γ−(S) we can conclude that the odds ratio in Ext(S) changes from D

to Dk+1 by a factor of (β(S))−1:

PrDk+1
[C | S]

PrDk+1

[
C | S

] =
PrD0

[C | S] /γ+(S)

PrD0

[
C | S

]
/γ−(S)

=
PrD0

[C | S]

PrD0

[
C | S

] · (β̂(S)
)−1

In particular, an odds ratio of s · β̂(S) under D translates into an odds ratio of s.

As this result shows, the reweighting scheme of KBS-SD matches the proposed prediction rule.
In each iteration the prediction rule is augmented by factors correcting the odds ratio estimates.
The result of the reweighting step is a corresponding reduction of the odds ratios; for each atomic
subset they are divided by the corresponding factor. As a result, the odds ratios of atomic subsets
after reweighting reflect the residuals of the model in multiplicative terms. In turn, subsets for
which the estimates of the model are correct can be recognized by having odds ratios of 1 after
reweighting. This implies equally likely classes. The goal of KBS-SD in sampling scenarios can
hence be formulated as to sample out all correlations that may be described in terms of proba-
bilistic classification rules, until each subset covered by any of the rule candidates is stratified.
If rule antecedents correspond to subsets that contain only a single class, then it is optimal to
make deterministic predictions, regardless of the predictions of other rules; the total weight of
such sets should be reduced to 0 in the subsequently defined pdf, as for sequential covering.

Before addressing the question in which sense KBS-SD samples out the soft predictions of
its rule ensembles, it should be clarified why selecting rules by WRACC is reasonable, although
the reweighting scheme and the prediction rule both refer to the LIFT of rules. The argument
follows the discussion on page 86, but can be simplified for stratified data.

Proposition 7 For stratified example sets and boolean target attributes any rule that maximizes
ACC or WRACC also maximizes the LIFT weighted by coverage.

Proof
The equivalence between maximizing ACC and WRACC for stratified data sets has been shown
before (cf. theorem 5), so we may refer to ACC and hence assume that the rule predicts the

94

4.5. Sequential subgroup discovery algorithms

opposite class if does not apply. ACC is defined as

ACC(A→ C) = Pr [A,C] + Pr
[
A,C

]
= Pr [A] · Pr [C | A] + Pr

[
A
]
· Pr

[
C | A

]
= Pr [A] · Pr [C] · LIFT(A→ C) + Pr

[
A
]
· Pr

[
C
]
· LIFT(A→ C)

= 1/2
(
Pr [A] · LIFT(A→ C) + Pr

[
A
]
· LIFT(A→ C)

)
.

The constant factor of 1/2 can be ignored in the context of optimization. The remaining term is
the average weighted LIFT of the rule.

Clearly, since the LIFT is proportional to the precision, the odds ratios (and LIFT ratios) increase
monotonically with the LIFT of covered subsets. Hence, KBS-SD selects rules by their average
deviation from expectation (that is, form stratification), and corrects the corresponding residuals
of the ensemble by adapting the predictions accordingly. A detailed analysis of the predictive
performance of a KBS-SD variant will be provided in the next chapter.

Regarding sample construction with respect to the soft predictions of the ensemble, we should
first note that the concept of “sampling out” probabilistic predictions is not supported by the
constraints (4.1)-(4.7) (p. 73). We will hence briefly discuss a straightforward generalization of
the pdf defined by theorem 6 (p. 74) for soft predictions, and then compare it to KBS-SD.

Definition 36 Let D : X × Y → IR+ denote a target pdf, and let the prior knowledge θ be
associated to a function

P̂r(y | x, θ) ≈ PrD [y | x] =
D(x, y)∑

y∈Y D(x, y)
,

estimating the conditional distribution of the label for each example x ∈ X . For class priors
PrD(y), y ∈ Y , the estimated LIFT with respect to prior knowledge θ is defined as

L̂IFTD(x→ y | θ) :=
P̂r(y | x, θ)

PrD(y)
.

Based on the estimated LIFT we can generalize the transformation described in theorem 6 by
defining

D ′(x, y) = D(x, y) ·
(

L̂IFT(x→ y | θ)
)−1

(4.16)

Despite its syntactical similarity, this rule shares another important property with the transfor-
mation rule used so far.

Proposition 8 For a label Y = {0, 1} the predictions h(x) := P̂r(y = 1 | x, θ) ∈ [0, 1] for class
y = 1 are uncorrelated with Y with respect to D ′ defined by eqn. (4.16), formally

ED ′ [y · h(x)] = ED ′ [y] · ED ′ [h(x)],

as long as D and D ′ share the same class priors.

Proof
It is sufficient to show that the expected prediction ED ′ [h(x) | y] of the ensemble when condi-
tioning on either of the classes is identical. In this case, the proposition holds because

ED ′ [y · h(x)] = PrD ′(y = 0) · 0 + PrD ′(y = 1) · ED ′ [h(x) | y = 1]

= PrD ′(y = 1) · ED ′ [h(x)] = ED ′ [y] · ED ′ [h(x)]

95

4. Knowledge-based Sampling for Sequential Subgroup Discovery

It can be seen that the expected predictions for the correct class are equal to the corresponding
class prior when plugging the definition of the empirical LIFT into eqn. (4.16):

D ′(x, y) = D(x, y) ·
(

L̂IFT(x→ y | θ)
)−1

= D(x, y) · PrD(y)

P̂r(y | x, θ)

The estimates cancel out when switching from D ′ to D conditioning on any class y∗ ∈ Y:

ED ′

[
P̂r(y∗ | x, θ) | y∗

]
= (PrD ′(y∗))−1 ·

∫
D ′

I[y = y∗] · P̂r(y∗ | x, θ)dx dy

= (PrD ′(y∗))−1 ·
∫
D

I[y = y∗] · P̂r(y∗ | x, θ) · PrD [y∗]

P̂r(y∗ | x, θ)
dx dy

= (PrD ′(y∗))−1 ·
∫
D

I[y = y∗] · PrD(y∗)dx dy

=
PrD [y∗]

PrD ′ [y∗]
· PrD [y∗] .

Since class priors are assumed to be equal under both pdfs this implies

ED ′

[
P̂r(y | x, θ) | y∗

]
=

{
PrD ′(y∗) , for y = y∗

1 − PrD ′(y∗) , for y 6= y∗⇒ (∀y∗ ∈ Y) : ED ′ [h(x) | y∗] = PrD ′(y = 1),

as required.

This generalized pdf can be utilized when rules and prior knowledge were combined to a con-
ditional class estimator function in arbitrarily complex ways. This allows e.g. to replace the
NAÏVEBAYES-like strategy by logistic regression. To sample out such prior probabilistic knowl-
edge, for example from a data stream, it is sufficient to subsample each example x with a prob-
ability of (L̂IFT(x → y | θ))−1. This strategy is surprisingly simple and well suited to apply
rejection sampling.

However, this technique also has some disadvantages. First of all, when relying on the predic-
tions of an arbitrary soft classifier, the class priors will not necessarily remain after transforming
the pdf. Hence, sampling orthogonal to expectation requires additional efforts in this setting. Sec-
ond, the strategy lacks a pleasant property of KBS-SD, namely to be able to sample precisely
without requiring any probability estimates. For example, when using the partitions induced by a
decision tree for knowledge-based sampling, the corresponding conditional class distributions at
the leaves based on a training sample are usually biased. KBS-SD allows to continuously refine
all LIFT estimates on the fly as new examples are sampled. The reason is, that it defines and
operationalizes pdfs with respect to the correct LIFTs, which in section 4.4.2 has been shown to
work even if these LIFTs are not known precisely. Hence, any LIFT estimate can be refined inde-
pendently, without affecting performances of other models. This is different when defining pdfs
based on arbitrary soft classifier estimates; subsequent pdfs that are constructed with respect to
eqn. (4.16) depend on the empirical estimates, so changing an estimate for predictive purposes
affects all subsequently defined pdfs and invalidates other estimates.

Proposition 8 describes a desirable property for sampling out soft classifier predictions in gen-
eral, namely that for samples the target should be uncorrelated with predictions. When using the
reweighting strategy of KBS-SD, all pdfs are stratified, so the prerequisite of the proposition

96

4.5. Sequential subgroup discovery algorithms

is met. The combination of reweighting scheme and rule combination proposed for KBS-SD is
not identical with, but still very similar to eqn. (4.16). Enumerator and denominator of the prod-
uct in (4.14) (p. 91) approximate the LIFTs of positive and of negative examples, respectively;
if θ denotes prior knowledge in the form of an ensemble of probabilistic rules with antecedents
{A(1), . . . A(k)}, then we have

L̂IFT(x→ y | θ) ≈
∏

1≤i<k

LIFTDi
((A(i) → y), x).

As shown in the proof of theorem 7, KBS-SD weights examples inverse proportionally to these
estimates, and hence, referring to Prop. 8, approximately yields samples that are independent
of ensemble predictions. In fact, experiments by the author revealed no significant difference
between the KBS-SD strategy and the empirical LIFT reweighting above on data sets that fit
into main memory, when (i) using an example reweighting approach and (ii) without continu-
ously refining LIFT estimates. For this reason only results for the simpler sequential KBS-SD
algorithm are reported in this chapter.

4.5.2. Related work: CN2-SD

In the next section KBS-SD will be compared to the only two other reweighting strategies
suggested in the subgroup discovery literature so far; both were published in the context of the
CN2-SD algorithm (Lavrac et al., 2002a; Lavrac et al., 2004b).

The idea of CN2-SD is to adapt the classifier CN2 (Clark & Niblett, 1989) to the task of sub-
group discovery, by changing the internal rule selection metric to WRACC. CN2 sequentially
learns sets of classification rules, one rule per iteration, and removes the covered subsets each
time before proceeding. Rule candidates are constructed based on a beam search-like strategy,
and are selected in terms of a significance test metric. The improved variant (Clark & Boswell,
1991) referred to by (Lavrac et al., 2004b) removes only the correctly covered example in each
iteration. A rule hence has to describe subsets in which the predicted class passes the signifi-
cance test in the presence of all examples previously covered only by mistake. The result is an
unordered set of rules, with each rule being annotated by the absolute number of covered pos-
itive and negative examples. The prediction strategy is equivalent to a weighted voting scheme
(cf. subsection 2.6.1). The total prediction is an average of the individual class distributions (each
normalized to sum up to 1) predicted by applicable rules. The absolute coverage of each such
rule at induction time is chosen as its voting weight.

As a first adaptation, CN2-SD uses the metric WRACC to select rule candidates. It also yields
unordered sets of rules, but combines them in terms of a uniform weighting scheme, rather than
by using the weighted scheme of CN2. A second adaptation is, not to remove covered examples,
but to reweight them. The reweighting strategy is different from that used by KBS-SD: After a
positive example e has been covered by i rules, its new weight is computed as either

additive update: wi(e) := 1
i+1 or

multiplicative update: wi(e) := γi for a given parameter γ ∈ [0, 1].

This step is meant to make the sequential procedure more suitable for subgroup discovery. How-
ever, there is no theoretical justification for this kind of reweighting, so this method does neither
yield intuitive distributions, nor does it correspond to a framework that allows to handle prior
knowledge and previously found patterns homogeneously.

97

4. Knowledge-based Sampling for Sequential Subgroup Discovery

A drawback in predictive settings is the lack of a theoretical foundation allowing to give
guarantees, e.g., that additional rules help to improve the soft predictions of rule ensembles. It
is easily seen that both reweighting schemes do not de-correlate the contingency matrix. This
means that in general each subgroup – not necessarily with the same predicted label – will still
receive a positive utility after reweighting. Consequently, multiple occurrences of rules in the
rule set are allowed. Please note that a step of reweighting is necessary after each iteration of
rule discovery, even if a rule has been discovered multiple times before; without reweighting,
a subsequent iteration would yield the same rule again. The lacking correspondence between
predictions and example weights do not seem to foster monotone behavior when incorporating
additional rules.

4.6. Experiments

4.6.1. Implemented operators

To evaluate knowledge-based sampling for subgroup discovery three algorithms have been im-
plemented in the learning environment YALE5 (Mierswa et al., 2006) by the author of this thesis.
The first of these is the knowledge-based sampling algorithm for sequential discovery (KBS-
SD) shown in algorithm 2 on page 89. The implementation6 uses example reweighting for train-
ing data that fits into main memory.

Additionally, two variants of an operator with the name subgroup discovery rule set induction
(SDRI) have been implemented. The implementation exploits theorem 5, that is, the fact that af-
ter stratification any common rule induction algorithm can be used to identify rules maximizing
the WRACC. One of the two reweighting strategies of CN2-SD can be specified as a parameter.
The specific rule induction algorithm can be chosen from the library of classifiers supported by
YALE. Hence, SDRI basically subsumes the two CN2-SD variants sketched above. The rule
induction algorithm CONJUNCTIVERULE, part of the WEKA learning environment (Witten &
Frank, 2000), was chosen as an embedded learner for KBS-SD and SDRI in the experiment
section. CONJUNCTIVERULE iteratively constructs the body of rules comparing the information
gain of each candidate literal, and it prunes rules applying the reduced error pruning heuristic.

The SDRI variant that applies CONJUNCTIVERULE on stratified samples after additive up-
dates is referred to as SDRI+, the one with multiplicative updates as SDRI*. The class explicitly
predicted by a rule is defined to be the positive one, as fixing one of the classes as positive gave
worse experimental results. This is coherent with the CN2 algorithm. SDRI combines individ-
ual rule predictions applying the same strategy as CN2-SD, a uniform voting scheme averaging
soft predictions.

4.6.2. Objectives of the experiments

The goal of knowledge-based sampling is to support data mining in the presence of prior knowl-
edge. Sequential subgroup discovery utilizes this form of sampling (or reweighting) in an it-
erative fashion to discover sets of rules. Sequentially changing the distribution underlying the
data means to augment the prior knowledge by each new discovery before mining the next sub-
group. Clearly, the sequential discovery procedure is more demanding than “sampling out” any
static form of prior knowledge just once, before the data mining step. From a technical point

5http://yale.sf.net/
6operator name: BayesianBoosting, deactivate the parameter
allow_marginal_skews, activate rescale_label_priors

98

4.6. Experiments

of view, there is no substantial difference between any domain-specific prior knowledge and an
ensemble of rules produced by early iterations of sequential subgroup discovery. For this reason,
the subsequent experiments are only concerned with sequential subgroup discovery without any
user-specified domain knowledge.

Two potential discovery tasks have been addressed in this chapter, descriptive and predictive
subgroup discovery. The primary goal of subgroup discovery in predictive settings is to find a set
of rules that characterize a target variable well. In more formal terms, the probabilistic classifiers
built from sets of discovered rules should be accurate. This property is commonly evaluated in
terms of the area under the ROC curve metric (AUC), see section 2.5.

A further desirable property for both predictive and descriptive tasks is, that the reported sets
of rules are diverse; similar rules are neither interesting nor do they significantly improve the
predictive performance (cf. p.33). In particular, we do not want the rule sets to contain any
duplicates.

Moreover, the learning curves, e.g. measured in terms of the predictive AUC, should increase
monotonically with an increasing number of rules. The reason is, that any decrease in predic-
tive performance is a strong indicator of a false discovery, or of false performance estimates,
respectively. For now, this property may just be considered to be derived from intuition; a the-
oretical investigation of the connections between performances of individual base models and
corresponding changes in the AUC will be provided in the next chapter.

An important property of learning procedures in general is robustness to minor changes in the
data. In predictive settings, using unstable learners may cause additional efforts, e.g. bagging
(cf. subsection 2.6.1), in order to achieve reliable predictions; in descriptive settings, instability
compromises the quality of studies in general. The robustness of ensembles will be evaluated
based on the standard deviation of predictive AUC performances.

Finally, for descriptive tasks we want the resulting set of models to be small and understand-
able. The former is evaluated by reporting the number of discovered rules throughout the exper-
iment section, the latter is assumed to hold due to the choice of classification rules as the class
of models. For reporting results to end users, KBS-SD rule performances based on the initial
distribution are appropriate. The corresponding averages of the metrics COV and WRACC for
KBS-SD ensembles will be evaluated in the experiments. Compared to approaches that bene-
fit from reporting highly overlapping sets of rules, KBS-SD focuses on novel patterns in each
iteration; intuitively, this should reduce the average COV and WRACC, while increasing the
diversity and predictive performance at the same time.

4.6.3. Results

The proposed idea of sequential sampling-based subgroup discovery has been evaluated on five
data sets taken from the UCI Machine Learning Library (Blake & Merz, 1998) and a 10K sam-
ple taken from the KDD Cup 2004 Quantum Physics data set7. All data sets have boolean target
attributes. Their size, the fraction of the minority class, and the number of discrete and continu-
ous attributes are listed in table 4.1. The issue of scalability has been discussed before and can
be decoupled from the question of whether changing the distribution and combining rules to an
ensemble as proposed helps to increase the quality of data mining results. All well-suited pub-
licly available benchmark data set known to the author of this thesis easily fit into main memory,
so KBS-SD was consequently used in combination with example reweighting. This is more de-
manding, because all performances are estimated on the same sample (but for different weight
distributions), which increases the risk of false discoveries and overfitting.

7http://kodiak.cs.cornell.edu/kddcup/

99

4. Knowledge-based Sampling for Sequential Subgroup Discovery

Dataset Examples Discrete Continuous Minority
KDD Cup 10.000 – 71 50.0%
Adult 32.562 8 6 24.1%
Ionosphere 351 – 34 35.8%
Credit Domain 690 6 9 44.5%
Voting-Records 435 16 – 38.6%
Mushrooms 8.124 22 – 48.2%

Table 4.1.: Data characteristics: size, number discrete/continuous attributes, class skew

Figure 4.2 to 4.7 show how the AUC performance changes with an increasing number of
iterations. All values have been estimated by 10fold cross-validation8. The columns k and auc in
table 4.2 list the average performances of rule sets according to the cross-validation experiments
for the empirically best choice of k. For the KDD Cup data and the adult data set the number of
iterations were constrained. To further evaluate the differences between the algorithms, another
rule set was induced for each variant, using the same value of parameter k. The training set was
also used for evaluation in this case, as common for descriptive learning tasks. Table 4.2 shows
the resulting average coverages (cov) and average weighted relative accuracies (wracc). The
ROC filter for rule sets based on the convex hull (discussed in section 4.2) was applied to both
SDRI variants, denoted as RF in table 4.2.

The column div reflects the diversities of rule sets. The entropy of predictions is an appropriate
measure for diversity of classifier ensembles in general (Cunningham & Carney, 2000). Each
rule can be considered to predict the conditional distribution of the target, given whether it
is applicable or not. The diversity was computed as the average entropy (see p. 33) over the
complete example set after removing multiple occurrences of rules.

Throughout figures 4.2 to 4.7 the KBS-SD algorithm outperforms SDRI with both reweight-
ing strategies, while none of the SDRI variants is clearly superior to the other one. In figure 4.2,
all three algorithms manage to find useful rules repeatedly. SDRI+ performs best for sets of 3
to 6 rules, but for larger rule sets and for any other data set and number of iterations KBS-SD is
superior. In figures 4.3 to 4.5, KBS-SD improves the AUC much quicker than SDRI, although
for the smallest data set (Fig. 4.4) it overfits after the 3rd iteration. For the credit domain data
(Fig. 4.5) the AUC values of the SDRI rule sets improve non-monotonically. An inspection
of the rule sets revealed many duplicates. For the voting-records (figure 4.6), SDRI effectively
finds just 2 useful rules with both reweighting strategies, which improves the AUC by about 1%
compared to the first iteration. KBS-SD selects 6 rules and improves the AUC by about 4%.
Finally, in the experiment shown in figure 4.7, KBS-SD reaches 100% AUC with just 12 rules,
while SDRI does not manage to improve over the performance of the first rule at all. For the
smaller data sets, the ROC filter basically just removes duplicates from the rule sets, which has
a marginal impact on the performance metrics. For the large data sets, the filter prunes the rule
set at the price of a reduction in both AUC performance and diversity.

Finally, it is interesting to note that the KBS-SD rule sets outperform those of the SDRI
variants in terms of predictive performance, although they often have a smaller coverage and
WRACC. Moreover, for all data sets the KBS-SD rule sets have the highest diversity, but ac-
cording to the standard deviation of the AUC performance (column “±”) they are nevertheless
most robust to minor changes in the data. These changes are the result of sub-sampling during

8For SDRI* results are reported for the empirically best γ from the candidate set {.1, .2, .3, .4, .5, .6, .7, .8, .9, .95}.

100

4.6. Experiments

 66

 68

 70

 72

 74

 76

 78

252015105

A
U

C

iterations

KBS
SDRI(+)
SDRI(*)

Figure 4.2.: KDD Cup

 74

 76

 78

 80

 82

 84

 86

 88

 90

20151051

A
U

C

iterations

KBS
SDRI(+)
SDRI(*)

Figure 4.3.: Adult

 88

 89

 90

 91

 92

 93

 94

 95

 96

1051

A
U

C

iterations

KBS
SDRI(+)
SDRI(*)

Figure 4.4.: Ionosphere

 85.5
 86

 86.5
 87

 87.5
 88

 88.5
 89

 89.5
 90

 90.5

35302520151051

A
U

C

iterations

KBS
SDRI(+)
SDRI(*)

Figure 4.5.: Credit Domain

 95

 95.5

 96

 96.5

 97

 97.5

 98

 98.5

 99

1051

A
U

C

iterations

KBS
SDRI(+)
SDRI(*)

Figure 4.6.: Voting-Records

 94

 95

 96

 97

 98

 99

 100

151051

A
U

C

iterations

KBS
SDRI(+)
SDRI(*)

Figure 4.7.: Mushrooms

101

4. Knowledge-based Sampling for Sequential Subgroup Discovery

al
go

ri
th

m
k

au
c

±
co

v
w

ra
cc

di
v

K
B

S-
SD

15
7
6
.8

1
.2

3
8
.6

%
0
.0

2
3

0
.9

7
2

S
D

R
I+

15
7
6
.0

1
.9

5
0
.5

%
0
.0

5
4

0
.9

3
2

S
D

R
I+

,R
F

12
7
4
.3

2
.0

5
0
.0

%
0
.0

5
6

0
.9

2
8

S
D

R
I*

15
7
4
.8

2
.1

4
2
.7

%
0
.0

7
1

0
.9

1
7

S
D

R
I*

,R
F

8
7
4
.2

2
.1

4
4
.7

%
0
.0

7
4

0
.9

1
4

K
D

D
C

up

al
go

ri
th

m
k

au
c

±
co

v
w

ra
cc

di
v

K
B

S-
SD

15
8
9
.5

1
.1

4
8
.8

%
0
.0

3
6

0
.7

3
9

S
D

R
I+

20
8
6
.1

2
.8

4
7
.0

%
0
.0

5
3

0
.7

0
3

S
D

R
I+

,R
F

7
8
3
.6

2
.6

4
9
.8

%
0
.0

5
5

0
.7

0
3

S
D

R
I*

20
8
8
.8

1
.5

4
3
.5

%
0
.0

5
1

0
.7

1
9

S
D

R
I*

,R
F

7
8
4
.9

1
.4

3
9
.6

%
0
.0

5
0

0
.7

0
6

A
du

lt

al
go

ri
th

m
k

au
c

±
co

v
w

ra
cc

di
v

K
B

S-
SD

3
9
6
.0

3
.0

4
2
.7

%
0
.1

2
1

0
.6

6
9

S
D

R
I+

7
9
2
.0

7
.4

3
7
.6

%
0
.1

2
0

0
.6

4
3

S
D

R
I+

,R
F

4
9
1
.7

7
.0

3
5
.3

%
0
.1

2
0

0
.6

4
3

S
D

R
I*

6
9
1
.9

7
.3

6
0
.1

%
0
.1

2
3

0
.6

5
2

S
D

R
I*

,R
F

3
9
1
.0

6
.7

4
0
.6

%
0
.1

1
9

0
.6

5
2

Io
no

sp
he

re

al
go

ri
th

m
k

au
c

±
co

v
w

ra
cc

di
v

K
B

S-
SD

7
9
0
.4

3
.4

4
2
.2

%
0
.0

5
7

0
.8

9
3

S
D

R
I+

31
8
8
.4

4
.2

5
6
.8

%
0
.1

5
6

0
.7

9
6

S
D

R
I+

,R
F

3
8
7
.0

5
.3

6
6
.9

%
0
.1

3
9

0
.6

6
8

S
D

R
I*

27
8
9
.9

4
.0

5
5
.8

%
0
.1

6
4

0
.7

3
9

S
D

R
I*

,R
F

2
8
5
.7

5
.3

6
6
.9

%
0
.1

3
9

0
.6

6
8

C
re

di
tD

om
ai

n

al
go

ri
th

m
k

au
c

±
co

v
w

ra
cc

di
v

K
B

S-
SD

8
9
9
.1

1
.0

4
6
.2

%
0
.1

4
2

0
.6

1
5

S
D

R
I+

2
9
6
.1

2
.0

5
0
.0

%
0
.2

1
5

0
.2

4
4

S
D

R
I+

,R
F

2
9
6
.1

2
.0

4
9
.8

%
0
.2

1
5

0
.2

4
4

S
D

R
I*

6
9
6
.2

2
.0

5
0
.3

%
0
.2

1
4

0
.2

4
4

S
D

R
I*

,R
F

2
9
6
.4

1
.9

5
1
.4

%
0
.2

1
6

0
.2

5
4

Vo
tin

g-
R

ec
or

ds

al
go

ri
th

m
k

au
c

±
co

v
w

ra
cc

di
v

K
B

S-
SD

12
1
0
0

0
.0

6
9
.5

%
0
.0

8
6

0
.8

4
3

S
D

R
I+

6
9
8
.7

0
.2

4
3
.4

%
0
.1

9
5

0
.4

7
0

S
D

R
I+

,R
F

1
9
8
.6

0
.1

4
3
.4

%
0
.1

9
5

0
.4

7
0

S
D

R
I*

1
9
8
.6

0
.1

4
3
.4

%
0
.1

9
5

0
.4

7
0

S
D

R
I*

,R
F

1
9
8
.6

0
.1

4
3
.4

%
0
.1

9
5

0
.4

7
0

M
us

hr
oo

m
s

Table 4.2.: Performance of different subgroup discovery algorithms.

102

4.7. A connection to local pattern mining

the cross-validation procedure.
The interested reader may want to refer to a recent publication containing further related ex-

periments. Subsequent to the publication (Scholz, 2005e) on which large parts of this chapter
are based, and given the knowledge-based rejection sampling algorithm by the author of this
thesis, Dach (2006) successfully combined the generic sequential sampling algorithm (GSS) by
Scheffer and Wrobel (2002) (cf. subsection 3.3.2) with KBS-SD for sequential subgroup dis-
covery. The work9 contains an empirical study of the benefits and drawbacks of different utility
functions. Further, the difference between example weighting and rejection sampling was com-
pared empirically. As mentioned earlier, even the largest publicly available benchmark data sets
suited for subgroup discovery easily fit into main memory. For such small data sets, Dach (2006)
reports a reduced sample complexity of GSS, a significant gain in runtime, and a small advan-
tage in terms of predictive performance when using an example reweighting technique rather
than rejection sampling. For this kind of experiment, GSS was made capable of incorporating
example weights. From all the functions in the Q(α) family, the binomial test function performed
best in predictive settings, but, comparing to WRACC, GSS required much larger samples for
this choice. WRACC performed comparably well, until the ensembles reached a certain level of
saturation. As expected, the binomial test function was more robust against overfitting, which
mainly affects later iterations of KBS-SD.

4.7. A connection to local pattern mining

Despite its applicability to sequentially mine diverse rules (Scholz, 2005e), the presented sam-
pling technique has originally been proposed in the context of mining local patterns (Scholz,
2005b). A framework for this tasks has recently been established in two targeted workshops
(Hand et al., 2002; Morik et al., 2005), by collecting and integrating definitions from the statis-
tical and machine learning community. Patterns are defined as subsets of an instance space that
show an unusually high density. A consensus, first suggested by Hand (2002), distinguishes lo-
cal patterns from global patterns and from noise. Global patterns are easily recognized, because
their main characteristic is that they show as “high distortions” of the distribution underlying the
data. Typically a model of low complexity (e.g., having a low VCdim, p. 15) suffices to describe
global patterns. On the other side, local patterns need to be distinguished from random noise.
Random fluctuations and noise may easily lead to false discoveries, which are not supported by
the unknown distribution underlying the data, but are only valid by chance. The characteristics of
local patterns are, that they either cover only a small subset of the overall population, that shows
deviations from the predictions of a global model, or that they are of higher complexity than the
global model, and hence require hypotheses from a richer space to be captured. As illustrated by
the experiments in the last section, the KBS-SD algorithm allows to find a small set of diverse
rules. Each of them can be regarded as (covering) a local pattern. Finding deviations from a
user-given or previously trained global model is explicitly addressed by this technique. The risk
of false discoveries due to noise and statistical fluctuations can be controlled by (i) employing
the binomial test function (p. 23) in combination with a conservative minimal confidence level,
or by (ii) considering the confidence bounds discussed in subsection 3.3.2 (p. 51) for resulting
samples.

An approach related to knowledge-based sampling for rule discovery is described by Morik
(2002). Global and local patterns are discovered by a learner that selects rules in accordance to a
user-specified utility function and threshold. In a presented application, removing all examples

9The described work is a master’s thesis supervised by the author of this thesis.

103

4. Knowledge-based Sampling for Sequential Subgroup Discovery

that were correctly covered by a global model learned in the first step, and changing to a finer
grained hypothesis space in the second, allowed to find global and local patterns in an itera-
tive fashion. Three possible adaptations for the second learning step were proposed: Choosing a
larger hypothesis space by weakening the syntactical restrictions on rules, increasing the dimen-
sionality of examples by adding attributes, or changing the overall search strategy in favor of a
more exhaustive one.

Finding a global model first, with a set of coarse hypotheses, is an idea shared by the ap-
proach presented in this chapter. The main difference lies in the preprocessing step for finding
local patterns in the next run. Iteratively removing examples covered by a set of rules follows a
classical sequential covering approach. Each example is explained once in this setting, and can
be removed from further consideration. This is reasonable for “strong” rules, that is, for rules
with a precision close to 100%. For weak rules this is not attractive, because it is not possible to
correct the false positive errors of rules in subsequent iterations.

In this thesis, patterns are considered to be reflected by biased class distributions. Thus, finding
patterns goes beyond covering examples. The classical covering approach fails to detect several
kinds of overlapping patterns, especially global patterns covering local ones. An example is to
detect that the cancer rate of smokers is high (global pattern), but also, that smokers of a specific
strong cigarette brand have an even higher cancer rate. Following the KBS approach, covered
examples are not removed, but subsequent learners are “made aware” of mining local patterns
under the presence of these strong biases. They rather aim at explaining remaining deviations
in class distributions than at explaining single examples. It is still possible to choose different
model classes for mining local and global patterns. Relations between sequential covering (alias
separate-and-conquer) strategies and KBS will be pointed out in chapter 5.

Mining local patterns with models of different complexity, with a focus on kernel methods
and interpretability is a line of research elaborately discussed by Rüping (2006).

4.8. Summary

In this chapter, the idea of knowledge-based sampling has been presented, a generic technique
to make rule selection metrics sensitive to prior knowledge. The interestingness of rules is often
relative to a user’s expectation or previously found patterns. Still, even learning tasks that ex-
plicitly address the problem of finding novel and unexpected patterns lack a support for mining
in the presence of prior knowledge. A set of intuitive constraints has been proposed, that for-
malizes how to construct samples that are similar to the original distribution, but “orthogonal”
to expectation, so that subsequently applied rule induction techniques focus on novel patterns.
These constraints have been shown to uniquely define a new probability density function, which
can be operationalized by re-sampling or by introducing example weights.

The black-box sampling approach does not require to adapt the applied data mining algo-
rithms. It has been shown that it is easy to construct algorithms for this kind of sampling, which,
surprisingly, sample from the target distribution exactly, without requiring any estimates. The
runtime requirements have been shown to mainly depend on the accuracy of the provided prior
knowledge. This reflects the intuition gained from chapter 3, that a precise model requires addi-
tional patterns to be supported by a larger number of examples in order to guarantee significance
of findings.

Knowledge-based sampling applies to a broad variety of supervised learning tasks. Exem-
plarily, incorporating prior knowledge has been shown to be beneficial for the learning task of
subgroup discovery in this chapter. It can be used to make common subgroup discovery algo-

104

4.8. Summary

rithms, like MIDOS, sensitive to prior knowledge, without requiring an adaptation of the al-
gorithm itself. However, evaluating rules globally, as commonly done by subgroup discovery
algorithms, is known to result in overlapping patterns. To cover various aspects of a data set
it is more appropriate to construct sets of smaller rules, each of which captures a novel pat-
tern of its own. Knowledge-based sampling is a way to shift the focus of subgroup discovery
to undiscovered patterns, which allows to construct small sets of rules or other kinds of models
with high diversity. A novel sequential subgroup discovery technique based on stratification, it-
erative reweighting, and an arbitrary embedded rule learner has been presented. It sequentially
constructs intuitive distributions based on prior knowledge and any previously discovered pat-
terns. Unlike other sequential subgroup discovery algorithms, it is not biased towards correlated
sets of rules, but it tends to report approximately independent patterns. The results are hence
useful for predictive and descriptive analysis tasks. The sampling-based nature of the novel
algorithm allows to combine this technique with adaptive sampling, which allows to give prob-
abilistic (PAC-like) guarantees when sub-sampling from a large database. Combinations with
cost-proportionate rejection sampling and corrections of known sample selection biases in the
same framework are also straightforward.

Experiments with six real world data sets were provided, showing that the algorithm outper-
forms state of the art subgroup discovery based on alternative reweighting strategies. Using a
lower number of rules, the predictive performance of knowledge-based sequential subgroup dis-
covery still tends to be higher. Individual rules have a lower coverage, because each rule captures
a new aspect of the data. Although the diversities of the resulting rule sets are high, the results
are still robust to minor changes in the data.

The next two chapters adapt the knowledge-based sampling technique to the predictive task
of boosting classifiers.

105

4. Knowledge-based Sampling for Sequential Subgroup Discovery

106

5. Boosting as Layered Stratification

5.1. Motivation

When dealing with todays databases and data warehouses, KDD experts face a paradox situation:
On the one hand, PAC theory and statistical learning theory teach us that huge amounts of data
are required in order to identify complex accurate models with high confidence. On the other
hand, impractical runtime requirements prevent the application of popular learning algorithms
to very large databases.

In the presence of huge amounts of data approximately meeting the commonly made i.i.d. as-
sumption, sub-sampling provides a genuine way of learning in sub-linear or even constant time.
As discussed in section 3.3.1 (p. 48), the expected accuracy typically increases monotonically
with a growing sample size, but the gain in accuracy decreases rapidly with each additional ex-
ample. Hence, any learning algorithm scaling super-linearly may utilize sub-sampling in order
to decrease runtime complexities significantly at a comparably small sacrifice in accuracy.

This chapter will illustrate how knowledge-based sampling techniques may be used to com-
bine several models, each induced in sub-linear or even constant time with constant main mem-
ory requirements. For base learners like top-down induction of decision trees, such ensembles of
models can often even be expected to outperform a single model trained from all the data. To al-
low for this kind of application, the techniques presented in chapter 4 are first adopted to general
classification tasks. Please note that optimizing accuracy is a complementary goal to subgroup
discovery, the task studied in chapter 4. Subgroup discovery aims at finding interesting patterns
that are meaningful to a human analyst. The focal question of knowledge-based sampling is how
to preprocess the data, so that subsequent iterations of data mining do not report similar patterns
several times, but rather focus on uncorrelated new patterns. This fosters diversity (cf. p. 33) in
the resulting sets of models. It is important to change the underlying distribution in an intuitive
way, so that subsamples are meaningful and interpretable. The objective of boosting is “simply”
to increase predictive performance, while interpretability of models is desirable, but of minor
importance. The diversity of rule sets induced by KBS-SD and the close connection between
subgroup discovery and classifier induction illustrated by theorem 5 (p. 59) are indicators that
knowledge-based sampling may nevertheless be useful in a boosting context. Obviously, the
critical property is not scalability in this context, but how well the transformations of under-
lying density functions match the combination of classifier predictions in terms of predictive
performance.

Boosting is one of the most popular learning techniques in practice, but not yet fully un-
derstood in terms of its selection metrics and convergence behavior. This chapter analyzes a
boosting strategy derived from knowledge-based sampling. The KBS-SD algorithm 2 (p. 89)
can be adapted to the task of boosting in a straight-forward manner, simply by removing the ini-
tial step of stratification. Basically any crisp base classifier can be employed. In (Scholz, 2005a)
this very simple boosting strategy has empirically been shown to be competitive to state of the art
boosting algorithms for two-class problems. Further evidence has been provided by Foussette
et al. (2004) who report successful experiments with the KDD Cup1 data of 2004. A slightly

1http://kodiak.cs.cornell.edu/kddcup/

107

5. Boosting as Layered Stratification

improved version of the boosting algorithm sketched above is analyzed in this chapter. It shares
the basic ideas of KBS-SD, e.g., of stratifying the target attribute, leading to equal priors of
all classes and to equal priors when conditioning on the prediction of a model that is “sampled
out”. The main difference is, that the algorithm analyzed here introduces stronger skews to the
marginal distribution D : X → IR+ than necessary, violating constraint (4.2) (p. 73) proposed
in subsection 4.3.1. The skews are introduced to make the base learner focus on subsets with a
lower accuracy; the resulting target distributions are less intuitive, but are better suited to achieve
high predictive performance. This modified version is analyzed in order to show that it eases the
analysis of the algorithm drastically. Besides, it empirically tends to yield better results in terms
of predictive performance.

In order to point out similarities and differences of the novel KBS boosting strategy to exist-
ing algorithms, this chapter starts with a brief review of the well known ADABOOST algorithm.
An improved reweighting strategy is proposed that allows ADABOOST to take more advantage
of its base models, which is shown to generally increase the learning rate and hence the gener-
alization performance of boosting. The algorithm still searches a space of linear base classifier
combinations by repeatedly applying a crisp boolean classifier. The modified ADABOOST vari-
ant is then reformulated in terms of stratification and shown to be identical to KBS-SD up to
the mentioned introduction of marginal skews. As another contribution, this chapter provides
the first illustration of a boosting algorithm in ROC spaces, more precisely, in their unscaled
counterpart which are referred to as coverage spaces. The analysis shows that the novel boosting
technique shares some properties of separate-and-conquer rule learning. Furthermore, it allows
to derive a new upper bound for the AUC metric for a broader class of boosting algorithms based
on the reduction of the total example weight of a given training set.

This chapter is organized as follows: Section 5.2 introduces the specific coverage space nota-
tion required for the analytical part of this chapter, and it points out properties of stratification
in coverage spaces that go beyond those described in subsection 3.4.1 (p. 56). ADABOOST is
discussed and adapted in section 5.3. Proofs on the improved learning rate and an interpretation
in coverage spaces illustrate the benefits of the adapted version, but also provide a better un-
derstanding why boosting works. In section 5.4 the theoretical results are complemented by an
empirical evaluation of generalization performances. Section 5.5 summarizes and concludes.

5.2. Preliminaries

This section provides the background required to analyze boosting techniques in coverage spaces.
Subsection 5.2.1 introduces the coverage space notation. Basic properties of stratifying complete
example sets in coverage spaces are discussed in subsection 5.2.2.

5.2.1. From ROC to coverage spaces

ROC analysis has become a popular tool for analyzing classifier performances and to study eval-
uation metrics (see section 2.5). The unscaled counter-part, referred to as coverage spaces, are
well suited to visualize the nested subspaces of separate-and-conquer rule learning (Fürnkranz
& Flach, 2005). The only difference to ROC spaces is that the axes of coverage spaces show
the absolute numbers of positives and negatives, while in ROC spaces both axes are scaled to
a range of [0, 1]. This chapter confines itself to boolean classification problems, so models are
functions mapping an instance space X to a boolean target label, for mathematical simplicity
chosen as Y = {+1,−1}. The following definitions used throughout this chapter are chosen to
be similar to those used in (Fürnkranz & Flach, 2005) for rule learning in coverage spaces. In

108

5.2. Preliminaries

Figure 5.1.: Nested coverage spaces

the subsequent analysis, the symbols are more convenient than TP, FP, TN, and FN (cf. p. 25).
The letter always reflects the true label of an example in this notation.

Definition 37 For a model h : X → Y and a given data set E with an absolute number of P

positive examples and N negative examples, the absolute number of true positives is denoted
as p, the number of false positives as n. Analogously, the absolute number of false negatives is
denoted as p, the absolute number of true negatives as n.

Figure 5.1 shows nested coverage spaces from specific to general as obtained when adding a
single rule to a decision list in each iteration. The p + n examples for which the rule applies
are removed from further consideration and the remaining examples are represented by nested
rectangles of shrinking size. Analogously, refining a rule adding one literal at a time shrinks the
covered subsets from general to specific.

As discussed in section 2.5, a typical application of ROC analysis in machine learning is
to visualize soft classifiers that yield continuous confidence scores of how likely examples are
considered to be positive. Each crisp classifier obtained by applying a threshold to a soft classifier
is represented in a ROC diagram as a point depicting the resulting true positive rate p/P and false
positive rate n/N (see section 2.5 or (Fawcett, 2003)). The area under the resulting ROC curve
(AUC) equals the probability that a randomly selected positive example is ranked higher (higher
confidence) than a randomly selected negative example. Maximizing the AUC is a learning task
of its own right and has also been shown to lead to a competitive but more robust selection of
models for maximizing predictive accuracy (Rosset, 2004). In this chapter, a quantity closely
related to the AUC is analyzed, the area over the curve in coverage spaces. An asterisk indicates
unscaled quantities in coverage space rather than ROC space. A weighted version of the AOC∗

will turn out to be useful at a later point.

Definition 38 For a given soft classifier and example set E = E+ ∪ E− of positive examples
E+ and negative examples E−, the area over the curve in coverage spaces (AOC∗) is defined as
the number of misranked tuples (e+, e−) ∈ E+ × E− of a positive example e+ and a negative
example e−, that is the number of pairs for which e− is predicted positive with higher confidence
than e+. Each pair (e+, e−) with weights w+ and w− is accounted for by w+ ·w− misranks.

Ties are considered to be broken randomly, so that half of all equally ranked pairs are considered
to be misranked. It is easily seen that AOC∗ = (1−AUC) ·P ·N for the unweighted case, which

109

5. Boosting as Layered Stratification

is a special case of the weighted case with w+ := 1, w− := 1. An example with a weight of w

naturally represents an example set of size w.

5.2.2. Properties of stratification

As discussed in subsection 3.4.1, stratification is a preprocessing step commonly applied in
machine learning for tasks like incorporating misclassification costs depending only on the true
label, or to overcome known sample selection biases in the data. ROC spaces can be interpreted
as stratified coverage spaces. Before addressing the question of how to boost base classifiers
by stratifying subsets of the data, the step of stratification in coverage spaces is discussed for
complete data sets.

Definition 31 (p. 56) captures the transformation of a distribution D underlying the data for the
case in which classes are required to be equally likely. A simplified version of algorithm 1 (p. 77)
proposed in section 4.4 allows to sample from D ′ exactly, e.g., for i.i.d. data streams or very
large databases. Alternatively, stratification can simply be realized by weighting, choosing class-
dependent factors with the property that afterwards the total weights of classes meet specified
target proportions, e.g. 50% for a boolean target attribute Y .

Class ratios can be skewed arbitrarily at any time, either by weighting or by sub-sampling.
It is clear, that this does not change the performance of random classifiers for the original
data. As discussed in subsection 2.5.1, the slope of the ROC diagonal represents the precision
Pr(y = +1 | h(x) = 1) of all random classifiers that do not incorporate any data at all, but
just predict y = +1 with a fixed probability. Although the term “random classifiers” suggests
a bad choice, any finite combination of models making discrete decisions ends up with atomic
subsets (cf. Def 35, p. 93) of the instance space X . These subsets contain all examples for which
the same predictions or decisions are made by each base classifier. If we would visualize each
atomic subset in a separate ROC plot, then the classifier predictions would all lie on the corre-
sponding ROC diagonals, because they do not depend on further properties of examples. This
holds for the leaves of a decision tree as well as for a weighted majority vote of discrete base
learners (cf. Subsec. 2.6.1).

The subsequently presented learning technique can be considered to continuously improve the
performance of a random classifier by stratification. In order to preserve fundamental semantics,
it is suggested not to change the AOC∗ during the process of stratification, because it reflects
the absolute ranking error. This constraint is further justified at a later point. For the original
data, the random classifier AOC∗ equals half the area of the corresponding coverage space, so
AOC∗ = (P ·N)/2. The constraint translates into P ′ ·N ′ = P ·N for the new values P ′ and N ′

obtained by skewing P and N, respectively.
The learning algorithms used in this chapter are assumed to implicitly normalize the training

set so that the weights describe a distribution. The total weight is hence irrelevant for learning;
only the class ratios P/N and P ′/N ′ are of interest for stratification.

Proposition 9 The reweighting rule for changing the ratio of P/N by a factor of c while meeting
the constraint P ·N = P ′ ·N ′ is unique:

w ′(x, y) := w(x, y) ·

{ √
c, for positive y

1√
c

, for negative y

Proof
It directly follows that after reweighting we have

P ′ =
√

cP , N ′ =
N√
c

,
P ′

N ′ = c , P ′ ·N ′ = P ·N.

110

5.3. Boosting

Multiplying positives with a constant of c ′ requires to divide negatives by the same constant to
satisfy the constraint. Only c ′ =

√
c is valid, since P ′/N ′ = c ′2.

As required, the weighting does not change the AOC∗ (Def. 38). Stratification is a specific case
of skewing the data, leading to equal class proportions. It has a further important property in the
context of boosting. The utility of the following result will become clear in Sec. 5.3.

Proposition 10 Among all skewing operations preserving P ·N, stratifying the data by choosing
c = N/P leads to the minimal total example weight.

Proof
As a constraint, all reweighted sets share the property P ′ · N ′ = P · N. The total weight to be
minimized is P ′+N ′ =

√
cP +N/

√
c. Setting the derivate of P ′+N ′ as a function of c to zero

yields the desired result.

5.3. Boosting

This section starts with a review of the well known ADABOOST algorithm in 5.3.1. This algo-
rithm is modified and shown to take more advantage of the base classifiers in subsection 5.3.2.
Subsection 5.3.3 simplifies the resulting algorithm by reformulating it in terms of stratification,
which leads to an algorithm that is very close to the KBS-SD algorithm proposed in the last
chapter. Based on a coverage space analysis, an upper bound for the AUC and further properties
are shown for the original ADABOOST and for the new algorithm in subsection 5.3.4. Finally,
based on the similarity between the new technique and KBS-SD, it is shown in subsection 5.3.5
how to naturally integrate biased classifiers into boosting.

5.3.1. AdaBoost

The ensemble method of boosting allows to induce a set (or ensemble) of classifiers by repeat-
edly running a “weak” base learner. In each iteration the training set is slightly altered, assigning
higher weights to subsets that have been misclassified in previous iterations. Ensembles predict
in terms of voting (cf. Subsec. 2.6.1). Boosting is an effective way to increase predictive accu-
racy and other metrics like the AUC of a weak learner. It allows to reach arbitrarily accurate
combined classifiers, as long as each weak hypothesis is slightly better than random guessing in
each iteration.

The best known, most studied, and probably the most frequently applied ensemble method
is ADABOOST (Freund & Schapire, 1997), see algorithm 3. It fits a sequence of base models
ht : X → Y , each to a reweighted version of the training set, or to an analogously constructed
subsample, respectively. The term I[·] used in the algorithm refers to the indicator function, αt

denotes the weight assigned to base model t, and εt is the error rate of this model. To simplify
subsequent analysis, the algorithm is formulated without the weight normalization step, assum-
ing that this is implicitly handled by the base learner if required. For a (weighted) error rate of
εt of the base classifier in iteration t and

βt(x) := (1 − εt)/εt = exp(2αt) (5.1)

111

5. Boosting as Layered Stratification

Algorithm 3 ADABOOST for y ∈ {+1,−1}

Initialize weights w1(xi, yi) := 1 for (xi, yi) ∈ E
for t = 1 to k do

ht ← base learner(E , wt) // train base classifier, use weights wt

Compute εt :=
∑|E |

i=1 wt(xi, yi)I[ht(xi) 6= yi] // error rate of classifier
Let αt := 1

2 ln 1−εt
εt

wt+1(xi, yi) := wt(xi, yi) · exp(−yiαtht(xi)) // reweight all examples
end for
Output classifier: For example x predict label ŷ := sign

(∑k
i=1 αtht(x)

)

the reweighting strategy computes

wt+1(x, y) = wt(x, y) · exp(−yαtht(xi)) =

k∏
t=1

(
√

βt)
−y·ht(x) (5.2)

as the new weight for each example (x, y) ∈ E ⊆ X × Y , starting with uniform weights. All
examples with a final weight wt+1 of less than 1 will be classified correctly, because∑

t|ht(x)=y

αt >
∑

t|ht(x) 6=y

αt

⇔ 1/2

 ∑
t|ht(x)=y

ln
1 − εt

εt
−
∑

t|ht(x) 6=y

ln
1 − εt

εt

 > 0

⇔ k∏
t=1

(
√

βt)
y·ht(x) > 1

⇔ wt+1(x, y) < 1.

In turn, examples with a weight of greater than 1 are misclassified. Clearly, the total weight
upper-bounds the training error. For this reason one of the most important properties of ADA-
BOOST is that it reduces the total weight quickly if the base learner provides useful models
ht : X → Y , i.e. models better than random guessing.

Intuitively, the reweighting scheme of ADABOOST gives higher weight to the “hard” examples
of the training set, and finally predicts based on a weighted majority vote. However, ADABOOST

can also be explained in different ways, for example in terms of entropy projection (Kivinen &
Warmuth, 1999). A statistical perspective has been fostered by Friedman et al. (2000). They
point out ADABOOST’s similarity to additive logistic regression; this method is based on the
same principle as logistic regression (cf. Subsec. 2.6.3), but it iteratively fits functions to the
data. Starting with the original input data, it adds another “base function” fit to the residuals
of the current model in each iteration. From an optimization point of view, ADABOOST fits
into a broader framework proposed by Mason et al. (1999), namely the so-called AnyBoost
framework. The optimization strategy of ADABOOST is a gradient descent search in function
space, following the objective to minimize the exponential loss function

Lexp(F, E) =
∑

(x,y)∈E

exp(−yF(x)), with F(x) :=

k∑
t=1

αtht(x)).

112

5.3. Boosting

This function has the example-wise minimizer

F(x) =
1

2
log
(

Pr(y = +1 | x)

Pr(y = −1 | x)

)
which is approximated by the prediction rule of ADABOOST.

Finally, the good performance of ADABOOST was also explained by its property of maxi-
mizing the margin (Schapire et al., 1998). This property has recently been shown not to hold in
the limit, which can be corrected by a minor modification of the algorithm, however (Rätsch &
Warmuth, 2005).

Several extensions have been proposed in the last years. Examples include confidence-rated
variants (Schapire & Singer, 1999), a version that incorporates prior knowledge (Schapire et al.,
2002), and another one that exploits input-dependent properties more rigorously (Jin et al.,
2003). Oza and Russell (2001) presented a variant capable of mining from i.i.d. data streams.
Quinlan (2001) and Hoche and Wrobel (2002) proposed adaptations for multi-relational data.

The classical ADABOOST algorithm has been presented more than one decade ago, but is
still on the agenda of research. For example, ADABOOST’s excellent ranking behavior in terms
of the area under the ROC curve metric has just recently been explained by its similarity to
another well known boosting algorithm called RANKBOOST (Freund et al., 2003), if equal loss
is suffered from positive and negative examples (Rudin et al., 2005). In combination with a
calibration method proposed by Platt (1999), boosted decision trees have recently been reported
by Niculescu-Mizil and Caruana (2005) to yield excellent probability estimates, outperforming
e.g, support vector machines.

Despite some short-comings, the original version proposed in (Freund & Schapire, 1997) is
probably still the best-known and most popular boosting algorithm in practice. Top-down induc-
tion of decision trees, e.g., the C4.5 algorithm by Quinlan (1993), is a well suited base learning
technique. In its most simple form, nowadays referred to as DECISIONSTUMPS, they induce
trees consisting of a single node only (Holte, 1993). Large empirical studies with decision tree
base learners have consistently shown that for most data sets boosting outperforms single trees
and bagging (cf. subsection 2.6.1) unless the noise rate is very high (Quinlan, 1996; Bauer &
Kohavi, 1999; Dietterich, 2000), and that boosting DECISIONSTUMPS is often competitive to
boosting larger trees (Freund & Schapire, 1996). As an important property for practical applica-
tions, ADABOOST has been reported to hardly ever overfit to the training data.

5.3.2. ADA2BOOST

One disadvantage of ADABOOST is that it does not take full advantage of its models. For il-
lustration we consider a classification rule covering significantly less than half of the examples
(respecting weights), but having a low error rate for this subset. Such a model is generally useful
for ensemble learning. However, it is not necessarily useful for ADABOOST, because the error
rate of the large uncovered part might be significantly higher, resulting in a value of αt ≈ 0.

Such asymmetric cases can be handled by using separate estimates of the error rate for the
covered part, defined as Ct := {(x, y) ∈ E | ht(x) = +1}, and the uncovered part Ct := {(x, y) ∈
E | ht(x) = −1}, respectively. Both local error rates, denoted as

ε+ := n/(p + n) for Ct, and ε− := p/(p + n) for Ct

can easily be computed from the contingency matrix and will usually differ. Please note, that for
Ct the negative examples are the correctly classified ones. We will replace the static values of
βt by functions βt(ht(x)) that depend only on the prediction of their corresponding base model

113

5. Boosting as Layered Stratification

ht(x) ∈ {+1,−1}. This leads to two separate factors, the odds ratio for Ct, and the reciprocal
odds ratio for Ct:

β(+1) :=
1 − ε+

ε+
=

p

n
, β(−1) :=

1 − ε−

ε−
=

n

p
(5.3)

With α(h(x)) := (ln β(h(x))/2 the weight update of ADABOOST changes to

wt+1(xi, yi) := wt(xi, yi) · exp [−yi · αt(ht(xi)) · ht(xi)] .

The rule for predicting a label ŷ ∈ {+1,−1} is changed accordingly:

ŷ := sign

(
k∑

t=1

αt(ht(x))ht(x)

)
(5.4)

This adapted version of AdaBoost is referred to as ADA2BOOST in this chapter. It does not
require regression-capabilities of its base learners, as e.g. LogitBoost (Friedman et al., 2000)
does when using working responses and weights at the same time. ADA2BOOST is only analyzed
in combination with plain boolean base classifiers.

ADA2BOOST is similar to the confidence-rated REAL ADABOOST (Schapire & Singer, 1999),
which allows for continuous predictions ht : X → IR. REAL ADABOOST reweights examples
using the same rule

wt+1(xi, yi) := wt(xi, yi) · exp(−yiαtht(xi))

as used by ADABOOST. The more general setting of continuous functions ht requires to opti-
mize αt “manually” based on standard optimization techniques, however. Again, the objective is
to minimize the total example weight. The final prediction rule of REAL ADABOOST is identical
to the one shown in algorithm 3 for ADABOOST.

If each ht takes only values from {+1,−1} the choice of asymmetric model weights made
by ADA2BOOST reduces weights optimally (see Prop. 10). Differences to REAL ADABOOST

are that ADA2BOOST (i) uses / supports boolean crisp base classifiers, adding confidence-like
scores as part of the boosting procedure, and (ii) that it incorporates confidence ratings only in
a very moderate form, which constrains the potential to overfit to the training data; when using
the same fixed number of base models, ADA2BOOST selects ensemble models from almost the
same search space as ADABOOST:

Proposition 11 If estimated error rates are bounded away from zero, the search spaces of ADA-
BOOST and ADA2BOOST for boolean classification tasks are identical up to a constant additive
offset.

Proof
A model of the form given by eqn. (5.4) can be transformed into another classifier of the form

ŷ := sign

(
α ′

0 +

k∑
t=1

α ′
thi(x)

)
, (5.5)

with offset α ′
0 and model weights α ′

1, . . . , α
′
k ∈ IR by computing for each model the averages

avg0,t :=
αt(+1) + αt(−1)

2
,

114

5.3. Boosting

and setting

α ′
t := αt(1) − avg0,t α ′

0 :=

k∑
t=1

avg0,t.

The transformed model (5.5) is obviously equivalent to the original model.

Aiming to minimize generalization error, it is quite natural to bound the error rates away from
0, e.g., by using Laplace or m-estimates (Cestnik, 1990) for pure subsets. In other boosting
variants, similar techniques are referred to as “smoothing”.

Although the difference in expressiveness seems marginal, it allows ADA2BOOST to take
more advantage of its base models:

Theorem 8 If ε = ε+ = ε− then the reweighting strategies of ADABOOST and ADA2BOOST

are identical. Otherwise ADA2BOOST reduces the weights more efficiently.

Proof
ADABOOST reweights the p + n = 1 − ε correctly classified examples multiplying with

√
β,

and misclassified examples dividing by the same term. Hence, the total weight

Wt+1 =

|E |∑
i=1

wt+1(xi, yi)

in iteration t + 1 can be computed as

Wt+1 =
1√
β

[(1 − ε)Wt] +
√

β [εWt]

= 2Wt

√
ε · (1 − ε) (5.6)

= 2Wt

√
(p + n)(p + n).

ADA2BOOST reweights the p + n covered examples (C) multiplying their weights with

√
β(+1)

(±1)
=

(√
ε+

1 − ε+

)±1

=

(√
n/(p + n)

1 − n/(p + n)

)±1

=

(√
n

p

)±1

.

Since weights of positive examples are divided by and weights of negative examples are multi-
plied with

√
p/n, the weight of C is reduced from Wt · (p + n) to

Wt

(
p/
√

p/n + n
√

p/n
)

= 2Wt
√

p · n.

The weight of C changes analogously, applying the factor√
β(−1)

(±1)
=
√

n/p
(±1)

instead, so the new total weight for ADA2BOOST is

Wt+1 = 2Wt ·
(√

p · n +
√

p · n
)

.

115

5. Boosting as Layered Stratification

We hence need to show √
(p + n)(p + n) ≥

√
p · n +

√
p · n,

where the term on the left reflects the weight decrease achieved by ADABOOST, and the term
on the right the decrease achieved by ADA2BOOST. The inequality follows from√

(p + n)(p + n) ≥
√

p · n +
√

p · n⇔ (p + n)(p + n) ≥ pn + pn + 2
√

pnpn⇔ pp + nn ≥ 2
√

pnpn⇔ (pp)2 + 2pnpn + (nn)2 ≥ 4pnpn⇔ (pp − nn)2 ≥ 0.

Both strategies yield the same result if and only if pp = nn. This is equivalent to

p

n
=

n

p
⇔ p/(p + n)

n/(p + n)
=

n/(n + p)

p/(n + p)
⇔ 1 − ε+

ε+
=

1 − ε−

ε−
⇔ ε+ = ε−

If n or p are 0, then either both error rates need to be 0, or one of the local error rates is undefined,
because the subset contains no examples. The fact that ε is a weighted average of ε+ and ε−

completes the proof.

As a consequence, for sequences of k base classifiers with fixed weighted error rates εi, i ∈
{1, . . . , k}, the worst case for ADA2BOOST is to be identical to ADABOOST. If γi := 1/2 − ε

denotes the advantage over random guessing, recursively applying eqn. (5.6) yields

Wk+1 = |E | ·
k∏

i=1

(
2
√

εi · (1 − εi)
)

= |E | ·
k∏

i=1

√
1 − 4γi

as the total final example weight in this case (Freund & Schapire, 1997). As mentioned before,
this quantity upper-bounds the absolute number of misclassified training examples for both en-
semble methods.

Usually ADABOOST tends to generate a diverse or approximately independent set of base
classifiers. The reason is that when sub-sampling an example e weight-proportionally after
reweighting in iteration i, then the boolean random variable “hi classifies e correctly” is in-
dependent of the class label. Any remaining correlations of subsequent base classifiers with
hi are implicitly compensated by reducing the corresponding model weight appropriately. The
following proposition helps to derive corresponding properties of ADA2BOOST.

Proposition 12 After ADA2BOOST reweights for the first time, we have P ′ = N ′. After each
iteration t, the subsets Ct and Ct corresponding to the model ht are both stratified. The error
rates ε+

t and ε−
t of ht are exactly 1/2 with respect to wt+1.

This result can directly be derived from the weighting scheme. From these properties it can be
concluded that the same kind of base classifier independence that holds for ADABOOST may also
be assumed for ADA2BOOST ensembles; label and correct predictions are again independent
after each reweighting step. Besides, there is evidence for an even stronger kind of independence:
ADA2BOOST reweights the example set so that the individual labels and predictions of the model

116

5.3. Boosting

are independent if interpreted as random variables. Since neither the base learner does have
access to the predictions of previous iterations, nor are they considered in later reweighting
steps, conditional independence emerges as a natural phenomenon in this setting.

The prediction rule of ADA2BOOST suggests that it performs especially well for conditionally
independent base classifiers. Denoting with PrDt(·) probabilities based on weights wt, it uses
a product of βt terms as defined in eqn. (5.3) to compute odds-ratio estimates β̂(x), exploiting
that for the true odds β(x) we have

β(x) =
Pr(y = +1 | h1(x), . . . , hk(x))

Pr(y = −1 | h1(x), . . . , hk(x))

=
Pr(h1(x), . . . , hk(x) | y = +1)

Pr(h1(x), . . . , hk(x) | y = −1)
· Pr(y = +1)

Pr(y = −1)
· Pr(h1(x), . . . , hk(x))

Pr(h1(x), . . . , hk(x))

≈ Pr(y = +1)

Pr(y = −1)
·

k∏
t=1

PrDt(ht(x) | y = +1)

PrDt(ht(x) | y = −1)

=
Pr(y = +1)

Pr(y = −1)
·

k∏
t=1

(
PrDt(y = +1 | ht(x)) · Pr(ht(x)) · Pr(y = −1)

PrDt(y = −1 | ht(x)) · Pr(ht(x)) · Pr(y = +1)

)

=
Pr(y = +1)

Pr(y = −1)
·

k∏
t=1

LIFTDt(ht(x)→ y = +1)

LIFTDt(ht(x)→ y = −1)

=

k∏
t=1

PrDt(y = +1 | ht(x))

PrDt(y = −1 | ht(x))
. (5.7)

This is again a NAÏVEBAYES-like combination of classifiers. The last equality holds because
of the stratification property described by Prop. 12, holding for all but the first model. Hence,
the first lift ratio (for t = 1) contains the reciprocal class skew, while for all other models the
lift ratio is identical to the ratios of conditional class probabilities. This simple interpretation
requires base models to have discrete prediction domains.

If the independence assumptions are met, then the weight subscripts in eqn. (5.7) may be
ignored, because the odds ratios are equivalent for all distributions. Without these subscripts,
eqn. (5.7) is an exact reformulation of NAÏVEBAYES on top of the base model predictions ht(x).
This yields the Bayes’ optimal decision rule in this setting, so it clearly succeeds no worse in
selecting the most probable class than ADABOOST. Moreover, exploiting that for the true odds
ratios β(x) we have

Pr(y = +1 | x) =
β(x)

1 + β(x)
,

each estimated value of β̂(x) can easily be transformed into a probability estimate.
Even in cases where conditional independence is lacking, ADA2BOOST fits an additive model

to the log-odds. This suggests that it may yield good estimates of conditional class distributions
in any case.

5.3.3. A reformulation in terms of stratification

The reweighting strategy of ADA2BOOST is very similar to the stratification proposed in sec-
tion 5.2.2. In each iteration, both the covered (C) and the uncovered subset (C) are stratified
separately in the sense of Prop. 9. This motivates a reformulation of the algorithm in terms of

117

5. Boosting as Layered Stratification

Algorithm 4 ADA2BOOST for y ∈ {+1,−1}

Let w1(x, y) := 1 for all (x, y) ∈ E // Init with uniform weights
// Train k base classifiers:
for t = 1 to k do

ht ← base learner(E , wt)

β ′
t(+1) := pt/nt, β ′

t(−1) := pt/nt // Compute odds ratios
For all (x, y) ∈ E let

wt+1(x, y) :=
wt(x,y)√
β ′

t(ht(x))
y // Stratification

end for
Output soft classifier:

β̂(x) :=
∏k

t=1 β ′
t(ht(x)) // Estimated odds ratio

P̂r(y = +1 | x) = β̂(x)/(1 + β̂(x)) // Estimated probability of y = +1

stratification. Algorithm 4 is equivalent to the previously discussed ADA2BOOST, but the for-
malization is more intuitive. As a first difference, the use of exponential or logarithmic functions
(αt values) seems to be unnecessarily complicated and is avoided; ADA2BOOST only requires
the βt values. Second, the algorithm uses β ′

t, terms that always refer to the odds ratios, while
the previously used βt referred to the reciprocal odds ratios whenever a base classifier predicted
the negative class.

The resulting algorithm boosts boolean base classifiers in a very simple fashion: In each itera-
tion t another stratified (for t > 1, cf. Prop. 12) example set is presented to the base learner. The
learner returns a base classifier ht : X → {+1,−1} that partitions the example set into “unstrat-
ified” subsets C and C; this automatically happens when maximizing accuracy, because we are
implicitly maximizing WRACC (cf. theorem 5, p. 59). The terms pt, pt, nt, and nt denote the
true positives to false negatives of model ht based on example weights wt. For both partitions, C
and C, the odds ratios are computed and stored for later predictions, before stratifying the subsets
separately, respecting the constraint stated in Prop. 9. When predicting a label, the local odds are
combined applying eqn. (5.7), which allows to derive conditional probability estimates.

After the reformulation, ADA2BOOST can easily be seen to be very similar to KBS-SD (algo-
rithm 2, p. 89). Both algorithms work by stratifying the subsets C and C separately. ADA2BOOST

does not stratify in advance, but we also have equally probable classes after the first iteration.
This implies that the base learner implicitly maximizes the WRACC metric, like the base learner
of KBS-SD. Stratification could as well be performed before the first iteration.

In subsection 4.3.1 the reweighting scheme of KBS-SD was motivated in terms of constraints
(p. 73). The reweighting rule of ADA2BOOST also changes a probability density function under-
lying the data. This rule satisfies almost all constraints.

Proposition 13 After an initial step of stratification the reweighting rule of ADA2BOOST satis-
fies constraints (4.1), (4.3), and (4.4) to (4.7).

Proof
The first constraint (4.1), independence of true label y and predicted label ht(x) for (x, y) ∼

Dt+1, is met because of Prop. 12 that states

(∀y∗, ŷ ∈ Y) : PrDt+t(y = y∗ | ht(x) = ŷ) = 1/2.

Prop. 12 also directly implies constraint (4.3), not to change the class priors; all subsequent pdfs
are stratified. Algorithm 4 does not stratify in advance, but the original class priors can still be

118

5.3. Boosting

re-established (as for KBS-SD) by inverting the initial step of stratification, which is part of the
first reweighting step.

Constraints (4.4) to (4.7) require altered density functions D ′ to be proportional to the original
pdf D within each subset sharing a true and a predicted label. This property holds, because the
densities of examples within each subset are defined by rescaling proportionally.

There are further connections between ADA2BOOST and KBS-SD. First, the square roots of
the odds used by ADA2BOOST cancel out when applying the model. As the class priors of both
classes are identical, the odds ratios β ′

t(ht(x)) are identical to the LIFT ratios used by KBS-
SD. Hence, both algorithms use the same prediction rule. Second, the property of atomic subsets
(Def. 35) to reflect the residuals of ensemble predictions – stated by theorem 7 (p. 93) for KBS-
SD – can be shown to also hold for ADA2BOOST. For simplicity, this result is formulated with
respect to the training error.

Proposition 14 Let H = {hi | 1 ≤ i ≤ k} be a set of models output by the ADA2BOOST

algorithm. Let further S refer to a subset of examples, for which all rules in H make the same
prediction, and let β̂(S) denote the corresponding odds ratio estimate of ADA2BOOST. If the
unweighted (true) odds ratio in S with respect to uniform weights is s · β̂(S) for any s ∈ IR+,
then the corresponding odds ratio with respect to the final weights is s.

Proof
The prediction β̂(S) is a product of individual base classifier odds ratios β ′

t(·). Weights of pos-
itives are divided by

√
β ′

t(·) in iteration t, while weights of negatives are multiplied with the
same term. This implies that in iteration t the ratio of total positive to total negative example
weight in S changes by a factor of (β ′

t(·))−1. The final odds ratio in S is hence β̂(S) times lower
after reweighting.

The only constraint that is violated by the reweighting rule of ADA2BOOST is (4.2). It requires
to preserve the coverages of C and C. Please recall from theorem 6 (p. 74), that if constraint (4.2)
would also hold, then the reweighting rule would necessarily be identical to the one used by
KBS-SD. KBS-SD preserves the coverages of both sets, while ADA2BOOST introduces a skew
due to the square root transformation. This will be illustrated in the next paragraphs.

5.3.4. Analysis in coverage spaces

Figure 5.2 shows a step of stratification for two partitions, e.g. for a classification rule in coverage
space. The two boxes represent the performances of two dual rules

(ht(x) = +1)→ (y = +1) and

(ht(x) = −1)→ (y = −1),

where the slope of the diagonal is β ′
t(+1) = p/n for the former, and β ′

t(−1) = p/n for the
latter. Stratification turns each of these boxes into a square (hence Ada2), while preserving the
enclosed areas. This step is illustrated on the left.

Stratification is a transformation of the underlying distribution (cf. Def. 31, p. 56) that can
be inverted precisely when making predictions. In sub-sampling scenarios the stratification step

119

5. Boosting as Layered Stratification

Figure 5.2.: ADA2BOOST transforms the boxes representing C and C into squares (left Fig.) by
reweighting. Moving these squares to the upper right (right Fig.) yields a coverage
subspace with the new origin 0 inside of the outer coverage space, and with the new
axes P ′ and N ′.

for both subsets can again be operationalized exactly by Monte Carlo techniques. A substantial
difference to the reweighting strategy discussed in the last chapter is the dependency of the cov-
erages of C and C on the corresponding precisions of the model. Figure 5.3 illustrates the differ-
ence between the two reweighting schemes. KBS-SD also stratifies the data, but it preserves the
coverage. For stratified data the isometrics of coverages are diagonal lines, connecting the points
(0, 1) and (1, 0). Hence, without explictly addressing the changing coverages the simple but pre-
cise knowledge-based rejection sampling algorithm (p. 77) does not realize the transformations
of the underlying pdf defined by ADA2BOOST. Referring to the true values of p and n with
respect to an underlying pdf, ADA2BOOST changes the coverage of e.g. C from p + n under Dt

to 2
√

pn under Dt+1. That is, the coverage changes by a factor of
√

pn/(0.5 ·(p+n)), the quo-
tient of geometric and arithmetic mean. Sampling exactly from Dt+1 seems to be considerably
more complicated, because the true values of p and n are usually unknown2. However, for large
data sets the target coverages can well be approximated based on samples. Alternatively, the
aggregated ensemble estimates may be used to compute weights for rejection sampling, with the
same disadvantage as discussed in the preceeding chapter: Refining the estimates (and weights)
of any model ht during the procedure will change subsequent pdfs and hence the performances
of all models ht ′ , t ′ > t. Refining estimates is not common in the context of boosting, however.

It is interesting to note that the role of the base learner can as well be stated in terms of
stratification. Its objective is to divide E into “unstratified” subsets, which are continuously
stratified (conquered) by the meta-algorithm, as long as the base learner succeeds. In separate-
and-conquer rule learning examples that are covered are removed from subsequent learning
iterations. Similarly, boosting can be considered to probabilistically discard examples. The main
difference is, that it only discards a subset of the correctly predicted examples by turning boxes

2Surprisingly, without the square root term sampling precisely would still be easy. To sample from this pdf D ′ it
is sufficient to sample example pairs from D, and to accept only those pairs which have one positive and one
negative example. It seems hard to realize the square root transformation, however.

120

5.3. Boosting

Figure 5.3.: The reweighting step of KBS-SD in coverage spaces.

in coverage spaces into squares.
Moving both squares in Fig. 5.2 to the upper right we reach at a visualization of boosting

in nested coverage spaces. The weight lost by this transformation shows in the figure on the
right as the part of the axes of the original coverage space below and left to the embedded
coverage space. Since the complete data set is stratified itself, the nested coverage spaces share
the proportions of ROC spaces.

Exactly those examples having a weight of greater than 1 are misclassified. Prop. 10 states,
that ADA2BOOST reduces the total weight as much as possible, while respecting the constraint
to preserve the area of each subset in coverage space. Additionally, Fig. 5.2 illustrates that for a
single step of stratification the AOC∗ of the classifier before stratification is upper-bounded by
half the area of the nested coverage space: The AOC∗ is

pn + (pn + pn)/2,

while the nested coverage space has a size of

2
√

pn · pn + pn + pn.

The following theorem generalizes this observation. It states, that the bound holds in general,
i.e. for complete ensembles, and that it applies to both ADABOOST variants.

Theorem 9 The absolute ranking error (AOC∗) of ADABOOST and ADA2BOOST ensemble
models for the original (unweighted) data is upper-bounded by the AOC∗ of the model after
reweighting, that is the AOC∗ of the ensemble for the inner nested coverage space.

Proof
The crucial observation is, that final confidences and weights are closely related. A pair of ex-
amples (e+, e−) with weights w+ and w− will be misranked, iff the estimated confidence of
being positive is higher for e− than for e+. The confidences are monotone in the estimated odds
ratios β̂(e+) and β̂(e−). Applying the reweighting scheme of ADA2BOOST recursively for an
ensemble of size k we find that

wk+1(x, y) =

k∏
t=1

√
β ′

t(ht(x))
(−y)

.

121

5. Boosting as Layered Stratification

Figure 5.4.: Illustration for proof of theorem 9. Each example is visualized as a part of the cor-
responding axis. The length is proportional to the example weight. Weights of pos-
itives ascend along the P ′ axis, weights of negatives descend along the N ′ axis.
Whether a pair of a positive and a negative example is misranked or not depends
only on the area of the corresponding rectangle in the (inner) coverage space above.
The border where areas become larger than 1 is depicted as a thick line. Concavities
can be exploited for stratification.

At the same time we have

β̂(x) =

k∏
t=1

β ′
t(ht(x)).

This implies

w+ =

√
1

β̂(e+)
and w− =

√
β̂(e−). (5.8)

For misranked example pairs (e+, e−) we have

β̂(e−) > β̂(e+)⇔ (w−)2 > 1/(w+)2 ⇔ w+ ·w− > 1. (5.9)

We can derive the same connection between β̂ and example weights when substituting the ADA-
BOOST reweighting rule.

It implies that each misranked pair (e+, e−) “occupies” a rectangle with an area of at least 1 of
the inner nested coverage space. All rectangles representing different pairs (e+, e−) are disjoint.

122

5.3. Boosting

Hence, if the nested coverage space has a size of P ′ · N ′, then this quantity upper-bounds the
AOC∗ of the ensemble for the original data.

When ordering examples by confidence, as for soft classifier ROC plots, the weights of posi-
tives ascend along the P axis, while the weights of negatives descend along the N axis. Hence,
the areas of rectangles representing example pairs grow monotonically when approaching the
upper left corner (0, P ′). The border where areas become larger than 1 is marked as a thick line
in Fig. 5.4. Example pairs share their estimated odds along the border. Apart from the scale,
Fig. 5.4 is a ROC plot of the ensemble for the reweighted example set; a threshold is associated
to each point of the border. By construction we expect the ensemble to perform as good as ran-
dom guessing after reweighting, leading to an AOC∗ of (P ′ · N ′)/2. In this case only half of
the total nested coverage space represents misclassified pairs (areas ≥ 1), which also halves the
AOC∗ upper-bound for the original (unweighted) data. The same argument applies for any other
AOC∗ score.

The constraint formulated in Prop. 9 is required for the proof when deriving eqn. (5.9) for ADA2-
BOOST. More precisely, the important property is that the weights of positives are multiplied and
the weights of negatives are divided by the same term for each subset. As a consequence, the
upper-bound of theorem 9 does not only hold for ADABOOST, but also for any other reweight-
ing scheme following Prop. 9, in particular for REAL ADABOOST-like ensemble classifiers. The
derived bounds are tighter than those provided in (Schapire & Singer, 1999), based only on the
worst case AOC∗ of P ′ ·N ′. To the best of the author’s knowledge theorem 9 provides the first
AUC (AOC∗) bound based on ranking performances after reweighting.

According to theorem 8, ADA2BOOST reduces the total example weight and hence the size
of the coverage space optimally within this setting, apart from the fact that it is still a greedy
algorithm. The coverage spaces of ADABOOST are not necessarily stratified. However, by finally
adding a single constant base classifier to each ensemble, which just stratifies the data, it is easily
seen that the total weight also determines the area of coverage spaces for ADABOOST. This
stresses the role of quick weight reductions even further.

Exploiting the fact that coverage spaces are stratified for ADA2BOOST we can directly derive
a corresponding upper-bound for the AUC:

Corollary 2 For an example set E = E+ ∪ E− a reduction of the initial weight of |E | to W

results in an AUC ≥ 1−W2/(8 · |E+| · |E−|) if the AUC of the ensemble is at least 1/2 (random
guessing) for the reweighted example set.

Serious concavities as shown in Fig. 5.4, i.e. AUCs � 1/2 after reweighting, seem not to occur
in practice. However, they would not pose a problem anyway, but would rather be well suited to
further reduce the total weight, e.g. by stratification, partitioning at a point most distant to the
main diagonal. This step is illustrated in the figure.

Finally it should be mentioned, that the quicker weight reduction is also an advantage in the
minimum description length (MDL) framework of Rissanen (1978). According to information
theory (Shannon & Weaver, 1969), an optimal coding strategy requires − log2(P̂r(y | x)) bits
to encode an example (x, y) ∈ X × Y if the predicted conditional class probability of the (true)
label y is P̂r(y | x) according to a given model. For y = +1 and example weight w the predicted
conditional probability used by ADA2BOOST can be rewritten (see eqn. (5.8)) as

P̂r(y = +1 | x) =
β̂(x)

1 + β̂(x)
=

1/w2

1 + 1/w2
=

1

w2 + 1
,

123

5. Boosting as Layered Stratification

resulting in an encoding length of log2(w
2 + 1). For y = −1 the reciprocal odds ratios are used

instead of β̂, which leads to the same term with respect to the example weights. Substituting
the formulas used by original ADABOOST leads to the same encoding length with respect to the
weights.

Corollary 3 For a given example set E and an ADABOOST or ADA2BOOST ensemble model
producing example weights w1, . . . , w|E | after training, the label can be encoded using

|E |∑
i=1

log2(w
2
i + 1)

bits according to information theory.

The main goal in the MDL framework is a reduction of the overall encoding length. This can
first of all be justified by “Occam’s razor” which suggests to prefer simpler models over complex
ones. In more technical terms, if we assume that the encoding length of each model reflects
its prior probability, a minimization of the accumulated encoding length of the selected model
and training set leads to a maximum a posteriori model. See e.g. (Mitchell, 1990) for a simple
derivation. The MDL principle has successfully been applied in various contexts, e.g. for pruning
decision trees (Mehta et al., 1995).

The weight reduction of the ADABOOST variants is not directly backed by e.g., a proportional
reduction of the encoding length for the training set, because of the constant offsets of 1 that are
added to the (squared) weight terms. However, the corollary suggests a quick reduction of the
encoding length as the total weight decreases. Please note that – due to the logarithmic trans-
formation – the exponent alone would have no effect in an optimization framework. Corollary 3
illustrates that ADA2BOOST tends to maximize the likelihood of ensembles, similar to logistic
regression, but using a cheap sequential approximation strategy. The encoding length of the ap-
plied models needs to be accounted for separately, so if the models used by ADABOOST and
ADA2BOOST are of a comparable complexity (length), as e.g. given when boosting DECISION-
STUMPS, then according to Prop. 11 the quicker weight reduction of ADA2BOOST will generally
lead to a more efficient overall reduction of the encoding length for any fixed number of models.
Additional models used by ADABOOST to compensate the difference (if possible) increase the
overall encoding length.

5.3.5. Learning under skewed class distributions

ADA2BOOST is a boosting technique based on layered stratification. An interesting related and
somehow diametric idea recently proposed by Khoussainov et al. (2005) is to introduce class
skews artificially, in order to get highly confident predictions for a specific class. ADA2BOOST

allows to naturally integrate so-called biased classifiers trained on data sets that were skewed
for an arbitrary constant c > 0 in the sense of Prop. 9. The crucial observation is that skewing
the data leads to exactly the kind of unbalanced decision rules that were used to motivate ADA2-
BOOST in subsection 5.3.2. As was shown, ADA2BOOST handles asymmetric precisions well.
It stratifies the sets C and C separately. If a complete example set is skewed artificially, then the
global skew can be used to adapt the odds ratios β ′

t(·) of a model ht to fit the skewed data. It is
sufficient to redefine

β ′
t(+1) :=

p

n
· N

P
=

p

n
· Pr(y = −1)

Pr(y = +1)
and

β ′
t(−1) :=

p

n
· N

P
=

p

n
· Pr(y = −1)

Pr(y = +1)
,

124

5.4. Evaluation

Algorithm 5 Skewed ADA2BOOST for y ∈ {+1,−1}

Compute P1/N1 from training set E
for t = 1 to k do

Randomly select π+ ∼ N(0.5, 0.25), 0 < π+ < 1

Skew E so that // done via multiplying weights with constant c±1

Pt := Pr(y = +1) = π+

Nt := Pr(y = −1) = 1 − π+

ht := base learner(E) // learning based on reweighted example set
Compute

β ′
t(+1) := (pt/nt) · (Nt/Pt)

β ′
t(−1) := (pt/nt) · (Nt/Pt)

Stratify C and C // reweighting as for ADA2BOOST

end for
Output: β̂(x) = (P1/N1) ·

∏k
t=1 β ′

t(ht(x))

P̂r(y = +1 | x) := β̂(x)/(1 + β̂(x))

where the estimates for p, n, p, n, and Pr(y = ±1) are computed from the skewed data sets. It
is not necessary to keep track of introduced skews, only the initial value of P/N is required at
prediction time. The odds ratios above reflect the values for stratified data. When the data has not
been skewed “manually” the redefinition is identical to the one used by algorithm 4, so one can
always apply the more general redefinition. Please note that the β ′

t(·) values above are simply
the LIFT ratios (LR) introduced in chapter 4 (p. 90) for KBS. The corresponding prediction rule
is invariant to artificial skews.

Algorithm 5 illustrates how to integrate biased classifiers into the overall boosting framework,
combining the layered stratification approach of ADA2BOOST with the idea of Khoussainov
et al. (2005). A classifier trained for a specific ratio of Pt/Nt can only improve over the default
classifier by identifying a classifier ht with a precision satisfying Pr(y = +1 | ht(x) = +1) >

Pt/(Pt +Nt), so each skew can be interpreted as a confidence threshold for a specific class. The
depicted variant simplifies matters by choosing the skews at random. It is meant as a proof of
concept, that allows for preliminary empirical evaluation. Alternatively, the training set could be
split into 3 or more partitions by running the base learner at different levels of skew. Using more
than 2 partitions is a valid extension of ADA2BOOST, following the same rationale, to stratify
each individual subset separately.

5.4. Evaluation

In the previous sections ADA2BOOST has been presented. It relies on classifiers to divide the
example set into partitions having a ratio of p/n that differs from P/N. These partitions are
iteratively stratified. Skewed ADA2BOOST changes P/N randomly, which does not interfere
with making predictions but allows to introduce confidence thresholds. Both variants reduce the
total example weight more quickly than ADABOOST does, which leads to quicker improvements
of the accuracy and area under the ROC curve metric (AUC). This section empirically evaluates
the generalization performance with respect to these two metrics. Moreover, evidence has been
provided, that ADA2BOOST may perform well as a soft classifier for estimating conditional class
probabilities. Hence, as a third metric the root mean squared error (RMSE, p. 20) is used in the

125

5. Boosting as Layered Stratification

evaluation. For the experiments 4 benchmark data sets taken from the UCI library3 (Blake &
Merz, 1998), and a 10k sample of the quantum physics data set from KDD Cup 2004 were used.

The WEKA library (Witten & Frank, 2000) provides ADABOOST and DECISIONSTUMPS as
base learners. ADA2BOOST was implemented in YALE4 (Mierswa et al., 2006) without any op-
timizations like Laplace estimates or repairing concavities. DECISIONSTUMPS are popular base
classifiers in practice, and they do not apply a greedy search themselves, which eases the eval-
uation of greedily operating boosting techniques. In the proposed experimental setting, REAL

ADABOOST with “reasonable” confidence ratings for each decision stump yields the same pre-
dictions as ADA2BOOST. The focus of the evaluation is hence on AUC maximization and its re-
lation to ACC optimization; for error rate minimization please refer to (Schapire & Singer, 1999)
or (Freund & Mason, 1999), because technically seen ADA2BOOST is a specific confidence-
rated boosting algorithm.

To give a full picture of the performances, full learning curves for different numbers of base
models are shown in Fig. 5.5 to 5.9, where the red curve always refers to ADA2BOOST and the
green curve to ADABOOST. Each point in the plots is the result of a ten-fold cross-validation.
The example sets are ordered by their number of attributes, which intuitively and empirically
seems to be a good indicator of possible improvements over ADABOOST. The results illustrate
that boosting in fact maximizes all three considered metrics simultaneously, with AUC and
RMSE providing finer-grained indicators of progress than ACC. The moderate adaptation of
ADABOOST does not only improve the ACC learning rate of the original algorithm, but also
leads to similar improvements for the metrics AUC and RMSE.

The difference between ADABOOST and ADA2BOOST for Credit-G (Fig. 5.6) containing very
few examples and attributes (16) are the smallest (if any), lying within half a standard deviation.
The adult data set contains even one attribute less, but 8K examples. This leads to a small, but
still significant improvement: For all three metrics and e.g. 10 or 50 stumps it passes a t-test
at a confidence level of 2%. For the remaining data sets the advantages are much clearer. E.g.,
for mushrooms ADA2BOOST produces a perfect ranking with only 9 (Fig. 5.7(b)), and perfect
soft predictions with 19 stumps (Fig. 5.7(c)). ADABOOST requires 24 stumps to rank perfectly
and 100 stumps to reach an RMS of about 2% (ACC 99.9%). For musk, the curves differ most
drastically (Fig. 5.9). It is the smallest data set, containing less than 500 examples, but about 170
attributes. The monotonicity of the AUC plots, well visible e.g. for the KDD Cup data, reflects a
high robustness of this metric. AUC and RMSE behave similarly for all data sets. Even for data
sets with minor improvements in the limit ADA2BOOST seems to be the more economic choice
whenever computational costs are an issue.

3http://www.ics.uci.edu/∼mlearn/MLRepository.html
4http://yale.sf.net/, operator name: BayesianBoosting, set
allow_marginal_skews=true

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0 5 10 15 20 25 30 35 40 45 50

AdaSquare/DS
AdaBoost/DS

(a) predictive accuracy

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 5 10 15 20 25 30 35 40 45 50

AdaSquare/DS
AdaBoost/DS

(b) area under the curve

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0 5 10 15 20 25 30 35 40 45 50

AdaSquare/DS
AdaBoost/DS

(c) root mean squared error

Figure 5.5.: Adult data set, 15 attributes, 32K examples

126

5.4. Evaluation

 0.67

 0.68

 0.69

 0.7

 0.71

 0.72

 0.73

 0.74

 0 2 4 6 8 10 12 14 16 18 20

AdaSquare/DS
AdaBoost/DS

(a) predictive accuracy

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0 2 4 6 8 10 12 14 16 18 20

AdaSquare/DS
AdaBoost/DS

(b) area under the curve

 0.415

 0.42

 0.425

 0.43

 0.435

 0.44

 0.445

 0.45

 0.455

 0.46

 0 2 4 6 8 10 12 14 16 18 20

AdaSquare/DS
AdaBoost/DS

(c) root mean squared error

Figure 5.6.: Credit domain data set, 16 attributes, 690 examples

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 5 10 15 20 25 30

AdaSquare/DS
AdaBoost/DS

(a) predictive accuracy

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 5 10 15 20 25 30

AdaSquare/DS
AdaBoost/DS

(b) area under the curve

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 5 10 15 20 25 30

AdaSquare/DS
AdaBoost/DS

(c) root mean squared error

Figure 5.7.: Mushrooms data set, 23 attributes, 8K examples

 0.66

 0.665

 0.67

 0.675

 0.68

 0.685

 0.69

 0.695

 0.7

 0.705

 0 5 10 15 20 25 30 35 40 45 50

AdaSquare/DS
AdaBoost/DS

(a) predictive accuracy

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0 5 10 15 20 25 30 35 40 45 50

AdaSquare/DS
AdaBoost/DS

(b) area under the curve

 0.43

 0.435

 0.44

 0.445

 0.45

 0.455

 0.46

 0.465

 0.47

 0.475

 0 5 10 15 20 25 30 35 40 45 50

AdaSquare/DS
AdaBoost/DS

(c) root mean squared error

Figure 5.8.: KDD Cup 2004 quantum physics data, 80 attributes, 10K sample

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 5 10 15 20 25 30 35 40

AdaSquare/DS
AdaBoost/DS

(a) predictive accuracy

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25 30 35 40

AdaSquare/DS
AdaBoost/DS

(b) area under the curve

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 5 10 15 20 25 30 35 40

AdaSquare/DS
AdaBoost/DS

(c) root mean squared error

Figure 5.9.: Musk data set, 169 attributes, 476 examples

127

5. Boosting as Layered Stratification

 81

 82

 83

 84

 85

 86

 87

 88

 89

 90

 91

 92

 1 2 3 4 5 6 7 8 9 10

ac
cu

ra
cy

iterations

skewed Ada2Boost
unskewed Ada2Boost

Figure 5.10.: A tenfold cross-validated run of skewed vs. unskewed ADA2BOOST for the iono-
sphere data set, base learner is CONJUNCTIVERULE. When the data is not skewed
artificially the base learner returns the default hypothesis after a few iterations.
Skewing helps to overcome this problem and to further increase predictive accu-
racy.

Figure 5.10 shows the performances of skewed and unskewed ADA2BOOST for the iono-
sphere data set, also part of the UCI repository. This is an example for which the skewed version
of ADA2BOOST proves useful, because the base learner, a rule induction algorithm, ends up
returning the default rule after just a view iterations. In contrast, the random skews allow to
focus on different subsets in each iteration. Skewing the data for classifier induction deserves
further attention, as it provides a simple technique to maximize diversity, but also to increase the
significance of findings.

5.5. Conclusions

Boosting is one of the practically most relevant data mining techniques. In this chapter, the
knowledge-based sampling approach proposed in the preceeding chapter has been turned into a
very efficient boosting strategy. It has been analyzed in coverage spaces, which helped to gain
further insights, i.e. why boosting implicitly increases the AUC. Similarities between boosting
and rule learning have been illustrated by visualizing the boosting process in the form of nested
coverage spaces.

A novel upper-bound for the AUC has been derived based on the total example weight, It
holds for ADABOOST, the novel ADA2BOOST algorithm, but also for the confidence-rated REAL

ADABOOST. The derived novel ADA2BOOST has been shown to improve the learning rate of
ADABOOST when optimizing accuracy and the AUC, and to optimally reduce the total example
weight for given crisp base classifiers. The improvements over ADABOOST have been confirmed
empirically for different metrics, including accuracy for crisp predictions, and AUC and the
root mean squared error metric for estimated conditional class probabilities. ADA2BOOST is

128

5.5. Conclusions

nevertheless a simplification of ADABOOST, as it simply stratifies subsets of the data.
As an additional benefit, it has been shown that ADA2BOOST allows to naturally include

biased base classifiers; class ratios can be skewed arbitrarily in order to enforce a minimum
confidence of a base model. That way, ensemble methods based on biased classifier induction
can be tightly integrated into the framework of boosting.

The similarity between KBS-SD and ADA2BOOST pointed out in this chapter illustrates why
sequentially identifying unexpected patterns is a viable approach to both descriptive and predic-
tive data mining. Applicability to data stream mining have, up to now, only briefly been discussed
in connection with sampling techniques, mainly addressing the issue of refining the performance
estimates of models based on additional data. The next chapter presents a powerful extension of
KBS-SD that even allows to boost classifiers induced from data streams suffering from concept
drift.

Parts of this chapter are based on the publication (Scholz, 2006).

129

5. Boosting as Layered Stratification

130

6. Boosting Classifiers for Non-Stationary
Target Concepts

6.1. Introduction

Many real-world data sets are collected over an extended period of time. As shown in chap-
ters 4 and 5, it is possible to induce highly accurate ensemble classifiers from huge amounts
of data in constant time, as long as the training data approximately show the characteristics of
an i.i.d. sample. Providing on-line predictions for streaming data is a typical application. In do-
mains where the data generating process may change over time, the KDD expert meets with
additional burdens. Model induction from outdated training data clearly lacks any justification.
As a major problem, common cross-validation strategies may yield overly optimistic estimates
if not explicitly taking concept drift into account. Both the training and the validation set are by
construction bootstrap samples sharing a single underlying distribution in this case. This distri-
bution is an average over the available training data. At application time, however, it will usually
be outdated if the underlying distribution is non-stationary.

Unfortunately, for many domains it is natural that the data-generating distributions are non-
stationary. Companies collect an increasing amount of data, like sales figures and customer data,
to find patterns in the customer behavior and to predict future sales. As the customer behavior
tends to change over time, the model underlying successful predictions should be adapted ac-
cordingly. Most recommender-like systems face a similar problem, for example when guiding
a user’s search on the World Wide Web (Joachims et al., 1997), or when filtering email (Co-
hen, 1996). The interest of a user, i.e. the concept underlying the classification of texts, and the
document content change over time. A filtering system should be able to adapt to such concept
changes. Another domain that obviously shares the property of non-stationary distributions is
finance, i.e. the continuously changing stock market or business cycles of the global economy.
As the last two examples illustrate, the speed of real-world concept drifts may range from sud-
den changes (crashing stock market) to concepts drifting slowly over years. The term business
cycles suggests that the accuracy of individual models oscillates over time; later on, older exam-
ples may become useful again. To detect the kind of drift underlying a data stream helps to gain
additional insights into the domain, and constitutes an analysis goal in its own right.

This chapter extends the knowledge-based sampling algorithm to data streams and makes it
capable of adapting to drifting concepts. This will allow to quantify drifts in terms of previously
induced base learners. After formalizing the concept drift problem in subsection 6.2.1, previous
approaches addressing this problem are briefly outlined in subsection 6.2.2. Section 6.3 discusses
related work on ensemble methods for data streams, and introduces a boosting-like algorithm for
data streams that naturally adapts to concept drift. In section 6.4, the approach is evaluated on
two real-world data sets with different simulated concept drift scenarios, and on one economic
data set that exhibits real concept drift. Section 6.5 summarizes the results.

131

6. Boosting Classifiers for Non-Stationary Target Concepts

6.2. Concept drift

6.2.1. Problem definition

To a large degree the formal problem studied in this chapter follows the definitions from sec-
tion 2.1. There is an instance space X , a boolean target attribute Y = {+1,−1}, and an un-
derlying probability density function D : X × Y → IR+. D is changing over time, however:
Following the framework of Klinkenberg and Joachims (2000), data arrives in batches. Without
loss of generality, these batches are assumed to be of equal size, each containing m examples:

e(1,1), ..., e(1,m)︸ ︷︷ ︸
batch 1

, e(2,1), ..., e(2,m)︸ ︷︷ ︸
batch 2

, · · · , e(t,1), ..., e(t,m)︸ ︷︷ ︸
batch t

, e(t+1,1), ..., e(t+1,m)︸ ︷︷ ︸
batch t+1

e(i,j) = (xi,j, yi,j) denotes the j-th example of batch i. For each batch i the data is sampled
i.i.d. from Di, a batch-dependent pdf. The difference between pdfs Di and Di+1 reflects the
amount and type of concept drift. These properties can only be observed indirectly from the
corresponding samples. The learner aims to sequentially predict the labels of the next batch and
to minimize the cumulated number of prediction errors. For example, after batch t the learner
can use any subset of the training examples from batches 1 to t to predict the labels of the
subsequent batch t + 1.

Learners designed for such batch scenarios can be applied to a continuous stream of examples
by imposing batches artificially. Hence assuming batches is no major limitation.

Sudden or abrupt concept drifts, where the complete change of the target concept happens
from one example (or batch) to the next, are often called concept shifts. In contrast, concept
drifts with a slowly changing target concept and the change happening over a longer period of
time are often referred to as continuous or smooth concept drifts.

6.2.2. Related work on concept drift

In machine learning, changing concepts are often handled by moving time windows of fixed or
adaptive size over the training data (Mitchell et al., 1994; Widmer & Kubat, 1996; Klinkenberg
& Renz, 1998; Hulten et al., 2001) or by weighting data or parts of the hypothesis according
to their age and/or utility for the classification task (Taylor et al., 1997). The latter approach of
weighting examples has already been used for information filtering in the incremental relevance
feedback approaches of (Allan, 1996) and (Balabanovic, 1997).

For windows of fixed size, the choice of a “good” window size is a compromise between fast
adaptivity (small window) and good generalization in phases without concept change (large win-
dow). A fixed window size makes strong assumptions about how quickly the concept changes.
While heuristics can adapt to different speed and amount of drift, they involve many parameters
that are difficult to tune. The basic idea of adaptive window management is to adjust the window
size to the current extent of concept drift.

Drifting concepts can also be learned effectively and efficiently with little parameterization by
an error minimization framework for adaptive time windows (Klinkenberg & Joachims, 2000)
and example weighting or selection (Klinkenberg & Rüping, 2003; Klinkenberg, 2004). This
framework makes use of support vector machines (SVMs) and their special properties, which
allow for an efficient and reliable error estimation after a single training run (Joachims, 2000).

The methods of the framework either maintain an adaptive time window on the training data
(Klinkenberg & Joachims, 2000), select representative training examples, or weight the training
examples (Klinkenberg & Rüping, 2003; Klinkenberg, 2004). The key idea is to automatically

132

6.3. Adapting ensemble methods to drifting streams

adjust the window size, the example selection, and the example weighting, respectively, so that
the estimated generalization error is minimized. The approaches are unparameterized, have been
analyzed theoretically, and have been shown to work well in practice.

6.3. Adapting ensemble methods to drifting streams

This section presents a novel ensemble method for data streams, which has some appealing
properties in the presence of concept drift. Subsection 6.3.1 briefly reviews related work on
ensemble methods for non-stationary distributions, 6.3.2 motivates the use of knowledge-based
sampling in this context, before the KBS boosting algorithm is adapted along these lines in
subsection 6.3.3.

6.3.1. Ensemble methods for data stream mining

In recent years, many algorithms have been specifically tailored towards mining from data
streams. The goals of the algorithms vary, depending on the assumed scenarios. Apart from
being able to cope with concept drift, scalability is one of the most important issues. As dis-
cussed in previous chapters, the induction of classifiers like decision trees is very efficiently
possible, even for very large data sets. Using a sampling strategy based on Hoeffding bounds,
the VFDT algorithm efficiently induces a decision tree in constant time (Domingos & Hulten,
2000). An extended version of this algorithm updates the tree based on a time window of fixed
length, which allows to compensate concept drift up to a certain degree (Hulten et al., 2001). By
combining several trees to an ensemble of classifiers, techniques like bagging (Breiman, 1996)
and boosting (Freund & Schapire, 1997) have been shown to significantly improve predictions
for many data sets (see also subsection 2.6.1 and 5.3.1). For some of these ensemble algorithms,
corresponding online variants for stationary data streams have been suggested, see e.g. (Oza &
Russell, 2001; Lee & Clyde, 2004).

The SEA algorithm (Street & Kim, 2001) induces an ensemble of decision trees from data
streams and explicitly addresses concept drift. It splits the data into batches and fits one decision
tree per batch. To predict a label, the base models are combined in terms of a uniform voting
scheme. As soon as the number of base models exceeds a user specified constant, models are
discarded using a heuristic approach. The authors do not report an increase in classification
performance compared to a single decision tree learner, but state that the ensemble recovers
from concept drifts. The recovery time of this approach seems unnecessarily long, however, as
it only exchanges one model per iteration and does not make use of confidence weights.

Another interesting approach proposed by Fan (2004) is based on unweighted base learners,
similar to Random Forests (Breiman, 2001). It exploits example selection to include only useful
older data into the training set. Examples from earlier batches are only included if predicted
correctly by both, the latest model and a recent (assumed optimal) one. Cross-validation experi-
ments may still cause the learner to discard all old examples and to rely on a new model that has
been learned from scratch. This allows to adapt more quickly to sudden drift than possible with
SEA. However, as the author points out, it is a heuristic selection strategy. Further disadvantages
are the required assumption of a fixed marginal distribution, that is a fixed probability to observe
a specific instance, regardless of its label, and high computational costs if a different base learner
is used.

A recent theoretical analysis suggests, that weighted base learners are a preferable alternative
in domains with concept drift (Kolter & Maloof, 2005). The ADDEXP algorithm steadily updates

133

6. Boosting Classifiers for Non-Stationary Target Concepts

the weights of experts (base models in an ensemble), and adds a new expert each time the en-
semble misclassifies an example. The new experts start to learn from scratch, using a weight that
reflects the loss suffered by the ensemble on the current example. All experts are continuously
trained on all new examples.

The main result reported for ADDEXP is a worst case error bound that can be stated in terms of
the generalization performance of the best member of its ensemble (expert). This guarantee can
only be given if a new base model is added to the ensemble whenever ADDEXP misclassifies a
new example, however. This leads to a very large number of experts, which all have to be updated
by ADDEXP for each new example. Hence, for practical applications the authors propose to use
a computationally more efficient, heuristic variant instead. The goal of ADDEXP is to identify
a single best expert, in order to upper-bound the worst case error rate. In contrast, for many
applications it is more desirable to minimize the expected error rate. As discussed in previous
chapters, boosting allows to achieve performances that go beyond those of any individual expert.

More practically oriented work that addresses learning from data streams is described by Stan-
ley (2003) and Wang et al. (2003). The former of these approaches trains a weighted fixed-size
committee of incremental decision trees, all of which are updated whenever a new example ar-
rives. At each point in time the performance of all base models is estimated based on a window of
fixed size. Poorly performing models are discarded and replaced by a new decision tree, trained
from all subsequently read examples. A disadvantage of this “fixed number of base classifiers”
approach is that it does not induce ensembles of diverse base models, like boosting algorithms do
by appropriately reweighting examples. The approach rather leads to redundant ensembles, be-
cause the examples are not weighted individually for different base learners, and the most recent
parts of the training sets are identical. Updating all incremental decision trees simultaneously
may turn out to be expensive during concept drifts. It still cannot be expected to outperform
adaptive time window approaches, as it implicitly maintains heuristically derived weights for
the most recent examples.

The approach presented in (Wang et al., 2003) reads training data in batches, and it trains
one classifier per batch. Even during stationary phases without drift no classifier is ever trained
from more than a single batch. Consequently, large batch sizes are required. The performance of
each classifier is estimated based on just the most recent classified batch in each iteration, and
the inverse (estimated) error rate is used to weight the model. The authors prove that – given
that the estimates are precise – this weighting scheme outperforms a single classifier trained
from all the data during concept drift. This result is not surprising when comparing to boosting
approaches, where an improvement in accuracy can be expected for each additional base model,
especially if exact performance estimates can be provided. However, unlike boosting procedures,
the presented approach does not weight examples. As a consequence, introducing diversity into
ensembles is possible only by applying heuristics during a pruning procedure.

The algorithm that will be presented in subsection 6.3.3 is adopted from the procedure pre-
sented in section 4. It trades predictive performance for scalability. To this end, the online al-
gorithm reads examples aggregated to batches and decides for each batch, whether to add a
new expert to the ensemble or not. Unlike in SEA and similar algorithms, the base models of
the ensemble are combined by a weighted majority vote. Subsequent models are trained after
reweighting the examples of the new batch, and each new base classifier model is assigned a
weight that depends on both, its own performance and the performance of the remaining ensem-
ble. Adaptation to concept drift works by continuously re-estimating the weights of all ensemble
members, similar to the procedure presented in (Wang et al., 2003), but with each weight fit to
the residuals of the (already) weighted ensemble of previous base models. This last aspect is very
similar to logistic regression, with the predictions of base models acting as constructed features.

134

6.3. Adapting ensemble methods to drifting streams

Figure 6.1.: Continuous concept drift, starting with a pure Concept 1 and ending with a pure
Concept 2. In between, the target distribution is a probabilistic mixture. It is optimal
to predict Concept 1 before the dotted line, and Concept 2, afterwards.

6.3.2. Motivation for ensemble generation by knowledge-based sampling

As a motivation for the subsequently presented knowledge-based sampling (or example weight-
ing) technique, figure 6.1 illustrates the main idea for a simplified concept drift scenario. The
underlying assumption is that during a concept drift all examples are sampled from a mixture
distribution, which can be thought of as a weighted combination of two pure distributions char-
acterizing the target concepts before and after the drift. In the figure, the initial target concept
is simply referred to as Concept 1. Examples are sampled from a corresponding stationary dis-
tribution up to the first dotted vertical line. A learning algorithm may simply induce a model
from all the data, which will predict Concept 1. Now, as the drift starts and a Concept 2 over-
laps Concept 1, this model will show a decreasing accuracy. Please note that in the intermediate
batches the label can best be described as a probabilistic combination of different concepts. The
best model during the drift can be derived in terms of Bayes’ decision rule. For simplicity we
assume diametric concepts in the figure, and a correctly trained model for Concept 1 when the
drift starts. In this situation there is a point in time (a batch), up to which the Bayes’ optimal clas-
sifier predicts Concept 1. This can be concluded from the assumed generative model, because
whenever there is a conflict between both concepts, then Concept 1 is more likely to be correct.
The point up to which knowing about Concept 2 is useless for making predictions is shown as
a thick dotted vertical line in figure 6.1. After that point it is optimal to predict Concept 2. It is
not clear how to induce an appropriate model without seeing a few batches sampled from a pure
corresponding distribution. Such batches are available to the learner only after the last dotted
vertical line, but between the second and last line we would already like to predict Concept 2.

One of the main motivations for the boosting-like algorithm presented in this chapter is that,
given an accurate model for Concept 1, it allows to decompose the mixture distribution during
the concept drift. Thus, it is possible to construct a sample with respect to Concept 2 as soon
as the drift starts (first dotted line). This look-ahead strategy is inherently different from all
approaches discussed in subsection 6.3.1, and it allows to adapt to drifts very quickly. The main
reason is that it exploits more of the information encoded into the stream. Please note, that even
between the thick and the final dotted lines the model for Concept 1 is not useless, because it still

135

6. Boosting Classifiers for Non-Stationary Target Concepts

helps to “purify” subsequent batches by “subtracting” the deprecated Concept 1. The resulting
model is a probabilistic ensemble classifier, for which Bayes’ decision rule can explicitly be
applied when crisp predictions are required.

As discussed in chapter 5, the KBS algorithm is at the same time a boosting algorithm, hence,
as for other boosting approaches, the example weights anticipate the expectation given the pre-
dictions of previously trained models. This is especially useful for handling smooth concept
drifts. While sudden drifts require a quick detection and a way to rapidly adjust the working
hypothesis, for smooth drifts it is better to collect information on the new target concept over a
period of time. Especially if the preceding concept has been identified accurately at the point in
time when a drift starts, removing the knowledge about the current concept from the data allows
to decompose mixture distributions as required.

6.3.3. A KBS-strategy to learn drifting concepts from data streams

In this chapter, the KBS-SD algorithm shown on page 89 is adapted, rather than ADA2BOOST.
The rationale for this choice is that the difference is small for the studied case of very small
batch sizes, but it seems reasonable not to introduce additional marginal skews if the distribution
of the data stream itself varies from batch to batch. As discussed in chapter 5, it is sufficient to
remove the stratification step of KBS to reach at a boosting algorithm, see also (Scholz, 2005a).
The pseudo-code of KBS-SD on page 89 assumes that the complete training set is available
for training. The first step to adopt to data streams is hence to read and classify examples itera-
tively. For subsequent learning steps the reweighting strategy of KBS allows to compute exam-
ple weights very efficiently. The data is assumed to arrive in batches, each one large enough to
train an initial version of a base classifier.

The sizes of the training sets that are effectively used for each model are determined dynam-
ically by the algorithm. Processing a new batch yields two ensemble variants. The first variant
appends the current batch to the cache used for training in the last iteration, and it refines the
latest base model accordingly. The second variant adds a new model, which is trained using the
latest batch, only. Only the ensemble variant performing better on the next batch is kept.

The strategy serves two purposes. First, for stationary distributions a new model is trained
only, if there is empirical evidence that this increases the accuracy of the resulting ensemble. This
will generally happen if the learning curve of the latest model has leveled off (see Subsec. 3.3.1
or (John & Langley, 1996)), and the data set is well suited for boosting. Second, if sudden
concept drift (concept shift) occurs, the same estimation procedure instantly suggests to add a
new model, which will help to overcome the drift.

The second step of adopting KBS to data streams is to foresee a re-computation phase in
which base model performances are updated with respect to the current distribution. In fact, the
author of this thesis believes that this is a main advantage of using weighted ensembles in a con-
cept drift scenario. For stationary distributions the weights vary marginally, while for smoothly
drifting scenarios they are systematically shifted and even allow to quantify and interpret the drift
in terms of previously found patterns or models. This will be discussed in subsection 6.3.4. Even
sudden drifts do not pose a problem, as they automatically result in radically reduced weights of
previously trained models, and in high weights of subsequently trained models, if these parame-
ters are re-estimated from new data. The response time to drifts is very short. Since the streaming
variant of KBS is closely coupled to the accurate KBS boosting algorithm, the predictive per-
formance is expected to outperform those of single base models for many data sets. Pruning of
ensembles can efficiently be addressed during weight re-computation; whenever a model does
not lead to any advantage over random guessing on the latest batch, it is discarded. This is a

136

6.3. Adapting ensemble methods to drifting streams

Algorithm 6 Algorithm KBS-Stream

Initialize empty ensemble H := ∅.
While not end of stream, do

1. Read next batch Ek in iteration k.
2. // Prediction rule as in algorithm 2 (p. 89):

Predict ŷ for all x ∈ Ek with current ensemble H

3. Read true labels of Ek.
4. If alternative ensemble H∗ exists:

a) Compare accuracy of H and H∗ wrt. Ek.
b) H← better ensemble, discard worse ensemble.
c) If H∗ is discarded: E∗ ← Ek−1 (shrink cache to one batch).

5. Initialize D1: Uniform distribution over Ek.
6. For i ∈ {1, . . . , |H|}, do:

a) Apply hi to make predictions for Ek.
b) Recompute LIFTDi

(hi, x) for all 〈x, y〉 ∈ Ek (Def. 33, p. 74).
c) Update the LIFTs of hi stored in H. // 4 LIFTs per hi if |Y | = 2

d) Di+1(x, y) := Di(x, y) · (LIFTDi
(hi, x))−1 for all 〈x, y〉 ∈ Ek.

7. Call BASELEARNER(D|M|+1, Ek), get new model h|M|+1 : X → Y .
8. Compute LIFTD|M|+1

(h|M|+1, x) for x ∈ Ek (Def. 33).
9. Add model h|M|+1 (and its LIFTs) to ensemble H.

10. If this is the first batch, then E∗ = Ek (no alternative ensemble).
11. Else

a) E∗ ← E∗ ∪ Ek, (extend cache by latest batch)
b) H∗ ← clone(H)
c) discard last base model of H∗

d) repeat steps 5-9 for E∗ and H∗ instead of for Ek and H

natural and common pruning strategy for boosting algorithms, for example also found in the
WEKA implementation (Witten & Frank, 2000) of ADABOOST (Freund & Schapire, 1997).

The algorithm is depicted in figure 6. It loops until the stream ends. Lines 1-2 apply the
current ensemble to the new batch without knowing the correct labels. Lines 3-4 check whether
continuing the training of the latest model with the latest batch outperforms adding a new model
trained on that batch1. Only the better of these two ensembles is kept.

Lines 5 and 6 recompute the LIFT parameters of all base models. To this end, the models are
iteratively applied to the new batch, and the weights are adjusted. This is similar to the learning
phase. Finally, lines 8-11 train two variants of the ensemble again, H∗ being the one extending
the cache and updating the newest model appropriately, and H being the one that adds a new
model, which is trained using only the latest batch.

One degree of freedom is left in line 2: The algorithm may use H or H∗ to classify the new
batch, as the performance of both is unknown at that time. For the experiments two variants have

1The pseudo-code does not assume an incremental base learner, but trains new models on cached data. For incre-
mental base learners no caching is required.

137

6. Boosting Classifiers for Non-Stationary Target Concepts

been implemented. The first one (KBSstream) always uses ensemble H∗, since models trained
from larger batches are generally more reliable. The second variant (KBShold_out) uses a hold
out set of 30% from the latest batch to decide which ensemble to use. Alternatively, one could
perform more reliable (but also more expensive) cross-validation experiments, or apply the ξα-
estimator for support vector machines (Klinkenberg & Joachims, 2000), which is as efficient
as the validation approach suggested in (Fan, 2004). However, in the subsequent experiments
the errors caused by simple hold-out estimation are much smaller2 than those caused by the
systematic delay of one batch between the distributions used for training and those underlying
the validation data. For this reason more complex kinds of validation are postponed to future
work.

If incremental base learners are used, then only the latest batch needs to be stored. The run-
time is dominated by adjusting the most recent model to this data, and by applying all base
models to it. This avoids the combinatorial explosion and memory requirements of advanced
time windowing and batch selection techniques, respectively (see subsection 6.4.1). Unlike the
ADDEXP (Kolter & Maloof, 2005) algorithm, which updates all the ensemble members for each
new example, KBSstream needs to update or create only two ensemble members for each batch.
Incremental variants exist for many popular learning algorithms, in particular for decision trees
(Utgoff, 1989) and support vector machines (Rüping, 2001).

6.3.4. Quantifying concept drift

An appropriate combination of several base classifiers often allows to increase predictive ac-
curacy over that achieved by an average single classifier. As a disadvantage, the results lose
interpretability to a certain extent. In principle, a similar argument also applies in the context of
concept drift. It is interesting to see, however, that the proposed technique allows to extract a
different kind of information in this setting at no additional costs: It allows to track the kind of
drift underlying the data stream by analyzing the weights of individual base learners.

Please recall, that unlike methods that continuously retrain all models (Stanley, 2003; Kolter
& Maloof, 2005), the KBS algorithm “freezes” all models but the latest one. The weights of
all frozen models are re-estimated continuously by applying them in chronological order to the
current batch, weighting examples accordingly, and by estimating the LIFT ratios of all models
based on these weighted examples. This is the same procedure that is employed during the train-
ing phase, so any significant deviation from the initial model weights indicates a corresponding
change in the underlying distribution. An advantage of using the LIFTs as performance estimates
is that the corresponding weight vectors have clear semantics at different points in time, and are
thus comparable without any additional artificial normalization. Only the weight of the latest
model is not yet comparable between different iterations, because this model is still continu-
ously refined by the boosting procedure. As model weights are re-estimated in chronological
order, this has no effect on the remaining ensemble.

The idea of drift quantification is illustrated for the scenario sketched in figure 6.1, which
was discussed in subsection 6.3.2 as a motivation for the knowledge-based sampling approach
to overcome concept drift. For simplicity, a base learner like a support vector machine is as-
sumed, that continuously improves with additional training data and does not benefit much from
boosting. During the stationary distribution before the drift, the KBS algorithm fits a single
model to the training data. Let this model capture the deterministic relation between features
and label well. It may perform differently well when predicting a positive or a negative label,

2There is one exception that will be reported in subsection 6.4.4. It is an extreme case in which the batch size has
been chosen much too small for the algorithm.

138

6.3. Adapting ensemble methods to drifting streams

W
ei

gh
ts

Time

Concept drift
Weight model 1
Weight model 2

Figure 6.2.: An ideal change of model weights over time. The solid line depicts a drift from an
initial to a new target concept. The dotted lines show how the base learner weights
reflect the presence of their represented target concepts.

but the LIFTs will vary just marginally from batch to batch, as the underlying distribution does
not change. When the drift starts, a significant change in the distribution makes the model per-
form worse, and the LIFT ratios (positive to negative) slowly approach 1. More interestingly, the
reweighted batch suddenly allows to fit a separate model, which, together with the first model,
has a higher estimated accuracy. The first model is frozen, but its estimates are continuously
updated. The drift continues over several batches, which will first affect the latest model. The
small LIFTs of the second model – estimated on the reweighted batch – cause an unbalanced
ensemble of these two models, with the first one having a much higher overall impact. The sec-
ond model is now refined throughout the drift and reflects an increasingly important aspect of
the data, while the first model loses accuracy from batch to batch. Consequently, the LIFT ratios
and hence the importance of the first model are decreased by the KBS algorithm, in favor of the
second one. If the first model has become useless after the drift, it has no significant advantage
over random guessing (LIFT ratios ≈ 1), so it is discarded automatically. This is not always the
case, because different target concepts often overlap.

Figure 6.2 depicts an ideal change of ensemble weights over time for the sketched scenario.
Until the drift starts, the first base model is the only one, assumed to be accurate, and it conse-
quently receives a high weight. This weight is continuously changed based on estimates of the
current accuracy. As this weight decreases, the importance and weight of model two increases. In
this ideal situation the accuracy is reflected by the maximum of the two dotted lines, which is op-
timal with respect to Bayes’ rule. Subsection 6.4.4 reports corresponding results of experiments
with real-world data.

139

6. Boosting Classifiers for Non-Stationary Target Concepts

6.4. Experiments

6.4.1. Experimental setup and evaluation scheme

In order to evaluate the KBS learning approach for drifting concepts it is compared to the adap-
tive time window approach, to the batch selection strategy, and to three simple non-adaptive data
management approaches.

Full Memory: The learner generates its classification model from all previously seen exam-
ples, i.e. it cannot “forget” old examples.

No Memory: The learner always induces its hypothesis only from the most recent batch. This
corresponds to using a window of the fixed size of one batch.

Window of “Fixed Size”: A time window of a fixed size of n = 3 batches is used on the
training data.

Adaptive Window: A window adjustment algorithm adapts the window size to the current
concept drift situation (cf. subsection 6.2.2 and (Klinkenberg & Joachims, 2000)).

Batch Selection: Batches producing an error less than twice the estimated error of the latest
batch, when applied to a model learned on the latest batch only, are selected for the final
training set. All other examples are deselected (cf. subsection 6.2.2 and (Klinkenberg &
Rüping, 2003; Klinkenberg, 2004)).

The performance of the classifiers is measured in terms of their prediction errors. All results
reported in subsection 6.4.2 and 6.4.3 are averaged over four runs, each based on a different
random ordering of the examples in the stream. The results reported in subsection 6.4.4 are from
a single run only, because the examples are taken in their real order and no artificial concept drift
is simulated or imposed, but there is a real concept drift inherent to this real-world data set.

The experiments were conducted with the machine learning environment YALE (Mierswa
et al., 2006), the SVM implementation MYSVM (Rüping, 2000), and two learners from the
WEKA toolbox (Witten & Frank, 2000), namely a support vector machine (SMO-SVM) and a
decision tree learner (J48), as well as the meta-learner ADABOOST provided by WEKA.

6.4.2. Evaluation on simulated concept drifts with TREC data

The first set of experiments is performed in an information filtering domain, a typical application
area for machine learning methods that are able to handle drifting concepts. Text documents are
represented as attribute-value vectors (bag of words model). Each distinct word corresponds to
a feature, the value of which is the “ltc”-TF/IDF-weight (Salton & Buckley, 1988) of that word
in each document. The experiments use a subset of 2608 documents of the data set of the Text
REtrieval Conference (TREC). Each of the real-world business news texts is assigned to one or
several categories, five of which are considered here.

Three concept change scenarios are simulated following the experimental set-up in (Klinken-
berg & Joachims, 2000; Klinkenberg & Rüping, 2003; Klinkenberg, 2004). The texts are ran-
domly permutated and split into 20 batches of equal size, containing 130 documents each. In all
scenarios, a document is considered relevant at a certain point in time if it matches the interest
of the simulated user at that time. The user interest changes between two of the topics, while
documents of the remaining three topics are never relevant. Figure 6.3 shows the probability of

140

6.4. Experiments

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16 18

R
el

ev
an

ce
 o

f T
op

ic
 1

Batch No.

Scenario A
Scenario B
Scenario C

Figure 6.3.: Relevance of the first topic/concept over time in the concept change scenarios A,
B, and C, respectively. The relevance of the second relevant topic/concept is 1.0 -
relevance of topic 1.

Full No Fixed Adaptive Batch KBS KBS
Memory Memory Size Size Selection stream hold_out

Scen. A 21.11% 11.16% 9.03% 6.65% 6.15% 6.89% 5.88%
Scen. B 21.30% 12.64% 9.76% 9.06% 9.33% 8.64% 9.50%
Scen. C 8.60% 12.73% 11.19% 8.56% 7.55% 10.11% 8.27%

Table 6.1.: Error of all time window and example selection methods vs. KBS.

being relevant for a document of the first category at each batch for each of the three scenar-
ios; this also implies the probability of the second (sometimes) relevant topic. Scenario A is an
abrupt concept shift from the first to the second topic in batch 10. In Scenario B, the user interest
changes slowly from batch 8 to batch 12. Scenario C simulates an abrupt concept shift in the
user interest from the first to the second topic in batch 9 and back to the first in batch 11.

Table 6.1 compares the results of all static and adaptive time window and batch selection ap-
proaches on all scenarios in terms of prediction error (Klinkenberg & Joachims, 2000; Klinken-
berg & Rüping, 2003; Klinkenberg, 2003) to the two variants of KBS. The results are averaged
over four runs with different random orderings of the examples. In all cases, the learning algo-
rithm was a linear support vector machine.

The KBS algorithm for data streams manages well to adapt to all three kinds of concept
drift. Tracking the learners revealed that during stationary distributions the current model was
continuously refined. After a concept shift (scenario A), a new model was trained and the old
model received a significantly lower weight. It was not discarded, however, as it still helped to
identify the three topics that are always irrelevant. The hold out set helped to identify the better
of the two ensembles reliably at classification time. In scenario B, five or more models were

141

6. Boosting Classifiers for Non-Stationary Target Concepts

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

19181614121086421

E
rr

or
 R

at
e

Batch

Adaptive Window
No Memory
Fixed Size

Full Memory

Figure 6.4.: TREC data, scenario A: Error rate over time for the non-adaptive methods versus
the adaptive time window approach.

trained. The ensemble accurately adopted to the drift, but at classification time the systematic
one-batch-delay of the hold out estimate was sometimes misleading. In scenario C, the full
memory approach is already competitive to all but the batch selection scenario. Without the hold
out set KBS applies the deprecated model one iteration too long for each concept shift. This
delay increases the error rate by about 2%. This problem is circumvented by using a hold out
set. In essence the KBS algorithm performed very well on this domain, and it even outperformed
computationally more expensive approaches. Only in scenario C the batch selection method is
clearly superior, probably because it is the only method that is able to assemble the data before
the first and after the second concept shift into a single training set.

While table 6.1 lists the error rates of the different learning strategies averaged over time, i.e.
over all batches, and over all four repeated runs of the experiments, figures 6.4 to 6.7 show the
error rates of the different learning strategies over time, i.e. at each batch, also averaged over all
runs.

Figure 6.4 compares the non-adaptive methods to the adaptive time window approach in con-
cept drift scenario A. Always learning on all available labeled data and ignoring any possible
concept drift that may have happened (Full Memory) leads to good generalization performances
as long as no concept drift occurs. But as soon as a concept drift occurs, the error rate goes up
and only very slowly decreases again, because all the old data no longer representative of the
current target concept still is part of the training set and hampers effective learning.

The opposite approach of not storing any old data except for the last labeled batch (No Mem-
ory) allows a maximally fast adaptation to concept drift, and a correspondingly quick recovery
in terms of the error rate. However, the baseline error of this second simple strategy in phases
without concept drift is comparatively high, i.e. more than twice as high as that of the other
strategies, and hence the overall averaged error rate listed in table 6.1 is also not competitive to
other approaches.

142

6.4. Experiments

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

19181614121086421

E
rr

or
 R

at
e

Batch

Adaptive Window
Batch Selection

KBS stream
KBS hold out

Figure 6.5.: TREC data, scenario A: Error rate over time for the adaptive time window and batch
selection techniques versus the two KBS variants.

A sliding time window of Fixed Size is a compromise between these two extremes. It has
an acceptable baseline error and a better recovery speed than the full memory method. The
comparison with the two extremes shows that the performance of such a static window approach
is only a compromise and trade-off between adaptivity in phases with concept drift and low error
rate in stable phases and hence still leaves a lot of potential for improvements for more adaptive
strategies. The described behavior of the non-adaptive methods also explains their high error
rates in table 6.1 and motivates the use of adaptive approaches to handling concept drift.

The Adaptive Window approach is able to combine the good generalization performance of the
full memory method in stable phases without concept drift; it maintains as much (still) represen-
tative data as possible, but achieves the fast adaptability of the no memory method by dropping
all misleading (old) data immediately as soon as the drift occurs. Hence, the adaptive time win-
dow manages to combine the advantages of the two static extremes by adapting to the current
extent of drift.

Figure 6.5 compares the adaptive time window and batch selection strategies to the two vari-
ants of KBS for data streams in the same concept drift scenario A. Like adaptive time window
and batch selection, both KBS variants achieve low baseline error rates and adapt quickly to con-
cept drift. Using a hold-out set allows KBS to adapt to the drift more quickly, and consequently
to faster reestablish a predictive model.

Comparing to the adaptive time window and batch selection strategies in concept drift sce-
nario B, a similar behavior of both KBS variants concerning the low base line error and the
adaptability to the drift can be observed (Fig. 6.6). The same applies in concept drift scenario C
(depicted in Fig. 6.7) if KBS uses a hold-out set, but KBS does not adapt as quickly without
the hold-out set. In this scenario, that involves the detection of a re-occurring target concept, the
batch selection strategy has the advantage of being able to re-use old data from before previ-
ous concept drifts, and to do so quickly. It thereby slightly outperforms the other approaches.

143

6. Boosting Classifiers for Non-Stationary Target Concepts

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

19181614121086421

E
rr

or
 R

at
e

Batch

Adaptive Window
Batch Selection

KBS stream
KBS hold out

Figure 6.6.: TREC data, scenario B: Error rate over time for the adaptive time window and batch
selection techniques versus the two KBS variants.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

19181614121086421

E
rr

or
 R

at
e

Batch

Adaptive Window
Batch Selection

KBS stream
KBS hold out

Figure 6.7.: TREC data, scenario C: Error rate over time for the adaptive time window and batch
selection techniques versus the two KBS variants.

144

6.4. Experiments

J48 J48 ADABOOST+J48 KBS KBS
Fixed Memory Full Memory Full Memory stream hold_out

Scen. A 11.06% 21.65% 20.51% 9.50% 9.43%
Scen. B 11.25% 21.22% 19.93% 11.60% 10.92%
Scen. C 12.70% 10.83% 9.50% 11.55% 10.45%

Table 6.2.: Averaged prediction errors for satellite image data set.

However, even in this scenario, and even more so in the other scenarios, KBS performs com-
petitively well or even better, as shown by the behavior over time in the plots and the overall
average error rate in table 6.1.

6.4.3. Evaluation on simulated drifts with satellite image data

The second set of experiments uses the satellite image data set from the UCI library (Blake &
Merz, 1998), a real-world data set for classification. It contains no (known) drift over time, so
the concept drifts were simulated using the same techniques as described in subsection 6.4.2:
The data set was randomly permutated and split into 20 batches of equal size (321 examples
per batch). Only two (grey soil and very damp grey soil) of the six classes were selected to be
relevant. The same drift scenarios A-C as described in subsection 6.4.2 were simulated with this
data set, where the two selected classes corresponded to the two selected topics in the TREC
experiments. The reported results are averages over four runs with different random orderings
of the examples.

In order to be able to compare the novel KBS algorithm to boosting techniques that ignore
concept drift, a more typical setting for boosting was chosen. The decision tree induction algo-
rithm J48 from the WEKA toolbox was selected as a base learner. It was applied in combination
with ADABOOST (Freund & Schapire, 1997), but also as a stand-alone learning technique. Be-
sides, KBS was compared to the non-adaptive “fixed size” window strategy with a window size
of 3 batches.

The default settings of the learners were used in all runs. The results are listed in table 6.2.
Unlike for the experiments on the TREC data, the results of KBS could always be improved by
using a hold out set. The fact that scenario C can well be tackled by a full memory approach
is reflected by the good performance of ADABOOST in this setting. However, it performs much
worse for the other two scenarios, similar to the full memory approach applying J48 stand-alone.
The fixed memory approach and KBS show a comparatively stable error rate over all scenarios.
KBS performs better than the fixed size window learner, and much better than the full memory
approach.

6.4.4. Handling real drift in economic real-world data

The third evaluation domain is a task from economics. It is based on real-world data that ex-
hibits a factual concept drift. The quarterly data describes the West German Business Cycles
From 1954 to 1994 (Heilemann & Münch, 1999). Each of the 158 examples is described by 13
indicator variables. The task is to predict the current business cycle phase of the West German
economy. In accordance to findings from Theis and Weihs (1999), we use two phases instead of
four for the description of the business data, just as described by Morik and Rüping (2002).

The following experiments compare the performance of the KBS data stream algorithm to
results reported previously by Klinkenberg (2003), so the same number of 5 and 15 batches

145

6. Boosting Classifiers for Non-Stationary Target Concepts

Full No Fixed Adaptive Batch KBS KBS
Memory Memory Size Size Selection stream hold_out

5 batches 32.80% 27.20% 24.00% 24.80% 24.80% 24.60% 17.46%
15 batches 28.08% 28.77% 20.55% 24.80% 23.29% 26.03% 28.77%

Table 6.3.: Prediction error for business cycle data

were used. The timely order of the examples (quarters) was preserved and no artificial concept
drift was simulated.

The results of these two evaluations are shown in table 6.3. The column for the fixed time win-
dow approach lists the results for the fixed size that performed best. The fact that this approach
performs well may be due to the cyclic nature of the domain. However, the size is generally
not known in advance, and as shown by Klinkenberg (2003), using other fixed window sizes
leads to significant decreases in performance. The results for 15 batches show that KBS does
not perform well if each batch consists of less than a dozen examples. The reason is that it is
not possible to get reliable probability estimates from such small data sets. The algorithm could
cache older data in such cases, but it is more reasonable to choose larger batch sizes. Using just
5 batches (31 examples) already improves the situation, so KBS performs similar to the fixed
size, adaptive size, and to the batch selection approach. The hold out set turned out to be surpris-
ingly effective for larger batches. This result provides first evidence that KBS is able to adapt
classifier ensembles to different kinds of concept drift found in real-world data sets.

6.4.5. Empirical drift quantification

The final experiments of this chapter investigate whether the claims made in subsection 6.3.4 are
realistic in practice. Two examples extracted during real experiments with the TREC data are
presented to illustrate, how KBS base model weights allow to characterize kind and intensity
of concept drifts in practice. No sophisticated methods for pruning or model evaluation during
learning were applied, in order not to change any results. In the experiments, the four LIFT values
of models making boolean predictions were reduced to a single weight per model. Applying the
same strategy as in the proof of Prop. 11 (p. 114) the model that estimates odds ratios can be
transformed into a classifier of the form

ŷ := sign

(
w0 +

n∑
i=1

wihi(x)

)
,

with offset weight w0 and model weights w1, . . . , wn ∈ IR. Weight vectors could be normalized,
but are not in the following figures, in order to ease the comparison of model impacts from one
iteration to the next.

Figure 6.8 exemplarily shows the weights of the base classifiers during a KBS application
over time. As before, the algorithm is applied to the TREC data set with a simulated concept
shift (scenario A), using a support vector machine with linear kernel as the base learner. The
base models are all trained over a period of time, and afterwards only their weights are adjusted.
The performance of the initial model is directly estimated from the (unweighted) most recent
batch. Model weights are upper-bounded artificially in the figure to ease visualization. Until
the concept shift occurs in the middle of the figure, the first model is refined by extending the
training set batch by batch. That way, the model reaches high confidence which varies slightly
due to estimations based on small batches (130 examples). The first batch sampled from the

146

6.4. Experiments

-6

-4

-2

0

2

4

6

8

1918161412108642

W
ei

gh
ts

 o
f t

he
 B

as
e

Le
ar

ne
rs

 in
 th

e
E

ns
em

bl
e

Current Batch

initial base model
model after shift
final base model

Figure 6.8.: Base model weights of a KBS ensemble for the simulated scenario A on the TREC
data. Only the most recent model is refined, the others are frozen and just contin-
uously reweighted with respect to the latest batch. The concept shift occurs where
the weight of the initial model drops drastically (batch 10).

new distribution already decreases the weight of the initial classifier rapidly. The classifier is
“frozen”, and KBS introduces a second classifier, which is now refined for several iterations.
The first model still turns out to be useful, but with a negative weight, which indicates that
the opposite of the initial target concept is correlated with the new target concept. The precise
weights of both models vary slightly, but converge after a while. Refining the second model by
further examples does no longer improve the overall accuracy, so at this point the KBS estimator
freezes the second model as well, and it introduces a third one. This step allows to increase the
expressiveness of the underlying model language wherever this seems promising.

The second experiment provides a realistic counterpart to the motivating example with slow
concept drift (scenario B), which has been presented in subsection 6.3.1. Figure 6.9 shows how
the weights of all involved base models change over time. Just one “outlier model”, which is
directly removed from the ensemble by the KBS algorithm after induction, has been removed
from the figure, in order not to overload it. The initial model reaches a high weight during the first
stationary phase, which reflects highly confident predictions. The confidence decreases rapidly
during the drift, and after only a few batches sampled from a new stationary target distribution
the initial model is even discarded by the learner (batch 16). Two new models are introduced
during the drift, which both quickly lose weight as the first target concept diminishes. Please
recall, that KBS reweights the batches as if they were sampled from the pure target distribution
of the new concept. In this sense, the early batches during the drift can be considered to have a
higher variance than later ones, which explains the decreasing weights. The learner still fits each
classifier based on a couple of consecutive batches during the drift. Reaching the new stationary
distribution, the weights of both intermediate models converge, because they contain a fixed

147

6. Boosting Classifiers for Non-Stationary Target Concepts

-6

-4

-2

0

2

4

6

8

1918161412108642

W
ei

gh
ts

 o
f t

he
 B

as
e

Le
ar

ne
rs

 in
 th

e
E

ns
em

bl
e

Current Batch

initial base model
model frozen in batch 12
model frozen in batch 14

final base model

Figure 6.9.: Base model weights for another KBS ensemble trained for the simulated concept
drift scenario B on the TREC data.

amount of information on the new target concept. The final model is induced after the drift ends,
at a point where the previous model weights have almost converged.

Although the curves are not as simple as in the ideal case sketched earlier, the example illus-
trates how the weights of base learners can be used to identify the kind and degree of a concept
drift underlying a data stream. A higher robustness of the sketched quantification property can
be expected when choosing a larger batch size for estimating base model performances.

6.5. Conclusions

In this chapter the KBS-algorithm has been adapted to the task of inducing classifiers from data
streams with concept drift. At each iteration base models are induced and reweighted contin-
uously, considering only the latest batch of examples. The proposed strategy adapts very early
and quickly to different kinds of concept drift. The algorithm has low computational costs. It has
empirically been shown to be competitive to, and often to even outperform more sophisticated
adaptive window and batch selection strategies. As a further advantage, it allows to track the
kind and degree of concept drift.

Remaining directions for future work include evaluations of more precise and robust strategies
for estimating model weights, and the development of models for predicting kind and degree of
future concept drifts based on the drift quantification of KBS .

This chapter is an extended version of (Scholz & Klinkenberg, 2005) and a condensed version
of (Scholz & Klinkenberg, 2007) with a stronger focus on the novel aspects. For a late draft of
the latter publication please refer to (Scholz & Klinkenberg, 2006).

148

7. Distributed Subgroup Discovery

7.1. Introduction

The amounts of data collected and processed in huge modern companies, the many heteroge-
neous groups of users accessing it for very different purposes, coupled with a number of tech-
nical burdens and legal issues define the daily situation in modern data-warehouses. For KDD
applications it is generally assumed, however, that all the data to be analyzed are accessible in the
form of a single local flat file. Issues like handling huge amounts of data without loss of useful
information have been addressed in previous parts of this thesis, data cleaning and identifying a
well-suited representation for learning will be discussed in chapters 8 and 9.

Since many real-world databases are distributed to different nodes, e.g., each capturing the
sales of different stores, one practically relevant question is whether the same data mining tasks
can be solved from distributed data as well as if collecting all the data physically at a single site.
Distributed data mining algorithms are designed to work with geographically distant databases
that are connected by a communication network. The major bottleneck for distributed algorithms
is communication. Therefore, the aim in the design of such algorithms is to minimize communi-
cation costs. Learning tasks can be adopted to distributed scenarios in various ways. This chapter
analyzes distributed variants of rule selection, a general task that – in previous chapters – has
been shown to apply to both descriptive and predictive data analysis. Due to its generality, the
task of subgroup discovery fits well into this framework. It is very flexible, because it allows to
specify the utility function used for pattern selection as a parameter.

At first sight, distributed data mining seems to be a promising approach, e.g., to decrease
computational costs if coupled with parallel model induction. Still, only a few tools support
parallel model induction. As its first major contribution, this chapter points out some strong
negative results for distributed rule discovery. These results shed light on the question why such
distributed approaches are not as popular in practice as the potential benefits might suggest. It
is investigated systematically in which situations a local evaluation of rules may help to identify
globally best rules, and how corresponding learning tasks are related to each other. In principle,
the subsequently derived results apply to a much broader category of supervised learning tasks,
because the model class is of minor importance compared to the evaluation functions.

The theoretical findings suggest that approaches applying other than exhaustive search strate-
gies may fail to give reasonable guarantees, or may cause even higher communication costs in
distributed settings. For this reason, two exhaustive algorithms for distributed subgroup discov-
ery are presented, analyzed, and empirically evaluated.

This chapter is structured as follows: Section 7.2 provides a more general definition of utility
functions for the rule selection problem from non-distributed data sets; a very broad definition
of utility functions allows to subsume most of the relevant learning problems under the notion
of subgroup discovery. Section 7.3 extends subgroup discovery to distributed data, assuming a
homogeneous distribution at all sites. This assumption is weakened in section 7.4 in two ways,
which are both shown to increase the computational complexity of finding a set of approximately
best rules in the worst case. Additionally, a bound for the maximal deviation of commonly used
utility functions is derived. This motivates the task of relative local subgroup discovery, which is

149

7. Distributed Subgroup Discovery

introduced and analyzed in section 7.5. Section 7.6 discusses how the presented tasks are related
to distributed boosting and distributed frequent itemset mining. After discussing some practical
considerations regarding the design of specific algorithmic solutions, two novel algorithms for
exact subgroup discovery from distributed data are presented in section 7.7. The theoretical
findings regarding communication costs are empirically evaluated in section 7.8. Section 7.9
summarizes and concludes.

7.2. A generalized class of utility functions for rule selection

Based on the definitions given in chapter 2, this section broadens the formal problem of subgroup
discovery from non-distributed supervised rule learning. Given is a set of m classified examples
E := (x1, y1), . . . , (xm, ym) from X × Y , where X defines an instance space and Y a set of
labels. Classification rules are used as the representation language H.

In order to be able to provide very general results, the considered notion of utility functions
should be as broad as possible. Coverage and bias (Def. 17 and 18, p. 22) allow to state an
unusually broad class of utility functions that are still covered by the subsequent analysis.

Definition 39 For the set D of all probability density functions (pdfs) D : X × Y → IR+ a
function f : H × D → IR is called a utility function if and only if it satisfies the following
constraints for all r, r ′ ∈ H:

(COVD(r) ≥ COVD(r ′)) ∧ (BIASD(r) ≥ BIASD(r ′) > 0) ⇒ f(r,D) ≥ f(r ′, D)

• If one of the inequalities is strict, then f(r,D) > f(r ′, D).

• All rules r with BIAS(r) = 0 are assumed to receive a common utility score, e.g. 0.

The main objective of a utility function is to trade coverage for bias. In this light, definition 39
can be considered to cover all reasonable utility functions, because its only constraints are
(i) monotonicity in these two quantities and (ii) that the same score is assigned to all rules
that perform as well as random guessing.

The definition is broad enough to also cover predictive accuracy, which is equivalent to
WRACC for binary prediction tasks with equal default probabilities for both classes, and which
is still monotone in COV and BIAS, otherwise.

In association rule mining (Agrawal & Srikant, 1994) rules are filtered (or pruned) by their
supports (COV) and confidences. The latter is monotone in the BIAS, although the default prob-
ability is usually ignored. If support and confidence are combined (respecting monotonicity) to
find a ranking of most interesting rules, this problem can also be subsumed under the task of
subgroup discovery with a utility function that fits Def. 39.

For some parts of this chapter it is assumed that all utility functions under consideration are
elements of a more restricted class, however, which was previously defined in section 2.4:

Definition 40 For a given parameter α and pdf D the utility (or quality) Q
(α)
D of a rule r ∈ H is

defined as

Q
(α)
D (r) := COVD(r)α · BIASD(r).

As discussed, this class covers metrics that are factor-equivalent to the binomial test function
(α = 0.5) and the weighted relative accuracy (WRACC, α = 1). Hence, it can be considered to
contain the most important utility functions.

150

7.3. Homogeneously distributed data

7.3. Homogeneously distributed data

For any specific choice of a utility function, the goal of subgroup discovery is to identify a set of
k best or approximately best rules. A description of existing approaches for this task, containing
exhaustive, sampling-based, and heuristic search strategies, was given in subsection 2.2.3 (p. 11).

A first extension towards distributed subgroup discovery is to assume that several sets of data
are available, which all follow a common underlying probability distribution. One can think
of the sets at the different sites as being generated by bootstrapping from a single, global data
set. In such a case, local and global subgroups are basically identical. However, due to statistical
fluctuations caused by the bootstrapping procedure and the smaller size of example sets, some of
the rules with lower global utility might be found among the k best subgroups evaluated locally
at each site.

For the WRACC metric the probability that the utility function deviates locally from the true
(global) value by more than a fixed constant ε ∈ IR+ can e.g., be bounded by Hoeffding’s in-
equality (theorem 4, p. 45). This probability decreases exponentially fast with a growing number
of examples.

Alternatively, the sample bounds for adaptive sampling discussed in subsection 3.3.2 may be
used. They also apply for other values of α. In the context of distributed databases it is easy
to analyze large local samples at each site. Definitions 39 and 40 define utility functions with
respect to an underlying pdf D, which allows to address predictive and descriptive tasks in a
single framework. Please recall that the latter kind of tasks is more specific, as it introduces the
assumption of a uniform distribution DE over a given example set E . In the general case, the
available example set of size m is considered to be a sample E ∼ Dm, so a natural choice of
a learning task is the approximately k-best rules problem (Def. 28, p. 51). The results reported
for this problem directly apply to homogeneously distributed data sets. For large local data sets
the probability of missing a subgroup that is globally much better than the locally best ones is
reasonably small.

As discussed in subsection 3.3.2 there are also some practically relevant evaluation metrics
that do not allow to tackle the approximately k-best hypotheses problem by adaptive sampling.
One example is the Gini index, for which sampling-based utility estimates can be far from the
true utilities, regardless of the sample size. For these utility functions, distributed subgroup dis-
covery from local data becomes intractable. The following sections address more complex learn-
ing problems; it is reasonable to focus on utility functions for which learning is tractable at least
in the case of homogeneously distributed data, i.e. instances of the class described by Def. 40.

7.4. Inhomogeneously distributed data

Subgroup discovery for homogeneously distributed data can be tackled and analyzed using the
same techniques as in the non-distributed setting. This section addresses the situation in which
data is split to different sites, but no distributional assumption can be made. First of all, the
notation for different databases is introduced.

Any example set E is composed of s subsets E1, . . . , Es that were sampled from different
probability distributions. Let Di denote the probability density function at site i, Ei ⊆ E be a
corresponding example set, and let D define the global densities of E . D is a weighted average
of the local density functions.

The local COV and BIAS of a rule A→ C at site i can be expressed in terms of definitions 17

151

7. Distributed Subgroup Discovery

and 18 (p. 23), replacing D by Di. For example,

BIASDi
(A→ C) := Pr(x,y)∼Di

[y = C | x ∈ A] − Pr(x,y)∼Di
[y = C]

refers to the local BIAS at site i. Accordingly, a local utility function Q
(α)
Di

(r) evaluates each rule
A→ C by computing

Q
(α)
Di

(A→ C) := [COVDi
(A→ C)]α · BIASDi

(A→ C),

which yields the following definition for the specific case of α = 1:

Definition 41 The local weighted relative accuracy of rule r at node i for a local pdf Di is
defined as

WRACCDi
(r) := COVDi

(r) · BIASDi
(r).

The first task stated in this setting is to find subgroups that globally perform well, given a
discovery procedure that evaluates rules locally. If, for instance, the globally best rule appears
poor at any site, then it obviously needs to perform even better at some other. For this reason one
could expect that the globally best rules are easily found at the local sites, even if the local distri-
butions differ. A similar property eases frequent itemset mining from distributed data, because
it allows for safe pruning in the case of skewed data (Cheung & Xiao, 1998).

In the case of homogeneously distributed data, assumed in section 7.3, the marginal distribu-
tions overX and the conditional probabilities of the target given x ∈ X were identical at all sites.
The following definitions are useful for quantifying by how much each of these assumptions is
weakened in more general settings.

Definition 42 Two density functions D1, D2 : X → IR+ are called factor-similar up to a con-
stant γ for an A ⊂ X and γ > 1, iff

(∀x ∈ A) : γ−1 ≤ Di(x)

D(x)
≤ γ.

Definition 43 For an A ⊆ X two joint density functions D1, D2 : X × Y → IR+ are called
conditionally similar up to ε, ε > 0, iff

(∀(x, y) ∈ A× Y) :

∣∣∣∣D1(x, y)

D1(x)
−

D2(x, y)

D2(x)

∣∣∣∣ ≤ ε.

Please note that definitions 42 and 43 do not necessarily require the same set of examples to
be observable at all sites to allow for finite constants γ and ε, because the utility functions are
defined based on the underlying probability density functions.

The following theorem shows, that if the assumption of homogeneously distributed data made
in section 7.3 (a form of i.i.d. sampling) is weakened at all, then it is possible to obtain drastically
different sets of best rules when evaluating a quality function globally and locally.

Theorem 10 Let Gi denote the set of k best rules for each site i ∈ {1, . . . s} (s ≥ 2), given
an arbitrary utility function. Let G denote the set of k best rules with respect to the global
distribution. Then, in the general case, it is possible that every x ∈ X is covered by at most one
rule set from {G, G1, . . . , Gs}, where a rule set is said to cover x if one of its elements does. This
statement even holds in the following two cases:

152

7.4. Inhomogeneously distributed data

1. The global and local marginal distributions of X are equivalent, and global and local
joint distributions of X × Y are conditionally similar up to an arbitrarily small b > 0.

2. For all local sites i ∈ {1, . . . , s} the conditional distributions of X × Y are identical,
and each local marginal distribution of X is factor-similar to the global one up to an
arbitrarily small γ > 1 for any subset of X .

Proof
It is sufficient to generically construct an example for both specific cases. The following proofs
apply to all utility functions covered by Def. 39, but require some assumptions about the set
H of possible hypotheses. These assumptions are met for the logical rules commonly used to
characterize subgroups.

First, the theorem is shown to hold in the case of equal marginal distributions (γ = 1).
The idea is to “prepare” for each site i ∈ {1, . . . , s} a set Si of k disjoint subsets of X :
Si = {Ri,1, . . . , Ri,n}. For the global view, a separate set S0 = {R0,1, . . . , R0,n} of k rules is
prepared. Let the common marginal density function D assign equal weights to each subset, so
that all rules with antecedent R ∈

⋃s
i=0 Si have the same coverage COV. All reasonable utility

functions increase monotonically with the BIAS, in this case. Let C denote an arbitrarily chosen
class and b and ε small, strictly positive real values. The joint density function Di : X×Y → IR+

at site i is constructed so that

BIASDi
(Rp,j → C) =

b/s + ε, for p = 0 (global)
b , for p = i (local)
0 , for p 6∈ {0, i}

for all 1 ≤ j ≤ k. The joint global density function D : X × Y → IR+ is the average of the
joint local densities, because the marginal distributions are assumed to be equivalent. Hence, the
BIAS of every “local rule” Ri,j → C, i > 0 is b/s under D, that of the “global rules” R0,j → C

is b/s + ε at all sites and when evaluating globally. As a consequence, under Di the k rules
constructed from Ri are ranked highest by all reasonable utility functions, but globally the rules
corresponding to R0 have a higher utility.

It remains to be shown that a pdf as described above exists. An additional constraint is, that
no other rule in H may reach a higher utility score, neither at any local site nor globally. The
following construction is possible if H contains only single rules A → C with each A being a
conjunction of literals. For s sites and k rules to be selected let

z := dlog2(s + 1)e · dlog2(2k)e.

For at least one set of z atomic formulas {a1, . . . , ak} it is assumed that

{l1 ∧ . . . ∧ lz → C | li ∈ {¬ai, ai} for 1 ≤ i ≤ z} ⊆ H.

For all considered rules literal li refers to the same atomic formula, but it may be positive or
negative. Each of the rules may be represented by a boolean vector of length j, where the ith bit
refers to the sign of literal i. In turn, each vector ~v of length j represents a rule (A~v → C) ∈ H,
and for two such vectors ~vi 6= ~vj we have Ext(A~vi

) ∩ Ext(A~vj
) = ∅.

Now the bit representation can be used to define the sets Ri,j for 0 ≤ i ≤ s and 1 ≤ j ≤ k

from above: We set the first dlog2(s + 1)e to the binary encoding of the corresponding site
number i and let the subsequent dlog2(k)e bits encode rule number j. Each combination of i

and j covers two subsets now, since there is one more bit/literal. The subset defined by an even

153

7. Distributed Subgroup Discovery

number of positive literals is defined as positive (R+
i,j), the other one as negative (R−

i,j). The
following equalities imply a common marginal distribution:∫

x∈R+
i,j

D(x)dx =

∫
x∈R−

i,j

D(x)dx =
1

(s + 1)2k

D(x) = D(x ′) if x, x ′ ∈ R+
i,j or x ∈ R+

i,j ∧ x ′ ∈ R−
i,j.

D(x) = 0 if x /∈
s⋃

i=0

k⋃
j=1

(
R+

i,j ∪ R−
i,j

)
For two classes and a prior class probability of p0 we define the joint density function at site
i ∈ {1, . . . , s} to be

Di(x,C) = D(x) ·

p0 + b/s + ε , for x ∈ R+
0,j

p0 − b/s − ε , for x ∈ R−
0,j

p0 + b , for x ∈ R+
i,j

p0 − b , for x ∈ R−
i,j

p0 , otherwise

for 1 ≤ j ≤ k. The positive subsets refer to the original rules, which thus have the desired
properties stated earlier1. Any rule that covers more than one positive subset will inevitably also
cover the negative counterparts. This is a consequence of the syntactical structure of H, and of
the fact that the bit vectors for positive subsets all have a Hamming-distance of at least two. The
BIAS will be zero in this case. Specializing rules reduces the coverage without any increase in
the BIAS.

The second part of the theorem can be proved similarly. Let the same subsets of X be associ-
ated to R+

0,1 . . . , R−
s,k as before. The idea is to construct a pdf for which all rules have an identical

BIAS, and to locally adjust the marginal distributions in order to achieve a similar situation as in
the proof of the first case. To this end, let the local marginal densities D ′

i(x) for 1 ≤ i ≤ s be
defined using the functions D : X → IR+ above, which assign equal weight to all subsets, and
which are uniformly distributed within each subset:

D ′
i(x) = D(x) ·

1 − εm/3 , for x ∈ R

+/−
0,j (global rule)

1 , for x ∈ R
+/−
i,j (local rule for site i)

1 − εm , for x ∈ R
+/−
p,j , p 6∈ {0, i} (local rule, other site)

0 , otherwise (unused subset)

with R
+/−
(·),j := R+

(·),j ∪ R−
(·),j. The local joint density functions D ′

i : X × Y → IR+ can now be
constructed for all sites 1 ≤ i ≤ s using site-independent factors:

D ′
i(x,C) = D ′

i(x) ·

p0 + b, if x ∈ R+

i,j, 1 ≤ j ≤ k

p0 − b, if x ∈ R−
i,j, 1 ≤ j ≤ k

p0 , otherwise (BIAS = 0)

1If log(s + 1) or log(k) are no integers, then some subsets of X are not related to any rule. This has no effect on
the validity, since these subsets receive no weight under any of the distributions.

154

7.4. Inhomogeneously distributed data

All rules have the same BIAS b at all sites, and thus globally. The global COV values are

COVD ′(R0,j → C) =
s(1 − εk/3)

s
= 1 −

εk

3
(global rules)

COVD ′(Ri,j → C) =
1 + (s − 1)(1 − εk)

s
≤ 1 −

εk

2
(local rules)

As required, the “global rules” are ranked highest regarding the global pdf D ′. At each local site i

the corresponding “local rules” R+
i,(·) have the highest COV regarding D ′

i and are thus ranked
highest. More general rules, subsuming several of the positive subsets of X , will also cover the
negative subsets, as discussed in the proof of the first part. Analogously, a specialization of rules
leads to a reduced COV without increasing the BIAS. Choosing εk so that γ = (1 − εk)−1 com-
pletes the proof.

Theorem 10 implies that rules globally performing best are not necessarily among the k locally
best rules at any site. Even for arbitrarily unskewed data, formalized in terms of definitions 42
and 43, the best rules collected from all sites, including the globally best rules, may be com-
pletely disjoint, in the sense that no example is covered twice. Please note that – unlike for
homogeneously distributed data – this is not a problem of poor estimates. Theorem 10 applies to
arbitrarily large sample sizes, and it covers the case of uniform distributions assumed in descrip-
tive settings. The two parts of the proof illustrate that adjusting the marginal or the conditional
densities “maliciously”, sometimes to a very small degree, suffices to make the globally best
rules look poor at all local sites. This implies that any distributed subgroup discovery procedure
will have to estimate global densities and conditional probabilities of the target at the same time.

Although finding the globally best rules from local data is not possible in the worst case,
finding approximately best rules might still be tractable. The following theorem gives a tight
bound on the difference between locally and globally evaluated utilities, for simplicity assuming
positive utilities and common class priors.

Theorem 11 Let D : X × Y → IR+ denote a global density function which is a weighted
average of s local pdfs Di, all sharing the same class priors. Considering a rule A → C ∈ H,
let the marginal densities of D and a local density function Di (i ∈ {1, . . . , s}) be factor-similar
up to γ for A, and let the joint density functions D and Di be conditionally similar up to ε for
the rule. Then the difference between global and local utilities of Q(α) is bounded by

max

(
0,

Q
(α)
Di

(A→ C)

γα
−

ε

γα
COVDi

(A→ C)α

)
≤max

(
0, Q

(α)
D (A→ C)

)
≤max

(
0, γαQ

(α)
Di

(A→ C) + ε [γCOVDi
(A→ C)]α

)
For valid choices of ε these bounds are tight in the general case.

Proof
A local marginal probability of an antecedent differs by at most a factor of γ±1 from the corre-
sponding global probability. Similarly, the conditional probability differs by at most an additive

155

7. Distributed Subgroup Discovery

0

0.05

0.1

0.15

0.2

0.25

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

ut
ili

ty

epsilon

lower bound
true utility

upper bound

(a) Q(1) vs. ε for γ ≤ 1.1

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

ut
ili

ty

gamma

lower bound
true utility

upper bound

(b) Q(1) vs. γ for ε ≤ 0.05

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

ut
ili

ty

gamma

lower bound
true utility

upper bound

(c) Q(1/2) vs. γ for ε ≤ 0.05

Figure 7.1.: Estimated global utilities with bounded uncertainty based on local utilities. The
global COV is 0.25 and the global BIAS is 0.4. Marginal deviations are bounded by
γ and deviations on class distributions are bounded by ε.

constant of ±ε. This implies

Q
(α)
D (A→ C) = COVD(A→ C)αBIASD(A→ C)

≤ γαCOVDi
(A→ C)α · (BIASDi

(A→ C) + ε)

= γαQ
(α)
Di

(A→ C) + εγαCOVDi
(A→ C)α

if all terms are positive. The lower bound is shown analogously.
Given that ε is chosen as a valid BIAS with respect to the prior of the target class, it is trivial

to construct cases for which the bounds are tight.

For distributed data approximately sharing a common underlying pdf, e.g., if γ ≤ 1.1 and
ε ≤ 0.05, the bounds are tight enough to allow for estimates with bounded uncertainty. This is
illustrated in figure 7.1, showing the bounds for a rule with a global COV of 0.25 and a global
BIAS of 0.4. For γ ≤ 1.1 figure 7.1(a) shows upper and lower bounds for Q(1) with ε at the
x-axis. Figure 7.1(b) and 7.1(c) depict bounds for different values of γ, assuming distributions
that are conditionally similar up to an ε ≤ 0.05. Qualitatively, the curves for utility function Q(1)

(WRACC, Fig. 7.1(b)) and Q(1/2) (binomial test function, Fig. 7.1(c)) are similar, but the latter
is less sensitive to deviating marginal distributions.

Please note that theorem 11 allows to exploit different estimates for each antecedent A ⊆ X
under consideration. Hence, the theorem is not restricted to learning tasks in which conditional
or marginal distributions are known to be very similar. It also allows to collect rule-specific
bounds from various sites. Possible sources of rule-dependent bounds on γ and ε range from
background knowledge over density estimates to previously cached queries.

The following experiment illustrates how utilities can be estimated with bounded uncertainty.
A synthetic data set was used, because this allows to control the different kinds of skew. A
decision tree for a domain of 10 boolean attributes was constructed randomly. For each inner
node the probability of the tested attribute being 1 was fixed at a value randomly sampled from
N(0.5, 0.25). The same was done for the distribution of the boolean target label at the leaves. For
all examples, unspecified attributes were simply completed by drawing truth values uniformly.
The examples were distributed to 5 sites by explicitly assigning a separate γ- and ε-skew to
each leaf for each site. The skew-parameters were selected uniformly within the previously used
intervals: γ ∈ [0, 1.1], ε ∈ [0, 0.05]. Based on this randomly constructed tree 10.000 examples
were generated.

156

7.5. Relative local subgroup mining

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

lo
ca

l u
til

ity

global utility

Figure 7.2.: Results for a synthetic data set containing 10.000 examples distributed to 5 local
sites with controlled marginal and conditional skews. For the 5 globally best sub-
groups the global and local utilities are compared.

Subgroup global Q(1) Lower bound Upper bound
a5=1, a6=0, a8=0 0.0249 0.0231 0.0292

a5=1, a8=0 0.0260 0.0235 0.0316
a1=1, a5=1 0.0087 0.0083 0.0105

a5=1 0.0365 0.0191 0.0573
a1=1, a4=0, a5=0 0.0176 0.0164 0.0180

Table 7.1.: Corresponding utility bounds according to theorem 11.

The MIDOS algorithm, part of the KEPLER toolbox, was applied to the data, in order to select
5 best subgroups with respect to WRACC. Each dot in figure 7.2 compares the global utility of
a rule (x-axis) to the corresponding local utilities at all sites (y-axis). Dots close to the diagonal
represent similar utilities, which are useful for estimating the global utilities from local ones
with bounded uncertainty. Table 7.1 lists the bounds that could be derived based on the local
estimates, exploiting γ ≤ 1.1 and ε ≤ 0.05. It is interesting to note, that only for the largest
subgroup (a5 = 1, COV ≈ 0.35) the bounds are not tight; for such large subgroups the utility
can easily be estimated from samples, instead.

The question which rules do not allow to compute their utilities sufficiently well by techniques
related to theorem 11 motivates a new extension of the learning task, discussed in the next
section. It explicitly takes the locality of data into account.

7.5. Relative local subgroup mining

As motivated in the last section, inhomogeneously distributed data allows to define subgroups as
subsets of local example sets2 Ei that show distributions of the target attribute other than E . This
definition of subgroups has a natural interpretation that might be of practical interest in several
domains. The corresponding rules could help to point out the characteristics of a single super-
market in contrast to the average supermarket, for example. For the specific case of distributed

2More precisely, these definitions refer to the weight of subsets with respect to D and Di. These weights are of
course estimated based on the example sets.

157

7. Distributed Subgroup Discovery

frequent itemset mining, an algorithm for mining exceptional patterns taking the locality of
data into account has recently been presented by Zhang et al. (2004). Another unsupervised ap-
proach with a related aim, mining high contrast frequent itemsets, has been suggested by Otey
et al. (2004). Based on entropy, it identifies itemsets with counts that are inhomogeneously dis-
tributed to the different sites. A corresponding extension to the task of subgroup discovery is
lacking. The following function captures the idea of locally deviating rules.

Definition 44 For r ∈ H the utility function RQ
(α)
Di

at site i is defined as

RQ
(α)
Di

(r) := COVDi
(r)α · (BIASDi

(r) − BIASD(r))

The rules maximizing this function are referred to as relative local subgroups.

Please note, that only the global conditional distribution is required in this context, since COV

is evaluated locally. Exploiting that COV differs by at most a factor of γ, it is possible to restate
theorem 11, again assuming common class priors.

Corollary 4 For a given target class C let

RQ
(α)
max := max{RQ

(α)
Di

(r) | r ∈ H, r predicts C} and

RQ
(α)
min := min{RQ

(α)
Di

(r) | r ∈ H, r predicts C}

denote the maximal and minimal utilities of relative local subgroups. Then for all rules r ′ ∈ H
the difference between local and global utility is bounded by

γ−α ·
(

Q
(α)
Di

(r ′) − RQmax

)
≤ Q

(α)
D (r ′) ≤ γα ·

(
Q

(α)
Di

(r ′) − RQmin

)
if all terms are positive.

Corollary 4 allows to translate the utility of local subgroups into global scores with bounded
uncertainty for any rule-dependent γ. The special case of a common marginal distribution is
obtained by setting γ = 1.

Corollary 5 For γ = 1 the three utility functions for local, relative local, and global subgroup
discovery complete each other:

Q
(α)
D (A→ C) = Q

(α)
Di

(A→ C) − RQ
(α)
Di

(A→ C)

Obviously, the tasks of discovering relative local subgroups and that of approximating the global
conditional distribution are of similar complexity in this case. Corollary 5 shows how to detect
global subgroups searching locally, given precise estimates of RQ

(α)
Di

, and how to compute RQ
(α)
Di

from Q
(α)
D for γ = 1.

7.6. Practical considerations

The theoretical results derived in the last sections mainly suggest that distributed subgroup dis-
covery is a hard problem, because it is necessary to estimate both the marginal distribution of
X and the conditional distribution of the label given x ∈ X . The task of finding relative local
subgroups still requires precise estimates of the conditional distribution.

This section relates the sub-tasks to known learning strategies. One can distinguish between
three kinds of strategies, applying trained models, sampling with respect to the global distribu-
tion, and searching exhaustively. After discussing these issues, two algorithms following the last
of these three approaches will be presented in the next section.

158

7.6. Practical considerations

site Y A1 A2

1 - 0 0
1 + 0 1
2 + 1 0
2 - 1 1

Table 7.2.: An example for which distributed learning fails.

7.6.1. Model-based search

The idea of a model-based search is to first train a model that approximates the global conditional
distribution of the target attribute. If the model yields precise estimates, then RQ

(α)
Di

can directly
be computed from the local data, which allows to discover the relative local subgroups in the next
step. For a common marginal distribution of X (γ = 1) this also allows to discover the global
subgroups by applying corollary 5. Without this assumption, bounded estimates for global rule
utilities can be given (Cor. 4).

A simple learner that allows to approximate the conditional distribution is NAÏVEBAYES.
It can easily be applied to distributed data, because the global model can be obtained by col-
lecting the counts from all sites. A more complex technique that usually comes with higher
accuracy is distributed boosting. Lazarevic and Obradovic (2002) proposed an algorithm simi-
lar to confidence-rated versions of ADABOOST (Schapire & Singer, 1999). In each iteration all
learners train models based only on their local data. No examples are exchanged, but trained
models together with their corresponding performance values. All learners have access to the
same global model after each iteration. Weights are maintained locally, similarly to the case of
a single example set. This allows to locally observe the importance of examples in the global
learning context. Models are combined by choosing the prediction of highest confidence. For
real-world data the authors report good results of their approach. It can be shown, however, that
there are situations in which learning is not possible without exchanging examples. Consider the
distributed learning problem shown in table 7.2. The target function is A1 XOR A2, but at site 1

A1 is always 0 and at site 2 it is always 1. Hence, learner 1 will output (A2 → +) and learner 2

(A2 → −), without a chance to recover from this choice by means of reweighting examples.
Another problem with the model-based strategy is that even precise models usually do not

obtain 100% accuracy. This means that some of the relative local subgroups may not be found,
because it is unknown for which subsets the predictions of the model are poor. Hence, such
strategies do not allow to give desirable guarantees.

7.6.2. Sampling from the global distribution

As discussed in section 7.1, it is often not possible to collect all the data at a single site. If the
reasons are communication costs rather than privacy, then it may still be cheaper to learn directly
with respect to the global distribution than to address a hard learning task using distributed
approaches that do not come with any guarantees.

Applying the adaptive sampling techniques discussed in chapter 3, one can hope to find ap-
proximately best models with probabilistic guarantees after transferring just a small fraction of
the data to a central node for the data mining step. By transferring data in appropriate proportions
from all the sites, the model induction step can be performed on a sample drawn from the global
distribution; the confidence bounds for utility functions discussed in subsection 3.3.2 apply, and
the approximately k-best rules task can be solved as discussed before.

159

7. Distributed Subgroup Discovery

In the presence of prior knowledge or after identifying an approximately best model, this
information can be broadcasted to all the local sites. Hence, it becomes possible to perform
knowledge-based sampling, which means to sample from an altered global distribution in the
sense of theorem 6 (p. 74). Since knowledge-based sampling constitutes a specific kind of re-
jection sampling it can be combined with cost-sensitive rejection sampling in a straight-forward
manner. Due to the similarity between KBS and boosting, this procedure promises to yield
models with high predictive performance. However, the number of examples that have to be
transmitted when taking this approach is not clear in advance; it highly depends on the data set
at hand and may become unreasonably large if many rules happen to perform about equally well.
A thorough investigation of how to recognize situations in which this technique is tractable is
still lacking and may be the subject of future work.

7.6.3. Searching exhaustively

The issues discussed in the last subsections, especially the fact that an approximation of the
conditional distribution does not help to find the global subgroups reliably in the general case,
are good reasons to tackle relative local and global subgroup discovery by means of exhaustively
searching the hypothesis space.

Efficient distributed strategies exist for frequent itemset mining (Zaki, 1999); they basically
exchange itemsets and counts. A straightforward extension of the Apriori algorithm is COUNT

DISTRIBUTION (CD) (Agrawal & Shafer, 1996). At each round, every database generates all
i + 1 candidates from the globally large i-itemsets and broadcasts all counts to all other nodes.
This procedure causes communication costs of Ω(|C|s2), where |C| is the number of candidates
and s denotes the number of nodes (sites). One way to improve the CD algorithm is to use a
designated node for each candidate that is responsible for polling and redistributing all counts of
the candidate itemset. This method is part of the FDM algorithm (Cheung et al., 1996). It reduces
the communication complexity of the algorithm to Θ(|C|s). Two additional pruning techniques
are applied by FDM. Local pruning is based on the observation that, for an item to be frequent, it
must be frequent at least at one node. Counts need to be exchanged only for such items. Second,
nodes use an optimistic estimate for the support of an itemset based on partial counts (received
from other nodes). Whenever this estimate is smaller than the minimal support, the candidate can
be pruned. Schuster and Wolff (2001) present an improved algorithm for distributed association
rule mining that is based on comparing local to global estimates of the support of an itemset.
Counts are exchanged only in cases of conflicting local and global estimates of whether itemsets
are frequent or not.

These ideas cannot directly be applied to the novel tasks studied in this chapter. Association
rule mining differs significantly from subgroup mining in that only positive literals are sup-
ported, and in that all rules meeting a minimal support and confidence constraint are returned,
not only the k best ones. Moreover, there will usually be many more frequent itemsets than
subgroups, because the pruning performed during itemset mining does not exploit the specific
characteristics of a chosen utility function. This will generally increase the number of candidates
that have to be evaluated, and will hence increase the runtime complexity as well as communi-
cation costs. The idea of a polling site, as introduced by FDM, is very useful to avoid costly
broadcasts, however, even in a subgroup discovery context.

The real power of the above approaches to distributed frequent itemset mining lies in their
local pruning strategies. A straightforward idea would be to adapt this approach to distributed
global subgroup mining. As shown before, this is not possible; globally optimal rules can si-
multaneously be inferior at each individual node, while pruning strategies applied to distributed

160

7.7. Distributed Algorithms

frequent itemset mining rely on the fact that globally frequent itemsets must be frequent at least
at one node. This reflects that subgroup utility functions are lacking the monotonicity of rule
support, a prerequisite for efficient itemset mining. This substantial difference between the tasks
also hinders the application of more sophisticated pruning strategies for frequent itemset mining,
e.g., the ones proposed by Otey et al. (2004) and Schuster and Wolff (2001).

Concerning relative subgroup mining, approaches based on association rule mining cannot be
applied either; the score of a relative rule does not only depend on the local support, but also on
two additional independent quantities, namely the local and global confidences of rules.

Applying the pruning strategy of MIDOS (Wrobel, 1997) allows to safely discard specializa-
tions of a rule with small COV, if these cannot contain improvements on the k best subgroups
found so far. Additionally, since global counts generally need to be collected from all sites, more
specific pruning techniques sometimes allow to stop the evaluation of a rule after receiving the
counts of only a subset of all the sites. In the next section, two novel MIDOS-like algorithms
for exhaustive distributed subgroup discovery are proposed, one for the global and one for the
relative local task.

7.7. Distributed Algorithms

7.7.1. Distributed global subgroup discovery

This section presents an algorithm for distributed global subgroup mining, after introducing
further definitions that ease notation. The absolute number of true positives of a rule r is denoted
as p(r), and the number of its false positives as n(r). The argument is omitted if clear from
the context. P and N denote the number of positives and negatives in the complete data set; the
number of positives and negatives at site i are denoted as Pi and Ni, respectively.

Definition 45 For any rule r : A → C the absolute number of covered positives and covered
negatives at node i is denoted as

pi(r) := |{A(x) ∧ C(y) | (x, y) ∈ Ei}| and ni(r) := |{A(x) ∧ C(y) | (x, y) ∈ Ei}|.

For simplicity, this section confines itself to subgroup discovery with the weighted relative
accuracy metric. The proposed algorithm is based on count polling and distributed rule pruning.
As shown in the last section, local pruning as used by distributed association rule mining is not
sufficient in this setting. Therefore, another strategy based on optimistic estimates is analyzed.

A basic principle of the algorithm is that for each rule r, all refinements of this rule r ′ are
created and counted at exactly one node. Hence, a refinement operator as defined in (Wrobel,
1997) can be applied. The following definition assumes a fixed total order on the set of attributes.

Definition 46 A refinement operator ρ is a function that maps each rule to the set of its direct
successors. A rule r ′ : A ′ → C ′ is a direct extension of r : A → C, if and only if C = C ′ and
A ′ = A∪ {Xi = v} for a variable Xi with the property that all attributes Xj in A have an index j

which is strictly lower than i. The transitive relation r ′ < r denotes, that r ′ is a refinement of r.

In MIDOS, this operator is used in combination with the following pruning rule: The coverage
of each rule r decreases monotonically with each refinement, so the upper-bound

WRACC(r) ≤ COV(r) ·
(

1 −
P

P + N

)
(7.1)

161

7. Distributed Subgroup Discovery

allows to prune all refinements r ′ of a rule r if the coverage COV(r) is so low that r ′ cannot
improve over the WRACC of the k-best rule found so far.

This pruning method will now be adapted to support imbalanced information regarding counts
requested from different sites. If for each node the counts for a rule r or a predecessor of r,
denoted as r ′ are known, we can calculate a tight upper-bound on WRACC(r). If this maximal
score is worse than the currently k-best rule, then the algorithm can safely prune rule r.

Lemma 6 The (global) utility of a rule r is bounded by the following term

WRACC(r) ≤ N

(P + N)2

s∑
i=1

pi(r
′
i) (7.2)

where r ′i = r or r < r ′i. This bound is tight for the most specific rules pi(r
′
i) is known for.

Proof
The correctness of this lemma follows from the fact that WRACC orders rules according to
the function p − P

N · n. This can be seen when multiplying WRACC with the constant term
(P + N)2/N:

(P + N)2

N
WRACC(r) =

(P + N)2

N
· p(r) + n(r)

P + N

(
p(r)

p(r) + n(r)
−

P

P + N

)
=

(P + N)

N
·
(

p(r) − p(r)
P

P + N
− n(r)

P

P + N

)
= p(r) −

(
P

N
n(r)

)
≤ p(r) =

s∑
i=1

pi(r) ≤
s∑

i=1

pi(r
′
i) (7.3)

Optimal refinements “discard” no positives. If refinements are optimal at all sites i then all
considered rules r ′i cover the same number of positives at site i as r. Furthermore, optimal
refinements discard all negatives. This means that optimal refinements r are characterized by

p(r) =

s∑
i=1

pi(r) =

s∑
i=1

pi(r
′
i) and n(r) = 0.

In this case, both inequalities in eqn. (7.3) are tight.

The difference to eqn. (7.1) is that the coverage is replaced by the fraction of true positives
p(r)/|E |, a quantity which is strictly smaller than COV(r) = (p(r) + n(r))/|E | unless r can-
not further be improved by refinements, anyway. The pruning strategy exploits the fact that
WRACC increases monotonically if refinements discard only negatives. It is maximized by re-
finements that discard all negatives and no positives. For this reason straightforward adaptations
of eqn. (7.1) apply to the broad class of utility functions sharing this property of monotonicity,
e.g., to the binomial test function. It is sufficient to substitute the tightest known counts dur-
ing optimistic score computation in lemma 6 for each rule, and to optimistically assume that a
subsequent refinement is able to discard only the covered negatives.

The lemma can be used to prune rules, for which exact counts are available only from a
subset of all nodes. If the upper bound for WRACC(r) is worse than the k-best rule, then r

can be pruned directly without polling further counts. Lemma 6 allows to exploit a weak kind

162

7.7. Distributed Algorithms

of monotonicity: If a rule r ′ is pruned, then all refinements r of this rule can be pruned as
well, as their optimistic scores are known to be no better than the optimistic score of r ′. A rule
r : A → C can hence be pruned (i) based on its optimistic score, or (ii) because it is subsumed
by a previously pruned rule r ′ : A ′ → C ′, that is C ′ = C and A ′ ⊂ A (for the sets of literals),
so {A(x) | x ∈ X } ⊂ {A ′(x) | x ∈ X }. In the latter case we have pi(r) < pi(r

′) at all sites, as
the extension of r ′ is a superset of the extension of r, also allowing to apply lemma 6.

The novel algorithms for distributed subgroup mining scale linearly with the number of nodes.
They make use of the discussed pruning strategies together with count polling. Each node i

maintains three data structures. First, a list Bi containing the k (currently) best hypotheses.
Second, a list of pruned hypotheses Zi. These are rules for which it is known that no descendant
can reach a score better than

bi := min
r∈Bi

WRACC(r),

the k-best score at node i. To this end, an optimistic upper-bound is computed using lemma 6.
Finally, each node keeps a list of all rules it is polling counts for. This list is denoted as Qi.

The distributed subgroup mining algorithm is initialized by assigning all rules with an empty
body to an arbitrary node. The computation then follows the scheme shown in algorithm 7.

A node that receives an assignment for a rule r generates all canonical refinements (direct
successors) ρ(r) and serves as their polling node. For each refined rule r ′ the algorithm first
obtains the local counts from the database and checks whether the rule can be pruned. If a rule is
pruned based on its optimistic score, the node additionally informs all other nodes about this step
of pruning. In contrast, subsumption-based pruning of a rule r ′ does not require to broadcast r ′,
because each node is known to also have a rule subsuming r ′ in its list of pruned rules Zi. If
a rule is not pruned, the node broadcasts a query for counts on r and adds r to the list of open
hypotheses Qi. The individual nodes then reply their local counts for r ′. As more and more local
counts arrive, the bound on the global count gets tighter.

If all local counts for a rule r are available and r cannot be pruned, it is first evaluated if r is
better than bi. If this is the case, r is inserted into Bi as described above and broadcasted to all
other nodes. Then, the rule is assigned to a node that is responsible for generating and counting
the canonical refinements of this rule. Besides the rule itself, the local counts from all nodes
for rule r are transmitted. This information is necessary to allow for pruning that is based on
partially available counts, as described above. Each rule is assigned to the node with the highest
local coverage. The rationale behind this choice is that this node is the most likely one to be able
to prune the rule without querying other nodes for counts.

Algorithm 7 shows distributed global subgroup mining at node j. Mj denotes the input mes-
sage queue of node j. bestij, pruneij, countij, queryij and assignij are messages, where i denotes
the sender and j the receiver. The procedures that are part of algorithm 7 are executed as long as
messages arrive.

The algorithm has communication cost that are bounded by O(|C|s), and thus scales linearly
with the number of nodes s. This can be seen easily, considering all messages that are exchanged
per candidate: a query for counts, its replies, and possibly a broadcast for a new best hypothesis
or for pruning. These messages contain only rules and individual counts. Additionally, at most
one delegation message for each rule is produced, containing a set of local counts. This message
is of size O(s). The former kind of messages are assumed to have a constant length and are sent
to all s nodes; the latter kind has a length of O(s), but is sent only once. So, in both cases the
costs for a specific kind of message per candidate is in O(s). Since the number of messages per
candidate is bounded by a constant, the asymptotic bound of O(s) still holds after aggregating
all costs for a candidate.

163

7. Distributed Subgroup Discovery

Algorithm 7 Distributed Global Subgroup Mining (at node j)
// Update best rules
for bestij(r, WRACC(r)) ∈ Mj do

if WRACC(r) > bj then
insert(Bj,r);

end if
end for

// Update pruned rules
for pruneij(r) ∈ Mj do

Zj = Zj ∪ {r};
end for

// Obtain message counts
for countij(r, ni(r), pi(r)) ∈ Mj do

recalculate optscore(r);
if prunable(r) then

Zj = Zj ∪ {r};
else

if counts-complete(r) then
if WRACC(r) > bj then

best.insert(Bj, r);
bcast(best(r, WRACC(r)));

end if
Qj = Qj \ {r};
a = argmaxi(ni(r) + pi(r));
send(assignja(r, {(p1(r), ...)}));

end if
end if

end for

// Handle assignment to refine a rule
for assignij(r, {(p1(r), ...)}) ∈ Mj do

for r ′ ∈ ρ(r) do
recalculate optscore(r ′);
if not(prunable(r ′)) then

bcast(query(r ′));
Qj = Qj ∪ {r ′};

end if
end for

end for

// Answer requests for local counts
for queryij(r) ∈ Mj do

send(countji(r, nj(r), pj(r)));
end for

prunable(r):
if (∃r ′ ∈ Zj) : r ′ subsumes r then

return true;
end if
if optscore(r) < bj then

bcast(prune(r));
return true;

end if
return false;

It is interesting to note that if communication costs may be ignored for this task, then the
algorithm performs the same search as MIDOS, but distributed evaluation reduces the time re-
quired at each local site for each rule. Aggregating counts is cheap, so the total runtime (ignoring
communication delays) even benefits from distributed data, in this case. The required time for
computing rule counts for a data set of size n can be assumed to be in Θ(n log n). This means,
that even the aggregated local computation times of this distributed algorithm will usually be
lower than those of a global discovery algorithm operating on a single database. In practice,
communication costs highly depend on the specific database and network architecture. They
may range from microseconds to seconds, and usually cannot be ignored. A serious evaluation
of the dependencies between communication costs and runtime complexity needs to consider
different distributed architectures, which is out of the scope of this thesis.

There is a straightforward way to combine distributed global subgroup discovery with the
knowledge-based sampling algorithm for sequential subgroup discovery (KBS-SD, algorithm 2,
p. 89); all that is required is (i) a globally consistent reweighting strategy, and (ii) to compute
and transmit weighted rule counts. We may apply the same global reweighting strategy

Dt+1(e) := Dt(e) · (LIFTDt(rt, e))−1

164

7.7. Distributed Algorithms

for each example e ∈ E in each iteration t as KBS-SD, simply by using the global model (e.g.,
set of rules {r1, . . . , rt}), which is known at all sites, in combination with the global LIFTs when
reweighting locally at each site. Algorithm 7 selects the same rules from distributed data as if the
data was not distributed, and using the global performances of rules, KBS-SD also reweights
the data exactly as if working on a single global data set. This implies that if subgroups are
discovered sequentially, if the data is locally reweighted, and if weighted counts are transmitted,
then the result is a distributed KBS-SD algorithm that yields exactly the same results as when
processing all the data after transferring it to a central site.

A further aspect worth noting is that the proposed algorithm applies to multi-relational data
as well, because it applies the same search techniques as the multi-relational MIDOS algorithm.
It suffices to use the same multi-relational refinement operator as proposed by Wrobel (1997).

7.7.2. Distributed relative local subgroup discovery

Compared to definition 44 (p. 158), the algorithm proposed in this section addresses a slightly
simplified relative local subgroup discovery task. It aims at the identification of rules maximizing
the following evaluation metric:

Definition 47 The relative local utility of a rule r at node i is defined as

RLUi(r) := COVi(r) · (BIASi(r) − BIAS(r) + ci) , with ci :=
Pi

Pi + Ni
−

P

P + N
.

This is, because different class skews Pi/Ni are of minor interest for this task. The additional
term ci is used to focus on deviations of globally and locally differing conditional class distri-
butions for subsets covered by considered rules. This turns the term in brackets into deviations
of local from global confidences, as motivated above. A more convenient version of the RLU

metric is

RLUi(r) = COVi(r)

(
pi(r)

pi(r) + ni(r)
−

p(r)

p(r) + n(r)

)

= |Ei|
−1 ·

pi(r) − p(r) · pi(r) + ni(r)

p(r) + n(r)︸ ︷︷ ︸
=:p̂i(r)

 =
pi(r) − p̂i(r)

|Ei|
.

The term p̂i(r) can be interpreted as the estimated number of positives within the subset covered
by rule r at site i. This estimate is based on the fraction of positives in the subset of the global
data that are covered by the rule, i.e. on the global confidence. A factor-equivalent metric to
RLU is

RLU∗
i (r) := pi(r) − p̂i(r). (7.4)

Finding relative subgroups differs from finding global subgroups in that each node finds an
own, individual set of rules. The score of a rule is defined with respect to its local coverage and
its relative bias. While the coverage of a rule r can easily be computed locally for each database,
computation of the bias requires to obtain global counts for r. The global counts of a rule can
be calculated as described in the last section. There is one important difference, however. Rules
can only be pruned, if they are pruned at every node. In the next paragraphs, algorithm 7 is
adapted to the task of relative local subgroup mining. The variant is also based on count polling
and optimistic pruning. The following tight optimistic pruning rule holds for the task of relative
local subgroup mining when using the RLU metric.

165

7. Distributed Subgroup Discovery

Lemma 7 For relative local subgroup discovery, rules r with pi(r) positives, ni(r) negatives,
and p̂i(r) estimated positives covered by rule r at site i,

RLUi(r
′) ≤ pi(r) − max(0, p̂i(r) − ni(r))

|Ei|
,

is a tight upper-bound for the local utilities of all rules r ′ < r.

Proof
Considering the factor-equivalent metric RLU∗ (see eqn. (7.4)) it is easily seen that an optimal
refinement of rule r reduces p̂i(r) by covering less examples that are “predicted” positive, while
not reducing pi(r). If the ni(r) negative examples covered by r are predicted positive by p̂i(r),
and if a refinement r ′ of r exists, that covers only the pi(r) positive examples then we reach at a
utility of

RLU∗
i (r

′) = pi(r) − max(0, p̂i(r) − ni(r)).

This cannot be improved any further by refinements, since r ′ covers only positives, and any
further refinement reduces pi(r) at least as much as p̂i(r)−ni(r). Since RLU∗ = RLU · |Ei| this
proves the lemma.

The algorithm for relative subgroup mining works as follows: Again, each node has a list of
best rules, pruned rules, and open rules. In addition, nodes maintain a rule cache used to store
the global counts of rules for which a node serves as the polling node. The mapping of rules to
responsible nodes is realized in terms of a hash function.

Each node starts with an empty set of rule candidates. It then generates first-level rules that
are evaluated locally. If a rule r can be pruned based on lemma 7 it is discarded. Otherwise,
the node requests global counts p(r) and n(r) for r from a polling node that is determined by
calculating a hash value for the rule. The node that receives this request checks whether it finds
the rule in its cache. If so, it directly returns the corresponding global counts. Otherwise, the
node first queries all other nodes for their corresponding local counts. After aggregating all local
counts pi(r) and ni(r) the polling node stores and returns the global counts. Given the global
counts and the local counts for a rule r, the exact utility score of r can be computed. If r is better
than the kth best rule, then it is inserted into Bi, as described in the last section. If r – and thus
all of its refinements – receive an optimistic score that is worse than the lowest score in Bi, then
r is pruned. Neither best rules nor pruned rules are broadcasted, as they are not relevant to other
nodes.

The approach scales linearly with the number of nodes, although the pruning strategies for
relative local subgroup mining are weaker than those proposed for distributed global subgroup
mining. Thus, communication costs for relative subgroup mining are bounded by O(|C|s), where
|C| are the candidates considered by at least one node. Relative subgroup mining for all nodes is
usually more expensive than global subgroup mining, because each rule may be relevant, unless
it is pruned at all nodes simultaneously.

166

7.8. Experiments

 0

 2000

 4000

 6000

 8000

 10000

 12000

 5 10 15 20 25 30 35 40 45 50

co
m

m
un

ic
at

io
n

co
st

 (
kb

yt
e)

number of nodes

mushroom
adult

german

Figure 7.3.: Communication costs for dis-
tributed global subgroup mining

 300

 400

 500

 600

 700

 800

 900

 1000

 0 0.2 0.4 0.6 0.8 1

co
m

m
un

ic
at

io
n

co
st

 (
kb

yt
e)

p (degree of skew)

relative
global

Figure 7.4.: Data skew / communication costs
for global and local algorithm

7.8. Experiments

This section empirically evaluates the properties of the algorithms presented above. As both al-
gorithms are guaranteed to find the best rules, evaluation is only concerned with communication
costs, the focus of section 7.7.

Costs are evaluated on three data sets taken from the UCI library, Mushrooms, Adult, and
German. For Adult and German, numerical attributes were discretized using minimal entropy
partitioning (Fayyad & Irani, 1993).

First of all, the substantial difference between the tasks of subgroup and association rule
mining is illustrated exemplarily. Association rule and frequent itemset mining rely on a user-
provided support threshold, and are usually applied to find huge amounts of rules. Subgroup
discovery finds only the k best rules with respect to a user-specified utility function, not requir-
ing a threshold. Even if the best rule utility was known to a frequent itemset mining algorithm
in advance, it would be more costly to generate all itemsets based on a corresponding support
threshold in a distributed setting than to run distributed subgroup discovery; state of the art algo-
rithms for distributed frequent itemset mining evaluate at least all frequent itemsets at all nodes.
For example, the German data set contains more than 50.000 frequent itemsets, when using the
support-based pruning threshold of the MIDOS algorithm (see eqn. (7.1)) in combination with
the (usually unknown) utility of the best subgroup. In contrast, the global subgroup discovery
algorithm evaluates less than 3.000 candidates.

Still, the communication costs of the algorithm grow no more than linearly with the number of
nodes. This property was validated in a first experiment, measuring costs by accounting 4 bytes
for each rule transmitted over the network and 2 bytes for each count. To be able to measure the
impact of data skews in the distribution of data to individual nodes, the following procedure was
used. First, the data was clustered using an EM algorithm. The number of clusters was chosen
equal to the number of nodes. A parameter pskew denotes the probability that the clustering
determines the node the example is assigned to. Otherwise examples are assigned randomly
to a node with uniform probabilities. For pskew = 1, each node receives all data points in its
corresponding cluster. For pskew = 0, all examples are distributed randomly. This allows to
adjust the data skew between both extremes. The results for the data sets using pskew = 0 and
finding one global rule (k = 1) for rules of constrained length as in MIDOS (searching for best
rules containing up to 3 literals) are shown in Fig. 7.3. For all three data sets the curves confirm

167

7. Distributed Subgroup Discovery

the theoretical findings concerning the scalability of the proposed methods. Please note, that in
this experiment each database contains about the same amount of data, the worst case for this
method.

The second experiment compares the communication costs for distributed global and relative
local subgroup mining for varying degrees of skew. The results of mining the most interesting
rule of length up to 3 literals for the Mushrooms data set is shown in Fig. 7.4 for a network of
s = 5 nodes. It can be seen that the data skew has a low impact when mining distributed global
subgroups. For relative subgroup mining the situation is different. Given a low skew, the cost for
finding relative subgroups increases. The reason is that relative subgroups can only be found if
the data distribution among nodes deviates. For low skews only rules with very low scores can be
identified, which however forces all nodes to search a very large search space as pruning cannot
be applied. Reaching at a certain level of skew the distributions deviate sufficiently to identify
corresponding rules, leading to a sharp decrease of costs in Fig. 7.4 for relative local subgroup
mining.

7.9. Summary

Major companies usually do not store all of their data in a single database, but generally have
a huge number of smaller databases that may be geographically distributed. Privacy issues and
data volumes hinder the collection of all the data at a single site. Hence, there is a growing in-
terest in distributed approaches to data mining that minimize communication costs while giving
guarantees at the same time that the same or similar results are reported as when data mining
from all the data that is available globally. Since the data are generally not distributed at random,
but tend to reflect semantically meaningful partitionings, e.g., sales grouped by store or state,
approaches that take the locality of data into account allow to define novel data mining tasks that
benefit from data being stored in a distributed fashion.

In this chapter a broad class of rule evaluation metrics has been adapted to distributed learning.
All theoretical findings can easily be adapted to more general forms of supervised learning. First
it was shown that the utility measures common in the literature on subgroup discovery apply to
homogeneously distributed data in the same way as for non-distributed data. If the different sites
do not share a single underlying distribution that generated the data, however, then even precise
estimates may yield completely disjoint rule sets at all sites, none of which contains a single one
of the best k rules. For the general case, a tight bound for the differences between global and
local rule utilities was derived, which allows to translate local rule utilities into global ones with
bounded uncertainty. For the task of discovering rules that have a higher local than global utility
it was shown that it is at least as hard as approximating the global conditional distribution of the
target attribute. For a common marginal distribution each problem can be solved locally, given a
solution for the other.

The results indicate that distributed subgroup discovery is a hard problem, since it requires
precise estimates of both, the global marginal (e.g., Pr(x)) and the global conditional distri-
bution (e.g., Pr(y | x)). The former may for example be obtained by distributed variants of
frequent itemset mining, the latter by means of distributed boosting. In practice, the bounds re-
quired to translate local into global rule utilities will usually be unknown, so the negative results
presented in the first part of this chapter have a higher practical relevance than the positive re-
sults. As discussed, there are good reasons to tackle the problem by exhaustively searching the
hypothesis space, applying specific pruning strategies whenever possible. The MIDOS pruning
strategy based on optimistic scores has been improved and adapted to the distributed setting.

168

7.9. Summary

Moreover, a tight pruning threshold for relative local subgroup discovery was derived, and count
polling as known from frequent itemset mining was adapted to the new tasks. Based on these
ideas, two algorithms for distributed subgroup discovery were proposed that both guarantee to
deliver optimal results at communication costs linear in the number of nodes and rule candi-
dates. This is an essential property for scalable distributed algorithms. The global distributed
subgroup discovery algorithm evaluates the same candidates as a corresponding exhaustive non-
distributed algorithm. As a result, a combination with knowledge-based sampling yields the
same weights or selection probabilities for each examples as a non-distributed algorithm after
each iteration. With query costs that scale super-linearly with the number of examples at each
node – as common when using index structures – the total computational costs of distributed
subgroup discovery are even lower than an exhaustive search from non-distributed data.

Possible directions for future work contain evaluations of probabilistic strategies to distributed
subgroup mining. If e.g., transferring data is legal but expensive, adaptive sampling can be com-
bined with knowledge-based sampling. Transferring patterns that play the role of compressed
example sets is also possible in this setting. The goal would be to reduce the communication
costs further, while allowing for probabilistic guarantees regarding the quality of discovered
rule sets.

A condensed version of sections 7.1 to 7.6.2 of this chapter has been published as (Scholz,
2005d). Sections 7.6.3 to 7.8 are joint work with Michael Wurst (Wurst & Scholz, 2006).

169

7. Distributed Subgroup Discovery

170

8. Support for Data Preprocessing

8.1. The KDD process

In the last years, a consensus among researchers was achieved that knowledge discovery in
databases is not just a linear process of selecting data, applying a data mining algorithm, and re-
porting or deploying its results, but a complex and iterative process that, if done right, comprises
a large number of phases. Similar refinements of process models could be observed in software
engineering; early process models like the waterfall model (Royce, 1970) were organized as a
single linear top-down approach from informal to formal specifications, followed by phases of
implementation, testing, and maintenance. This view has changed drastically, giving rise to iter-
ative models like the unified process (Jacobson et al., 1999). In each phase new insights into the
structure of the problem at hand can be gained. This may reveal unjustified crucial assumptions
made at earlier stages, which might require to step back and adapt specifications. In turn, some
insights that can only be gained at a later phase will affect design decisions of earlier phases sub-
stantially, so it is often a wise choice not to rely on early specifications or project plans, but to
keep the process flexible, stepping forth and back between the phases. For instance crucial parts
of a system can first be implemented in a rapid prototyping manner, leaving room for iterative
refinements of the overall project plan.

KDD projects have a number of specific properties, that are mostly rooted in the data-driven,
analytical nature of the discipline. A well-known definition that tries to capture the general goals
of KDD has been proposed by Fayyad et al. (1996):

Definition 48 Knowledge discovery from databases (KDD) is the nontrivial process of identify-
ing valid, previously unknown, potentially useful patterns in data.

Process models for KDD aim to structure KDD projects in terms of typical subtasks and their
interdependencies. The next paragraphs discuss the best known KDD process model, the CRoss-
Industry Standard Process for Data Mining (CRISP-DM) by Chapman et al. (2000). First it
should be noted that CRISP-DM uses the term data mining as a synonym for knowledge dis-
covery in databases. In contrast, as in most of the literature on KDD, this thesis uses the term
data mining only for the step in the process that addresses model induction or pattern extrac-
tion, the setting of required parameters for the applied machine learning algorithms, and maybe
post-processing of models or of resulting sets of patterns.

The CRISP-DM model has a strong industrial background. It aims to provide a step-by-step
guide to practical knowledge discovery applications, including several remarks on when to con-
sider budget and other resource constraints, and it focuses also on steps like understanding the
underlying business goals.

The model distinguishes between six different phases, depicted in figure 8.1, business un-
derstanding, data understanding, data preparation, modeling, evaluation, and deployment. Each
of these phases depends on the results of preceding phases, but the CRISP-DM model consid-
ers the phases to provide a flexible framework for iterative refinements and cyclic iterations, as
motivated above. The phases can roughly be characterized as follows.

171

8. Support for Data Preprocessing

Figure 8.1.: An overview of the six different phases part of the iterative CRoss-Industry Standard Process
for Data Mining (CRISP-DM). Arcs connecting phases highlight directions into which KDD
processes typical continue.

Business understanding The first phase of the model aims to provide a solid understand-
ing of the problems to be tackled and the constraints to be met from a decision maker’s point of
view. One aspect of this phase is to discuss and clarify all constraints of the data mining project,
e.g. the budget, the availability of domain experts, of technical equipment, and of the data to be
analyzed. Another aspect is to agree on or clarify the relevant concepts in the business domain.
Sometimes it will be useful to set up a dictionary for the domain terminology. Next, the business
goals should be clarified precisely and it should be agreed on criteria for measuring success. The
business goals directly address business problems, e.g. to reduce the number of churning cus-
tomers of a telecommunication company. It should be clarified to which target group the KDD
project results are presented, or who is supposed to use the results, and in which way. Risks to
the success of a project should be identified in advance, and alternative project plans should be
prepared for cases in which these risks occur. Such risks range from delays in the schedules over
costs to compromised results of the KDD project. A detailed evaluation of costs and potential
benefits helps to gain a clearer picture of whether it is reasonable to carry out the project at all,
and if so, what might be appropriate stopping criteria.

The next step is to translate the business goals of the project into formal data mining problems
that can directly be addressed by data mining experts. If the business goal is to reduce churn,
then a data mining goal might be to identify a maximum likelihood model that allows to predict
whether any specific customer will churn within the next 6 months. Analogously, as for the
business goals, success criteria should be identified for the data mining goals.

The final steps of the business understanding phase are to set up a detailed project plan con-
taining dependencies, risks, milestones, etc., to discuss it with the involved personnel, and to
assess the equipment and tools to be used during the project.

172

8.1. The KDD process

Data understanding After the goals have been formulated, the next step is to inspect the
available data. Often the data will come from different sources, which requires to convert and
join them before being able to process them with appropriate analysis tools. The first crucial
question is which tables, attributes, and tuples to include. Some of the relevant information may
not be available from the beginning, which motivates to spend some efforts on completing the
data sets, while many of the tuples and attributes may not be relevant at all, and should hence
be removed from consideration. The data formats may vary between different tables or flat files
and may sometimes not be well-suited to be analyzed directly. Free text entries, for example,
should be transformed into a structured format, if possible, and formats should be standardized
throughout all tables.

The main objective of the data understanding phase is to collect various kinds of information
about the data. This covers aspects like the availability of useful information, the number of
tables and attributes to be mined, and e.g., the number of tuples per table. Another important
aspect is the (initial) format of the data, e.g., whether attributes are nominal or continuous, can
be structured in terms of a taxonomy, and whether attributes are deemed relevant from a business
perspective. This high-level description should be augmented by a first statistical analysis that
describes attribute ranges, the number of duplicates, missing values, and correlations between
different attributes and tables. Initial hypotheses can be formulated or refined based on first,
very simple data mining approaches in this phase. Typically, only visualization and querying
techniques will be applied at this point.

A final crucial part of this phase is the assessment of the data quality. Among the most com-
mon problems to be identified and reported are incomplete tuples, incorrect values, and viola-
tions of referential integrity constraints. Missing values may be represented in different formats,
as constants, like “9999”, as empty fields (“NULL” entries in relational databases), or both. The
semantics of missing values may differ substantially between data sets, and should hence be clar-
ified. To be able to figure out the impact of missing values for the analysis task, their frequency
should be estimated for each relevant data source. Free-text entries may contain variations and
typos, which may easily lead to different representations of the same attribute value. More gen-
erally, several nominal values may have similar semantics or may even encode synonyms, which
should be captured by choosing a more appropriate representation. In turn, the same attribute
value might have been interpreted and used differently by different users, leading to another
kind of inconsistency. Plausibility checks might reveal different kinds of incorrectly entered
data. Especially if tables from different sources are joined it is likely that some entries will be
redundant or inconsistent. Flat files are a data format most prone to quality problems. Missing
delimiters require to reconstruct the original mapping from values to attributes, for example.
Sometimes the values may not fit the required format of the corresponding attribute.

The result of this phase is a detailed report, describing the basic characteristics of the collected
data, encountered data quality issues, and results of a first statistical evaluation. Plots are useful
to visualize individual distributions, correlations, and inconsistencies found in the data.

Data preparation The data collected and documented in the preceding phase is usually still
not in an appropriate form for the analysis step. The data preparation phase hence aims to address
all of the problems reported in the last phase. Furthermore, it covers the transformation into a
representation that allows for successful data mining.

The first step is to reconsider the selection criteria for tables, attributes and tuples in the
light of the previous results. For example, some attributes may be removed from consideration,
because the statistical evaluation revealed that they are irrelevant for the task at hand. Technical
constraints may suggest to confine to subsamples of the data if the available data volume may not

173

8. Support for Data Preprocessing

be processed in reasonable time with the selected tools. Sometimes the integration of additional
data sources, e.g. publicly available demographic data, may be considered at this point.

The identified data quality problems are addressed by data cleansing techniques. Missing
values are avoided by selecting only clean subsets, or by substituting the blank fields, using
default values, or values predicted by machine learning techniques. Recognized kinds of noise
should be removed, if possible, or at least be documented.

The representation of the data has a large impact on the quality of data mining results. The
notion of feature construction subsumes various techniques that construct new attributes (fea-
tures) based on existing attributes. This allows to organize the relevant information in a way
that better meets the demands of data mining techniques. For example, ages could be computed
as the difference between the current date and date of birth. If attributes are known to be of
different relevance, specific attribute weights may be introduced. Further ways to transform rep-
resentations contain the normalization of attributes, turning continuous into discrete values by
discretization techniques, or capturing implicit orders over nominal attributes by mapping those
attributes to a numerical range.

If the preprocessed data is split to multiple tables and the subsequently applied technique is
not able to handle this representation, a step of merging and aggregating the tables is required.
Merging tables is also reasonable, if several tables contain similar kinds of information for the
same objects. A final step addresses tool-specific demands regarding the data format. For ex-
ample, a tool could assume the first attribute to be the target attribute in a supervised learning
scenario, or require a specific flat file format.

Modeling The model building (or data mining) step takes as input the data prepared in the
previous phase. The choice of data mining techniques is narrowed by the data mining goals
and the available tools as specified in the business understanding phase. It should be made sure
that any underlying assumptions of data mining techniques, like “no missing values”, “only
numerical values”, or “normally distributed attributes”, are met by the data produced during the
preparation phase.

The model building step itself is discussed in subsequent chapters of this thesis. Clearly, the
quality of models should be evaluated using a sound test design, for example cross-validation
for predictive tasks. Initial parameter settings should be justified and documented. This aspect
is of diminishing importance, however, since parameters are nowadays often optimized in larger
learning loops as e.g. supported by the YALE learning environment (Mierswa et al., 2006).

The resulting models may be improved by post-processing steps, and the assessment of their
utilities may be eased by annotating performances. Large sets of association rules may for exam-
ple be reduced to a most relevant subset of rules, each of which is typically annotated by support
and confidence scores. Depending on the kind of models or extracted patterns different kinds
of additional documentation may help to interpret results and point out potential weaknesses at
later points. A subsequent assessment phase compares different models in terms of the chosen
evaluation criteria, and tries to figure out their potential impact, their novelty and usefulness. As
far as possible the results should also be evaluated with respect to the business problems, and be
commented on by domain experts. The modeling step may have to be repeated several times due
to additional insights gained during the procedure.

Evaluation The CRISP-DM model contains a separate evaluation phase for data mining re-
sults, going beyond the evaluation foreseen as part of the modeling phase. All the results are
evaluated, which include the models produced in the previous phase, but also any additional
findings. The rationale is that, apart from the models, during steps of e.g. data inspection and

174

8.2. The MiningMart approach

exploration unexpected results might have been observed, that are not related to the initial busi-
ness goals, but might nevertheless provide useful insights into the domain. The evaluation of
models has a stronger focus on the initial business goals in this phase. In particular, experts
aim to interpret the results in terms of the application at hand. The results are improved models
or short-comings to be addressed in further iterations, but also additional business questions to
be addressed in further data mining projects, e.g. in response to additional findings. A critical
review of all steps performed during the KDD project, including failures and possible improve-
ments, is also foreseen. Finally, it has to be decided whether the business goals have been met
sufficiently well, how to refine the project plan with the remaining resources, and whether to
move on to the deployment phase or to step back to one of the previous phases.

Deployment The goal of the final phase is to transfer all the results gained during the KDD
project into the daily business procedures. This starts with an analysis of the deployable models
and other findings. A plan is set up, how the results may be used and by whom, how to monitor
the benefits gained by this step, and which problems may occur. Similar to software develop-
ment, the maintenance of the deployed result deserves attention if it is supposed to become part
of the daily business. Monitoring helps to identify situations in which the results are no longer
appropriate. Setting up strategies for updating the applied knowledge at low costs in dynamic
environments, or at least for identifying criteria that determine when to stop using the results are
hence reasonable. One strategy that helps to derive such criteria is to document and reconsider
the business problems initially addressed by the project.

Finally, CRISP-DM foresees a final report and presentation, as common for most IT projects.
The report should document the full process and the experiences made, in order to provide
a useful guideline for subsequently planned similar projects, the costs incurred at each step,
deviations from the initial plan, and recommendations for future work. A separate project review
might document more of the details, e.g., pitfalls or experiences made by individual members of
the team.

The notion of a data mining context as defined by the CRISP-DM model is a description
of KDD projects in four dimensions, namely the application domain, the data mining problem
type, the technical aspects, and the tools and techniques. Each KDD project moves along all of
these four dimensions, and may be similar to other projects with respect to any of these aspects.
As pointed out for the deployment phase, one of the goals of CRISP-DM is to preserve the
experiences made during a project, in order to ease subsequent applications that are similar with
respect to some of these aspects. This objective is shared by the MININGMART system, which
will be illustrated in the next sections.

8.2. The MiningMart approach

The MININGMART system has been developed as part of a European research project1. The
author of this thesis has worked on this project in the period from September 2001 to March
2003, the official end of the project. He subsequently provided system maintenance and inte-
grated novel aspects until the end of 2003. The remainder of this chapter provides a high-level
introduction to the concepts realized by the MININGMART system; in chapter 9 the main con-
tributions of the author of this thesis are discussed in detail.

The MININGMART system aims to ease preprocessing and algorithm selection in order to
turn KDD into a high-level query language for accessing real-world databases. As a first benefit

1The MININGMART project was supported by the European Union under contract IST-1999-11993.

175

8. Support for Data Preprocessing

for practical applications, it provides a pre-defined library of the most import preprocessing
operators. These operators perform data transformations such as, e.g., discretization, replacing
null values, aggregation of attributes, and transforming time-stamped data into sequences of
events. As an important aspect for KDD practitioners, all these preprocessing operators directly
access relational databases and are capable of handling large volumes of data.

MININGMART relies on meta-data descriptions of KDD applications, which can easily be
set up via a graphical user interface. The system contains a specific meta-data compiler that
translates these meta-data specifications into executable SQL code. This section starts with a
description of the meta-data model (subsection 8.2.1). Subsequently it is illustrated, how the
MININGMART system supports users in setting up preprocessing cases (subsection 8.2.2 and
8.2.3). The role of the compiler is briefly discussed in subsection 8.2.4, and more elaborately in
the next chapter. The different levels of abstractions integrated into the system, and the resulting
support for case adaptation motivate the collection of successful solutions from the past in a
public Internet case-base. A brief discussion of these issues is provided in subsection 8.2.5.

8.2.1. The Meta-Model of Meta-Data M4

Meta-data or ontologies have been a key to success in several areas. In the scope of MINING-
MART, the advantages of meta-data driven software generation are:

Abstraction: Meta-data are given at different levels of abstraction, a conceptual (abstract) and
a relational (executable) level. This makes an abstract case understandable and re-usable.

Data documentation: All attributes together with the database tables and views, which are
input to a preprocessing chain are explicitly listed at both, the conceptual and relational
part of the meta-data level. An ontology allows to organize all data, e.g. by distinguish-
ing between concepts of the domain and relationships between these concepts. For all
entities involved, there is a text field for documentation. This makes the data much more
understandable, e.g. by human domain experts, than if just referring to the names of spe-
cific database objects. Furthermore, statistics and important features for data mining (e.g.,
presence of null values) are accessible as well. This augments the meta-data usually found
in relational databases and gives a good overview of the data sets at hand.

Case documentation: The chain of preprocessing operators is documented, as well. First
of all, the declarative definition of an executable case in the M4 model can already be
considered to provide a documentation. Furthermore, apart from the opportunity to use
“speaking names” for steps and data objects, there are text fields to document all steps of
a case together with their parameter settings. This helps to quickly figure out the relevance
of each step and makes cases reproducible.

Ease of case adaptation: In order to run a given sequence of operators on a new database,
only the relational meta-data and their mapping to the conceptual meta-data has to be
defined. A sales prediction case can, for instance, be applied to different kinds of shops,
and a standard sequence of steps for preparing time series for a specific learner might
even serve as a template that applies to very different mining contexts. The same effect
eases the maintenance of cases, when the database schema changes over time. The user
just needs to update the corresponding links from the conceptual to the relational level.
This is especially easy when all abstract M4 entities are documented.

The MININGMART project has developed a model for meta-data together with its compiler, and
has implemented human-computer interfaces that allow database managers and case designers

176

8.2. The MiningMart approach

Figure 8.2.: Simplified UML diagram of the MININGMART Meta Model (M4)

to fill in their application-specific meta-data. The system supports preprocessing and can be used
stand-alone or in combination with a toolbox for the data mining step.

This section gives an overview of how a case is represented at the meta-level, how it is practi-
cally applied to a database, and which steps need to be performed when developing a new case,
or when adapting a given one.

The form in which meta-data are to be written is specified in the meta-model of meta-data,
M4. It is structured along two dimensions, topic and abstraction. The topic is either the data
or the case. The data consist of observations to be analyzed. The Case2 is a sequence of (pre-
processing) Steps. The abstraction is either conceptual or relational. The conceptual level is
expected to be the same for various applications, while the relational level actually refers to
the particular database at hand. The conceptual data model describes concepts like Customer
and Product and relationships between them like Buys. The relational data model describes the
business data that are analyzed. Most often it already exists in the database system in the form
of the database schema. The meta-data, written in the form as specified by M4, are stored in a
relational database themselves.

Figure 8.2 shows a simplified UML diagram of the conceptual level of the M4 model. Each
Case contains Steps, each of which embeds an Operator and is linked to a set of corresponding
parameters. Apart from Values, parameters may be Concepts, BaseAttributes, or MultiColumn-
Features (features aggregating multiple BaseAttributes). This part is a subset of the conceptual
part of M4. The relational part contains Columnsets and Columns. Columnsets refer to database
tables, to database views, or virtual (meta-data only) views. Each Columnset consists of a set
of Columns, each of which refers to a database attribute. Likewise, Columns are the relational
counterpart to BaseAttributes. For Columns and BaseAttributes there is a predefined set of data
types, also omitted in figure 8.2. Section 9.2 discusses the M4 model in more detail.

2For clarity, terms starting with a capital letter are used in this and the following chapter when referring to concepts
of the MININGMART meta model (M4), e.g., “Case”, “Step”, and “Parameter”.

177

8. Support for Data Preprocessing

Figure 8.3.: Overview of the MININGMART system and its user groups

8.2.2. Editing the conceptual data model

As depicted in figure 8.3, there are different kinds of experts working at different ends of a
knowledge discovery process. First of all, a domain expert defines an ontology that names and
relates all the entities relevant to the data mining application at hand. Ontologies are also referred
to as conceptual data models, because they are commonly used to model conceptual domain
knowledge. The main building blocks supported by M4 to set up an ontology are Concepts hav-
ing Features, and Relationships between these Concepts. Typical example Concepts for many
business domains are Customer and Product. Each Concept consists of a set of Features, each
of which, in turn, is either a single BaseAttribute or a MultiColumnFeature. A BaseAttribute
simply corresponds to a database attribute, e.g., the name of a customer. A MultiColumnFea-
ture, in contrast, aggregates a fixed set of BaseAttributes. This kind of Feature should be used,
when semantically related information is split over multiple BaseAttributes. If the amounts and
currencies of bank transfers are represented by two separate BaseAttributes, for example, then it
is possible to define a single MultiColumnFeature that contains both BaseAttributes, and hence
all of the related information. Another example are the separate date and time-of-day attributes
common in some DBMSs. These can be aggregated to a single point-in-time information.

Relationships are connections between Concepts. There could be a Relationship named Buys
between the Concepts Customer and Product, for example. At the database level one-to-many
Relationships are represented by foreign key references, many-to-many Relationships make use
of cross tables. However, these details are hidden from the user at the abstract conceptual level.

To organize Concepts and Relationships, the M4 model offers the opportunity to use inher-
itance. Modeling the domain in this fashion, the concept Customer could have Subconcepts
like Private Customer and Business Customer. A Subconcept inherits all Features of its
Superconcept. As an example of an inheritance between Relationships we may derive a Sub-
relationship Installment purchase from the general Relationship Buys. Please note, that in

178

8.2. The MiningMart approach

Figure 8.4.: Screenshot of the Concept Editor while editing the Concept “Sales Data”

Figure 8.5.: Statistics of a database view, including the frequency of attribute types and several aggre-
gates and distributional information for each individual attribute.

179

8. Support for Data Preprocessing

subsequent releases of MININGMART the set of supported relations between Concepts has been
re-designed (Euler, To appear).

Figure 8.4 shows a screenshot3 of the concept editor, a module of the MININGMART system
that supports the user in setting up and maintaining conceptual models. In the figure it is used
to list and edit BaseAttributes. The right part of the lower window indicates that the selected
Concept Sales Data is connected to another Concept Holidays by a Relationship week has
holiday.

8.2.3. Editing the relational model

Given a conceptual data model, a database administrator maps the involved entities to the cor-
responding database objects. The relational data model of M4 is capable of representing all the
relevant properties of a relational database. The most simple mapping from the conceptual to the
relational level is given, if concepts directly correspond to database tables or views. A Concept
Customer, containing the features Customer ID, Name, Address is mapped to a database
table CUST_T, for example, which contains a matching attribute for each BaseAttribute of the
Concept, e.g., CUST_ID, CUST_NAME and CUST_ADDR. In this case, it suffices to specify
the table name and the attribute mapping.

A more complex kind of mapping is required if the information on names and addresses is dis-
tributed over different tables. There may for example be a common key attribute CUSTOM_ID
that allows to relate tuples across the different tables, so the mapping requires a join operation.
Please note, that the much simpler situation above can always be reached manually by inspecting
the database and creating a view that corresponds to the Concept under consideration. However,
there should be an adequate support by the MININGMART system for mapping the conceptual
to the relational meta-data, because this is a crucial prerequisite for adapting best-practice cases
to new domains.

There is a line of research that aims at finding corresponding entities in similar database
schemas. Rahm and Bernstein (2001) provide a survey on so-called schema matching approaches.
Wagner (2005) describes a first module that integrates schema-matching into the MININGMART

concept editor. It adapts ideas from Do and Rahm (2002) to the conceptual vs. relational meta-
data framework. Moreover, this module supports users in creating views for Concepts in situa-
tions sketched in the example above, namely that the matching database attributes of a Concept’s
BaseAttribute are spread over different tables or views.

As a further feature supporting the exploration of database entities, there is a data viewer
embedded into the concept editor. This tool displays database tables, but is also capable of dis-
playing simple statistics of connected tables and views. This also allows to inspect intermediate
and final results produced by the M4 compiler (see subsection 8.2.4). Figure 8.5 shows an ex-
ample of the statistics displayed. For each view or table, the number of tuples and the numbers
of nominal, ordinal, and time attributes are computed. For numerical attributes, the number of
different and missing values are displayed, and the minimum, maximum, average, median, and
modal values are computed, augmented by standard deviations and variances. Only the applica-
ble ones of these functions are applied to ordinal and time attributes. Finally, information on the
distribution of values is shown for all kinds of attributes.

3All screenshots in this chapter were taken from the official release at the end of the project in 2003.

180

8.2. The MiningMart approach

Figure 8.6.: Illustration of the coupling between abstract conceptual and operational level.

8.2.4. The Case and its compiler

All the information on conceptual descriptions and the corresponding database objects involved
are represented within the M4 model and stored within relational tables. M4 Cases denote a col-
lection of Steps, basically performed sequentially, each of which creates or extends one Concept.
Each Step is related to exactly one M4 operator, and holds all of its input arguments. The M4
compiler reads the specifications of Steps and executes the corresponding operator, passing all
the necessary inputs to it. This process requires the compiler to translate the conceptual entities,
like input Concepts of a Step, to the corresponding relational entities, like database table names,
the name of a view, or the SQL definition of a virtual view, which is only defined as relational
meta-data in the M4 model.

One can distinguish between two kinds of operators, manual and machine learning opera-
tors. Manual operators just read the M4 meta-data of their input and add an SQL-definition to
the meta-data, which establishes a virtual table. Currently, the MININGMART system offers 41
manual operators for selecting rows, selecting columns, handling time data, and generating new
columns for the purposes of e.g., handling null values, discretization, moving windows over time
series, or gathering information concerning an individual (e.g., customer, patient, shop).

External machine learning operators, on the other hand, are employed following a wrapper ap-
proach. Currently, the MININGMART system offers learning of decision trees, k-means, support
vector machines, association rule mining, and subgroup discovery as learning operators. These
learners are either used as preprocessing operations, or they are applied in the classical way, as
data mining operators. The necessary business data are read from the relational database tables,
converted into the required format, and passed to the algorithm. After execution the result is
read by the wrapper, parsed, and either stored as an SQL-function, or materialized as additional
business data.

In any case, the M4 meta-data will have to be updated by the compiler. A complex machine
learning tool to replace missing values is an example for operators that alter the business data. In
contrast, for operators like a join it is sufficient to virtually add the resulting view together with
its corresponding SQL-statement to the meta-data.

Figure 8.6 illustrates how the abstract and the executable (or relational) level interact. Ini-
tially, just the upper sequence is given. It consists of an input Concept, a Step, and an output
Concept. The definition of the Concept contains a set of embedded Features; the Step contains
an operator together with its parameter settings. Apart from operator-specific parameters, the

181

8. Support for Data Preprocessing

Figure 8.7.: A small example Case in the case editor. The Concepts are listed on the left, the
Steps and their interdependencies are shown on the right.

input and output Concept are parameters of the Step, as well. The compiler needs the inputs,
e.g., the input Concept and its Features, to be mapped to relational objects before execution.
The mapping may either be defined manually, using the concept editor, or it may be a result
of executing a preceding Step. If there is a corresponding relational database object for each
input, then the compiler executes the embedded operator. In the example this is a simple oper-
ator named DELETEROWSWITHMISSINGVALUES. The corresponding executable part of this
operator generates a view definition in the database and in the relational meta-data of M4. The
latter is connected to the conceptual level, so that after the execution there is a mapping from the
output Concept to a view definition. The generated views may be used as inputs to subsequent
Steps in MININGMART, but they may as well be accessed by other tools, for example by main
memory data mining toolboxes like YALE. The meta-data compiler, its library of operators, and
dependencies to other MININGMART modules will be discussed in detail in chapter 9.

The task of a case designer, ideally a data mining expert, is to find sequences of Steps result-
ing in a representation well suited for the given data mining task. This work is supported by the
case editor tool which is a module of the MININGMART system. Figure 8.7 shows a screenshot
of a rather small example Case while edited by this tool. Typically a preprocessing chain con-
sists of many different Steps, usually organized as a directed acyclic graph, as opposed to the
linear sequence structure depicted in figure 8.7. To support the case designer, a list of available
operators and their categories, e.g., feature construction, clustering, or sampling is part of the
conceptual case model M4. The idea is to support a fixed set of powerful preprocessing oper-
ators, in order to offer a comfortable way of setting up Cases on the one hand, and in order to
ensure re-usability of Cases on the other. Several useful operators that could be identified over
time have been implemented and added to the repository.

For each Step, the case designer chooses an applicable operator from the collection, and sets
all of its parameters (i.e. assigns the input Concepts, input BaseAttributes and/or input Relation-
ships and specifies the output). To ease the process of editing Cases, applicability constraints on

182

8.2. The MiningMart approach

the basis of meta-data are provided as formalized knowledge, and are automatically checked by
the human computer interface (see section 8.2.2). That way, only valid sequences of Steps can
be produced by a case designer. Furthermore, the case editor supports the user by automatically
creating output Concepts of Steps according to certain meta-data constraints, and by offering
property windows tailored to the properties of chosen operators.

A sequence of many Steps, a Chain in M4 terminology, transforms the original database
into another representation. Each Step, as well as the dependencies between different Steps,
are formalized in M4, so the system automatically keeps track of the performed activities. This
enables the user to interactively edit and replay a Chain or parts of it. A full application is referred
to as a Case in MININGMART.

As soon as an efficient preprocessing Case has been found, it can easily be exported and added
to an Internet repository of MININGMART best-practice cases. Only the conceptual meta-data is
submitted, so even if a Case involves sensitive information, as given for most medical or business
applications, it is still possible to distribute the valuable meta-data for re-use, while hiding all
the sensitive data and even the local database schema.

8.2.5. The case-base

One of the major advantages of the MININGMART system is the opportunity to publish success-
ful applications on the Internet, and to re-use best-practice cases published by other users. The
shared knowledge allows all users to benefit from new Cases. Submitting a new Case of best
practice is a safe advertisement for KDD specialists or service providers, since the relational
data model is not disclosed. The structured information of each Case may be utilized to support
users in finding the Case that is most similar to their own application. To this end, the project
set up a web interface that visualizes the conceptual meta-data. It is possible to navigate through
the case-base and to inspect single Steps, see which operators were used and with which kinds
of Concepts. The web interface directly accesses the Case data from M4 meta-data tables in the
database. It thereby avoids redundancies as well as any additional technical efforts. Figure 8.8
shows a screenshot of a Case’s business level description. In addition to the data that is explic-
itly represented in M4, a business level has been added. This level aims to relate the Case to
business goals and to give several kinds of additional descriptions, e.g., which success criteria
were chosen. For example, the sales prediction answers the question “How many sales of a par-
ticular item do I have to expect?”. The business goal is to avoid situations in which requested
items are sold out, while minimizing the stock at the same time. A particular constraint of this
application that reflects expected supply times is that sales forecasts are only useful if made at
least four weeks ahead. Especially the more informal descriptions should help decision makers
to find a case tailored towards their specific domain and problem. The additional information is
stored in an XML-representation that is directly connected to M4 entities. On the Internet these
connections are reflected by hyperlinks. Figure 8.9 shows the ontology of the business layer.

It is possible to start the search for a Case at each category of the business level or of the
conceptual level. In this sense, Cases are indexed by all the categories that are part of the con-
ceptual M4 model and the business model. If a user considers a Case useful, then its conceptual
data can be downloaded from the server. The downloadable Case itself is a category in an XML
framework. The locally installed MININGMART system offers an import facility for installing
the meta-data into the user’s M4 tables. If problems arise or further help is required, the business
level holds a category with contact information of the case designer or a company that provides
support.

183

8. Support for Data Preprocessing

Figure 8.8.: The web interface to the case base visualizes all Cases, their Steps, embedded operators, and
parameters in HTML format. Entities related in the M4 schema are connected by hyperlinks.
Additionally, a business level is part of the interface. It describes the available Cases in terms
of e.g., the addressed business goals of the data analysis task. After choosing a case based
on conceptual M4 and business layer descriptions, the user can simply download it. The
Case adaption facilities of the MININGMART system helps to quickly adjust the case to the
user’s environment.

184

8.2. The MiningMart approach

Figure 8.9.: The ontology of the business layer, used to describe M4 Cases in business terms.
Lines represent 1:n or m:n references.

As of this writing, the case base has a focus on Customer-Relationship Management. It con-
tains the following 5 cases:

Call Center Case: an analysis of call center and contract data for marketing in the telecom-
munication domain (Chudzian et al., 2003)

Life Insurance Churn Prediction: a case describing the analysis of insurance data for di-
rect mailing (Kietz et al., 2000b; Kietz et al., 2000a)

Churn Prediction Case: churn prediction application of a telecommunication service provider
(Richeldi & Perrucci, 2002)

Model Case Telecom: an instructive template for churn prediction cases (Euler, To appear)

DrugStoreCase: a full analysis of sales data for sales prediction, including the data mining
step and its validation (Rüping, 1999)

The fact that MININGMART was neither open source nor free of charge for commercial ap-
plications turned out to be problematic for collecting best-practice cases in the past. A first
open source version of MININGMART has been released on 12.4.2006. However, a remarkable
number of alternatives to the presented system and to the meta-data formalism M4 have been
proposed in the meantime. An overview is given in the next section. Hopefully, standards are go-
ing to emerge in the near future. This could help to foster the idea of maintaining best-practice
cases which can be submitted and re-used by the whole KDD community without presupposing
specific commercial software solutions.

185

8. Support for Data Preprocessing

8.3. Related work

When comparing MININGMART to similar approaches, please keep in mind its basic ideas of
how to support the preprocessing phase of KDD:

Integrated platform for preprocessing Users of the MININGMART system can address the
whole preprocessing phase of KDD with a single tool that has graphical support and only
allows for valid sequences of Steps. Supported parts of this phase contain the modeling of
an ontology of domain concepts and relationships, the selection of corresponding relevant
database tables, discarding irrelevant attributes manually or automatically, the construc-
tion of additional attributes, data cleansing, the aggregation of attributes, computation of
statistics, and sub-sampling. However, unlike for most other systems, each intermediate
result might as well be accessed from any other application, because the database acts as a
natural interface without any need to define standardized languages for exchanging data.
In turn, the results of other tools, if written back to the database, may be read and further
processed with MININGMART.

High-level specification of data and its transformations The MININGMART system is based
on the M4 meta-data formalism, which offers an abstract layer for both, the business data
at hand and the transformation steps. The domain ontology establishes an abstract layer
on top of the former. This layer helps to better understand the data, because it is formal-
ized in domain-specific terminology, but it also eases the re-use of successful applications
in different settings, because only the mapping of the abstract level to the business data
needs to be rewritten. Transformation steps are based on abstract operator descriptions,
and they address the abstract data level, that is, they refer exclusively to the domain on-
tology rather than to the business data. Abstract operators are specified in terms of their
functionality, encapsulating any details regarding their implementation. Users hence only
deal with higher-level operator specifications.

Case-based problem solving Finding a representation of the data which best fits an analysis
task and learning algorithm at hand is non-trivial a task. None of the approaches address-
ing this task automatically currently yields convincingly good results, so the MINING-
MART approach relies on a semi-automatic strategy, which supports KDD experts in ex-
changing and re-using excellent solutions. The M4 meta-data language acts as a conve-
nient medium to communicate successful solutions, as it allows to directly publish Cases
at the MININGMART Internet case-base.

This section describes related approaches. Although the goals are overlapping, none of the re-
lated approaches realizes the same set of basic ideas. The most relevant work in this field can be
categorized into planning-based approaches and KDD specification languages.

Planning-based approaches (subsection 8.3.1) are coupled with integrated KDD systems that
aim to support users in setting up valid and effective preprocessing chains. These systems make
use of data representations and operator descriptions that allow to apply standard planning ap-
proaches, as known from the field of artificial intelligence.

A growing number of standardized languages for KDD have been proposed recently, most
of which are based on XML. They serve different purposes, starting from specifying and ex-
changing data mining models up to specifying full KDD applications. These languages are in-
terpreted by KDD systems similar to MININGMART and are reviewed in subsection 8.3.2. A
brief overview of further data mining and KDD systems, including modern DBMSs that contain
data mining algorithms is given in subsection 8.3.3.

186

8.3. Related work

8.3.1. Planning-based approaches

The main objective of MININGMART is to support end-users and KDD experts in setting up
preprocessing chains that allow for a successful application of a data mining algorithm. Bernstein
et al. (2005) address a similar task by intelligent discovery assistants. The phases in the KDD
process supported by these tools range from later stages of preprocessing to post-processing
of data mining models, which includes the selection and parameterization of a well-suited data
mining algorithm.

Unlike with MININGMART, where a target view may in principle act as an input to an OLAP
application, to a model induction step, and as a basis for further preprocessing at the same time,
a user is supposed to specify a single analysis goal in the system IDEA (Bernstein et al., 2005;
Bernstein et al., 2002). More precisely, only classification tasks based on a main-memory sized
single flat-file of input data in WEKA (Witten and Frank (2000), cf. subsection 8.3.3) format
are (currently) supported; but the user may enter preferences like a trade-off between processing
time and model accuracy, or assign a weight to the interpretability of the resulting model. IDEA
exploits meta-data of the training set, and of a set of preprocessing, data mining, and post-
processing operators to suggest operator sequences that induce a model and meet the specified
goals. Similar to MININGMART, the operator meta-data contain pre- and post-conditions, which
allows to compose executable and meaningful chains, only. The main difference is, that IDEA
applies a planning approach to find a sequence of operators that starts with an example set and
ends with a well suited model. To this end, heuristic techniques are applied that estimate the
time required to execute a preprocessing chain. Further, IDEA uses auto-experimentation. This
means that half of the available data are used to train models, which are evaluated on the other
half, yielding a ranking of alternative model-induction techniques with respect to their estimated
accuracies. This approach is very similar to meta-learning (see e.g., Brazdil et al. (2003)).

Bernstein et al. (2005) emphasize that they enumerate all alternative operator chains in the
search space, but this is possible, only because they offer a very limited set of operations. For
instance, most of the preprocessing and data mining operators are unparameterized. The number
of resulting intervals after discretizing, or the amount of data to be sub-sampled, are parameters
that need to be fixed ahead of time, because any form of complex parameter-tuning would no
longer be fully enumerable. For a similar reason, the system is restricted to well-understood
phases of the KDD process in which there are just a few alternative choices at each step. This
excludes most of the manual operators part of the MININGMART system from the reasoning
process. Please note, that supporting some of them would still be useful in the single table
representation of WEKA, e.g., feature construction, but it is not reasonable to just enumerate
them. Some phases of the KDD process require user interaction instead, and can probably be
supported best in a semi-automatic framework. Real-world applications of knowledge discovery
often involve hundreds of steps.

Unintendedly, for most kinds of input data the rankings of the IDEA system are identical and
rather simple. Hence, the authors try to assimilate the idea of re-using best-practice preprocess-
ing cases by integrating templates of operator sequences into their system. Templates address
higher-level business goals. They contain a few gaps that are filled by the planner at execution
time. This seems to be reasonable only, if the user is involved in template selection. Adapting
excellent prior solutions is an efficient way of combining human expertise with computational
power.

Zhong et al. (2001; 1997) proposed another planning approach. They apply an agent system
called GLS, which aims at supporting the overall KDD process, i.e. preprocessing, knowledge
elicitation, and refinement of results. Despite the different terminology, mostly a result of the

187

8. Support for Data Preprocessing

different (agent) paradigm that work is rooted in, GLS shares many aspects of MININGMART.
Agents are similar to the MININGMART operators, and the controller of the GLS system corre-
sponds to the M4 meta-data compiler. Both systems make use of meta-data descriptions for the
business data and for the library of operators. Similar as for IDEA, in GLS the operator descrip-
tions specify the pre- and post-conditions that are required for planning. A major difference to
IDEA is that the quality of alternative operator chains are not evaluated systematically in GLS,
but the system relies on user feedback. In particular, GLS performs no auto-experimentation.
The operator libraries of MININGMART and GLS differ in several aspects. For instance the fea-
ture generation and selection – a focus of MININGMART – is less developed within GLS. The
role of the database is also different. The interaction between GLS and the database is not the
primary focus of the research of Zhong et al. (2001; 1997), whereas MININGMART accesses
and processes all the data directly in relational DBMSs, compiles meta-data into SQL code, and
even has some of its operators integrated into the database. Another difference is the degree of
automation and the use of human expertise. In GLS, some user interaction is required in order
to optimize the automatically generated sequences. However, the notion of a complete case at
the meta-level is not part of the meta-model. This implies that failed attempts along the way to
an optimal sequence of agent activities are not documented, and are effectively lost, so similar
kinds of mistakes are likely to reoccur. There is no mechanism to apply a successful chain to
similar but different databases. MININGMART, in contrast, compiles a successful case together
with a meta-model of new data into a running new KDD case.

Both planning-based approaches, IDEA and GLS, have in common that the planning neces-
sarily focuses on “easier” parts of the KDD process which are well-understood and allow to be
automated to a certain extent. The systems are basically tailored towards operating on a single
database table. In contrast, the MININGMART system aims at providing support for steps like
selecting just the relevant of maybe hundreds of tables from a huge relational database, join-
ing them to constitute a few highly relevant views, and constructing some semantically even
more meaningful features from a data miner’s point of view. These steps depend on domain-
knowledge and data understanding, so MININGMART relies on the experience of KDD experts
and domain experts. This experience can best be communicated by offering access to a large col-
lection of best-practice cases, indexed by their domains and business goals, documented by the
developers, and with each part of the conceptual model easily inspectable via a web interface.

8.3.2. KDD languages – proposed standards

Several languages have recently been proposed to support different aspects of KDD. The objec-
tive of the Predictive Model Markup Language (PMML) (The Data Mining Group, 2004) is to
provide a standard that allows to exchange models between different applications and platforms.
A model that has been trained on one system may be exported to PMML format, imported to
any other system, and hence be applied or visualized independently of the original source of
the model. PMML accounts for the fact that the deployment of a model generally happens in
a different environment than its training. With version 3.0 the language has reached a certain
maturity. It is supported by several tools, but it solely supports the exchange of models aug-
mented by a few very basic transformations of the original input data. To be precise, each kind of
model requires its own DTD, so currently only the most common kinds of models are supported.
New features of PMML version 3.0 contain the combination and sequencing of models (Raspl,
2004). Combinations are required to formalize bagging and boosting models, which were not
available before. Sequencing means, that the prediction of one model acts as an input to another
one. In contrast, using a system like MININGMART simply allows to apply one model after an-

188

8.3. Related work

other, specifying in each step which of the available attributes the classifier is supposed to use.
Changing the PMML language for each supported model is a time consuming and cumbersome
process, but it allows to validate each input based on syntactical restrictions.

The background of the XML-based language XDM by Meo and Psaila (2002) are inductive
databases, an architecture that integrates pattern mining and the storage of the results into a
single DBMS framework. Hence, the main goal of XDM is to serve as a unified language for
maintaining data tuples on the one hand, and for storing discovered patterns together with the
statements that triggered the discovery, on the other. The same formalism allows to formulate
(create) statements for inducing patterns, to query for data tuples, and to query for previously
created statements and their corresponding results. This functionality requires references as part
of the XML-based formalism, which are realized by XPATH expressions. Operators are canon-
ically specified in terms of XML SCHEMA expressions, which allows to efficiently verify the
syntactic validity of operator chains.

A disadvantage of the proposed language is a lack of support for abstractions. Regarding
the business data, the formalism does not support a conceptual level, so specifications directly
address the original schema. Describing operators by XML SCHEMA expressions does not allow
to introduce more intuitive abstractions, either. As previously discussed, the domain ontology of
MININGMART does not only increase the interpretability of KDD applications, it also eases the
adaptation of best-practice cases to other database schemas. Applications formalized in XDM
are more tied to a specific environment. Finally, the XDM language lacks support for feature
construction and other kinds of preprocessing, which can be explained by its different purpose,
to act as a convenient formalism in the scope of inductive databases.

The KDD markup language (KDDML) has recently been proposed by Romei et al. (2006). It
is referred to as a middleware language for KDD by the authors, and it shares many objectives
and properties of the meta-data representation language M4. In fact, in several aspects KDDML
goes beyond the functionality provided by M4. This is not surprising, since (i) M4 puts much
more emphasis on efficiently supporting preprocessing directly in relational DBMSs, whereas
KDDML focuses on an integration of various kinds of data, and (ii) KDDML has been released
four years later than M4 (Morik et al., 2001; Kietz et al., 2001), so its developers were able to
reflect on experiences reported by various researchers in the meantime.

An advantage of KDDML and the corresponding reference implementation are the supported
abstractions. Romei et al. (2006) argue that the data representations provided for KDD applica-
tions should consist of a physical and a logical level. This is similar to the conceptual and rela-
tional level of M4, but the atomic KDDML data fields do not have to correspond to database
attributes. Consequently, the variety of data formats is larger than in MININGMART, also cover-
ing taxonomies and semi-structured data. The system operationalizing KDDML is required to
convert all the supported types automatically, hiding technical details like the physical data level
from the user. In the database literature such automatic conversations between data formats are
referred to as mediation, going back to Wiederhold (1992).

Similarly as for XDM, all the patterns and models themselves are stored in the same formal-
ism. Moreover, just as for different data formats, models may as well be specified using different
commonly used formats, and are converted automatically on demand. KDDML itself is based
on a variety of XML-based formalisms, like PMML and XQUERY. It is supposed to establish
higher levels of abstractions that are independent of the lower levels realizing them.

A bibliography of operators is provided, each of which can be referenced by name when spec-
ifying a data transformation. This aspect is similar to MININGMART. Less developed features
of the reported KDDML reference system are the database access and the GUI. Improving the
former to the same extent that is supported by MININGMART seems to require serious additional

189

8. Support for Data Preprocessing

efforts, while a GUI is probably already under construction.
Just as in MININGMART, each operator has its own signature, specifying its inputs and out-

puts. Each instantiation of an operator has an input vector with components of different types,
which have to match the signature of the operator’s specification. The system supplies all objects
referenced by the input vector to the operator that actually processes them and returns another
object that has a predefined type. Consequently, operators can be considered to have functional
semantics in KDDML (and MININGMART). An advantage of the XML-based formalism is
that appropriately defined DTDs allow to check validity with generic XML tools. The validity
checking in MININGMART is more complex, but in turn, it allows to formulate a richer set of
constraints, which will be discussed in subsection 9.3.3.

Grid and parallel computing is another field where XML is used intensively to specify KDD
processes. Cannataro et al. (2004) give an overview of several frameworks, and present their
own approach, the so-called knowledge grid architecture, which is an additional layer on top of
common grid toolkits. The XML-based meta-data language is used to describe (i) computational
resources of all hosts in the grid, (ii) the data, which is not necessarily stored in a DBMS, but
may as well take the form of semi-structured flat files, (iii) tools for different kinds of processing,
including the data mining step, and (iv) models in PMML format. The focus of the approach
is on handling the heterogeneity of grid architectures, for instance by providing the means to
identify appropriate data and tools in the grid for a problem at hand. A graphical user interface
supports users in setting up cases. Validity is verified automatically, the abstract data level is
connected to appropriate resources, and the system executes the case. There is no large variety
of operators for preprocessing. The focus is rather on operations like copying data from one site
to another. Another difference to MININGMART is that data modeling is required (and hence
supported) only for technical reasons. There is no ontology to improve the data and domain un-
derstanding of human analysts. Consequently, there is also no business layer, that documents the
case and allows to communicate operational best-practice cases. Re-usability is not addressed by
the knowledge grid approach, but still, it is probably easy to map abstract data to the signatures
of other data sources, because this is part of the core functionality of a grid.

8.3.3. Further KDD systems

There is a variety of other KDD systems that share some of the aspects of MININGMART. Some
of these tools have an open source license, others are commercial products.

Open source software

The best known open source learning toolbox is probably WEKA by Witten and Frank (2000).
It provides a huge variety of state of the art learning algorithms and a few basic preprocessing
and validation features. Its integrated nature makes it a very comfortable choice for evaluating
and comparing different candidate data mining algorithms in KDD projects. Its main disadvan-
tages are a lack of a convenient database interface, a limitation to single relations (tables) in
attribute-value representation, and a lack of support for sophisticated feature selection, feature
construction, and other phases of data preprocessing.

YALE (Fischer et al., 2002) is yet another learning environment which is typically applied to
data in attribute-value representation. It offers access to all WEKA learners via a wrapper ap-
proach, but it overcomes the lack of support for a number of preprocessing operations. Among
the strong aspects of YALE are an intuitive graphical user interface that allows to set up complex
experiments with only a few mouse clicks, operators for validating the quality of models with

190

8.3. Related work

respect to many different metrics, a long list of machine learning operators, a flexible frame-
work for automatic feature selection and feature construction, a simple plug-in mechanism for
adding own operators, support for several learning scenarios, tools for visualizing datasets and
models, and a mechanism to store trained models, which also allows to apply models to previ-
ously unseen data. Several experiments reported in this thesis exploit the flexibility of YALE,
sometimes augmented by own operators, but often using WEKA implementations of learning
algorithms. Database-related preprocessing is not supported by YALE, however, as it also de-
pends on samples up to main memory size, and does not operate on multi-relational data. The
MININGMART system complements the functionality of YALE by focusing on preprocessing
very large (multi-)relational databases.

SUMATRATT (Aubrecht et al., 2002) is a JAVA framework for preprocessing. It is tailored
towards flat-file data representations, but it supports JDBC, which allows to process volumes of
data up to main memory size. Just as in MININGMART, users can set up chains of preprocessing
operators. There are three different ways to use the system, setting up chains using a GUI,
using a tool-specific scripting language, and implementing own operators in JAVA. In contrast
to MININGMART, the system is not tailored towards very large databases, but relies on main
memory access. The main focus seems to lie on visualization techniques.

Java Data Mining (JSR-73) (JSR-73 Expert Group, 2004) defines a collection of standard
JAVA interfaces, which have become part of the official API. The goal of this effort is to provide
a standardized framework to the data mining community that allows each vendor to provide
an own data mining implementation. Programming against such a standard interface would, for
example, allow to exchange models between JAVA applications, to augment existing applications
by own operators, and to even mix implementations of different vendors. Java Data Mining
did not yet succeed in becoming a widely accepted standard, which may be due to the lack of
a reference implementation. Still, the existence of this collection of interfaces underlines the
growing public interest in data mining.

Commercial systems and DBMS with data mining support

There is also a long list of commercial KDD systems that support preprocessing. The SAS
ENTERPRISE MINER 5.14 offers data mining modules / operators in combination with a pro-
gramming language for data analysis. The system SPSS CLEMENTINE 9.05 offers a graphical
user interface that allows to set up operator chains in a similar fashion as possible with MINING-
MART. One of the major differences is that the system also addresses the data mining step. The
system is closed, however, and intermediate results are stored in legacy format flat files6.

An interesting phenomenon is that all major RDBMS vendors have integrated data mining so-
lutions into their products. Examples for closely coupled external up to fully integrated tools are:
the IBM DB2 INTELLIGENT MINER 8.27, ORACLE 10G DATA MINING8, and MICROSOFT

SQL SERVER 20059. The latter provides its own XML-based meta-data languages, DMX and
XML/A. DMX is a data mining query language that integrates e.g., training and applications
of predictive models, and the conversion of PMML models into a SQL-like language. XML/A
is a language that aims at providing a standard for accessing analytical data and functionality. A

4http://www.sas.com/technologies/analytics/datamining/miner
5http://www.spss.com/clementine
6There is also a client-server version, which might support database-internal preprocessing. Since CLEMENTINE is

a commercial tool and this version was not made available, it was not evaluated.
7http://www-306.ibm.com/software/data/iminer/
8http://www.oracle.com/technology/products/bi/odm/
9http://www.microsoft.com/sql/

191

8. Support for Data Preprocessing

proposed general data mining extension to SQL is part of SQL/MM (International Organization
for Standardization (ISO), 2003b).

The list of presented commercial KDD solutions is not meant to be complete. It shall rather
help to understand the position of MININGMART and illustrate the growing interest in KDD
support tools. Please refer to (Euler, 2005a; Euler, To appear) for a study that compares MINING-
MART to some of the above-mentioned commercial products in more detail.

8.4. Summary

The relevance of supporting not only single steps of data analysis but sequences of steps has
long been underestimated. A large variety of excellent tools exist that offer data mining algo-
rithms, but only very few approaches tackle the tasks of making clever choices during prepro-
cessing and combining these choices to define effective and efficient KDD sequences. Systems
like CLEMENTINE offer processing chains to users, but focus on the data mining step, not on
preprocessing. Data is extracted from databases and cached in legacy format flat files, which pre-
vents user from switching to other analytical tools. The common data format in tool boxes such
as e.g. SPSS or WEKA provides users with the prerequisites to formulate their own sequences
(Witten & Frank, 2000). However, even for similar tasks the user is required to set up sequences
from scratch each time.

Recently several tools were advertised with a support for the CRISP-DM process model;
this illustrates an increasing awareness that the preprocessing phase consumes most of the time
in real-world applications, and should be addressed appropriately. Several important goals that
are related to KDD processes have the potential to reduce the efforts required for successfully
applying KDD techniques drastically in the future, but have not yet been met sufficiently well
by existing solutions. Examples include convenient mechanisms that allow to exchange mod-
els between systems, a standardized meta-data representation for describing business data, and
a declarative formulation of KDD applications. The MININGMART system discussed in this
chapter (version 2, released on 12.4.2006) is a non-commercial open source product that al-
ready meets a subset of these goals reasonably well. It focuses on preprocessing, so it does not
implement the PMML standard for exchanging data mining models, but the M4 meta-data lan-
guage allows to declaratively describe chains of preprocessing operations and the corresponding
business data. MININGMART offers a variety of further advantages:

Very large databases: It is a database oriented approach that easily interacts with all rela-
tional databases supporting the SQL standard. It scales up to real-world databases without
any problems. Some operators have been re-implemented in order to make them suitable
for very large data sets.

Sophisticated operators for preprocessing: Preprocessing can make good use of learn-
ing operators. For instance, a learning result can be used to replace missing values by the
learned (predicted) values. Feature generation and selection in the course of preprocessing
enhances the quality of data that are the input to the data mining step.

Meta-data driven code generation: The MININGMART approach relies on a meta-data
driven code execution, which includes the creation of database functions and the execution
of SQL statements. Meta-data on operators and business data are used by the compiler in
order to generate an executable KDD application.

192

8.4. Summary

Case documentation: Meta-data on Cases document the overall KDD process with all oper-
ator selections and their parameter settings. In addition, a business layer describes Cases
in less technical terms, and thereby establishes a better user interface.

Case adaptation: The notion of a complete Case in the meta-model allows to apply a given
expert solution to a new database. The user only has to provide a new data model to the
system and the compiler generates a new Case. For fine-tuning the new application, the
human-computer interface offers easy access to the meta-model with all operators.

Euler (2005a) compares MININGMART to several commercial KDD systems with respect to a
variety of diverse aspects. Further details on how to model KDD cases conceptually, which Case
information is stored at the business layer, and how to use it to retrieve Cases from the case-base
can be found in (Euler, To appear). Parts of this chapter are based on the publication (Morik &
Scholz, 2004).

193

8. Support for Data Preprocessing

194

9. A KDD Meta-Data Compiler

After an overview of the MININGMART system was given in chapter 8, this chapter describes
the meta-data driven software and view generation in detail. The objectives of the corresponding
compiler module are sketched in section 9.1. To allow for a better understanding of the tech-
nical details, the different levels of abstraction, all part of a single meta-model named M4, are
discussed in section 9.2. The operational framework described in section 9.3 is based on this
meta-model. It consists of an operator taxonomy, parts of which are embedded into the M4 for-
malism, while others are part of the M4 compiler code. In section 9.4, the data- and control-flows
during a compiler run are illustrated exemplarily. Technical details on how to run code at various
locations (section 9.5), for instance inside a relational database, or how to use secondary tool-
boxes for the data mining step after preprocessing with MININGMART (section 9.6) conclude
this chapter.

The conceptional ideas underlying the version of the meta-data compiler released at the end of
the MININGMART project and large parts of their implementation are the work of the author of
this thesis. This excludes the graphical user interface, and the parts that are related to re-usability
of best-practice Cases, in particular the Internet case-base.

9.1. Objectives of the compiler

The M4 formalism allows to specify best-practice KDD applications which are not only easy to
understand, due to their modular structure and documentation, but which are at the same time
operational. The module of the system that operationalizes Cases represented in M4 is referred
to as the M4 compiler. The term compiler was chosen in order to point out the analogy to
common programming languages. The Human-Computer interface (HCI) supports the user in
setting up preprocessing cases and enforces their validity. Hence, MININGMART can be thought
of as a graphical programming language for knowledge discovery in databases, in the spirit of
e.g., LABVIEW1 (by National Instruments), a graphical programming language for applications
in engineering.

The foundation of relational database managements systems (RDBMSs) was laid by the rela-
tional algebra by Codd (1970). SQL is a continuously extended standard query language based
on this algebra and supported by all major RDBMSs. The current specification is SQL:2003 (In-
ternational Organization for Standardization (ISO), 2003a), but many of the more recent exten-
sions are not yet fully supported by all vendors, so any of the older releases can be considered
as the de facto standard. Referring to a widely accepted standard allows to abstract from most
of the technical details regarding any specific underlying RDBMS. The interface to the logical
data layer considered in this thesis is an abstract SQL virtual machine which allows to query the
database, to create views, and to directly execute specific kinds of code in the database. The role
of the compiler is to bridge the gap between higher-level specifications of preprocessing cases
that were set up with a graphical HCI on the one hand, and the low-level queries and commands
directly interpretable by the SQL virtual machine, on the other.

1http://www.ni.com/labview/whatis/intuitive_graphical.htm

195

9. A KDD Meta-Data Compiler

Before any details of the compiler are presented, the analogy to compilers as known from
most higher-level programming languages shall be illustrated. In general, compilers translate
the code of convenient programming languages into executable native code. By construction of
the programming languages’ syntaxes this process is computationally cheap for all popular pro-
gramming languages. At application time the resulting native code is executed, which takes as
much time as required by the application itself, but usually much longer than it took to compile
the code. Similarly, the compiler of the MININGMART system reads higher-level M4 descrip-
tions of a preprocessing case and its data, and it generates SQL code, primarily in the form of
view definitions. Creating a view, or even a longer sequence of layered views is computationally
cheap, even if the definition contains expensive joins between database tables. This is considered
to be the compilation step. The result is a final set of views, which constitute the input to the data
mining step. The SQL code is executed at the moment of any secondary data mining tool or user
reading data from any of the target views. Any complex operation like a join or data aggregation
embedded into a view definition may then result in costly operations like full table scans.

Although this scenario captures the underlying idea of the M4 compiler well, in practice there
are several operators that require to be executed at compilation time. Examples contain learning
operators that fill the missing values of an attribute, and automatic feature selection operators.
For reasons of computational costs it is not reasonable to run such complex operators based on
SQL statements, which conflicts with the overall compiler framework, however. Even worse, in
the case of automatic feature selection, the schema of resulting database views may depend on
the business data at hand, which makes it impossible to delay the execution of the operator in the
case of subsequently applied preprocessing steps. This is discussed in subsection 9.4.2 in more
detail. For these reasons several operators are executed at compilation time and the results are
written back to the database in appropriate form. In such cases, the term M4 interpreter might
be more intuitive than M4 compiler, but in order to be consistent with prior publications (Morik
& Scholz, 2002; Euler et al., 2003; Morik & Scholz, 2004), the MININGMART user guide2, and
several project internal documents, the former term is used throughout this chapter.

9.2. M4 – a unified way to represent KDD meta-data

In section 8.2.1, the meta-model M4 has been presented as a unifying framework for different
kinds of KDD-related meta-data. Before introducing the meta-data compiler, it is instructive to
distinguish between several kinds of abstractions, which are all realized as components of a sin-
gle meta-data model. Early specifications of M4 can be found in (Morik et al., 2001; Kietz et al.,
2001). The author of this thesis has maintained the M4 model during the implementation of the
M4 meta-data compiler3, which required several extensions and refinements. For a documen-
tation of the final version of the MININGMART meta-model please refer to (Scholz & Euler,
2002).

2http://mmart.cs.uni-dortmund.de/downloads/SYSTEM/UserGuide.pdf
3A simple single-step M4 compiler prototype and a corresponding, yet incomplete relational M4 model were

handed over by the former MININGMART partner SwissLife in April 2002. The responsibility for both M4
model and compiler were transferred to the University of Dortmund at this time, and a publicly available report
has been sent to the European Commission. The author of this thesis started to extend, and later on to rewrite the
M4 compiler according to refined specifications required by the overall system, which exceeded the MINING-
MART project period. Some adjustments of the M4 model could hardly be avoided, but will not be discussed in
detail in this thesis.

196

9.2. M4 – a unified way to represent KDD meta-data

9.2.1. Abstract and operational meta-model for data and transformations

The main purpose of M4 is to store meta-data on the data transformation steps of preprocessing
cases, as well as the schemas of the processed data during all phases of a preprocessing case.
These two aspects are represented by different parts of the meta-data model, the data model
shown on the left side of figure 9.1 (conceptual and relational data model), and the transforma-
tion model on the right side (case model and its executional counterpart). The transformation
model specifies the kind of operations that are applied to the data and any corresponding param-
eter settings. The data transformation usually starts from raw data and ends with a format well
suited to apply data mining algorithms that induce models. For both transformation model and
data model there are two levels of abstraction supported by M4.

The lower relational level of the data model holds a copy of the business data schema, comple-
mented by some statistics that go beyond those of common database management systems. The
relational meta-data contains an M4 object for each view and table of the business data accessed
by MININGMART, and further objects that represent Columns, Values, integrity constraints, and
statistics. The conceptual data model, also referred to as the (M4) ontology, established an ab-
stract view on the relational data model, and is mapped to the relational entities. It consists of
Concepts taken from the domain terminology, Features of these Concepts, which may be com-
posed of several primitive BaseAttributes, and of Relationships, each between two Concepts.
Relationships are meant to reflect domain knowledge, and to abstract from e.g., foreign key ref-
erences as known from relational databases, which are at the technical, hence relational level.
The use of ontologies in modeling the data for KDD processes is still in its early phase, but it
promises significant improvements of understandability and re-usability in the future (Euler &
Scholz, 2004).

The transformational part of M4 contains an abstract Case model and a technical descrip-
tion of each operator. The abstract Case model is based on a predefined library of preprocessing
operators. Each operator has a specific functionality specified in KDD terminology, while the im-
plementational details are irrelevant at the conceptual level. Steps are instantiations of operators,
connecting them to inputs and outputs specified in terms of the conceptual data model. More
complex chains of operations are defined by specifying connections between separate Steps,
each embedding its own abstract operator. The mapping from the operators to be executed to
the code blocks that realize them is up to the M4 compiler. Details are discussed in subsequent
sections. Each technical operator description contains either a reference to a JAVA class part of
the compiler code, to executable code running in the database, or to native code, that is con-
nected to the system by a wrapper. Executing code blocks that reside in different locations will
be discussed in detail in section 9.5.

The business layer on top of the conceptual layer allows to abstract even further from technical
details of the case. It is relevant for different kinds of tasks, for example to retrieve best-practice
cases that might be adapted to a new KDD task at hand, or to learn more about prototypical
solutions. To illustrate the work of the compiler, however, it is not useful to consider the business
layer, so it is not further discussed in this chapter.

9.2.2. Static and dynamic parts of the M4 model

The different kinds of M4 meta-data can also be characterized in terms of the modules that are
allowed to change them. This motivates the notions of static, and of different kinds of dynamic
data.

Static data describes properties of the MININGMART system that are not supposed to change
during a user session or compiler run, but may only be updated by a system developer. Examples

197

9. A KDD Meta-Data Compiler

Figure 9.1.: Overview of the four parts of M4, their interdependencies, links to the business data,
and the part published in the Internet case-base. Abstraction increases from bottom
to top.

contain the list of available operators, formal constraints of their applicability, and assertions
regarding their output. The database schema that operationalizes the M4 meta-model is also
static, of course.

Dynamic data can be categorized in terms of which kinds of actions may affect it. The con-
ceptual part of a Case consists of its Chains, Steps, parameters etc. on the one hand, on the
other hand of the corresponding conceptual data, namely Concepts, Features, and Relationships
between Concepts. This kind of information is (i) explicitly specified by the user, (ii) set up
with system-support, or (iii) fully derived by the system. An example for (i) fully user-specified
meta-data, are Concepts connected directly to the database, because the conceptual names and
data types required in this case cannot be derived automatically. System support during case
specification (ii) is possible when there is a pre-defined list of valid parameters, for instance
when selecting a kernel for a support vector machine operator. In this case, the system can offer
a specific menu, containing exactly the valid kernel types. An example for (iii) conceptual meta-
data completely derived by the system are operator outputs, like the data types and names of
output features after a row selection step. The modules of the MININGMART system supporting
the user in these settings are the M4 interface4, the graphical user interface (see also Euler (To
appear)), and the operator constraint module presented in subsection 9.3.3. The compiler never
changes conceptual data.

The relational data-model is the most dynamic part of M4. It contains volatile mappings be-
tween Concepts/Relationships and database views, but also between Features and corresponding
attributes in the database. Statistics are also a part of the relational meta-data, and are linked to
their corresponding views and attributes. Except for the schema of the original business data,

4In its original form the interface did not provide this kind of functionality. As part of a system re-design it was
re-implemented with several additional features at the University of Dortmund after the end of the project period.

198

9.2. M4 – a unified way to represent KDD meta-data

all the relational meta-data is created and deleted on demand at runtime by the M4 compiler.
Details about these processes are the subject of section 9.3.

The case-model’s executional level is not fully reflected by M4. Its static part consists of
operator classes (hence static) that may be referenced by Steps, while at runtime the compiler
maintains individual instances (dynamic) of these operators, i.e. executable JAVA objects that re-
alize the specified functionality. Only the static part is visible at the M4 level, while the dynamic
counterpart is directly maintained by the compiler in main memory at runtime. Operator classes
are instantiated according to the specifications found in the executional model of the preprocess-
ing case at hand. All of the provided parameters are automatically linked to operator instances.
To this end, the compiler reads and interprets the static operator constraints with respect to re-
quired parameters, and it prepares an appropriate library of parameter instances for each operator
instance. The meta-data-driven control flows of the compiler and the corresponding maintenance
of a memory-based M4 mirror are discussed in section 9.4.

9.2.3. Hierarchies within M4

In addition to the abstract level on top of the relational data model and the executional part of
the Case model (see figure 9.1), the M4 model offers further kinds of abstraction worth noting.
The most interesting ones are the taxonomies for Concepts and Operators.

Concept taxonomies

Concepts are organized in two separate taxonomies. The first one relates them by the relation
super-concept-of, the second one by the relation projection-of. A super-concept contains the
same Features as its sub-concepts, but it is semantically less restricted, so its extension is a su-
perset of the sub-concepts’ extensions. The Concept of database_users may be modeled as a
super-concept of MiningMart_users, for instance. In this case the Concept MiningMart_users
inherits all Features of Concept database_users, like name, database vendor and version, but
may also have additional Features, like MININGMART version in use, and the number of Cases
actually present in the M4 schema. In any case, the extension of the concept MiningMart_users
is a subset of the concept database_users, since every user of MININGMART also uses a
database. Knowing about this relation between the Concepts allows to visualize the domain
Concepts by specific graphical views, which is realized by the concept editor. In contrast to
super-concepts, projections of a Concept have the same extensions as the original Concept, but
the Feature sets are subsets of the original Feature set. A typical example of a projection is fea-
ture selection, e.g. to remove features that are irrelevant for the data mining step. Relationships
between M4 Concepts may also be specified as specializations of Super-Relationships.

Organizing Concepts with respect to the two taxonomies is a feature supported by the con-
cept editor, see figure 9.2. Users may actively relate Concepts by the super-concept-of, the
projection-of, or both of these relations in the concept editor. Some of the operators available in
MININGMART are known to produce output Concepts that are related to the input Concept by
one of these relations. This property is exploited by the Human-Computer interface to automat-
ically derive parts of the taxonomies. More details are provided in (Euler, To appear).

Operator taxonomies

As most of M4, the abstract transformational model is also organized hierarchically. Operators
are grouped by their functionality, which naturally motivates groups that are also found in the
CRISP-DM model (see section 8.1 or Chapman et al. (2000)), like data cleansing and feature

199

9. A KDD Meta-Data Compiler

Figure 9.2.: The concept editor allows users to organize their concepts hierarchically in terms
of the relations super-concept-of (Is a tree) and projection-of. For some Concepts
these relations are automatically derived by the system.

construction. These functional groups are mainly used by the Human-Computer interface for
menu construction, to help case designers in finding their required operators, and in getting an
overview of alternatives that are also supported by the system. The M4 compiler does not access
this kind of information.

There is a second, more implementationally oriented operator taxonomy, which is embedded
into the compiler and more or less hidden from end-users. It derives specific operators from more
abstract prototypes, which is relevant for developers of new operators, and helps to illustrate how
the meta-data driven execution of preprocessing cases is realized in a generic way in MINING-
MART. This technical operator taxonomy is discussed in more detail in subsection 9.3.4.

9.3. The MININGMART compiler framework

The compiler framework of MININGMART is based on the meta-data representation language
M4 described in the last section. The architecture of the meta-data compiler is sketched in sub-
section 9.3.1. In subsection 9.3.2 it is discussed how to decompose the Case compilation prob-
lem into a sequence of single-step compilations. The signatures of MININGMART Operators
and semantically oriented dependencies between Steps can formally be stated in terms of the
constraints, conditions, and assertions described in subsection 9.3.3. Finally, the structure of the
operator library and implementational details are sketched in subsection 9.3.4.

9.3.1. The architecture of the meta-data compiler

The M4 meta-data compiler is a separate module of the MININGMART system, just as the
Human-Computer interface (HCI) and the M4 interface. It is to a large extent written in JAVA,
complemented by a few platform dependent binaries and some operators directly run inside the
business database. Its main objective is to execute the Cases represented in an abstract form.

Figure 9.3 summarizes the interdependencies between the modules that are active during a
Case compilation. The compiler accesses the meta-data repository exclusively via the M4 inter-
face, a module that offers a convenient access at the JAVA level. All the meta-data loaded into the
compiler are automatically cached for later usage. The overall meta-data compiler can further be

200

9.3. The MININGMART compiler framework

Figure 9.3.: The figure depicts the active modules during a Case compilation. Inside of the
M4 compiler we find a core module, accessing the M4 meta-data via the JAVA M4
interface module. The core calls the single-step compiler which executes operators.
These operators transform business data and M4 meta-data.

decomposed into the compiler core, the single-step compiler, and the operator library. The com-
piler core controls the execution of code. It runs the single-step compiler whenever appropriate.
The single-step compiler is responsible for locating the operator code corresponding to a given
Step, for initializing and for executing it. Operators from the library directly access and manip-
ulate the business database. After successfully compiling a Step, the single-step compiler and
operator update the meta-data in cache, which is automatically written back at an appropriate
point in time.

The different compiler modules and several interesting aspects of data- and control-flows are
discussed in more detail in the remainder of this chapter.

9.3.2. Reducing Case execution to sequential single-step compilation

The focus of this chapter lies on the M4 compiler, and how it makes Cases given in a formal
representation operational. At a formal level (see figure 8.2, p. 177) each Case consists of a set
of Chains, each of which is composed of a number of different Steps. Whenever the compiler
receives the message to compile a complete Case, it needs to analyze the structure of this Case,
which then allows to compile single Steps in a valid order. The following paragraphs discuss
how the structure of a Case is represented in M4. The descriptions omit most of the database
fields (attributes) not used by the compiler.

An anchor object for each Case is stored in an M4 meta-data table named CASE_T5. Most
of a Case’s meta-data is connected indirectly by referencing this object. The tuples of table
CASE_T only have an ID, a name, and a status flag indicating the degree of completion, one of
DESIGN, TEST, and FINAL.

Each Chain is represented by a tuple in the relation (table) CHAIN_T. It has an ID, a name,
a free-text description, and a reference to its embedding case. With a single exception, the in-
tegrity of all references between M4 objects is guaranteed at a technical level due to foreign key
constraints. The IDs of all M4 objects are assigned automatically by a database sequence, and
are hence unique across the system.

Steps are M4 entities that refer to an embedding Chain and to an operator they embed. Hence,

5In the remainder of this chapter both descriptions are used, the UML representation of M4 classes, and the M4
database tables realizing them.

201

9. A KDD Meta-Data Compiler

in table STEP_T there is a reference to table CHAIN_T, and one to table OPERATOR_T.
Steps have a name and carry some additional information, which is discussed later on.

The first objective when compiling a Case is to serialize the embedded Steps, which means to
compute a valid order of execution. For each pair of two Steps, the M4 representation indicates
whether the output of one of the Steps is used as an input by the other one. If (and only if)
this is true, then there is a dependency to be respected during serialization. This is represented
as a corresponding tuple in the M4 table STEPSEQUENCE_T, with two foreign key refer-
ences to STEP_T, one for each step. Dependency information is prepared by the M4 interface
module, hence, the compiler core just needs to perform a depth-first search through a directed
acyclic graph, where the nodes refer to Steps and the arcs to dependencies found in STEPSE-
QUENCE_T. The result is a sequence of Steps valid to be executed one after another by the
single-step compilation module.

9.3.3. Constraints, Conditions, and Assertions

Step execution generally requires operator-specific parameter sets. Most operators read an input
Concept and either add a Feature to it, or define a similar output Concept. In MININGMART

terminology all Concepts, Relationships, and Features addressed during the execution of a Step
are referred to as operator parameters. In particular, parameters in the more common sense, like
the value of C or the kernel type when running a support vector machine are also Parameters of
MININGMART operators. They constitute the most simple kind of Parameters, namely Values,
which are fixed constants after case design.

For handling operator-specific Parameters, the M4 meta-model contains a subset of classes
particularly designed for this purpose. This subsection describes this part of the meta-model.
Further details on the representation of parameter constraints, conditions, and assertions in M4
can be found in (Scholz et al., 2002). The representation formalism, corresponding extensions
of the M4 schema, and large parts of the operator specifications are the work of the author of
this thesis (see Scholz (2002a)). An instructive example of how to use the presented formalism,
and a complete list of all operator constraint specifications up to December 2002 are also part
of (Scholz et al., 2002). Later versions are an integral part of more recent M4 installer scripts6.
The compiler code that interprets the constraints has also been implemented by the author of
this work. This excludes the part of the Human-Computer interface that supports automatic
generation of operator output at the conceptual level. The latter heavily relies on the parameter
constraint specifications described in this section, however.

Examples for operator specifications and applicability checking

In MININGMART, each data transformation is embedded into a Step. Hence, whenever a case
designer specifies an operation to transform the data, the Human-Computer interface will set up
a new Step referring to a single operator. As illustrated below for two examples, each operator
has its own specific set of Parameters:

Example 1: Replace missing values with TDIDT (i) specification of an input Concept
(ii) a specific Feature of that Concept with missing values (iii) name and data type of
the new Feature to be constructed (without missing values) (iv) parameters of the TDIDT
classifier induction algorithm, like the kind of pruning to be applied. If no pruning param-
eters are provided the defaults are used.

6The current installer script is provided at the download page of MININGMART:
http://mmart.cs.uni-dortmund.de/downloads/downloads.html

202

9.3. The MININGMART compiler framework

Example 2: Row selection by query (i) specification of an input Concept (ii) a query con-
dition (SQL query) (iii) output Concept (exploit / assume that conceptually an output
Concept is to be constructed that is equivalent to the input Concept)

Not only the number of Parameters typically varies between operators, but also the kind of
information required during execution, and the sensitivity towards different kinds of data-related
details, which may hinder a successful application. Next, some of the characteristic properties
for operator specifications are illustrated, before moving on to the formal framework.

First of all, for the examples above, the input Concepts need to be connected to valid tables or
view definitions at the relational level before the Steps can be compiled. If this is not the case,
the Step is invalid anyway, since no data can be processed. Please note, that before compilation
most of the input Concepts are not yet connected, but after compiling some of the preceding
Steps of a Chain, the views will be defined for the input Concepts, making subsequent Steps
valid for execution. Hence, it should at least be guaranteed, that the example Steps above have
valid input concepts if all preceding Steps compile properly.

The first example operator above requires an input Feature with missing values as an addi-
tional Parameter. Considering the semantics of the operator, it should be guaranteed that this
Feature is part of the input Concept. This kind of referential integrity can be verified without
any connection to the relational level, because Features are directly linked to Concepts at the
conceptual data level. The constraint of a specific Feature having missing values depends on the
business data at hand, however, so it can only be evaluated at runtime. The validity of the prun-
ing and learning Parameters also has to be checked by the Human-Computer interface during
Case construction, which obviously requires detailed knowledge about each operator to be en-
coded into the system. Typical examples contain valid Parameter ranges, data types, and whether
Parameters are optional or mandatory.

The output Feature as specified by the user needs to be added to the input Concept. This
tedious procedure should also be addressed automatically by the HCI and requires additional
knowledge, e.g., about the data types of derived Features. As the row selection example sug-
gests, outputs may also contain Concepts, the schema of which can be derived from the input
Concept. The precise knowledge about how the HCI should prepare outputs to meet the operator
constraints also needs to be encoded explicitly.

Finally, the second example contains a free-text SQL statement. The validity of statements
that are formulated at the relational level can only be verified for specific business data schemas,
none of which might be available during Case construction. This setting requires specific mech-
anisms to guarantee integrity.

The examples are simplified, but illustrate a broad variety of the problems actually found in
the real MININGMART system. For simplicity it has been decided to transfer the constraints and
integrity checking mechanisms to the operator code for some rather specific problems. The ma-
jority of the sketched problems can be addressed more conveniently, however, by just specifying
operator characteristics in the formal M4 framework of constraints, conditions, and assertions.
In the following paragraphs, a structure for the different operator-related constraints is presented.

Operators and parameter constraints

First of all, there is a major difference between the constraints that can already be verified during
Case design, and those requiring the business data to be accessible. To simplify reference, only
the former kind of constraints is henceforth referred to as Constraints. The main characteristic
of M4 Constraints is that they only make statements about objects at the conceptual level. This
holds for the transformational and for the data-related meta-data.

203

9. A KDD Meta-Data Compiler

In both examples we find a list of pre-defined Parameters. In MININGMART there is an M4
class Operator, which holds an instance for each operator available in the system, assigns names
to these operators, and provides some high-level descriptions which are discussed later on in
this section. Another M4 class called OpParam references the Operator class, and it specifies
a Parameter list for each operator. Each OpParam instance refers to a single entry in the list of
its referenced operator.

As the optional pruning Parameter for the first example operator illustrates, the corresponding
constraints do not necessarily require each Parameter to be present exactly once. Other operators
even expect an array of Features as a (single) Parameter in their input list. In order to provide
a general solution to these three different kinds of Parameters, all Parameters are handled as
arrays. The OpParam class holds attributes for the minimal and maximal array size for each
operator Parameter. Optional Parameters have a minimal size of 0, while mandatory Parameters
have set both, their minimal and maximal size to 1. Arrays generally have a minimal size of 1

and an unrestricted maximal size (+∞), but other combinations like optional arrays (minimum
0) or arrays with at least 2 elements are also supported.

In addition to the cardinality of Parameters, it is generally required that Parameters have a spe-
cific type. In the examples there is an input Concept for both operators, the first of which requires
an additional input Feature, and pruning/learning Parameters in the form of constant Values. The
second operator requires an SQL query condition, which also needs to be a constant Value. The
outputs, a Feature in the first example, a Concept in the second, are also specified by OpParam
objects. In order to enforce the correct data types, the OpParam class contains a dedicated type
attribute. Supported types are Concept, Relationship, BaseAttribute, MultiColumnFeature,
Feature, and Value. Please note, that if an operator can handle MultiColumnFeatures as well
as single BaseAttributes then the type may be set to the abstract type “Feature”.

It is important to distinguish between input and output parameters, so that

• the Human-Computer interface is able to support the creation of conceptual output objects
as good as possible, and

• the compiler can distinguish at runtime between Concepts required to be connected to
views or tables (inputs), and those, for which the compiler is supposed to create a view
(outputs).

To this end, the OpParam class contains a corresponding field with possible values Input and
Output. The specification of the example operators as discussed up to this point, with M4 classes
mapped to canonically renamed M4 database tables, is depicted in table 9.1. The entries are
similar to those of two real MININGMART operators. The parameter ThePredictingAttributes
is an array of BaseAttributes, which needs to contain at least one attribute in order to allow
for tree induction. The PruningConfidence, on the other hand, is an optional Parameter, thus
required to have a cardinality of at least 0, but at most 1 Value can be supplied.

Please recall, that all the Parameter objects of class OpParam refer to static properties of
corresponding operators. Whenever a Step embeds an operator, then the OpParam constraints
demand that there is a Parameter instance matching each of these static Parameters. If this con-
straint is met, the operator gets instantiated. Instantiated parameters are represented as objects
of the M4 class Parameter. They refer to instances of conceptual M4 objects, like specific
Concepts, which are represented as objects of the M4 class Concept, or Values objects, stored
in the M4 class Value. Table 9.2 shows extracts of an M4 representation of an example Step
embedding the operator with ID 59. There is a separate Parameter for the input Concept, the
condition Value, and the output Concept, which reference the Step, and the Parameters to be

204

9.3. The MININGMART compiler framework

ID Operator name . . .
54 MissingValueWithDecisionTree . . .
59 RowSelectionByQuery . . .

ID Operator Parameter name I/O Type Min Max
685 54 TheInputConcept Input Concept 1 1
686 54 TheTargetAttribute Input BaseAttribute 1 1
687 54 ThePredictingAttributes Input BaseAttribute 1 +∞
688 54 SampleSize Input Value 1 1
689 54 TheOutputAttribute Output BaseAttribute 1 1
690 54 PruningConfidence Input Value 0 1
723 59 TheInputConcept Input Concept 1 1
724 59 TheCondition Input Value 1 1
725 59 TheOutputConcept Output Concept 1 1

Table 9.1.: Simplified entries in tables OPERATOR_T (above) and OP_PARAMS_T

accessed at execution time. For historical reasons and to maintain compatibility, the identifica-
tion of the OpParam object corresponding to each Parameter instance is done by name, rather
than by OpParam ID. This means that Parameter objects are assumed to instantiate an OpPa-
ram instance, if the name of the latter is a prefix of the former. Considering prefixes allows to
aggregate parameters to arrays conveniently.

As illustrated in the following paragraphs, the specification framework discussed so far is
insufficient in general. For more complex operators it does not allow to capture the intuitive
meaning of operator Parameters.

Other kinds of constraints

The previously shown operator specifications allow to enforce the presence of Parameters with
given names and pre-defined types in specific cardinality intervals, distinguished by their I/O-
class. Considering the example shown in table 9.1 it is not yet clear without considering addi-
tional knowledge how TheOutputAttribute and TheTargetAttribute are related to TheInput-
Concept of operator 54. Similarly, it is not clear whether there are any restrictions on TheOut-
putAttribute of operator 59. Furthermore, without additional knowledge about operator 54 the
type of TheOutputAttribute cannot be inferred, although it is clear from the context that the
attribute constructed by an operator for replacing missing values should have the same datatype
as the original attribute. This kind of knowledge can be formulated with respect to conceptual
meta-data only, so the term constraint as defined before is justified. The remaining constraints
are less specific than those captured by the previously discussed M4 tables. In order to allow for
a broad spectrum of constraints, an extendable library of pre-defined constraint types has been
realized, and another M4 class Constraints has been added to the meta-model. It references
constraint types from the library and has two further fields that allow to either reference objects
by their OpParam names, or to provide a String with further information.

Table 9.3 shows a subset of the original example operators’ constraints from the M4 table
OP_CONSTR_T. The table contains four important types of constraints. The type IN allows to
state that the first argument needs to be included in the second, for instance that a Feature needs
to be part of a specific Concept. The type SAME_FEAT is an abbreviation for “same features”.
The two arguments have to be Concepts whose features have to have identical names and data

205

9. A KDD Meta-Data Compiler

ID Name Case Chain Operator
999 ExampleRowSelection 59

M4 table STEP_T

ID Name Step Type ObjID I/O Nr
. . . TheInputConcept 999 Concept . . . IN 1
. . . TheOutputConcept 999 Concept . . . OUT 2
. . . TheCondition 999 Value 1400 IN 3

M4 table PARAMETER_T

ID Name Value
1400 TheCondition City=’Sydney’

M4 table VALUE_T

Table 9.2.: A simplified example illustrating the instantiation of previously specified Operator
RowSelectionByQuery, ID 59 (see table 9.1). All Parameters are referenced by
type and M4 ID. In the example the Value Parameter is shown.

types. All BaseAttributes have data types in MININGMART, and without providing sufficient
information on the type no BaseAttribute can be created by the Human-Computer interface. The
two constraint types TYPE and SAME_TYPE allow to specify such a data type in two different
ways, both naming a BaseAttribute as their first argument. The former specifies a valid type as
its second argument; a list of valid types can be specified using a set of such tuples. The latter
specifies a further BaseAttribute as a second argument, requiring that both BaseAttributes share
the same data type.

It is worth to note, that even similar tuples of this table may be used for quite different pur-
poses. The Human-Computer interface uses the tuple with ID 696 to offer a menu of attributes
in the case editor that contains only those BaseAttributes, that are part of the previously selected
TheInputConcept. Constraints like 703 may even reduce the number of valid candidates. In
contrast, tuple 698, which is very similar to 696 is used by the HCI to derive the fact, that it
needs to construct a new BaseAttribute, the type of which can be concluded from constraint
699, and that it has to append this new BaseAttribute to TheInputConcept. At all preceding
Steps this new BaseAttribute has to be ignored. After its creation it is a regular Feature of the
Concept. The compiler uses the same constraints to automatically provide the correct runtime
Parameters to each operator, to check the data types if required, and to identify to which entities
of the meta-data the resulting views or tables should be linked.

Having a separate static layer of meta-data to specify the operator constraints allows each
MININGMART module to exploit these constraints in an individual way. Much of the flexibility
and the generic way of handling meta-data would inevitably be lost, if the properties of each
operator had to be hard-coded into the different modules. This showed in an earlier phase of
the MININGMART project, where the Human-Computer interface contained a specific manually
coded class for each operator, which was responsible for creating the meta-data of each opera-
tor’s output. The maintenance of these classes turned out to consume an unreasonable amount of
time, while the generic handling just requires to update specifications or implementations once
per adaptation.

206

9.3. The MININGMART compiler framework

ID Operator Type Argument 1 Argument 2
696 54 IN TheTargetAttribute TheInputConcept
697 54 IN ThePredictingAttributes TheInputConcept
698 54 IN TheOutputAttribute TheInputConcept
699 54 SAME_TYPE TheTargetAttribute TheOutputAttribute
700 54 TYPE ThePredictingAttributes SCALAR
701 54 TYPE ThePredictingAttributes CATEGORIAL
702 54 TYPE ThePredictingAttributes ORDINAL
703 54 TYPE TheTargetAttribute CATEGORIAL
704 54 TYPE SampleSize NUMERIC
705 54 TYPE PruningConf NUMERIC
728 59 SAME_FEAT TheOutputConcept TheInputConcept

Table 9.3.: Incomplete constraints in table OP_CONSTR_T for example operators

ID Operator Type Argument 1 Argument
706 54 HAS_NULLS TheTargetAttribute –
707 54 HAS_VALUES TheTargetAttribute –
708 54 NOT_NULL ThePredictingAttributes –

Table 9.4.: Conditions in table OP_COND_T for example operator

Conditions and assertions

Those applicability aspects of specific operators that are not subsumed by the notion of con-
straints as defined above are referred to as conditions or assertions in MININGMART. Both have
in common that they directly refer to business data.

Conditions are similar to constraints in that they describe preconditions for operator execu-
tion. They are represented in a similar format as constraints, but belong to a separate class of
M4. There are three conditions for the first example operator on page 202; the first one is, that
the target attribute contains NULL values (type HAS_NULLS), the second, that it does not only
contain NULL values (type HAS_VALUES), because otherwise it is not possible to induce a
reasonable decision tree to fill in the blank fields. The third condition is that none of the predict-
ing attributes contains missing values (type NOT_NULL). The corresponding entries are shown
in table 9.4. Other important kinds of conditions allow to constrain the range of an attribute, for
example to avoid negative values when applying logarithmic scaling, or to compare the values
of different attributes, e.g., to guarantee that the end of a time interval never precedes its starting
point.

Assertions are business-data-related statements that hold after a successful execution of an
operator. These statements are sometimes useful to derive subsequent conditions the compiler
would have to check otherwise, or to recognize that a concept is a sub-concept or a projection
of another one. Two examples are shown in table 9.5. The tuple with ID 709 states that The-
OutputAttribute does not contain missing values after a successful application of operator 54.
Tuple 733 asserts that after executing the RowSelectionByQuery operator the resulting exten-
sion of TheOutputConcept is a subset of the TheInputConcept’s extension. Together with
constraint 728 (see table 9.3) this implies that TheOutputConcept is a sub-concept of TheIn-

207

9. A KDD Meta-Data Compiler

ID Operator Type Argument 1 Argument 2
709 54 NOT_NULL TheOutputAttribute –
733 59 SUBSET TheInputConcept TheOutputConcept

Table 9.5.: Assertions in table OP_ASSERT_T for example operator

putConcept, which is exploited when maintaining the sub-concept hierarchy. For a full list of
constraints, conditions, and assertions please refer to (Scholz et al., 2002).

Further forms of applicability checking

In addition to the previously discussed meta-data driven mechanisms of checking applicability,
there are several kinds of runtime errors that are handled individually by each operator. Main-
taining a generic framework for each very specific condition is too costly, so it has been taken
care that the code yields understandable exception messages whenever too specific kinds of con-
ditions are violated. These messages are communicated to the user via the Human-Computer
interface. The user may then adjust the parameter settings, the business data, or the general lay-
out of the Case in order to circumvent the described problem. The generic compiler framework
discussed later on in this chapter calls initialization methods and fetches parameters automat-
ically. This still allows to make use of generic structures to catch most of the exceptions not
avoided by checking constraints and conditions in advance.

As mentioned after the motivating example on page 203, there are some powerful operators
for which the responsibility of providing correct parameters rests with the user. One example is
an operator called GenericFeatureConstruction. It allows to specify arbitrary SQL statements
to define a new feature based on existing features of an input Concept. This operator is meant to
be a fall-back option in situations in which a user requires a very specific kind of computation
that is not covered by other MININGMART operators. The draw-back of this approach is, that
a full condition checking would require to parse the SQL statement, taking into account any
functions, procedures, and other DBMS-specific dialects, and to explain to the user in detail any
encountered problems with the syntactical structure of statements, divisions by 0, or references
to attributes not present in the data.

As a cheaper alternative, the operator allows to address attributes by their conceptual (BaseAt-
tribute) names, which are replaced by the relational names by the compiler to avoid dependencies
on the business data schema that are hard to be controlled, but if the statement fails, the DBMS
error message is just propagated without any modifications.

In other situations, problems can be avoided by a fool-proof operator design. The real MINING-
MART counterpart to the example operator RowSelectionByQuery uses a more complex way
of setting up the condition parameter, for example. Each base condition statement consists of
three parts, a BaseAttribute, a condition operator (like <, =, or >), and a constant value or
string to be compared to the BaseAttribute in terms of that condition operator. Such base con-
dition statements can then be assembled into a full statement, which is finally translated into an
SQL query and embedded into the output view definition by the compiler. This design has basi-
cally two advantages. First, it avoids to address attributes at the relational level, which otherwise
would not only create schema-specific dependencies, but also make it much harder to verify ref-
erential integrity. Second, conditions are constructed in a way that makes it hard to produce an
SQL exception. This increases the overall robustness of the system.

208

9.3. The MININGMART compiler framework

9.3.4. Operators in MiningMart

The last subsection illustrated how Steps are represented in M4, how Parameter integrity is
defined in terms of static M4 objects, and how Parameters are linked to Steps depending on the
embedded operators.

As the final issue in this section it is discussed, how operators are realized technically. Related
discussions on the meta-data driven data- and control-flows are postponed to section 9.4.

How MiningMart benefits from object oriented design

We can roughly distinguish between three active modules during case compilation, the compiler
core, which controls the execution, the M4 interface, which offers a convenient way to access
the M4 model, and the classes of the operator taxonomy.

The MININGMART compiler and all of its associated taxonomy classes are implemented in
the JAVA programming language. Some learning tools and DBMS specific code fragments are
exceptions to this rule, but are still connected to the overall framework via JAVA wrappers.

High-level interfaces Much of the required functionality that is not directly related to spe-
cific operators has been “sourced out” to the compiler core, or to the M4 interface layer. Ac-
cessing this functionality by calls to standardized convenient interface methods increases the
understandability of the code and eases its maintenance significantly. An intuitive example for
encapsulated lower-level functionality in MININGMART are database accesses like SQL queries
and other statements. As argued before, the philosophy of MININGMART is to bridge the gap
between conceptual Case and data descriptions on the one hand, and low-level access to a virtual
SQL machine, on the other. In practice, however, some of these low-level accesses depend heav-
ily on the specific underlying DBMS. ORACLE allows to execute JAVA stored procedures inside
the database, for example, while POSTGRES databases do not7. Several details on PL/SQL func-
tions, procedures, sequences, name spaces, transaction management, and system tables also vary
from one DBMS to another. Hence, the layer of a virtual SQL machine needs to be established
artificially, which is to a large extent realized by the edu.udo.miningmart.db package.
This package encapsulate all DBMS related issues, like connecting users to the database, creat-
ing statements, closing JDBC ResultSets, and transaction management. An object of class
DB plays the role of the interface to the MININGMART operators and to the M4 interface. It
offers methods directly addressing the virtual SQL machine, like

public void executeBusinessSqlWrite(String sqlStatement),

which executes an SQL statement on the business data schema, or

public String executeM4SingleValueSqlRead(String sqlQuery),

which returns the one-value-result of an SQL query to the M4 schema as a String. Other
examples for provided methods are

public M4Object getM4Object(long m4Id, Class m4Class),

which returns an arbitrary M4 object identified by its class and ID, and

public void commitBusinessTransactions(),

7The manual reports that there are ways to extend the base functionality of POSTGRES databases to run all kinds of
code, but this requires additional efforts and is not discussed in this thesis.

209

9. A KDD Meta-Data Compiler

which commits all changes to the business data schema. The class DB itself does not access the
database directly, but it acts as a convenient interface to lower-level DBMS-specific sub-classes
of DbCore, currently one of DbCoreOracle and DbCorePostgres. Other global services,
like for printing debug messages, are encapsulated in a similar fashion.

Top-down specialization of operators The MININGMART architecture for operators is
highly modular. Each operator can be considered to be realized as a small module of its own,
connected to the compiler core by implementing against a JAVA API. The operator names speci-
fied in the M4 class Operator are not only used in GUI menus, but are interpreted as unqualified
operator class names (case sensitive) at the same time, located in a specific JAVA package of the
compiler module. When it comes to executing a specific operator, the compiler core identifies
a corresponding JAVA class via the self-reflection API, and it instantiates it with its runtime
parameters, according to the operator specifications discussed in section 9.3. Details of the ini-
tialization procedure follow in section 9.4.

From a technical point of view, many operators have a similar functionality. To avoid re-
dundancies, and in accordance with the object oriented programming paradigm, most of the
operator-specific functionality is hence realized in abstract super-classes of those classes finally
run by the compiler core. These abstract classes are not referenced by the class Operator or any
other M4 entities. In MININGMART executable operator classes usually add just a few fields
and lines of code to the inherited fields of their super-classes, reflecting their very own charac-
teristics.

Among the convenience methods that all operators already inherit from the most abstract
operator class ExecutableOperator are several methods to directly access the operator’s
runtime parameters and related M4 objects, like the embedding Step. Other methods of the
class ExecutableOperator allow to print or log debug and status messages, and to directly
access the virtual SQL machine.

The set of operators is organized hierarchically. Only the leaves of this taxonomy are non-
abstract, thus executable and registered in the M4 class Operator. All abstract classes in be-
tween can be considered to cluster operators by technical homogeneity. Level one starts with
distinguishing by the kind of output the operators create: Some operators create a new Concept
that contains the results of the preprocessing step, while others just add a new Feature to an ex-
isting input Concept. The former kind of operators are called ConceptOperators, the latter
are referred to as FeatureConstructionOperators. Both of these groups are described
briefly in the following paragraphs. Only some very specific operators fit neither of these cat-
egories. Please refer to (Euler, 2002b) for a full list of all MININGMART operators8 with the
OpParam specification and a brief description for each of them.

ConceptOperators

The first major group of operators reads (among other parameters) an input Concept and yields
an output Concept. This allows to prepare a more specific framework as for general operators.

To this end, an abstract class ConceptOperator is introduced. ExecutableOperator
already implements the execute() method run by the compiler core. The method enforces
a specific structure for all operators, but apart from printing status messages it just calls two
abstract methods, which need to be implemented by all operators. The first of these methods
is responsible for generating an SQL statement reflecting the result, while the second one tests
whether the statement is executable. The class ConceptOperator provides specific getter

8The document is slightly outdated, as it only lists operators added before April 2003.

210

9.3. The MININGMART compiler framework

mmart.compiler.operator.ConceptOperator

• mmart.compiler.operator.MultipleCSOperator

– mmart.compiler.operator.Segmentation
∗ mmart.compiler.operator.SegmentationStratified
∗ . . .

– mmart.compiler.operator.Unsegment

• mmart.compiler.operator.SingleCSOperator

– mmart.compiler.operator.FeatureSelection
∗ mmart.compiler.operator.FeatureSelectionByAttributes
∗ mmart.compiler.operator.FeatureSelectionWithSVM

– mmart.compiler.operator.ModelApplier
∗ . . .

– mmart.compiler.operator.MultiRelationalFeatureConstr.
– mmart.compiler.operator.RowSelection

∗ mmart.compiler.operator.DeleteRecordsWithMissingVal.
∗ mmart.compiler.operator.RowSelectionByQuery
∗ mmart.compiler.operator.RowSelectionByRandomSampling
∗ . . .

– mmart.compiler.operator.TimeOperator
∗ mmart.compiler.operator.ExponentialMovingFunction
∗ mmart.compiler.operator.Windowing
∗ . . .

– mmart.compiler.operator.Union
– . . .

Figure 9.4.: Incomplete taxonomy of ConceptOperators.

methods for the fixed parameters TheInputConcept and TheOutputConcept, and it ex-
ploits the fact that (parts of) input and output are known. Both abstract methods of the super-class
are implemented to realize the construction of a view according to an operator’s returned SQL
statement as part of a Columnset, to test it for validity, and to connect it to the output Concept. All
that sub-classes have to do when extending class ConceptOperator is to yield Columnsets
that reflect the results of their Steps. A subset of the ConceptOperator taxonomy is depicted
in figure 9.4.

Examples To illustrate how abstract operators are refined level-wise until an executable op-
erator is reached, we exemplarily follow the taxonomy down to the simple operator Delete-
RecordsWithMissingValues. The group of ConceptOperators can further be di-
vided by distinguishing between those operators that yield exactly one output Columnset per
input Columnset, and those discussed shortly, that may yield several Columnsets. Each operator
of the former group extends class SingleCSOperator, which basically just simplifies class
ConceptOperator by implementing the abstract methods as to ignore non-applicable loop-
like facilities, and to just call the abstract method generateSQLDefinition(...) that
yields a single String, instead. One class extending SingleCSOperator is RowSelection.

211

9. A KDD Meta-Data Compiler

It implements the abstract method generateSQLDefinition(...) so that it yields a com-
plete SQL statement that creates a new view, including a select, from, and a where part.
Just the condition of the latter part is the result of a new abstract method called generate-
ConditionForOp(...). The executable DeleteRecordsWithMissingValues class
finally just extends RowSelection by implementing generateConditionForOp(...),
so that it reads the parameter TheTargetAttribute, determines the relational counterpart
of this conceptual BaseAttribute, and returns “<attribute name> IS NOT NULL”. With-
out exception handling this takes 3 lines of code. To understand why the additional layers of
abstraction simplify the code of the operator taxonomy, please note that there are already 5

executable operators extending the very specific class RowSelection, and 31 that extend
SingleCSOperator. But even in the case of ComputeSVMError, an operator that is the
only subclass of EvaluateResults, the abstract class in between realizes a more general
idea in a way that allows for easy extensions of the operator library at this point in the future.

Another, quite different example of a SingleCSOperator worth being mentioned is the
MultiRelationalFeatureConstruction. Despite its name, which may be misleading
at a technical level, it does not construct a single Feature, but it rather constructs a new Concept
which is composed of Features found at several different input Concepts. All of these Concepts
can be joined using a set of specified Relationships. This operator illustrates, how the MINING-
MART parameter specification framework supports very different kinds of parameter sets, arrays
of input Concepts and Relationships of arbitrary (but matching) cardinality. The inherited fixed
Parameter TheInputConcept of cardinality 1 is still present, but there is another Parameter
with an array of Concepts linked to TheInputConcept, a further one consisting of an array of
selected Features, and a final one, containing an array of Relationships to join all the Concepts.
Two entries in class Constraint make sure that Concepts and Relationships match, three further
constraints guarantee that the selected Features are in fact selected from the input Concepts, and
that they are all copied to TheOutputConcept.

Multi-Steps An interesting feature of MININGMART is that it allows to execute operators for
multiple inputs without requiring any changes to the conceptual case model. It can generally be
assumed that there is exactly one view or table registered per input Concept when executing a
Step. In M4, tables and views are both represented by Columnsets, so in this case a Concept
is linked to a single Columnset, which references a view or table in the database. If the com-
piler core finds more than one Columnset linked to a Concept, then it executes the Step once
for each input, which results in as many output Columnsets9 as found in the input. The only
group of operators that may increase the number of output Columnsets compared to the number
found in the input extends the abstract class MultiCSOperator. This is, for instance, done
by SegmentationStratified. The objective of this operator is to split a single input view
or table to a set of different views, one for each value of a specified target attribute. As a marker
for operators with this property there is an extra boolean field Multi in the M4 class Operator.

A possible application is to split collected sales data of a supraregional supermarket, for in-
stance by shop. While the original table contains all the data, after segmentation we have one
separate view per shop. All of these views, referenced in M4 by Columnset objects, are linked to
a single output Concept. Subsequent analysis steps based on this Concept are executed once for
each shop-related view, and they again produce one output view and Columnset per shop that is
related to a single Concept. In several contexts this procedure eases the analysis (Euler, 2005b).

9This implicitly assumes that the Step embeds a ConceptOperator, but for other kinds of operators the result
is similar.

212

9.3. The MININGMART compiler framework

mmart.compiler.operator.FeatureConstruction

• mmart.compiler.operator.Discretization

– mmart.compiler.operator.ManualDiscretization
∗ mmart.compiler.operator.NumericalIntervalManualDiscr.
∗ mmart.compiler.operator.TimeIntervalManualDiscr.

• mmart.compiler.operator.GenericFeatureConstruction

• mmart.compiler.operator.Mapping

– mmart.compiler.operator.MappingWithDefaultValue
– mmart.compiler.operator.PartialMapping

• mmart.compiler.operator.MissingValues

– mmart.compiler.operator.AssignDefault
– mmart.compiler.operator.MissingValuesWithRegressionSVM
– . . .

• mmart.compiler.operator.Scaling

– mmart.compiler.operator.LinearScaling
– mmart.compiler.operator.LogScaling

• mmart.compiler.operator.SVMforDataMining

– mmart.compiler.operator.SupportVectorMachineForClassif.
– mmart.compiler.operator.SupportVectorMachineForRegress.

• . . .

Figure 9.5.: Incomplete taxonomy of FeatureConstruction operators.

This is referred to as the multi-step feature of MININGMART. Please note, that the number of
corresponding views / Columnsets depends on the business data, so it is not possible in general
to circumvent segmentation by preparing separate Concepts for the different shops. A re-union
of all views is also possible after a segmentation Step. It is sufficient to insert a Step embedding
an Unsegment operator, referencing the original Segmentation condition. As a test feature the
M4 compiler offers a lazy mode, which avoids multi-step execution by only processing the first
Columnset of each Concept.

Multi-step handling allows to perform an analysis of an arbitrary number of views without
changing the case model. If MININGMART is considered to be a graphical programming lan-
guage for knowledge discovery in databases, then this element resembles loop structures in
standard programming languages.

FeatureConstructionOperators

The second large group of MININGMART operators is characterized by the property of con-
structing a new BaseAttribute as the only output. The new feature is added to the input Concept
of the Step. One of the existing BaseAttributes is selected as TheTargetAttribute parame-
ter. It serves as a blueprint for the new Column, which is then linked to the output BaseAttribute.

213

9. A KDD Meta-Data Compiler

Operator hierarchy The class FeatureConstructionOperator is an abstract super-
class of all operators of this group. It provides getter methods for all three parameters men-
tioned above, but it also exploits the predefined input/output properties of the operator group
to prepare most of the necessary functionality. Similar to the ConceptOperator class, it
implements all abstract methods of ExecutableOperator, which are responsible for creat-
ing relational meta-data and for validity checking. Unlike for ConceptOperators, however,
creating the output does not require the specification of a full view definition, but is much sim-
pler for adding a single new attribute. It is sufficient to update the relational M4 meta-data,
namely to register a new Column to the Columnset linked to TheInputConcept. This Col-
umn needs to provide an SQL sub-statement suited to define a new attribute if added to the
SELECT-part of the corresponding Columnset definition. That way, attributes are added just
virtually to tables or views. This is possible, because the Column definitions are correctly sub-
stituted by all modules of the MININGMART system. The only abstract method all sub-classes
of FeatureConstructionOperator implement is

abstract String generateSQL(Column targetColumn),

which reads the Column linked to TheTargetAttribute and returns the SQL specification
for the virtual column to be constructed.

Virtual Columns shall be illustrated by the following example: We consider a table sales with
two attributes number_of_items and price_per_item, a Columnset linked to the input Concept
of a Step and referencing the sales table, and a Column per database attribute, both linked to
the Columnset. In MININGMART, a feature construction operator might just add a new Column
named total_price to the Columnset, which has the SQL definition (number_of_items *
price_per_item). In subsequent Steps this Columnset is interpreted as

SELECT number_of_items, price_per_item, (number_of_items *
price_per_item) AS total_price FROM sales.

This is equivalent to defining a view that adds the constructed feature explicitly. Because there is
only one comparatively simple abstract method left to implement, the hierarchy of feature con-
struction operators is shallow. Figure 9.5 shows most of the corresponding part of the operator
taxonomy. A single layer of intermediate abstract classes aggregates similar operators, forming
groups of discretization, grouping, mapping, and scaling operators. Most of these classes do not
add much functionality. The abstract class Scaling, for instance, does not provide any code,
but merely groups all scaling operators together.

Looped parameters All FeatureConstructionOperators share a specific property
not discussed so far, which allows to reduce the number of required Steps if a similar operation
has to be applied to a Concept several times. The mechanism is referred to as looping. Similar
as with the multi-step property, there is a boolean marker field named Loop in the M4 class
Operator, which indicates whether an operator supports being applied in loops. Operators sup-
porting this functionality can be supplied with multiple Parameter sets and are executed once
for each of them. More precisely, each Parameter of a loopable operator may itself share the
loopable property or not. This is indicated by objects of the M4 class Constraints. Parameters
not loopable are supplied once per Step, loopable ones have to be supplied once per loop.

An example application for a looped FeatureConstructionOperator is a scaling op-
eration, for example LinearScaling to normalize attributes. Without exploiting the loop
mechanism the corresponding scaling operation would take one Step per attribute. Looping al-
lows to address another attribute in each loop of the same Step, so that a single Step – maybe

214

9.3. The MININGMART compiler framework

ID Operator name Loop Multi . . .
44 LinearScaling YES NO . . .

M4 table OPERATOR_T

ID Operator Parameter name I/O Type Min Max
553 44 TheInputConcept Input Concept 1 1
554 44 TheTargetAttribute Input BaseAttribute 1 1
555 44 NewRangeMin Input Value 1 1
556 44 NewRangeMax Input Value 1 1
557 44 TheOutputAttribute Output BaseAttribute 1 1

M4 table OP_PARAMS_T

ID Operator Type Argument 1 Argument 2
558 44 IS_LOOPED TheTargetAttribute −

559 44 IS_LOOPED NewRangeMin −

560 44 IS_LOOPED NewRangeMax −

561 44 IS_LOOPED TheOutputAttribute −

562 44 IN TheTargetAttribute TheInputConcept
563 44 IN TheOutputAttribute TheInputConcept
564 44 SAME_TYPE TheTargetAttribute TheOutputAttribute
565 44 TYPE NewRangeMin NUMERIC
566 44 TYPE NewRangeMax NUMERIC
567 44 GT NewRangeMax NewRangeMin

M4 table OP_CONSTR_T

ID Operator Type Argument 1 Argument 2
568 44 NOT_NULL TheTargetAttribute −

M4 table OP_COND_T

ID Operator Type Argument 1 Argument 2
569 44 NOT_NULL TheOutputAttribute −

570 44 GE TheOutputAttribute NewRangeMin
571 44 LE TheOutputAttribute NewRangeMax

M4 table OP_ASSERT_T

Table 9.6.: Specification of the loopable operator LinearScaling.

215

9. A KDD Meta-Data Compiler

ID Name Step LoopNr Type ObjID I/O Nr
. . . TheInputConcept 997 0 Concept 1477 IN 1
. . . TheOutputAttribute 997 1 BaseAttribute 1423 OUT 2
. . . TheTargetAttribute 997 1 BaseAttribute 1470 IN 3
. . . NewRangeMin 997 1 Value 1480 IN 4
. . . NewRangeMax 997 1 Value 1482 IN 5
. . . TheOutputAttribute 997 2 BaseAttribute 1484 OUT 6
. . . TheTargetAttribute 997 2 BaseAttribute 1473 IN 7
. . . NewRangeMin 997 2 Value 1489 IN 8
. . . NewRangeMax 997 2 Value 1490 IN 9

Table 9.7.: Example of PARAMETER_T entries for a looped LinearScaling with ID 997.
Only the Concept (type CON) is a global parameter provided only once. For the
BaseAttributes (BA) and values (type V) a loop number is specified for reference.

followed by a manual feature selection to discard the original attributes – is sufficient to nor-
malize all attributes. The input Concept would typically not be modeled as loopable, to reduce
unintended side-effects, but TheTargetAttribute and all scaling Parameters would.

Hence, for loop Steps the returned set of Parameters depends on a loop number. For Steps
embedding loopable operators the total number of loops are specified by the attribute LoopNr
of the M4 class Step; the mapping of runtime parameters to the different loops is realized
by another attribute of the M4 class Parameter, named StLoopNr. The example operator
LinearScaling has the specification depicted in table 9.6. Exactly those parameters for
which a IS_LOOPED constraint exists are treated as loopable. Constraint 567 states, that the
new upper interval bound after scaling (NewRangeMax) has to be strictly greater than the
lower bound NewRangeMin. As a condition of the operator, the target attribute (which is to be
scaled) must not contain missing values (tuple 568). The operator asserts that in this case the
output attribute will also contain no missing values (tuple 569), and that all values will lie inside
the target interval of scaling (tuples 570, 571).

For each loop iteration a different set of parameters TheTargetAttribute, TheOutput-
Attribute, and scaling parameters are used. An example of runtime parameter settings for a
Step embedding a LinearScaling operator is shown in table 9.7. For each parameter there
is a separate tuple in the M4 meta-data table PARAMETER_T. All parameter entries have an
M4 ID, name, unique parameter number, and I/O type. To reference a parameter object they
specify the target object, e.g. Concept, and the M4 ID of the parameter. There are two loops in
the example. Only TheInputConcept is not looped, so it is specified only once, by convention
with loop number 0. All looped parameters refer to one of the two loops, so they have a loop
number of 1 or 2. They are ignored by the compiler when executing other than these specified
loops.

Extending the library of operators

As mentioned before, the MININGMART architecture for operators is highly modular. In prin-
ciple, one can think of each operator as a separate module that is loaded and executed by the
compiler core according to specifications found in static M4 meta-data tables. The operator tax-
onomy just simplifies the code. It helps to recognize underlying similarities between different
operators like DeleteRecordsWithMissingValues and RowSelectionByRandom-
Sampling, but even more important, it allows to avoid redundancies. All the functionality

216

9.4. Meta-data-driven handling of control- and data-flows

common to a group of operators is implemented just once in the most abstract class of that
group.

As a consequence, if a developer wants to extend the operator library, it is possible to avoid
most of the low-level programming, just by finding the point in the operator taxonomy where the
own operator fits in best, and by extending the corresponding abstract super-class. The extended
class should lie as deep as possible down in the taxonomy, as this reduces the required amount
of additional code. In this case, it is sufficient to implement very specific methods, just charac-
terizing the very own properties of the new operator. As a rule of thumb, a new operator should
rather be designed as a FeatureConstructionOperator than as a ConceptOperator
whenever possible, because the former class usually allows for simpler implementations. Rela-
tionships and multiple input Concepts are the hardest parts to be handled technically, although
they are best suited to reflect the multi-relational structure of relational databases.

In order to make a new operator visible to the different components of MININGMART, any
operator developer has to provide a full specification in terms of the M4 classes discussed in sub-
section 9.3.3. The name of the new operator, which is at the same time its JAVA class name, its
reference ID, and markers whether loopable and/or multi-stepable or not have to be appended to
the M4 class Operator, represented by the system table OPERATOR_T. The full list of op-
erator Parameters has to be specified in table OP_PARAMS_T, while their inter-dependencies,
supported conceptual data types for input Features, and unique data types to be assigned to out-
put Features have to be added to OP_CONSTR_T. After adding the operator to one of the
operator groups found in OP_GROUP_T, the Human-Computer interface is already able to
create, update, and verify Steps that embed the new operator. Missing conditions and assertions
can currently safely be considered to be optional.

The new operator class is only required when a Case that contains a Step embedding the new
operator is compiled. The operator class has to be located in mmart.compiler.operator.
Convenient methods that support to read the runtime parameters, to return results, to output
log and status messages, and to throw understandable exceptions are available at all branches
of the operator taxonomy. For a detailed description on how to implement new MININGMART

operators precisely, please refer to (Euler, 2002a).

9.4. Meta-data-driven handling of control- and data-flows

The control-flow mechanisms underlying the MININGMART compiler software rely on M4
meta-data. As discussed in section 9.2, M4 offers static and dynamic parts, as well as several
kinds of abstraction. In section 9.3 the framework for operator specifications was described. It
was shown how operators are instantiated in M4, and how Cases are sequentialized with respect
to the input-output-dependencies of their Steps. The M4 compiler executes a JAVA class which
is referenced in M4 table OPERATOR_T, and it provides all runtime Parameters linked to the
embedding Step. The constraints define the set of valid Parameter settings, which are (to a large
extent) verified by the Human-Computer interface while setting up preprocessing Cases.

In this section, the control- and data-flows are discussed in more detail, which addresses the
question of how the meta-data tables are precisely accessed by the M4 compiler. In MINING-
MART such functionality is provided following a generic framework, as opposed to methods im-
plemented individually for each compiler and M4 interface class. This is illustrated exemplarily
by showing how the M4 compiler loads the Parameters of Steps and verifies their validity, how
M4 entities are accessed and represented by the M4 compiler software, how integrity of data is
achieved at the JAVA level, and how Cases are exported and imported to and from XML files.

217

9. A KDD Meta-Data Compiler

9.4.1. The cache – an efficient interface to M4 meta-data

The M4 compiler uses an own internal JAVA-based cache for all the entities read from the M4
model, and for all newly created M4 objects. More precisely, only previous versions of the com-
piler had a separate cache, which was different from the M4 interface based on an application
server architecture. After the end of the MININGMART project, the compiler cache was extended
at the University of Dortmund, and has, by the end of 2003, fully replaced the old M4 interface
for reasons of efficiency.

There are several reasons for caching M4 meta-data in main memory. The most important
one is a significant decrease of the communication overhead and runtime, compared to query-
ing each meta-data tuple directly from the database. Another reason is, that it allows to set up
a unified JAVA framework for storing and accessing meta-data, following the object-oriented
paradigm. Structural aspects of M4 meta-data, i.e. the references between M4 objects, are very
important during Case compilation, so it is straight-forward to represent objects and references
by corresponding JAVA objects in main memory. There is a JAVA class extending the super-class
edu.udo.miningmart.m4.core.M4Object for each M4 table. Every M4 object read
from the database or created by the compiler (or by other modules in later versions) is inter-
nally represented as a JAVA object of the corresponding class. To allow for convenient caching,
it is important that all M4 objects have an ID that is unique throughout the system. To this end,
MININGMART uses a single database sequence that yields a unique primary key whenever a
new meta-data tuple is created, regardless of the target M4 table. A final reason for caching is
that objects representing meta-data allow to naturally associate additional runtime information.
Whether a Step has already been compiled or not is stored along with the corresponding Step
object, for example, although there is no corresponding M4 field for this kind of information.

The M4 cache is realized by the class edu.udo.miningmart.db.DB mentioned above,
which encapsulates all direct accesses to the database. From a technical point of view, the cache
is a private dictionary of the only instance of class DB, using the M4 ID as the key attribute.
There is one method to clear the cache, which is e.g. invoked when closing a Case, one method
to store objects in the dictionary, which only works for objects already having a valid and unique
ID, one method to remove objects that have become invalid, and one to query for an object by
its ID.

M4 objects are never directly read from the database by operators, but there is a unique access
method

public M4Object getM4Object(long id, Class m4Class)

for this purpose. It first checks whether the requested object has been cached before. If not, it
initializes an M4Object of the specified type according to the data of the corresponding tuple,
which is returned and stored in the cache. The JAVA representation actually used by the M4
compiler consists of linked objects of type M4Object. Associated M4Objects can be fetched
using getter methods of the returned object. Some of the related objects are directly loaded
together with the explicitly requested objects, while others will be read on demand using the
same method getM4Object(...) as mentioned above. All objects that have once been read
from the meta-data tables can also be accessed by ID via the M4 JAVA cache.

Maintaining inter-M4 relations

The most typical kind of links between pairs of related M4 classes is 1 : n, that is, each object of
a first class references a set of aggregated objects of a second one. An example at the conceptual
level is the relation between Concepts and Features. While Concepts contain sets of Features

218

9.4. Meta-data-driven handling of control- and data-flows

each Feature belongs to exactly one Concept. Similarly, each Case contains a set of Chains, each
Chain a set of Steps, each Step a set of Parameters etc. The same kind of relation is found at the
relational level, where Columnsets refer to sets of Columns and to sets of ColumnsetStatistics.
At the intersection of conceptual and relational level, Concepts are linked to sets of Columnsets
and BaseAttributes reference sets of Columns10.

The compiler and other modules need to follow references between related M4 objects in both
directions; on the one hand, it has to be possible to query the set of Features for a given Concept,
on the other hand, each Feature refers to a unique Concept, which also has to be accessible
efficiently, given just the Feature. In order to allow for efficient random access along any of the
links and starting from arbitrary M4 objects, each object stores JAVA references to all directly
related objects locally. The class Concept contains

private Collection myFeatures;

as a field with corresponding public access methods, for example, but the class Feature con-
tains corresponding methods for its field

private Concept myConcept;

as well. Whenever an object like a Feature f is added to a collection part of another object, for
example to the Feature set that belongs to a Concept c1, then there are several integrity issues to
be considered. First of all, now that the Feature belongs to c1, the back-reference of the Feature
f has to be set consistently to this new Concept. This requires to check, whether the Feature used
to belong to another Concept c2 before. Because each Feature belongs to exactly one Concept,
Feature f needs to be removed from the Feature collection of Concept c2, in this case. These
kinds of considerations, and hence the update methods, are independent of the specific M4
classes involved.

For handling the updates of 1 : n relations between all M4 classes, there is a single generic
class edu.udo.miningmart.m4.utils.InterM4Communicator in MININGMART.

For each pair of related classes a new communicator class is derived from this abstract class.
This mechanism aims to support convenient and consistent updates of references at both classes.
All that needs to be filled in when deriving a specific communicator class from the abstract
super-class are the references to individual getter methods, and to a “primitive” setter method
that update references without considering consistency issues. In the example above, the latter
method is the setter of class Feature. All further individual methods for accessing and updating
relations between these classes just directly invoke convenience methods inherited from the
abstract class InterM4Communicator.

The abstract and convenience methods of the super-class are depicted in figure 9.6, together
with the original MININGMART class that handles the references between Concepts and Fea-
tures. A method like addFeature(Feature f) in class Concept is implemented by just
two InterM4ConceptFeature-method calls, one to checkNameExists, to avoid name
clashes, and one to add, which adds the Feature to the Collection.

Loading database M4 objects

The next paragraphs discuss the generic mechanisms for reading requested tuples from the M4
database, and for initializing new M4 JAVA objects. As mentioned before, each M4 meta-data
10Please recall, that a single Concept may be linked to multiple views or tables. In this case, single BaseAttributes will

also refer to multiple Columns, which requires to model both the Concept-to-Columnset and the BaseAttribute-
to-Column links as 1 : n relations.

219

9. A KDD Meta-Data Compiler

/** Super-class of all inter-M4 communication classes */
public abstract class InterM4Communicator {

// References to getter and setter of the classes:
abstract Object getSingleRef(M4Object src);
abstract Collection getCollection(Object src);
abstract void setSingleRefPrimitive(M4Object m4o, Object container);

// Convenience methods used by the referenced classes:
public void add(Object container, M4Object m4o) { ...}
public boolean remove(Object container, M4Object m4o) { ...}
public void setCollectionTo(Object container, Collection coll) { ...}
public void updateReferenceTo(M4Object m4o, Object container) { ...}
public void checkNameExists(M4Object m4o, Object container) { ...}

}

/** Example of an extended class for Concept-to-Feature mapping */
public class InterM4ConceptFeature extends InterM4Communicator {

public Object getSingleRef(M4Object feature) {
return ((Feature) feature).getConcept();

}
public Collection getCollection(Object concept) {

return ((Concept) concept).getFeatures();
}
public void setSingleRefPrimitive(M4Object feature, Object concept) {

((Feature) feature).primitiveSetConcept((Concept) concept);
}

}

Figure 9.6.: Code for maintaining relations between M4 classes, throws clauses omitted.

table has a corresponding JAVA class which also reflects the reference to other classes. Each
relevant substructure of an M4 case can hence be represented using a corresponding copy in
main memory. For efficiency reasons the compiler does not pre-fetch all the meta-data of the
Case under consideration, but most objects are loaded into the cache on demand. References to
collections of objects, like from Concepts to their linked Columnsets, are often set to null until
a first access to the field by an active getter method. Such active getters are used to load all the
objects of a collection, and to store them internally. The first object loaded by the compiler is
the specified Case or Step to be compiled, followed by Operator specifications, Step parameters,
and all the required meta-data referenced during execution.

The loading procedure for individual objects exploits meta-data even at the JAVA level; M4
JAVA classes implement the interfaces edu.udo.miningmart.m4.utils.M4Table and
edu.udo.miningmart.m4.utils.M4Info. The former allows to access all the relevant
information for loading an object’s data from the database. This covers the name of the M4
database table and the name of the primary key attribute holding the M4 IDs. The latter interface
allows to query for complementary information, first of all for mappings between the relevant
database attributes and setter/getter methods of the corresponding JAVA class. The combination
of the database- and class-related specifications at all M4 JAVA classes allows the compiler core
to load M4 objects using a generic mechanism. First, the tuple with the specified ID is read
from the target table. Next, the objects implicitly referenced, for example Parameters of a Step
that may come from several M4 tables, are collected by recursively calling the generic load
mechanism, exploiting the M4Info knowledge about the target parameter’s class. Finally, all

220

9.4. Meta-data-driven handling of control- and data-flows

parameters are set using the self-reflection API. Using the InterM4Communication mech-
anism for maintenance at all intersections between M4 classes guarantees referential integrity.

A second generic mechanism allows to read collections of M4 objects, for example the
Columnsets of a Concept. It returns all M4 objects of a specified class that reference an ob-
ject under consideration. This encapsulates a more complex kind of database query than when
loading single objects, but it can as well be addressed by exploiting the information provided
by the M4Table and M4Info interfaces. When querying the set of Columnsets for a given
Concept, for example, it is sufficient to consider the references of class Columnset to class
Concept, which allows to derive the involved database tables. The condition of a correspond-
ing SQL query is that the ID of the Concept in table COLUMNSET_T matches the ID of the
given Concept11. The result of the SQL query is the set of the collection’s object IDs. The previ-
ously described mechanism allows to fetch all of these objects sequentially, either from the cache
or from the database. It just has to be taken care during the load procedure that all recursions
terminate, for instance by remembering all objects currently in the process of being loaded.

To summarize, the load mechanism of MININGMART relies to a large extent on the specifi-
cations provided via interface methods. It allows to create SQL queries for finding objects and
reading the corresponding tuples automatically, and it further allows to execute the correspond-
ing setter methods via self-reflection. The result is a framework close to declarative program-
ming, in which the specification of the database table name for a class, and the mapping of fields
to getter and setter methods is sufficient to get an automatically set up JAVA representation of all
M4 objects under consideration.

9.4.2. Operator initialization

The generic load mechanism described in the previous subsection is consequently used for pro-
viding all operator instances with their specified Parameters. The parts of M4 that store the
static operator specifications have been discussed in subsection 9.3.3, example instantiations of
operators by Steps are shown in subsection 9.3.4. The next paragraphs describe how the M4
instances are prepared for direct compiler access, and how the problematic issue of automatic
feature selection is realized in MININGMART.

Aggregating parameters to loop-indexed arrays

The M4 representation of Steps uses a separate tuple for each single Parameter and loop. Hence,
using the previously described methods for loading M4 objects returns one object per con-
tained Parameter tuple. In the context of operators accessing these tuples, the aggregation of
single objects to arrays according to the M4 OpParam specification is a reasonable simplifica-
tion. Another one is to offer access to Parameters depending on the current loop number for all
looped operators. Objects of type ParameterArray represent arrays of Parameters in appro-
priate form. The data structure serving as a Parameter interface between the compiler core and
the single operators is implemented by the class edu.udo.miningmart.m4.ParamDict.
Internally, a ParamDict data structure is populated at the first call to an active getter. It iterates
through all Parameter tuples associated to the current Step. These tuples are directly yielded
by the more general getM4Object methods. Comparing OpParam data types and names
to types and names of Parameters suffices to construct ParameterArrays indexed by loop
number and name. The ParamDict class contains methods like
11More complex situations like multiple links between classes or cross-tables are also supported with minor addi-

tional efforts.

221

9. A KDD Meta-Data Compiler

public ParameterArray get(String parameterName, int loopNr),

and offers the same level of abstraction as when specifying operator parameter constraints (sub-
section 9.3.3)12. Missing Parameters are identified easily by comparing the cardinalities of all
Parameter collections in the dictionary to the OpParam specifications. The dictionary is inter-
nally stored together with the meta-data for each Step.

How feature selection deselects columns

In principle, the operator specification is used by the compiler core to make sure that opera-
tors are not executed without all the specified Parameters being available. However, there is one
exception to this rule, caused by a property of the feature selection group of operators. Please
recall from subsection 9.2.2, that the conceptual parts of case and data model are considered
static for the M4 compiler. This means, that the compiler is not supposed to change the concep-
tual part of the data description. The compiler even depends on knowing this part when creating
and updating the relational counterparts in M4. When an automatic feature selection is applied
to a previously unseen table or view, then the selected set of Features, and hence the correct
relational meta-data representation is unknown until the corresponding Step is executed. This
requires to design case modeling in a way that covers all possible results of such an automatic
feature selection with a single conceptual data model.

In MININGMART, Features are interpreted as defining supersets of the attributes actually re-
quired to be supported by a Concept. With this interpretation, input Concepts are still considered
to be valid if just a few of the Features are linked to Columns. As a consequence, feature selec-
tion operators just have to create outputs (Concepts) that have missing attributes at the relational
level, i.e. they may just copy Columns from the input to the output Concept, while omitting those
Columns that were not selected. This principle applies to ConceptOperators in general, and
is a robust solution for missing, but conceptually foreseen Features: ConceptOperators in
general usually copy all input Features to the output Concept. Applying the principle sketched
above, missing Features may simply be ignored without any lack of consistency.

The procedure for handling missing parameters has hence been relaxed. It checks, whether a
missing Parameter still allows for reasonable operator execution, and throws an exception, other-
wise. Specific operator requirements that do not allow for any missing Features can be enforced
by overwriting local methods, and by calling the active getter of the Parameter dictionary with
stricter settings at the time of initialization.

9.4.3. Transaction management

Up to this point the M4 cache has been presented for read-only access to the database. During
a normal run the compiler needs to change the dynamic parts of M4 in order to store its results.
Similarly as for any other kind of potential multi-user access to databases, this requires strategies
enforcing write statements from different users to be consistent.

Conflicts in multi-user databases

In relational databases it is common that each SQL session starts as a separate transaction.
All changes are accumulated until the user either decides to commit the changes, which lets
these changes take effect for all subsequent sessions, or to rollback, which discards all changes.

12For non-looped Parameters such getter and store methods are also available in non-looped form.

222

9.4. Meta-data-driven handling of control- and data-flows

Consistency in the presence of concurrent write access is the main reason for transaction man-
agement. The goal is to allow only serializable sets of transactions in parallel, for which there
exists a permutation of all transactions that induces a valid schedule. For such schedules, each
individual transaction can be considered to be run as an atomic block, starting and ending in a
consistent state (Eswaran et al., 1976).

In MININGMART, problems with conflicting session types are circumvented by a trivial lock-
ing mechanism. Whenever a user tries to access a Case in the database, a M4 meta-data table
named M4_ACCESS_T is consulted. It holds the name of all Cases that are currently accessed,
the name of the corresponding user, and the kind of access, one of read-only or read-write. If a
Case is open for writing, then the MININGMART system denies any further access. If a Case is
opened read-only, then only further read-only sessions are permitted.

The business data schema is only accessed in a way that does not bear any potential for
conflicts. Existing tables and views (Concepts of type DB) are never changed. The compilation
procedure just creates additional views, it does not change existing data. Views created by the
compiler have an automatically generated name that contains the ID of the creating Step. Since
these IDs are globally unique, and since each Step belongs to exactly one Case which is locked
during write access, there cannot be any read/write conflict when multiple users access the same
database using MININGMART the regular way.

Updating the database

Setting up a consistency framework for write access is drastically simplified by the described
locking mechanism: Whenever a MININGMART user changes the database, it may be assumed
that the main memory copy contains the only valid version of the represented M4 objects. This
assumption is valid, because no other user will simultaneously have read or even write access to
the same M4 Case.

M4 objects changed in main memory or created anew are not written back to the database
before an explicit call to updateDatabase(), a method of the M4 interface triggered by
the Human-Computer interface. This guarantees consistency of data and meta-data even in sit-
uations where the MININGMART system crashes unexpectedly, or where a compiler run does
not succeed. Furthermore, it allows a user to retract all changes, simply by aborting an active
session without saving. Only after successfully writing back all M4 objects from memory to
the database, a commit command is sent simultaneously to both the M4 and business database.
This prevents inconsistent states, even in the case of system crashes when writing back the JAVA

cache. Whenever a write-back fails, the last consistent state will be recovered automatically by
the DBMS.

Writing back all cached entities to the database would cause superfluous I/O costs, so there
is an internal dirty flag for each cached M4 JAVA object. As soon as an internal field of an
object is altered, which is a copy of an attribute stored in the corresponding M4 meta-data table,
the dirty flag is set. If another internal field is altered, then this generally causes updates of
back-references by the InterM4Communicator mechanism, which will result in setting the
dirty flag of a referenced object, because at the database level only that other object contains the
reference.

A second flag, similar to the dirty flag, indicates whether objects are to be removed from
M4. This can for example be enforced if an attribute with a NOT NULL constraint is explicitly
set to null at the JAVA level. To allow for an automatic handling of this kind of reasoning, the
M4Info specification of all M4 JAVA classes contains all the required information on integrity
constraints at the database level.

223

9. A KDD Meta-Data Compiler

The method updateDatabase() is realized in the previously mentioned class DB, and it
is invoked by the store() methods13 of all JAVA M4 classes. It works similarly to the generic
load mechanism, hence it also relies on the interface methods of M4Table and M4Info. All
objects to be written back to the database are analyzed using the specified getter methods. This
is generally sufficient to create SQL statements for updating the corresponding tuples in the M4
tables, for inserting new tuples, which get a new ID from the database sequence in this case,
and for deleting the accordingly flagged objects from the tables. More complex references, for
example based on cross-tables, may be realized easily by additional local methods.

Care must be taken that the insert, update, and delete statements are executed in a valid order.
Please recall, that the consistency at the database level is formulated in terms of integrity con-
straints. Operations like deleting referenced objects, or inserting links to objects not yet inserted,
violate these constraints, which causes SQL exceptions. As a first step to circumvent this prob-
lem, when invoking the delete method of an object, this object removes all of its M4 references
at the JAVA level. This may remove further objects, for example ColumnStatistics no longer ac-
cessible after removing their Column, but more importantly, it allows to remove the object itself
without violating any constraints after all back-references have been deleted from the database.
Obviously, deleting tuples from the database is a step which should be performed after all dirty
tuples have been updated.

The dependencies between the meta-data tables have to be respected throughout these pro-
cesses, since new tuples may reference other new tuples that have not yet been inserted, and
tuples not yet deleted could still reference tuples that the M4 interface would like to delete next.
The reference graph between all M4 classes is static and acyclic, however, so there is a static
valid order in which tuples may be inserted and updated according to their class memberships,
without further checks. Analogously, the inverse of this order is used for deleting tuples. Apart
from a hard-coded static order of tables that reflects their foreign key dependencies, the process
of updating the database is entirely generic, just exploiting the declarative M4Info information.

9.4.4. Serialization

The M4 model has originally been specified in terms of a UML model. Representing M4 classes
as database tables is a natural choice, particularly because MININGMART presupposes a DBMS
anyway; maintaining case models in a database provides integrity checks for free and allows for
efficient meta-data manipulations. There are still alternative representations of M4 Cases, one
of which is the subject of the following paragraphs.

There are disadvantages of the database representation of M4 in the context of publishing
and sharing Cases, for instance in a public best-practice case-base. The re-use of successful
preprocessing cases at different institutes requires to move the meta-data of cases from one
M4 database to another one. Addressing this task by a DBMS-specific “dump-to-file approach”
makes it hard to load the same case to a different kind of DBMS. Another issue is, that the
privacy policy of MININGMART permits to publish the conceptual parts of cases only, which
are assumed not to contain any sensitive information regarding the relational data model of the
publishing institute. Please note, that the relational meta-data is of no use in practice anyway, as
it reflects a specific schema of a database not present at any other institute. Any other user will
have to map the conceptual meta-data to the local relational schema. Clearly, end-users should
not have to identify and dump the conceptual meta-data tables manually when publishing their
Cases.
13The store() methods can be considered to be deprecated, however, since storing individual objects of a Case is

no longer reasonable when using the new M4 interface.

224

9.4. Meta-data-driven handling of control- and data-flows

To overcome the problems with database-only storage of M4 there is an export facility in
MININGMART, which stores Cases as XML files. These files can easily be exchanged, and they
can be published in a case-base. A corresponding import facility allows to import Cases into
MININGMART, as well. During a regular export, all M4 objects at the relational level are simply
skipped, so only the useful and non-sensitive parts of Cases are shared. However, for backup
purposes there is a specific menu point in the Human-Computer interface that triggers a dump
of a Case’s complete M4 model to a file. This procedure works exactly as the normal export
feature, it just does not filter out any of the meta-data classes. Please recall from the paragraphs
on loading from and writing to the M4 database that, in principle, the M4 interface could load all
the meta-data of a Case to main memory in advance, and that it stores the meta-data only after an
explicit updateDatabase() command. Hence, it would just take some minor adjustments
to the interface code to run MININGMART without an M4 database, reading and writing the
meta-data to an XML file, instead. Although this proves that the concepts underlying the system
do not depend on a specific kind of data management architecture, there was no demand to
implement this feature so far.

The main issue when converting an M4 model to a flat file is to serialize the graph of objects
in a reasonable way. A straight-forward idea is to reflect the structure of M4 classes, for example
so that between opening and closing Case tags all Steps are described. This idea is not realized in
the current serialization module for two reasons. First, there are often different ways to reach one
kind of object from another one in M4, using different paths of links, which cannot be reflected
by such structures. Second, as for handling relations between M4 classes, loading, and storing
M4 objects to the database, the serialization module should be generic, that is, independent of
the specific classes and links. The required information should be provided in a declarative form,
rather than by implementing at each class the consequences of all of its references. The XML
format actually used by the interface is flat, that is, no object embeds another one syntactically,
but there are unique IDs assigned to each object, and all references are represented in terms
of these IDs. To allow for an easy import, references are only allowed to objects previously
described in the same XML file.

There is an interface edu.udo.miningmart.m4.utils.XmlInfo implemented by all
the M4 classes that may be imported or exported. The specification in terms of XmlInfo is
similar to that in terms of M4Info, but the information itself may be set up independently. For
example, the database table name of M4Info is replaced by a tag name, and an array defines
internal fields to be imported and exported, maps them to getter and setter methods, and specifies
the M4 JAVA classes these methods expect as parameters. The interface also requires a generic
getter method, in order to be able to read details about objects via self-reflection, and a generic
setter method, to set up objects according to XML specifications. As for database communica-
tions, exceptions can be handled by implementing a local import and export method.

The export method as such is realized by a separate class M4Xml. The IDs it uses are different
from the M4 IDs, basically for simplicity, since it cannot be assumed that the same IDs are
valid (no clashes) at another M4 database where the case is imported. An export starts with
the Case object, which does not reference any other object, but is referenced by other objects.
Dependent and depending objects are considered in a fashion that reaches all objects of the Case,
and that delays the step of writing an object to disk until all of its referenced objects have been
written. The import is rather simple, because it is sufficient to create each object according to the
specifications read from file, replacing ID references by references to the corresponding JAVA

objects. This is operationalized by using a dictionary for all imported objects.

225

9. A KDD Meta-Data Compiler

9.4.5. Garbage collection

The main objective of the M4 compiler is to create new views in the business data schema that
reflect the output of each Step, and to create relational M4 meta-data, that connects these views
to the conceptual part of the M4 data model. After a Case has been set up for the first time,
only the Concepts of type DB and corresponding M4 Relationships are connected to business
data entities. Each (valid) Concept of a different type is connected during compilation of the em-
bedding Case. In this initial situation the compiler can simply add the additional meta-data and
create views. Afterwards, the situation gets more complicated, though, because the old entities
still exist. When running the compiler again now, for example after changing the specification
of a Step, new views will be defined in the business data schema; these views should replace
the old views. However, this could cause problems with view definitions of subsequent Steps if
those rely on any of the attribute names and data types we are about to replace. This kind of
consistency problem becomes even more evident when considering the relational M4 meta-data
created by the compiler. After changing, for example, the specification of a feature selection
Step, some previously selected Columns may suddenly become deselected. This compromises
the consistency of the relational meta-data for subsequently created output Concepts.

The solution to this problem realized as part of the M4 compiler is to maintain a list of all
compiler-created entities, and to remove them as required before re-compiling Steps. The ob-
jects created by the compiler are distinguished by their schema, which separates the created M4
meta-data, stored in an M4 meta-data table M4TRASH_T, from objects created in the business
data schema, which are stored in a similar meta-data table called DBTRASH_T. All objects in
these tables are indexed by the creating Step, hence, at the JAVA level objects of class Step store
these “trash instances” locally. Before a Step is compiled, a garbage collection module collects
the list of all subsequent Steps with respect to the input/output dependencies. The meta-data and
business data created by the compiler are removed stepwise, inverting the order of Steps used
during compilation. Finally, the procedure reaches the first Step, which can afterwards safely
be recompiled. The results of preceding Steps are not affected. Because this garbage collection
is performed before each compilation, no matter whether the user requested compilation of a
single Step or of a complete Case, deprecated results of previous compilations are removed au-
tomatically. This also prevents an accumulation of unreachable M4 objects over time, which
could otherwise easily happen for objects like statistics of “overwritten” Columnsets. As a con-
sequence of running the garbage collection, only valid M4 entities are kept in the meta-data
model.

9.4.6. Performance optimization

At its current state, MININGMART hardly optimizes runtime by allocating additional disk space.
Indices are created for the results of specific operators that create views which typically suffer
from massive access to a single attribute. An example is SegmentationStratified, which
creates a view for each value of a specified attribute. Any subsequent access to one of these views
inevitably conditions on this attribute, hence an index on this attribute clearly helps to reduce
computational and I/O costs. Complete views are only materialized at explicit user-request. A
few operators that do not allow for efficient view generation are exceptions to this rule.

The generic operator framework allows for several future extensions regarding systematic
performance tuning. A straightforward next step towards efficient compilation is to represent the
runtime characteristics of all operators in a well-suited formalism that allows to reason about
interdependencies between steps. The expected space requirements of indices, materializations
etc. often have to be traded off against compilation runtime, as presented by Hairnarayan et al.

226

9.5. Code at various locations

(1996) for Data Cubes. Such an optimization is only possible with reasonable efforts when using
a generic representation and a monolithic reasoning module. This module might also take several
DBMS-specific characteristics into account.

Different kinds of optimization are possible and desirable for linear sequences of steps. A
promising work of Gimbel et al. (2004) that fits well into this context addresses performance
optimization for complete KDD processes that are run in a DBMS. The authors identify block-
ing operators, like segmentation, that slow down the overall execution, because the subsequent
step cannot start before the segmentation step has been completed. For optimization purposes,
sequences containing blocking operators can sometimes be replaced by equivalent non-blocking
sequences. This allows to decrease the overall runtime requirements.

9.5. Code at various locations

One of the main motivations for using an abstract layer for the transformational M4 case model
is that it allows to specify a Case without having to care about any DBMS- or implementation-
specific details. This does not only ease the editing of preprocessing Cases, but it also allows to
change the implementation of operators at the technical level. Operators may become more and
more efficient over time, and it is very easy to continuously upgrade operators in this scheme.
Even more interesting is the option of selecting the most efficient operator type by taking into
account DBMS-specific properties. This section presents some examples of operators and other
kinds of code that run directly inside a database, which clearly deviates from the JAVA framework
presented in earlier sections that runs all operator outside.

9.5.1. Functions, procedures, triggers

The first version of MININGMART relied to a large extent on code implemented in a procedural
programming language extension of SQL called PL/SQL. This language allows to define func-
tions and procedures that run inside of ORACLE databases. Further, specific actions that are also
implemented in PL/SQL can be triggered by events like insert into or update to specified tables.
This mechanism is simply referred to as triggers.

An earlier version of the M4 interface, specified and implemented by the external MINING-
MART partner Perot Systems Netherlands, used to check constraints and enforce integrity to a
large degree directly inside the database by triggers, functions, and procedures. Validity checking
for objects was realized by automatically deriving annotations in the form of boolean attributes
for meta-data entities in the database. One kind of information maintained this way was whether
all required parent and child objects were present. Integrity was mainly enforced by mechanisms
similar to (but more complex than) cascaded deletes; unreachable M4 objects were automatically
deleted after deleting the parent object.

As described in section 9.4, in later versions of MININGMART these update mechanisms
have all been moved to the JAVA M4 interface, simply because the PL/SQL code turned out to
be slower by several orders of magnitude, which delayed compilation times so drastically that
the system became practically useless. Although turning off transaction management and similar
DBMS services might have helped to circumvent this problem, it would have drastically reduced
the benefits gained by storing meta-data in databases.

Hence, the M4 interface of the compiler was extended to replace the old interface, and the
PL/SQL interface code was replaced by JAVA code running outside the database. Similarly, in
earlier versions all statistic computations were performed by PL/SQL code inside the database.

227

9. A KDD Meta-Data Compiler

This turned out to be slower than an optimized JAVA re-implementation, connecting to the
database via JDBC.

These counter-intuitive results illustrate, why the current MININGMART system uses only
very few PL/SQL functions and procedures. Additionally, the JAVA code allows for easier mi-
gration to other kinds of DBMSs, since PL/SQL-like code is inherently DBMS-specific. The
successful re-implementation of the interface and of several procedures and functions in JAVA,
without any need to change M4 or stored Cases, illustrates that MININGMART’s abstraction
from the implementational level is sound.

Examples of PL/SQL-code still in use include functions that allow for a convenient embed-
ding into view definitions. There is an operator TimeIntervalManualDisretization,
for example, which was implemented by the external MININGMART partner National Institute
of Telecommunications, Warsaw. This operator discretizes the date and time value of a given at-
tribute with respect to a user-defined mapping. There is a PL/SQL-function that compares each
input value to the values of a small helper table containing all the intervals, and it outputs the
corresponding interval label. The main advantage of using this function is, that it conveniently
and efficiently allows to process the target attribute value of each tuple from inside a database
view definition. Corresponding SQL statements defining an output_attrib calling a function for
target attribute A1 are of the form

SELECT A1, A2, . . . , function(A1) AS output_attrib FROM . . .

To embed the complete output attribute definition into a SELECT statement is considerably
more complex. As an advantage, compared to processing the statement outside of the database,
there is no need to e.g., struggle with the complex date and time format conventions of different
DBMSs. The SQL support for such data types allows to simply compare the interval boundaries
to the target attribute values by employing arithmetic operators.

As a disadvantage, it is still necessary to adapt each PL/SQL function to each supported
DBMS, and make sure that only supported functions are selected and invoked by all operator
implementations.

9.5.2. Operators based on Java stored procedures

The code discussed in the previous subsection contained only helper functions and methods.
Apart from efficiency issues, this is due to the fact that many programmers find programming in
PL/SQL more tedious than programming in languages like JAVA. A specific ORACLE feature
allows to store procedures implemented in JAVA in the database. They are loaded by a specific
ORACLE tool, and can be executed indirectly by calls to an embedding PL/SQL procedure that
specifies all parameters. The JAVA code communicates with the DBMS via a JDBC interface,
which is very similar to using this interface from outside the database. The minor modifications
to JAVA code required to run operators inside the database motivated a framework, in which
some operators query a method

protected boolean storedProceduresAvailable()

of ExecutableOperator to decide whether to run the code inside of the database, or to run
the same code the common way, as a JAVA operator that connects to the DBMS via the gen-
eral interface provided by class DB. This is done by all classes derived from TimeOperator,
i.e. ConceptOperators running over time series, and aggregating several input tuples to a
single output tuple. This kind of functionality can hardly be provided efficiently based on view
definitions, so at the relational level the output is a materialized table for all of these operators.

228

9.5. Code at various locations

Currently the list contains Windowing, an operator that stores in n distinct attributes of each
tuple the n most recent values of a single target attribute of the input, Simple/Weighted/
ExponentialMovingFunction, three operators that average input values of the last tuples
by different weighting schemes to define a single output value, and SignalToSymbolPre-
processing, which aggregates each interval with similar values of a target attribute to a sin-
gle tuple. In several experiments, running these operators as JAVA stored procedures reduced the
runtime significantly, probably because much of the communication overhead between database
and compiler was avoided. Running these operators outside the database requires to transfer the
complete input and output table via JDBC. The current framework for these operators when run
as stored procedures, and the operator implementations as such, have both been implemented by
the author of this thesis.

As a final example of an operator running inside of a database, Rüping (2002) reimplemented
his original MYSVM support vector machine (Rüping, 2000) in JAVA. One variant can be exe-
cuted as a JAVA stored procedure in ORACLE databases. In contrast to the previously described
operators, the author did not report a reduction of computational costs, but it may still be attrac-
tive for several applications not to transfer any of the (potentially sensitive) data to another com-
puter, but to run all computations locally on the database server. The corresponding MINING-
MART operators are basically just wrappers. It is still interesting to note, that for the same learn-
ing operator system-dependent native code implementations based on flat-file input are available
in MININGMART. This illustrates once again, that the abstraction from executables which is part
of M4 is both sound and useful. The decision of how to execute Steps can be made based on
arbitrary application- and system-dependent details. The related issue of embedding operators
that are available as native code only is discussed in the next subsection.

9.5.3. Wrappers for platform-dependent operators

Many machine learning tools are available only as stand-alone executables. If runtime is a critical
issue, then optimized programs written in languages like C may be an attractive alternative to
platform-independent solutions like the YALE toolbox. The MININGMART compiler exploits a
variety of learning operators that are available in native code, all of which but the last one are
embedded in terms of a wrapper.

Apriori This operator for frequent itemset and association rule mining has been implemented
by Bart Goethals14. It reads a flat file containing all transactions into main memory. Four
different input formats are supported. The operator outputs all itemsets that are more fre-
quent than a user-specified threshold.

C4.5 As a decision tree learner for discrete and continuous predictor variables, the implementa-
tion of Quinlan (1993) is used. It reads the training data from a flat file and outputs a tree
in ASCII representation.

KMeans This clustering algorithm by the MININGMART partner DISTA has been extended to
allow for constraint specification in a semi-supervised clustering framework. For a de-
scription please refer to (Saitta et al., 2000).

mySVM This is the original implementation of the support vector machine by Rüping (2000),
which has later been adapted to databases. The platform-dependent executable file (or
binary) of this support vector machine for learning reads examples from a file or from

14http://www.adrem.ua.ac.be/∼goethals/software/

229

9. A KDD Meta-Data Compiler

standard input, respectively, one example per line. The output is a support vector model
that can be stored and applied to unclassified data sets by another binary. In MINING-
MART, this learner can be applied to classification and regression tasks.

SubgroupMining This operator for subgroup discovery has been developed by the MINING-
MART partner Fraunhofer, AiS institute. Unlike the other operators, it is written in JAVA,
which allows for an easier integration into MININGMART. It is only listed here, because
it still is another external learner, which is integrated into the compiler by adapter classes.

The following paragraphs exemplarily describe a MININGMART wrapper for the support vec-
tor machine. In this and all other cases, there is a regular JAVA operator that acts as an in-
terface between the JAVA compiler framework and the native code. The considered operator
uses a support vector machine to replace missing values by predicted ones. It is a regular
FeatureConstruction operator called MissingValuesWithRegressionSVM. It has
an additional list of SVM-specific parameters, and offers to specify a subsample size for train-
ing. If a sample is requested, then a class for generic subsample construction is instantiated,
which creates a temporary table, just containing the randomly selected row numbers, and an
output table, which is a materialized join of the original table with the temporary table. The
binary is executed in a separate JAVA thread, using the exec mechanism of JAVA Runtime.
There is a separate binary for all supported platforms, SunOS, Linux, and Windows. All user-
specified parameters are provided at initialization time of the thread. The training data is read
from the Columnset linked to TheInputConcept, respecting the projection defined by the pa-
rameter ThePredictingAttributes. The data types are converted automatically where possible,
and are written in appropriate form to a pipe that serves as an input to the SVM thread. After
the SVM has finally processed the data, it writes the induced model to a specific place inside the
local MININGMART directory, which has also been specified when initializing the SVM. The
model file is then parsed by the wrapper, which basically means to extract all support vectors.
These vectors are written to an intermediate helper table in the business data schema. Addition-
ally, a function is defined in the same schema, which iterates through this helper table of support
vectors, and combines them in accordance with the selected kernel type in order to predict a
value. By embedding a call to this function into the SELECT part of an SQL view definition,
the target attribute is replaced by a version without missing values in the newly created view.
Registering the new business schema entities at the relational and conceptual level of M4 com-
pletes the job of the operator.

The only wrapper implemented completely by the author of this thesis is the one for APRIORI.
It is not discussed in detail, since frequent itemset mining is a typical data mining step, which
is a bit out of the scope of the MININGMART system; it makes less sense to consider frequent
itemsets during preprocessing. The transactions are read from TheInputConcept and written
to a flat file. Sampling is supported the same way as for the SVM wrapper. As a next step,
the APRIORI binary for the current platform is executed as a separate thread, and the resulting
association rules are written to a database table in a pre-defined format. These sets can be used
as data mining results. The table is finally represented by a Columnset, which is connected to
the output Concept.

9.6. The interface to learning toolboxes

The focus of the MININGMART system are the various preprocessing phases that are necessary
to transform the raw data available at real-world databases and data warehouses into a format

230

9.6. The interface to learning toolboxes

that allows to apply data mining tools. One of the main characteristics of MININGMART is that
all results are represented as parts of the (data) ontology. In contrast, patterns, decision trees, and
support vector models may establish a basis for data transformations performed by operators, but
there are no natural mechanisms to inspect or store such models in MININGMART, to reload and
apply them to unseen data, or to validate them by standard techniques like cross-validation. Such
objectives are addressed by standard data mining toolboxes, and – as will be illustrated in this
section – there is no need to re-implement this functionality in MININGMART, because there is
a natural interface to these systems. The system YALE15 (see p. 190 or Mierswa et al. (2006)) is
used for illustration at this point.

9.6.1. Preparing the data mining step

Considering supervised learning tasks, each example is represented by a single line of a flat input
file in YALE, which represents a vector of fixed dimensionality. In contrast to the ontology and
relational data model of MININGMART, the flat representation of YALE example tables does
not allow to reflect any references between objects or any other kind of higher-order structure.
If the data mining task at hand does not inherently depend on structured data, then a phase of
propositionalization of all multi-relational data is possible during the preprocessing phase with
MININGMART. In any case, in order to ease the access to any preprocessing results, the opera-
tor Materialize should be applied to all resulting views. This operator creates a materialized
table with a given name, which speeds up the reading procedure, on the one hand, and allows to
reference the table using an intuitive name, on the other. For real-world databases, the table size
will often exceed reasonable sizes for execution by YALE in main memory. An easy solution in
such a case is to draw uniform subsamples for training models. A MININGMART operator for
this purpose is RowSelectionByRandomSampling. More complex and powerful alterna-
tives have been discussed in depth in previous chapters of this work.

YALE supports reading from database tables. It is necessary to specify some details, like the
host, the name and the port of the database, the table name, or a complete SQL query. YALE

experiments can be run as usual after a single materialized table of tractable size has been created
by MININGMART. All that is necessary is to replace the YALE operator for reading from flat-
files with an operator that reads a (single) table from the database. That way, one can induce
a model with YALE from the output of MININGMART and store this model in file format. The
MININGMART operator PrepareForYale sets up the framework for a YALE experiment
based on a specified MININGMART view for data mining.

9.6.2. Deploying models

A user may want to perform the data mining step with an external tool, after the preprocessing
has been done in MININGMART. A typical application is to induce a predictive model for a su-
pervised learning task. If the induced model shall be applied to previously unseen data during the
application phase, then the target data table might not fit into main memory, and the predictions
are usually not made persistent in appropriate form by main memory learning toolboxes. Hence,
users may prefer to have the results of applying their models also stored in the database, which
is most flexible with respect to further applications and feasible even for large-scale data sets.

As discussed, it is possible to write a model to a flat file with YALE. There is an opera-
tor in MININGMART that allows to apply a flat-file model, supplied as an operator parame-
ter, to a view or database. The main constraint is, that the schema used for learning matches

15http://yale.sf.net/

231

9. A KDD Meta-Data Compiler

the schema used at application time, except for the target attribute to be predicted. A further,
rather technical constraint is that the target table must have a primary key. The operator is called
YaleModelApplier, and it is a ConceptOperator. It relies on several service methods
of the YALE core, which can directly be accessed, since YALE is also implemented in JAVA. All
models available in YALE are serialized, and they may be applied to data sets after loading them
with the YALE core. To this end, it is sufficient to import a single jar-file. The source table is
read into main memory block-wise, which permits to process even very large database tables. In
order to relate the new predictions to the existing data tuples, an intermediate table is created by
the operator. It just contains the primary key of the source table, and the new target attribute to
be created. The type of the target attribute can be derived from the conceptual data type and the
type stored inside the YALE model. The model is applied to each block and writes the primary
key and the prediction for each corresponding tuple to the intermediate table. After the complete
source table has been processed, the operator creates a view that extends the source table by a
column holding the predictions. This is done by joining the source with the intermediate table.
This operator is loopable, which allows to apply a set of models to the source table, all of which
are finally joined. The view containing the predictions is created in the business data schema,
registered as part of the M4 relational model, and linked to the output Concept.

This illustrates, that it is easily possible to “source out” only the data mining step to one of the
commonly used main memory learning toolboxes, but to still do any preprocessing and model
application steps in MININGMART. The natural interface offered by the MININGMART system
are single materialized tables of appropriate size for learning. This representation is supported
by most of the available data mining environments.

232

10. Conclusions

Knowledge discovery in databases is a field of highest potential. The impact of finding novel,
unexpected, and potentially useful patterns on business domains is high, but so are the technical
and theoretical efforts required to solve the problems convincingly well.

10.1. Principled approaches to KDD – theory and practice

The initial problems addressed by KDD are business problems, stated in business terminology
and with solutions being assessed in terms of business-related criteria, e.g., return of investment
or customer satisfaction. Mapping these problems to formal data mining problems is not trivial
a task; the well known tasks do not always contain a precise formal counterpart to a business
problem at hand, so the set of data mining tasks discussed in the literature is constantly being
augmented by new variants. The techniques used to address these formal problems are usually
based on assumptions stemming from theoretical models underlying the formal data mining
scenarios. As an important example, most learning algorithms, sampling techniques, and the
different PAC learning frameworks assume the data to be sampled i.i.d.

It is desirable to address data mining tasks in a principled fashion. Referring to theoretical
frameworks helps to decouple data mining techniques from the specific problems they were
developed for, and thereby allows to identify a reusable set of basic methods that can be proven
to perform well in terms of formal criteria. This leaves us with the problem to understand the
relations between the formal criteria, and between criteria and formal tasks, respectively. In this
thesis, very general novel theoretical results were derived by augmenting the existing theory. On
the one hand, these results help to foster a better understanding of the nature of existing and
novel tasks, and to increase the overall transparency of data mining in general. On the other
hand, the results constitute the well-based foundations of effective novel techniques that were
derived for a variety of different tasks. These techniques were designed to meet two constraints,
to (i) allow for guarantees regarding the results, and (ii) to be as general as possible. Examples of
the latter include a consequent preference for black-box approaches throughout this work, and
constructive illustrations of how techniques generalize to different utility metrics.

At the practical side, additional constraints must be considered. In this thesis, the applica-
bility of novel methods to the large-scale data sets found in practice was considered to be a
hard constraint, so for all proposed techniques the runtime complexities were shown to meet
the practical demands. Providing practical support for end-users also involves the development
of systems that apply to the challenging real-world KDD tasks. In the past, machine learning
techniques were usually implemented as stand-alone operators and pre-processing was e.g., per-
formed by manually entering SQL statements. As a result, practitioners met with many technical
burdens, and pre-processing became a bottleneck of KDD. In contrast, the novel algorithms and
approaches presented in this work are all available as parts of broader open source KDD tool-
boxes that allow to transparently organize complete KDD applications in terms of operational
meta-data.

233

10. Conclusions

10.2. Contributions

The following section summarizes the contributions presented in this thesis in more detail. Fol-
lowing the argument above, it is structured from abstract to operational.

10.2.1. Theoretical foundations

This thesis extended the existing data mining theory by combining statistics and PAC learning
theory, both well-suited to give probabilistic guarantees on data mining results, with the ROC
analysis framework for analyzing the behavior of different utility functions in data mining con-
texts, and, moreover, a corresponding decomposition of utility functions, e.g., into BIAS and
COV. Only this combination covered all aspects relevant to this thesis in a way that allowed
for the desirable general analysis. The theoretical results that were derived by extending the
theoretical framework are summarized in subsequent sections.

The statistical framework that was built upon in this work is similar to the agnostic PAC
model, because usually (i) no fixed target concept class may be assumed, (ii) there is no de-
terministic dependency between labels and feature vectors, and (iii) there are different kinds of
noise in practice. Samples are assumed to be independently and identically distributed in the
agnostic PAC model, an assumption shared by most sub-sampling approaches and data mining
algorithms. This framework allows to provide guarantees for a large class of problems, because
it is not based on unrealistic assumptions. As a general technique repeatedly applied in this work,
transformations of distributions underlying the data were explicitly defined. Specifically tailored
transformations have been shown to be beneficial for many different data mining problems, and
to provide an effective way of analyzing the behavior of data mining algorithms. They can be re-
alized by Monte Carlo techniques like rejection sampling. The decomposition of utility metrics
turned out to be very effective to derive results that apply to many different tasks.

General analysis of evaluation metrics

At many points in this thesis, the properties of specific evaluation metrics were analyzed in order
to gain a better understanding of the properties of learning strategies. These abstract findings
have very general implications.

As a first novel result, for known class priors the weighted relative accuracy metric (WRACC)
was shown to meet the definition of an instance averaging function, and to share the confidence
bounds of predictive accuracy (ACC). This connection allows to compute simpler and tighter
confidence bounds in an adaptive sampling framework. If class priors are unknown, then it is
cheap to get precise estimates from large data sets.

This result was complemented by a direct reduction of the task of subgroup discovery with
the most common utility function WRACC to the better supported task of classifier induction,
aiming to maximize ACC. The original preference ordering of rules induced by the former is
identical to the ordering induced by ACC after a step of stratification. In other words, WRACC-
based subgroup discovery can as well be solved by rule induction algorithms optimizing pre-
dictive accuracy after a preprocessing step of stratification, so it is not necessary to adapt rule
discovery techniques to WRACC maximization.

A similar, but less general connection has been shown to hold between maximizing the area
under the ROC curve (AUC), a ranking metric, and maximizing WRACC, or maximizing ACC

after stratification, respectively. For boolean decision trees (i) a stratification at each leaf before
selecting the most accurate split or (ii) selecting splits that maximize WRACC greedily maxi-
mizes the AUC. More generally, AUC has also been shown to be maximized indirectly when

234

10.2. Contributions

aiming to maximize ACC in the context of boosting. This result has been derived for the family
of REAL ADABOOST-like learners.

Results presented from the literature illustrate that class skews and class-dependent misclas-
sification costs can be combined to a single kind of skew, having a unique slope in ROC space.
In turn, data with class skew can be considered to implicitly change the class-dependent costs of
the optimization problem addressed by classification techniques.

In combination, the results above, all related to the prior class distributions, foster a better
understanding of the role of this kind of skew in data mining; this is a prerequisite for utilizing
approaches that change the class priors, for example by stratifying the data.

Analysis of evaluation metrics for distributed data mining

Evaluation criteria were also analyzed in the context of distributed supervised learning. Com-
pared to sub-sampling uniformly, the complexity of identifying a set of best rules is higher if the
data is distributed. The main result is that, without very strong assumptions, the sets of locally
and globally best rules may differ drastically. This result holds for all utility functions that are
monotone in coverage and bias. Hence, in the general case, subgroup discovery can not be solved
approximately, in the sense of the PAC-like approximately k-best rules problem, by focusing on
the k locally best rules at all sites and evaluating them globally. The set of all locally best rules
may be completely disjoint from the globally best rules. Novel bounds were derived for a more
restricted class of utility functions, including WRACC and the binomial test function, for the
case in which strong assumptions regarding the pdfs underlying the data at all sites are appro-
priate. These bounds allow to translate local into global rule utilities with bounded uncertainty
by exploiting specific properties of the considered class of functions.

Finally, the evaluation metric of the novel task of distributed relative local subgroup discovery
(discussed below) was analyzed. It scores subgroups by their deviations of local from global
utilities and was shown to be at least as complex as global subgroup discovery.

Optimistic scoring functions

In combination with a refinement operator that extends rule bodies during a search for interesting
rules by one literal at a time, it is important for efficient pruning strategies to be able to compute
optimistic scores. Such scores are upper-bounds of utility scores that are required to hold for
each refinement of a rule under consideration. If in a data mining context only rules exceeding
any given utility score threshold are relevant, then the refinements of rules with optimistic scores
below this threshold do not have to be considered. Loose optimistic scores increase the number
of candidates that have to be evaluated, because they do not prune optimally. Optimistic scores
depend on the specific choice of a utility function.

A tight upper bound was derived for global distributed subgroup discovery. This bound applies
in combination with partial counts, that is, if counts for a rule are available only for a subset
of all nodes, but counts for more general rules are given for the remaining nodes. This is a
desirable property in distributed data mining. The derived optimistic scoring function is tighter
than the one used by the original MIDOS algorithm. Its correctness was shown explicitly only
for the WRACC metric, but as discussed, similar optimistic scoring functions can be derived for
a larger family of utility functions that share a monotonicity constraint which is reasonable for
utility functions in general.

For the utility function used by the relative local subgroup discovery task, a different tight
bound (optimistic score) was derived, also capable of exploiting partial counts.

235

10. Conclusions

ROC analysis of weighting schemes

ROC analysis is a flexible tool for analyzing evaluation metrics and soft classifier performances.
It allows for simple illustrations of e.g., how to compensate varying class skew, or how to in-
corporate asymmetric misclassification costs. In this work, the first illustration of a boosting
algorithm in ROC spaces was presented. This integrates boosting into the ROC framework, al-
lowing to conveniently perform the kind of analysis above. In particular, the difference between
potential selection metrics to be used by base classifiers may be studied in more detail, as suc-
cessfully done for rule selection metrics in the literature.

It was shown that the progress of the novel stratification-based boosting technique ADA2-
BOOST can naturally be visualized in nested coverage spaces, just like separate-and-conquer rule
induction algorithms. The latter remove “explained” subsets after each iteration of inducing an
additional rule. Boosting can be considered to discard examples probabilistically, which results
in coverage spaces shrinking in a comparative fashion. Implicitly, the base classifiers utilized
by ADA2BOOST maximize the WRACC metric, because the data is stratified. WRACC is a
subgroup discovery metric used to identify interesting rules. In this light, the similarity between
boosting and sequential subgroup discovery discussed below is not surprising.

A novel and tighter AUC bound for the class of REAL ADABOOST-like boosting algorithms
was derived by a simple and intuitive ROC space analysis. Apart from the specific result, the vi-
sualization and the connection to stratification that was pointed out foster a better understanding
of the nature of boosting algorithms and the potential of stratification for data mining techniques.
Exploiting the novel results, ROC analysis has become a promising approach for developing
novel ensemble methods in the future.

10.2.2. Novel data mining tasks and methods

Many of the aspects of KDD motivated in the introduction are not sufficiently well reflected by
existing formal data mining tasks, or are not supported optimally by existing techniques. The
proposed adaptations of tasks and methods will be summarized in this section. The methods are
based on the theoretical findings summarized in the last section.

We start with the proposed generalization of subgroup discovery, which is then adapted to dif-
ferent other settings. The goal of subgroup discovery is to find interesting subsets of a classified
example set. The search is guided by a utility function, trading the size of subsets (coverage)
against their statistical unusualness. By choosing the utility function accordingly, subgroup dis-
covery is well suited to find “interesting” rules, e.g., with smaller coverage and higher bias than
directly supported by standard classifier induction algorithms. The result of the data mining step
is a set of understandable rules characterizing a target variable.

Subgroup discovery is a good starting point for descriptive tasks, because it handles the utility
function to be optimized as a parameter. The most typical model class utilized in this context
are classification rules. Clearly, this leads to interpretable findings in descriptive analysis tasks.
However, except for the distributed analysis (chapter 7) the results derived in this thesis do not
rely on any assumptions regarding the syntactical form of models. The step of finding a model
that optimizes a utility function was consequently assumed to be handled by an arbitrary learning
algorithm in a black-box fashion. This implies that the results basically apply to arbitrary model
classes.

236

10.2. Contributions

Adapting the task of subgroup discovery

A major shortcoming of subgroup discovery addressed in this work is that the definition of the
task only partially reflects the intuitive concepts of interestingness and unexpectedness. Both
of these concepts can usually only be stated with respect to prior knowledge; any finding might
exactly match the expectation of a user, which makes it far less interesting. Without incorporating
prior knowledge into the formal data mining task, the task will often be solved correctly by
reporting known and irrelevant patterns. The incorporation of prior knowledge is not supported
by existing methods. However, the BIAS used by many utility functions has the effect of mining
patterns relative to the class priors. This idea can be generalized: If more precise forms of prior
knowledge than class priors become available, then the utility functions should be made sensitive
to this new information in order to mine patterns relatively to any expected class distributions.

This novel idea has been realized taking a two-step approach, a first step of specifying and
analyzing the goals more precisely at a theoretical level, and a second one of realizing this idea
technically. The goal was to support the incorporation of prior knowledge as a preprocessing
step, so that any induction technique could be applied subsequently. As a second constraint, the
method was supposed to scale to very large databases. Sampling-based techniques are a natural
choice in this case. The resulting samples should no longer support the prior knowledge, but
the remaining patterns should still be observable in the data. A corresponding specification at a
theoretical level was derived based on a set of intuitive constraints. The goal of the constraints
was to narrow down the choice of a probability density function to sample from. In fact, the
constraints were shown to uniquely induce a target density function which can conveniently be
written in closed form. By construction, for this density function the class label is independent of
the predictions that can be derived from the prior knowledge. At the same time, the new density
function is as close as possible to the original function. As a consequence, any subsequently
applied data mining algorithm will focus on novel patterns, because the patterns that have already
been formalized are no longer observable in the data.

Knowledge-based rejection sampling

Sampling from the probability density function defined above is referred to as knowledge-based
sampling in this thesis. A novel algorithm to realize this kind of sampling has been proposed
and analyzed. It resamples directly from a database or utilizes a provided procedure that opera-
tionalizes a step of i.i.d. sampling from any fixed distribution, respectively. The algorithm takes
a rejection sampling-like approach, which, despite its simplicity, allows to “sample out” correla-
tions between prior knowledge and class labels exactly. This means that the algorithm precisely
samples from the specified target density function, although this function is defined with respect
to (i) the true but unknown performance of the prior knowledge and (ii) the unknown density
function underlying the original data. Decision trees, classification rules, and crisp base classi-
fiers in general are well supported representation languages to formulate prior knowledge in this
context.

The correctness of the knowledge-based rejection sampling algorithm was formally shown,
and its runtime and sample complexity were analyzed. An important result is that the algo-
rithm allows for large-scale applications. The novel kind of sampling can easily be integrated
with adaptive sampling to allow for PAC-like guarantees, and with other techniques based on
rejection-sampling, e.g., incorporating example-dependent misclassification costs. It may be
combined with many different utility functions, e.g., with the binomial test function to favor
significant subgroups, and it applies to a broad variety of supervised learning tasks where min-
ing relative to prior knowledge is desirable.

237

10. Conclusions

Sequential subgroup discovery and predictive subgroup ensembles

The knowledge-based sampling framework yields intuitive distributions and allows to apply
common data mining tools in a black-box fashion. It was even shown to be capable of opera-
tionalizing an additional refinement of the subgroup discovery task. Using common approaches,
in many of the reported subgroups the same literals are often observed in different combina-
tions. This kind of redundancy is the result of the task definition: Subgroups are just required
to be intensionally different, but are allowed to be extensionally similar or even identical. This
motivated the novel task of finding diverse sets of subgroups. The link to knowledge-based sam-
pling is the observation that each time a new pattern is identified it can be assumed to refine the
prior knowledge. The generic knowledge-based sampling strategy allows to turn pattern mining
into an iterative process. In each iteration, one unexpected pattern is identified and the target
density function is refined to no longer support the pattern, which shifts the focus of the data
mining technique towards those patterns that are unexpected with respect to (i) the prior knowl-
edge and (ii) all previously discovered patterns. The goal of sequential subgroup discovery is
to report a small diverse set of interpretable rules that – as a set – characterize the unexpected
aspects of a specified property of interest.

Due to the sampling-based nature of knowledge-based sampling, a sequential application of
this technique scales well to large-scale data sets. The facts that each new transformation of
the density function can exactly be operationalized, e.g., by knowledge-based rejection sam-
pling, and that the functions are defined with respect to the unknown true performances of prior
knowledge and discovered patterns, have a further advantage. All performance estimates can
easily be refined based on subsequently read data. Such refinements neither affect the defini-
tions of subsequent density functions nor the true or estimated performances of models induced
based on these density functions. This is a desirable property in data streaming environments.
For example, the estimated conditional class distributions at the leaves of a decision tree may
be too optimistic when estimates are based on the training data. Refining the estimates based on
subsequently read data has no effect on any distribution or other induced rule or model.

In cases where sampling is not appropriate, e.g., because the data easily fits into main memory,
the novel sequential subgroup discovery technique can as well be operationalized by introducing
example weights.

In any case, sequentially identifying and characterizing deviations between prior knowledge,
including previously discovered rules, and the true distribution of the target label allows to ef-
ficiently construct ensembles for predictive purposes in the next step. It was shown that the
sequential transformation strategy of density functions as defined by the novel subgroup discov-
ery technique naturally corresponds to a NAÏVEBAYES-like combination of models for making
predictions. Combining models this way does not cause any computational overhead. Techni-
cally seen, this combination works by computing odds ratio estimates by multiplying the LIFT

ratios of models with the odds ratio of the complete data set. Besides being computationally
efficient, this strategy has another advantage: the LIFT ratio estimates of models are invariant to
class skews; the skew just needs to be estimated once for the complete data set. Even this step
can be avoided, by exploiting the theoretical result that subgroup discovery with WRACC can
be reduced to classifier induction by stratifying the data. This has been exploited to derive the
very general algorithm KBS-SD; it allows to substitute any classifier induction technique in a
black-box fashion.

KBS-SD was empirically evaluated on several benchmark datasets in combination with a
classification rule induction algorithm, to asses both its descriptive and predictive performance.
It was shown to outperform existing techniques with respect to robustness, ranking performance,

238

10.2. Contributions

monotonicity of learning curves, diversity, and the number of rules required until convergence.
The lower average coverage and WRACC of resulting rule sets confirmed the intuition that the
method is capable of focusing on smaller deviations between expectation and data set when all
larger subgroups have been discovered.

Boosting crisp base classifiers based on stratification

Boosting is one of the most popular learning strategies for predictive learning tasks in practice.
Although the original goal of knowledge-based sampling is different, it also allows to boost
“weak” classifiers if applied sequentially. This connection bridges the gap between descriptive
and predictive learning tasks. The performance of a marginally altered version of KBS-SD,
when used as a boosting procedure, was analyzed in this work. In a first step, the predictive per-
formance of KBS-SD-like algorithms was indirectly explained by pointing out their similarity
to the well known ADABOOST algorithm. Moreover, it was shown that a variant, referred to
as ADA2BOOST, simplifies and improves ADABOOST at the same time, while sharing several
aspects of confidence-rated boosting techniques like REAL ADABOOST.

The main difference to ADABOOST is, that ADA2BOOST takes more advantage of its base
classifiers, which usually improves the learning rate and final accuracy of resulting ensembles.
This gain has been shown in theory and it was confirmed empirically. ADA2BOOST simplifies
ADABOOST, because it just stratifies each subset for which the most recent base classifier makes
the same prediction, referring to a single estimate per subset, namely the odds ratio. Just like
KBS-SD, the final odds ratio prediction is based on the product of the odds ratio of the example
set and the LIFT ratios corresponding to the predictions made by the base classifiers. The latter
simplify to odds ratios, due to the stratification property, so the odds ratios are the only estimates
required for both reweighting and making predictions. It is worth noting that the models can
be rewritten so that ADA2BOOST uses the same class of linear base classifier combinations as
ADABOOST, up to a single additive constant.

Confidence-rated boosting algorithms are capable of incorporating confidence scores of their
base classifiers. Depending on the base classifier, such scores are not necessarily well calibrated,
i.e. they may not reflect the class priors well. In contrast, ADA2BOOST supports boolean crisp
classifiers, and it implicitly adds confidence scores as part of the boosting procedure; these scores
match the predictive strength of the corresponding base classifiers and preserve the class priors.
The fact that the ensembles can finally be rewritten as ADABOOST models illustrates that confi-
dence scores are introduced only in a very moderate form, which prevents overfitting.

As discussed above, the coverage space analysis of ADA2BOOST helped to point out more
general properties of boosting techniques. In particular, it justified the technique of layered strat-
ification for predictive data mining algorithms, the common foundation of KBS-SD and ADA2-
BOOST. It suggests to “sample out” all identified correlations between base models and the
target class until reaching convergence, a distribution for which no model reveals any informa-
tion about the label. It was shown that this strategy increases predictive accuracy, the area under
the ROC curve metric, and estimates for conditional class distributions better than ADABOOST.
Naturally, the invariance to skewed classes reported for KBS-SD also holds for ADA2BOOST,
that is, the performance estimates of models used to make predictions are assessed relative to any
given class skew. It was shown that this allows to skew classes artificially, which is a straight-
forward strategy to introduce a confidence threshold the base learner must overcome to improve
over the default hypothesis.

239

10. Conclusions

Boosting from data streams with concept drift

In many domains, new data becomes available continuously for inducing and refining predictive
models. A practically highly relevant question is how to adapt data mining techniques to cases
in which the i.i.d. assumption is unrealistic, e.g., because the user or system behavior to be pre-
dicted may change over time. This should not compromise the performance of the data mining
technique if the distributions underlying the data are stationary.

It was shown that the knowledge-based sampling framework naturally adapts to this scenario.
The main observation is that KBS is able to decompose any distribution into a correctly pre-
dicted and an independent component. A first step to adapt KBS to data streams was to test in
each iteration whether adding a new model or refining the latest model yields a better predictive
performance. To account for drifting concepts, the algorithm was changed in a second step, so
that all base model weights are continuously re-estimated on the latest available data.

The resulting novel KBSstream algorithm is a generic boosting algorithm that (i) can be used
in combination with any base learner, that (ii) automatically determines when to stop growing a
model and when to add a new one, and that (iii) adjusts its base model weights to any changes
in the underlying distribution. If concepts change slowly, then this algorithm exploits the fact
that it is able to incorporate prior knowledge (the previous model), to characterize just the new
target distribution not yet fully reflected by the training data. This allows for a quick adaptation.
Sudden changes in the target distribution are addressed by continuously re-estimating the per-
formances of all ensemble members. The novel boosting procedure was empirically shown to
outperform approaches ignoring concept drift, and to be competitive to computationally much
more expensive approaches that cannot handle huge streams and are hence practically irrelevant
for many real-world applications. An interesting aspect is that only the latest model is refined
and all other models are “frozen” after convergence. This allows to quantify the drifting rate of
concepts in terms of weights assigned to the base models.

Distributed subgroup discovery

Another important aspect of real-world data mining techniques is to support the distributed na-
ture of many databases. For the important task of subgroup discovery no distributed approaches
have yet been proposed. The theoretical results discussed above show that the problem may not
be addressed by local search strategies and by relying on similarities between locally and glob-
ally best subgroups, unless very strong distributional assumptions can be made. Further, existing
distributed algorithms have been shown not to be appropriate for the task. In particular, subgroup
discovery lacks the strong monotonicity exploited by distributed algorithms for frequent itemset
and association rule mining, so it is more efficient to address this task by different techniques
tailored towards the specific properties of utility functions to be optimized.

A novel distributed subgroup discovery algorithm based on exhaustive distributed search was
proposed and analyzed. It exploits the optimistic scoring function discussed above, which com-
putes a tight upper-bound on the best possible refinement of each rule and allows for pruning
based on partial counts. The communication costs of the algorithm are linear in the number of
nodes and evaluated rule candidates. Compared to non-distributed exhaustive search, the total
computational costs are even reduced due to the parallel search that evaluates the same candi-
dates: If the data is distributed to different nodes then the aggregated super-linear query costs
imposed by the index structures of database management systems are lower than when mining
from a single database containing all the examples. Distributed subgroup discovery can be com-
bined with knowledge-based sampling in a straightforward manner. In this case, each example

240

10.2. Contributions

weight (or probability to be sub-sampled) will be identical to the weights in the non-distributed
case after each iteration.

As a final novel task, relative local subgroup discovery was proposed. This task aims to iden-
tify subgroups that are interesting because they score much higher with respect to a utility func-
tion at any specific node than in the aggregated global data set. The optimistic scoring function
above, offering capabilities to prune based on partial counts, is utilized by an adaptation of the
distributed subgroup discovery algorithm above. Although this task is more complex, the com-
munication costs of the algorithm still scale linearly with the number of nodes and evaluated
rule candidates.

Both novel subgroup discovery algorithms yield exact solutions and are the first algorithms
addressing their corresponding novel data mining tasks.

10.2.3. Practical support by specific KDD environments

Desirable features of KDD environments

In subsection 8.3, an overview of different tools specifically designed for KDD applications was
given. While the data mining step is well supported, this is not yet the case for earlier phases
of the KDD process, including data understanding and preprocessing. The latter phase is often
still tackled by manually entering SQL-statements, or programming PERL scripts, which is
highly prone to various kinds of errors. Clearly, solutions realized in such a fashion can hardly
be re-used when addressing similar tasks in the future.

An obstacle to data understanding are the representations (schemas) used in database systems,
which are typically designed by technicians. They are usually optimized for efficient access
and specific applications (other than data mining), but e.g., lack intuitive table and attribute
names that directly refer to real-world entity classes. Terminological problems are explicitly
mentioned in the CRISP-DM model, which even suggests to set up domain dictionaries. Domain
and data understanding should at least be supported by introducing a more natural representation
based on domain-dependent terminology. Reasoning about the relevant business concepts, rather
than database tables, helps to identify those parts of the data that might be relevant for data
mining, and to identify missing information, that might e.g., be provided from external sources.
Ontologies are a formally sound and well-suited choice for organizing the conceptual data that
is subject to KDD applications, but are hardly found in any commercial KDD environment.

To provide support for creating KDD applications, preprocessing steps and operator chains
should be formulated in terms of such higher-level data representations, based on higher-level
operators; this eases the formulation of preprocessing steps and increases the understandability
of case studies. A modern KDD tool should hence allow to represent KDD cases in a higher-
level formalism, which is operational and understandable at the same time. Crucial preprocess-
ing steps contain selecting relevant tables and attributes, joining them to reflect semantically
meaningful concepts, and sub-sampling, so that state-of-the-art learning toolboxes can process
the data in main memory. Besides, most learning algorithms can handle the data in specific rep-
resentations only, like one fixed-sized vector per example. The question of how to transform
raw data into a format that fits a given learner’s demands turns out to be highly non-trivial, and
is – up to now – solved best by adapting successful solutions from the past. The adaption of
best-practice cases from the past should hence be well supported. Best practice cases should be
collected and indexed, in order to allow for case-based reasoning approaches that shorten the
trial-and-error efforts common to many KDD applications.

To address the issues of the second paragraph above, that are related to work of the author,
the following list of properties desirable for KDD toolboxes was motivated in chapter 8: Prepro-

241

10. Conclusions

cessing operators should scale to real-world databases. A library of operators should be provided
that can flexibly be composed to preprocessing cases specified at a high level, referring only to
high-level descriptions of the data involved. The hierarchy that is part of the CRISP-DM phases
should be reflected by a hierarchical organization of preprocessing cases. All parts of a KDD
preprocessing case should be specified in terms of an operational meta-data representation lan-
guage. It should be possible to check the validity of cases automatically. General interfaces
should ease the application of different tools for different parts of the KDD process; storing the
data in databases is one way to support the exchange of data between different tools.

Contributed software

The open-source (GPL) MININGMART system presented in this thesis was designed to meet
many of the above-mentioned criteria for KDD environments. It is an integrated environment
specifically tailored towards supporting the preprocessing phase. Both the data and its trans-
formations are organized in terms of hierarchically organized high-level specifications. This
abstract level is exclusively referred to when a user specifies data transformations. The abstract
specifications only need to be linked to low-level counterparts for executing cases. All opera-
tors directly access the data in relational databases, and write their results back to the database,
preferably in the form of views. The validity of cases can be checked based on a set of constraints
that are part of the specification of each operator. The meta-data compiler that operationalizes
the high-level specifications, many of its operators, their corresponding specifications, and many
aspects of system integration and maintenance are contributions by the author of this thesis.

The MININGMART system supports e.g., the transformation of raw multi-relational data to
attribute-value (single table) representations, as well as as many other transformations required
to fit the demands of specific learning algorithms. It also supports steps of increasing the quality
of data.

In the next step, learning environments like YALE may be used to sub-sample the data from
the target relation. YALE contains several operators for learning and validating results, and oper-
ators to apply models to previously unseen data (deployment). The novel algorithms presented
in this thesis have been implemented in YALE by the author. This includes main memory imple-
mentations of KBS-SD and ADA2BOOST with integrated options to stratify and use different
reweighting strategies. SDRI has been implemented for evaluation purposes. Another operator
has been implemented that realizes KBSstream presented in chapter 6 for mining from data stream
with concept drift. Further, a MIDOS-like operator that – in the current implementation – yields
just the best rule with respect to a specified utility function has been provided. In cooperation
with Michael Wurst it has been adapted to distributed data and is now part of the distributed data
mining plugin. Also related to this thesis are operators by the author for visualizing soft clas-
sifier performances in ROC space, the identification of a corresponding threshold for mapping
continuous confidence scores to boolean classifications, and various selection metrics, that are
applied in a YALE-internal decision stump operator, for example.

10.3. Summary

In this work a number of challenging problems preventing practitioners from applying KDD
techniques were pointed out. KDD is a discipline that requires to overcome many technical bur-
dens, to introduce and analyze sound theoretical concepts and techniques, and to finally compile
all the available building blocks into practical solutions that answer high-level business ques-
tions.

242

10.3. Summary

This thesis has illustrated how different levels of abstraction interact in KDD, why a good
theoretical foundation is inevitable if guarantees on results are required, how a theoretical anal-
ysis allows to reduce complex tasks to better supported alternatives, and how to formally adapt
a small number of approved methods to challenging novel tasks.

The severe obstacles for real-world KDD applications sketched in the introduction were mit-
igated by the results presented in this work. It was illustrated along the CRISP-DM model and
a theoretical framework combining statistics, PAC learning theory, and ROC analysis, how to
make accurate supervised data mining from real-world databases practical. Discovering novel,
unexpected patterns based on sampling strategies for large-scale databases, or reweighting strate-
gies for small data sets, respectively, and combining novel findings to ensembles have been
motivated as central building blocks in the data mining part of this work. Alternative solutions
were proposed for distributed data and learning under concept drift. All data mining techniques
are very general. Most of them can be combined with arbitrary supervised learning algorithms
and a variety of different utility functions. This generality is no coincidence, but the result of
a novel constructivist approach to learning that was consequently evaluated in this work. The
decomposition of utility functions into their building blocks, the decomposition of distributions
into explained and unexplained components, and the computation of confidence bounds that al-
low for probabilistic guarantees have been identified as a collection of theoretically well-based
analysis techniques that can be composed to address novel task in a principled way. This result
was complemented by a constructive illustration of how to support phases of the KDD process
like data understanding and preprocessing, taking the principled approach of increasing trans-
parency in KDD by establishing an intuitive layer based on operational meta-data that compiles
into scalable applications.

243

10. Conclusions

244

A. Joint publications

Some parts of this thesis are related to joint work and publications. The following list describes
the contributions of the author of this thesis in detail.

Chapter 6 : The chapter on boosting in the presence of concept drift is based on two joint
publications, an earlier publication at a workshop (Scholz & Klinkenberg, 2005), and a
subsequent journal article (Scholz & Klinkenberg, 2006).

Ralf Klinkenberg has worked on the topic of concept drift for several years, and provided
an overview of related work in this field. Throughout the chapter all his relevant publica-
tions were cited wherever appropriate. He implemented the concept drift plugin of YALE

which was used for the experiments. The results were compared to his previous experi-
mental studies.

The contributions of the author of this thesis are

• the related work section on ensemble methods for data streams inhibiting concept
drift.

• the novel knowledge-based sampling algorithm for learning in the presence of con-
cept drift, which includes the data stream adaptation of KBS-SD for boosting clas-
sifiers and the continuous re-estimation of model performances that allows to adapt
to drifting concepts.

• the ideas on how to quantify concept drifts based on estimated model weights.

• the implementation of the KBSstream YALE operator used in the experiment section
to evaluate the approach.

In particular, section 6.3 is solely the work of the author of this thesis. The experiment
section is joint work with equally weighted contributions.

Chapter 7 : The chapter on distributed subgroup discovery is only in parts based on a joint
publication with Michael Wurst (Wurst & Scholz, 2006). The formal framework for dis-
tributed subgroup discovery, the theoretical results on the tractability of rule learning in
distributed settings, the corresponding bounds, and the formal definitions of the novel
task are the work of the author of this thesis, published prior to the article above (Scholz,
2005d; Scholz, 2005c).

Sections 7.6.3 to 7.8 of chapter 7 are joint work with Michael Wurst. The author of
this thesis derived the optimistic scoring functions utilized by the distributed algorithms,
showed their correctness, conceptionally designed the novel algorithms, and implemented
a MIDOS-like algorithm based on (Wrobel, 1997) in YALE.

Michael Wurst implemented the distributed data mining plugin of YALE used to evaluate
the novel algorithms, adapted the non-distributed MIDOS-like operator to this plugin, and
contributed the overview of distributed association rule mining.

The experiments are joint work with equally weighted contributions.

245

A. Joint publications

Chapter 8 and 9 : In the European research project MININGMART the author of this thesis
collaborated with several partners from academia and industry to realize the conceptional
ideas underlying the MININGMART system. The joint publications (Morik & Scholz,
2002; Euler et al., 2003; Morik & Scholz, 2004) provide an overview of the work of
this project.

The main contributions of the author of this thesis are related to the meta-data compiler.
This includes the conceptional design of the version that was finally released and large
parts of their implementation.

The cited work on ontologies for KDD (Euler & Scholz, 2004) has been published at an
early stage; this line of research has been continued by Timm Euler without any further
contributions by the author of this thesis.

The meta-data language M4 was one of the foundations of the project. It has been adapted
by the author of this thesis, and finally been documented in cooperation with Timm Eu-
ler (Scholz & Euler, 2002).

Constraints, conditions, and assertions in M4 have been documented in a joint publication
(Scholz et al., 2002). However, for this thesis only the aspects related to the MININGMART

system are relevant. This part of the publication has solely been written by the author of
this thesis.

246

B. Notation

Sets

IN : set of natural numbers

IR : set of real numbers, IR+ refers to the positive subset including 0

× : set product, e.g. IR× IN refers to the set of all tuples (r, n) with r ∈ IR and n ∈ IN

S : complement of set S, usually with respect to a fixed instance space

P(S) : the power set of S

SIN : the set containing all finite sequences of elements from set S

Functions

I[·] : indicator function, I : {true, false}→ {1, 0}, evaluates to 1 iff the argument is true

exp(·) : exponential function, exp(x) = ex ≈ 2.71828x

ln(·) : natural logarithm, logarithm to the base e ≈ 2.71828x

log(·) : logarithm to base 2

Probabilities, distributions

ED[X] : expected value of a random variable X with respect to a probability density function
(pdf) D; the subscript may be omitted if clear from context

σD[X] : standard deviation of random variable X with respect to pdf D; the subscript may be
omitted if clear from context

N(µ, σ) : the normal distribution with mean µ and standard variation σ

zx : the inverse standard normal distribution, yields the value z that corresponds to
Pr(X < z) = x for X ∼ N(0, 1)

B(m,p) : the Binomial distribution with mean p and m repetitions of Bernoulli trials

Pr(·) : probability, e.g. Pr(x,y)∼D(y | x) denotes the conditional probability of label y given
observation x under pdf D; subscripts are omitted if clear from the context

Pr [·] : similar to Pr(·), but indicates that the argument is a set

P̂r(·) : a function providing probability estimates

∼ : denotes that a random variable is sampled with respect to a specific distribution / pdf:
x ∼ N(0, 1) indicates that x is sampled from the standard normal distribution

247

B. Notation

Instance space, samples, examples

d : number of attributes (dimension)

Ai : a single attribute of a data seti ranges from 1 to d

X : instance space, composed of attributes:X = A1×. . .×Ad;X denotes the set of all possible
unlabeled observations. For a given underlying distribution the set X may also be referred
to as a random variable.

x : a single unlabeled observation x ∈ X in attribute-value representation; e.g., a vector, where
component i refers to attribute Ai

Y : label / target attribute / property of interest, often assumed to be boolean: {0, 1} is preferred
when conditional probabilities are estimated; {−1,+1} is more convenient in boosting
contexts; using Y = {y+, y−} subsumes both cases

y : specific label y ∈ Y

D : a probability density function, D : X → IR+, or D : X × Y → IR+; sometimes slop-
pily referred to as a probability distribution, if the function itself is not used, but is only
mentioned for reference

DE : uniform distribution over a set E

e : labeled example, e = (x, y) ∈ X × Y

n : number of examples in an example set

E : classified set of examples e, E = {e1, . . . , en}; E may contain duplicates, so example se-
quence or multi-set would be more precise, but is uncommon in the literature

m : sample size, used in various contexts

S : sub-sample of an example set, usually containing multiple examples; samples are often re-
ferred to as E , if the superset is not relevant

s : number of different notes / sites in distributed settings

Models

k : number of rules or models, number of iterations, . . .

t : runtime index for learning iterations etc.

h : a model, often annotated with an index t if multiple models are induced; crip classifiers are
of the form h : X → Y , while soft classifiers have a domain of [0, 1]

r : A→ C : a classification rule; r is used for reference (optional), A is the antecedent and C the
consequence; A is a boolean expression A : X → {false, true}, C predicts a class y ∈ Y;
if several rules are used, the antecedent of rule rt is denoted as A(t)

H ⊆ P(X) : hypothesis space, the set of potential models of a learning algorithm

C ⊂ P(X) : concept class, contains the true target concept c ⊂ X in the PAC model

VCdim(H) : Vapnik-Chervonenkis dimension of hypothesis space H

248

Contigency table

P : total number of positive examples in an example set

N : total number of negative examples in an example set

TP, or p : absolute number of true positives, the number of examples correctly identified as
positive by a boolean prediction model

FP, or n : absolute number of false positives, the number of examples incorrectly identified as
positive by a boolean prediction model

FN, or p : absolute number of false negatives, the number of examples incorrectly identified as
negative by a boolean prediction model

TN, or n : absolute number of true negatives, the number of examples correctly identified as
negative by a boolean prediction model

TPr : true positive rate, equals TP/P, fraction of positives that are classified as positives by a
boolean prediction model, also referred to as “recall”

FPr : false positive rate, equals FP/N, fraction of negatives that are classified as positives by a
boolean prediction model

pi(r) : absolute number of true positives of rule r at site i in Chap. 7

ni(r) : absolute number of false positives of rule r at site i in Chap. 7

Model performance

ε ∈ [0, 1] : error rate of a classifier; more general: permitted deviation from optimum; in Chap. 7.1
ε denotes point-wise deviation of local from global conditional class distribution

δ ∈ [0, 1] : confidence parameter; tolerable probability that an algorithm fails

QD : H→ IR : a utility function defined with respect to a pdf D; maps each model h ∈ H to a
real-valued utility score

Q̂ : estimator function Q̂ : H × (X × Y)IN → IR corresponding to utility function QD; defined
as Q̂(h, E) := QDE (h) for uniform distribution DE over example set E

ACC : accuracy of a model, probability of predicting correctly, or fraction of correct predictions
when referring to a training set

COV : coverage of a rule, alias “support”, COVD(A→ C) := PrD [A]

PREC : precision of a rule, alias “confidence”, PRECD(A→ C) := PrD [C | A]

BIAS : bias of a rule or subset, BIASD(A→ C) := PrD [C | A] − PrD [C]

Q(α) : class of utility functions Q
(α)
D (A→ C) := (COVD(A→ C))α · BIASD(A→ C)

WRACC : WRACCD(A→ C) := COVD(A→ C) · BIASD(A→ C)

(“weighted relative accuracy”, equal to Q
(1)
D)

249

B. Notation

LIFT : LIFTD(A→ C) := PRECD(A→ C)/PrD [C]

L̂IFT(r) : an estimate of the LIFT of rule r

LR : lift ratio, LRD(A→ C) := LIFTD(A→ C)/LIFTD(A→ C)

AUCD(h) : area under the ROC curve of boolean soft classifier h under pdf D

AOC∗
D(h) : area over the curve in coverage spaces of soft classifier h under pdf D

RQ : RQ
(α)
Di

(r) := COVDi
(r)α · (BIASDi

(r) − BIASD(r)) (in distributed settings)

COVi, BIASi, WRACCi : values when evaluating locally at site i (distributed data)

RLU : relative local utility RLUi(r) := COVi(r) · (PRECi(r) − PREC(r)) at site i

250

C. Reformulation of gini index utility
function

This section proves the following connection between the Gini index

gini(T) :=
∑
t∈T

Pr [t]
∑

yi,yj∈Y,i6=j

Pr [yi | t]Pr [yj | t]

for a set T of (disjoint) partitioning subsets, and the utility function

u(A→ C) :=
COV(A→ C)

1 − COV(A→ C)
BIAS(A→ C)2.

Proposition 15 For any rule A → C partitioning the instance space X into the subsets A and
A, the following equality holds for boolean target attributes:

gini(A) = −u(A→ C) + Pr(C)Pr(C) (C.1)

Proof
For boolean target attributes and two nodes the gini index simplifies to

gini({A,A}) = Pr [A] · Pr [C | A] · Pr
[
C | A

]
+ Pr

[
A
]
· Pr

[
C | A

]
· Pr

[
C | A

]
.

With simple term manipulations this can be rewritten as

Pr [C,A]Pr
[
C,A

]
Pr [A]

+
Pr
[
C,A

]
Pr
[
C,A

]
Pr
[
A
]

=
Pr [C,A] · (Pr [A] − Pr [C,A])

Pr [A]
+

Pr
[
C,A

]
Pr
[
C,A

]
1 − Pr [A]

= Pr [C,A] −
Pr [C,A]2

Pr [A]
+

Pr
[
C,A

]
Pr
[
C,A

]
1 − Pr [A]

= Pr [C,A] −
Pr [C,A]2

Pr [A]
+

(Pr [C] − Pr [C,A]) ·
(
Pr
[
C
]
− Pr

[
C,A

])
1 − Pr [A]

(C.2)

251

C. Reformulation of gini index utility function

Substituting π+/− for Pr [C] / Pr
[
C
]
, πA for Pr [A], and q for Pr [C,A], eqn. (C.2) can further

be rewritten as

q −
q2

πA
+

(π+ − q) ·
(
π− − Pr

[
C,A

])
1 − πA

=
q(1 − πA)

1 − πA
−

q2

πA
+

(π+ − q) · (π− − πA + q)

1 − πA

= −
q2

πA
+

q − qπA + π+π− − π+πA + π+q − qπ− + qπA − q2

1 − πA

= −
q2

πA
+

q + π+(1 − π+) − π+πA + π+q − q(1 − π+) − q2

1 − πA

= −

(
q2

πA
+

q2

1 − πA

)
+

π+ − π2
+ − π+πA + 2π+q

1 − πA

= −
q2

πA(1 − πA)
+ π+

1 − πA

1 − πA
+

2π+q − π2
+

1 − πA
(C.3)

Substituting back and simplifying eqn. (C.3) we reach at

gini({A,A})

= −
Pr [C,A]2

Pr [A] (1 − Pr [A])
+

2Pr [C]Pr [C,A] − Pr [C]2

1 − Pr [A]
+ Pr [C]

= −
Pr [A]

Pr
[
A
] · (Pr [C | A]2 − 2Pr [C]Pr [C | A]

)
+ Pr [C] −

Pr [C]2

Pr
[
A
]

−
Pr [A]

Pr
[
A
]Pr [C]2 +

Pr [A]

Pr
[
A
]Pr [C]2

= −
Pr [A]

Pr
[
A
] · (Pr [C | A] − Pr [C])2 + Pr [C] − Pr [C]2

(
1

Pr
[
A
] −

Pr [A]

Pr
[
A
])

= − u(A→ C) + Pr [C] − Pr [C]2

= − u(A→ C) + Pr [C]Pr
[
C
]
,

which proves the proposition.

252

Bibliography

Agrawal, R. and Shafer, J. C. (1996). Parallel mining of association rules. IEEE Trans. On
Knowledge And Data Engineering, 8.

Agrawal, R. and Srikant, R. (1994). Fast algorithms for mining association rules in large data
bases. Proceedings of the 20th International Conference on Very Large Data Bases (VLDB
‘94) (pp. 478–499). Santiago, Chile.

Allan, J. (1996). Incremental relevance feedback for information filtering. Proc. 19th An-
nual ACM SIGIR Conf. on Research and Development in Information Retrieval (SIGIR ’96),
Zurich, Swiss, August 18-22, 1996 (pp. 270–278). New York, NY, USA: ACM Press.

Atzmüller, M. and Puppe, F. (2006). SD-Map – A Fast Algorithm for Exhaustive Subgroup Dis-
covery. Proceedings of the 10th European Conference on Principles and Practice of Knowl-
edge Discovery in Databases (PKDD-06) (pp. 6–17). Springer.

Atzmüller, M., Puppe, F., and Buscher, H.-P. (2005). Exploiting Background Knowledge for
Knowledge-Intensive Subgroup Discovery. Proceedings of the 19th International Joint Con-
ference on Artificial Intelligence (IJCAI) (pp. 647–652). Professional Book Center.

Aubrecht, P., Zelezny, F., Miksovsky, P., and Stepankova, O. (2002). SumatraTT: Towards a Uni-
versal Data Preprocessor. Cybernetics and Systems (pp. 818–823). Vienna: Austrian Society
for Cybernetics Studies.

Auer, P., Holte, R. C., and Maass, W. (1995). Theory and Applications of Agnostic PAC-
Learning with Small Decision Trees. International Conference on Machine Learning (pp.
21–29).

Balabanovic, M. (1997). An adaptive web page recommendation service. Proc. First Int’l Conf.
on Autonomous Agents (pp. 378–385). New York, NY, USA: ACM Press.

Bauer, E. and Kohavi, R. (1999). An Empirical Comparison of Voting Classification Algorithms:
Bagging, Boosting, and Variants. Machine Learning, 36, 105–139.

Bernstein, A., Hill, S., and Provost, F. (2002). An intelligent assistant for the knowledge dis-
covery process (Technical Report IS02-02). New York University, Leonard Stern School of
Business.

Bernstein, A., Hill, S., and Provost, F. (2005). Toward Intelligent Assistance for a Data Mining
Process: An Ontology-Based Approach for Cost-Sensitive Classification. IEEE Transactions
on Knowledge and Data Engineering, 17, 503–518.

Blake, C. and Merz, C. (1998). UCI repository of machine learning databases.
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M. (1989). Learnability and the
Vapnik–Chervonenkis dimension. Journal of the ACM, 36, 929–965.

253

BIBLIOGRAPHY

Brazdil, P., Soares, C., and da Costa, J. P. (2003). Ranking Learning Algorithms: Using IBL and
Meta-Learning on Accuracy and Time Results. Machine Learning, 50, 251–277.

Breiman, L. (1996). Bagging predictors. Machine Learning, 13, 30–37.

Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification and regres-
sion trees. Belmont, CA: Wadsworth.

Brin, S., Motwani, R., Ullman, J., and Tsur, S. (1997). Dynamic Itemset Counting and Implica-
tion Rules for Market Basket Data. Proceedings of ACM SIGMOD Conference on Manage-
ment of Data (SIGMOD ’97) (pp. 255–264). Tucson, AZ.

Burges, C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining
and Knowledge Discovery, 2, 121–167.

Cannataro, M., Congiusta, A., Mastroianni, C., Pugliese, A., Talia, D., and Trunfio, P. (2004).
Grid-Based Data Mining and Knowledge Discovery. In N. Zhong and J. Liu (Eds.), Intelligent
Technologies for Information Analysis. Springer.

Cestnik, B. (1990). Estimating Probabilities: A Crucial Task in Machine Learning. 9th European
Conference on Artificial Intelligence (ECAI) (pp. 147–149).

Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., and Wirth, R. (2000).
Crisp–Dm 1.0 (Technical Report). The CRISP–DM Consortium.

Chawla, N., Bowyer, K., Hall, L., and Kegelmeyer, W. (2002). Smote: Synthetic minority over-
sampling technique. Artifical Intelligence Research, 321–357.

Chen, C. and Yang (2005). Progressive Sampling for Association Rules based on Sampling
Error Estimation. Proc. of the 9th Pacific-Asia Conference on Knowledge Discovery and Data
Mining (PAKDD-05). Springer.

Chernoff, H. (1952). A measure of asymptotic efficiency for tests of a hypothesis based on the
sum of observations. The Annals of Mathematical Statistics, 23, 493–507.

Cheung, D., Han, J., Ng, V., Fu, A., and Fu, Y. (1996). A Fast Distributed Algorithm for Mining
Association Rules. International Conference on Parallel and Distributed Information Systems.

Cheung, D. W.-L. and Xiao, Y. (1998). Effect of Data Skewness in Parallel Mining of Associa-
tion Rules. Pacific-Asia Conference on Knowledge Discovery and Data Mining (pp. 48–60).

Chudzian, C., Granat, J., and Traczyk, W. (2003). Call Center Case (Technical Report D17.2b).
IST Project MiningMart, IST-11993.

Clark, P. and Boswell, R. (1991). Rule Induction with CN2: Some Recent Improvements. Pro-
ceedings of Fifth European Working Session on Learning (EWSL-91) (pp. 151–163). Springer.

Clark, P. and Niblett, T. (1989). The CN2 Induction Algorithm. Machine Learning, 3, 261–283.

Codd, E. F. (1970). A relational model of data for large shared data banks. Communications of
the ACM, 13, 377–387.

254

BIBLIOGRAPHY

Cohen, W. W. (1996). Learning rules that classify e-mail. Proceedings of the 1996 AAAI Spring
Symposium on Machine Learning in Information Access (MLIA ’96). Stanford, CA, USA:
AAAI Press.

Cunningham, P. and Carney, J. (2000). Diversity versus Quality in Classification Ensembles
Based on Feature Selection. In de R. L. Mántaras and E. Plaza (Eds.), Proceedings of the 11th
Conference on Machine Learning (ECML 2000), vol. 1810 of LNCS, 109 – 116. Barcelona,
Spain: Springer Verlag Berlin.

Dach, D. (2006). Effiziente Entdeckung unabhängiger Subgruppen in großen Datenbanken.
Master’s thesis, Universität Dortmund, Lehrstuhl Informatik VIII.

Dietterich, T. G. (2000). An Experimental Comparison of Three Methods for Constructing
Ensembles of Decision Trees: Bagging, Boosting, and Randomization. Machine Learning,
40, 139–157.

Do, H.-H. and Rahm, E. (2002). COMA— a system for flexible combination of schema match-
ing approaches. Proceedings of the 28th VLDB Conference. Hong Kong.

Domingo, C., Gavalda, R., and Watanabe, O. (2001). Adaptive sampling methods for scaling
up knowledge discovery algorithms. In H. Liu and H. Motoda (Eds.), Feature extraction,
construction, and selection: A data mining perspective, chapter 8, 133–150. Kluwer Academic
Publishers.

Domingo, C. and Watanabe, O. (2000). MadaBoost: A Modification of AdaBoost. Proc. of the
Thirteenth Annual Conference on Computational Learning Theory (pp. 180–189). Morgan
Kaufmann.

Domingos, P. and Hulten, G. (2000). Mining High Speed Data Streams. Proceedings of the 6th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD
’00) (pp. 71–80).

Drummond, C. and Holte, R. C. (2006). Cost curves: An improved method for visualizing
classifier performance. Machine Learning, 65, 95–130.

Eswaran, K. P., Gray, J., Lorie, R. A., and Traiger, I. L. (1976). The Notions of Consistency and
Predicate Locks in a Database System. Communications of the ACM, 19, 624–633.

Euler, T. (2002a). How to implement M4 operators (Technical Report TR12-04). IST Project
MiningMart, IST-11993.

Euler, T. (2002b). Operator Specifications (Technical Report TR12-02). IST Project Mining-
Mart, IST-11993.

Euler, T. (2005a). An Adaptable Software Product Evaluation Metric. Proceedings of the 9th
IASTED International Conference on Software Engineering and Applications (SEA). Phoenix,
Arizona, USA.

Euler, T. (2005b). Publishing Operational Models of Data Mining Case Studies. Proceedings
of the Workshop on Data Mining Case Studies at the 5th IEEE International Conference on
Data Mining (ICDM) (pp. 99–106). Houston, Texas, USA.

255

BIBLIOGRAPHY

Euler, T. (To appear). Knowledge Discovery in Databases at a Conceptual Level. Doctoral
dissertation, Fachbereich Informatik, Universität Dortmund.

Euler, T., Morik, K., and Scholz, M. (2003). MiningMart: Sharing Successful KDD Processes.
LLWA 2003 – Tagungsband der GI-Workshop-Woche Lehren – Lernen – Wissen – Adaptivitat
(pp. 121–122).

Euler, T. and Scholz, M. (2004). Using Ontologies in a KDD Workbench. Workshop on Knowl-
edge Discovery and Ontologies at ECML/PKDD ’04 (pp. 103–108). Pisa, Italy.

Fan, W. (2004). Systematic Data Selection to Mine Concept-Drifting Data Streams. Proceed-
ings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD ’04) (pp. 128–137). Seattle, WA, USA: ACM Press.

Fan, W., Davidson, I., Zadrozny, B., and Yu, P. S. (2005). An Improved Categorization of
Classifier’s Sensitivity on Sample Selection Bias. Proceedings of the 5th IEEE International
Conference on Data Mining (ICDM) (pp. 605–608). IEEE Computer Society.

Fawcett, T. (2001). Using Rule Sets to Maximize ROC Performance. Proceedings of the IEEE
International Conference on Data Mining (ICDM) (pp. 131–138). IEEE Computer Society.

Fawcett, T. (2003). ROC Graphs: Notes and Practical Considerations for Researchers (Techni-
cal Report HPL-2003-4). HP Laboratories, Palo Alto, CA, USA.

Fawcett, T. and Flach, P. A. (2005). A Response to Webb and Ting’s On the Application of ROC
Analysis to Predict Classification Performance under Varying Class Distributions. Machine
Learning, 58, 33–38.

Fayyad, U. M. and Irani, K. B. (1993). Multi–interval discretization of continuous–valued at-
tributes for classification learning. Proceedings of the 13th International Joint Conference on
Artificial Intelligence (pp. 1022–1029). San Mateo, CA: Morgan Kaufmann.

Fayyad, U. M., Piatetsky-Shapiro, G., and Smyth, P. (1996). From Data Mining to Knowledge
Discovery: An overview. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy
(Eds.), Advances in Knowledge Discovery and Data Mining, chapter 1, 1–34. AAAI/MIT
Press.

Ferri, C., Flach, P., and Hernández-Orallo, J. (2002). Learning Decision Trees using the Area
Under the ROC Curve. Proceedings of the 19th International Conference on Machine Learn-
ing (ICML). Morgan Kaufmann.

Ferri, C., Lachiche, N., Macskassy, S. A., and Rakotomamonjy, A. (Eds.). (2005). ROC Analysis
in ML, co-located with ICML’05. Bonn, Germany. http://www.dsic.upv.es/ flip/ROCML2005/.

Fischer, P. (1999). Algorithmisches Lernen. Teubner Verlag.

Fischer, S., Klinkenberg, R., Mierswa, I., and Ritthoff, O. (2002). YALE: Yet Another Learning
Environment – Tutorial (Technical Report CI-136/02). Collaborative Research Center 531,
University of Dortmund, Dortmund, Germany. ISSN 1433-3325. http://yale.sf.net/ .

Flach, P. A. (2003). The Geometry of ROC Space: Understanding Machine Learning Met-
rics through ROC Isometrics. Proceedings of the 20th International Conference on Machine
Learning (ICML-03) (pp. 194–201). Washington D.C., USA: Morgan Kaufman.

256

BIBLIOGRAPHY

Foussette, C., Hakenjos, D., and Scholz, M. (2004). KDD-Cup 2004: Protein Homology Task.
ACM SIGKDD Explorations Newsletter, 6, 128 – 131.

Freund, Y., Iyer, R., Schapire, R. E., and Singer, Y. (2003). An Efficient Boosting Algorithm for
Combining Preferences. Journal of Machine Learning Research, 4, 933–969.

Freund, Y. and Mason, L. (1999). The alternating decision tree learning algorithm,. Proceeding
of the 16th International Conference on Machine Learning (pp. 124–133). Morgan Kaufmann.

Freund, Y. and Schapire, R. E. (1996). Experiments with a New Boosting Algorithm. Pro-
ceedings of the 13th International Conference on Machine Learning (ICML) (pp. 148–156).
Morgan Kaufmann.

Freund, Y. and Schapire, R. R. (1997). A decision–theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences, 55, 119 – 139.

Friedman, J. H., Hastie, T., and Tibshirani, R. (2000). Additive logistic regression: A statistical
view of boosting. Annals of Statistics, 337–374.

Fürnkranz, J. (1999). Separate-and-Conquer Rule Learning. Artificial Intelligence Review, 13,
3–54.

Fürnkranz, J. and Flach, P. (2005). ROC ’n’ Rule Learning – Towards a Better Understanding
of Covering Algorithms. Machine Learning, 58, 39–77.

Fürnkranz, J. and Flach, P. A. (2003). An Analysis of Rule Evaluation Metrics. Proceedings of
the 20th International Conference on Machine Learning (ICML-03) (pp. 202–209). Washing-
ton D.C., USA: Morgan Kaufman.

Gimbel, M., Klein, M., and Lockemann, P. C. (2004). Interactivity, Scalability and Resource
Control for Efficient KDD Support in DBMS. In R. Meo, P. L. Lanzi and M. Klemettinen
(Eds.), Database Support for Data Mining Applications (LNAI 2682), 174–193. Berlin, Hei-
delberg: Springer.

Gold, E. M. (1967). Language identification in the limit. Information and Control, 14, 447–474.

Grandvalet, Y. (2004). Bagging Equalizes Influence. Machine Learning, 55, 251–270.

Guyon, I., Matic, N., and Vapnik, V. (1996). Discovering informative patterns and data cleaning.
In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy (Eds.), Advances in
knowledge discovery and data mining, chapter 2, 181–204. Menlo Park, California: AAAI
Press/The MIT Press.

Hairnarayan, V., Rajaraman, A., and Ullman, J. (1996). Implementing Data Cubes Efficiently.
Proc. ACM-SIGMOD Int. Conf. Management of Data.

Han, J., Pei, J., and Yin, Y. (2000). Mining frequent patterns without candidate generation.
Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data
(SIGMOD) (pp. 1–12). ACM Press.

Hand, D. (2002). Pattern detection and discovery. In D. Hand, N. Adams and R. Bolton (Eds.),
Pattern detection and discovery. Springer.

257

BIBLIOGRAPHY

Hand, D. J., Adams, N. M., and Bolton, R. J. (2002). Proceedings of the ESF Exploratory
Workshop on Pattern Detection and Discovery, vol. 2447 of LNAI. Springer.

Hastie, T., Tibshirani, R., and J., F. (2001). The Elements of Statistical Learning – Data Mining,
Inference and Prediction. Springer.

Heckerman, D. (1995). A tutorial on learning with bayesian networks (Technical Report MSR-
TR-95-06). Microsoft Research, Redmond, Washington, 1995.

Heilemann, U. and Münch, H. J. (1999). Classification of west german business cycles (Techni-
cal Report 11). Collaborative Research Center on Reduction of Complexity for Multivariate
Data (SFB 475), University of Dortmund, Germany.

Hernández-Orallo, J., Ferri, C., Lachiche, N., and Flach, P. A. (Eds.). (2004). First Work-
shop of ROC Analysis in AI (ROCAI’04), co-located with ECAI’04. Valencia, Spain.
http://www.dsic.upv.es/∼flip/ROCAI2004/.

Hoche, S. and Wrobel, S. (2002). Scaling Boosting by Margin-Based Inclusion of Features and
Relations. Machine Learning: ECML 2002 (pp. 148–160). Springer.

Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. Journal
of the American Statistical Association, 58, 13–30.

Holte, R. C. (1993). Very simple classification rules perform well on most commonly used
datasets. Machine Learning, 11, 63–90.

Hulten, G. and Domingos, P. (2002). Mining Complex Models from Arbitrarily Large Databases
in Constant Time. 2002 ACM SIGKDD Int. Conf. Knowledge Discovery in Databases
(KDD’02).

Hulten, G., Spencer, L., and Domingos, P. (2001). Mining Time-Changing Data Streams. Pro-
ceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD ’01) (pp. 97 – 106).

International Organization for Standardization (ISO) (2003a). Information Technology –
Database Language – SQL. Standard No. ISO/IEC 9075:2003.

International Organization for Standardization (ISO) (2003b). Information Technology –
Database Language – SQL Multimedia and Application Packages – Part 6: Data Mining.
Draft Standard No. ISO/IEC 13249-6:2003.

Jacobson, I., Booch, G., and Rumbaugh, J. (1999). The Unified Software Development Process.
Addison-Wesley.

Jaroszewicz, S. and Simovici, D. A. (2004). Interestingness of Frequent Itemsets Using Bayesian
Networks as Background Knowledge. Proceedings of the 10th International Conference on
Knowledge Discovery and Data Mining (KDD-2004). AAAI Press.

Jin, R., Liu, Y., Si, L., Carbonell, Carbonell, J., and Hauptmann, A. G. (2003). A New Boosting
Algorithm Using Input–Dependent Regularizer. The Twentieth International Conference on
Machine Learning (ICML 03), Washington, DC, 2003.

258

BIBLIOGRAPHY

Joachims, T. (2000). Estimating the generalization performance of a SVM efficiently. Proceed-
ings of the International Conference on Machine Learning (pp. 431–438). San Francisco, CA,
USA: Morgan Kaufman.

Joachims, T., Freitag, D., and Mitchell, T. (1997). WebWatcher: A tour guide for the world wide
web. Proceedings of International Joint Conference on Artificial Intelligence (IJCAI) (pp. 770
– 777). Morgan Kaufmann.

John, G. H. and Langley, P. (1995). Estimating continuous distributions in Bayesian classifiers.
Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence (pp. 338–
345). Morgan Kaufmann.

John, G. H. and Langley, P. (1996). Static Versus Dynamic Sampling for Data Mining. Proceed-
ings of the Second International Conference on Knowledge Discovery in Databases and Data
Mining.

JSR-73 Expert Group (2004). Java Data Mining API. Java Specification Request No. 73.

Kearns, M. and Vazirani, U. (1994). An introduction to computational learning theory. MIT
Press.

Kearns, M. J., Schapire, R. E., and Sellie, L. (1992). Toward Efficient Agnostic Learning.
Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory (COLT)
(pp. 341–352).

Khoussainov, R., Heß, A., and Kushmerick, N. (2005). Ensembles of Biased Classifiers. Pro-
ceedings of the 22nd International Conference on Machine Learning (ICML) (pp. 425–432).
ACM.

Kietz, J.-U., Fiammengo, A., Beccari, G., and Zücker, R. (2000a). Data Sets, Meta-data and
Preprocessing Operators at Swiss Life and CSELT (Technical Report D6.2). IST Project
MiningMart, IST-11993.

Kietz, J.-U., Vaduva, A., and Zücker, R. (2000b). Mining Mart: Combining Case-Based-
Reasoning and Multi-Strategy Learning into a Framework to reuse KDD-Application. Pro-
ceedings of the 5th International Workshop on Multistrategy Learning (MSL2000). Guimares,
Portugal.

Kietz, J.-U., Vaduva, A., and Zücker, R. (2001). MiningMart: Metadata-Driven Preprocessing.
Proceedings of the ECML/PKDD Workshop on Database Support for KDD.

Kivinen, J. and Warmuth, M. K. (1999). Boosting as Entropy Projection. Proc. of the twelfth
annual conference on Computational learning theory (COLT’99) (pp. 134 – 144).

Klinkenberg, R. (2003). Predicting Phases in Business Cycles Under Concept Drift. LLWA 2003
– Tagungsband der GI-Workshop-Woche Lehren – Lernen – Wissen – Adaptivität (pp. 3–10).
Karlsruhe, Germany.

Klinkenberg, R. (2004). Learning drifting concepts: Example selection vs. example weighting.
Intelligent Data Analysis (IDA), Special Issue on Incremental Learning Systems Capable of
Dealing with Concept Drift, 8, 281–300.

259

BIBLIOGRAPHY

Klinkenberg, R. and Joachims, T. (2000). Detecting concept drift with support vector machines.
Proceedings of the Seventeenth International Conference on Machine Learning (ICML) (pp.
487–494). San Francisco, CA, USA: Morgan Kaufmann.

Klinkenberg, R. and Renz, I. (1998). Adaptive information filtering: Learning in the presence
of concept drifts. Workshop Notes of the ICML/AAAI-98 Workshop Learning for Text Catego-
rization (pp. 33–40). Menlo Park, CA, USA: AAAI Press.

Klinkenberg, R. and Rüping, S. (2003). Concept Drift and the Importance of Examples. In
J. Franke, G. Nakhaeizadeh and I. Renz (Eds.), Text mining – theoretical aspects and applica-
tions, 55–77. Physica-Verlag.

Klösgen, W. (1996). Explora: A Multipattern and Multistrategy Discovery Assistant. In U. M.
Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy (Eds.), Advances in knowledge
discovery and data mining, chapter 3, 249–272. AAAI Press/MIT Press.

Klösgen, W. (2002). Subgroup discovery. In Handbook of data mining and knowledge discovery,
354–367. Oxford University Press.

Klösgen, W. and May, M. (2002). Spatial Subgroup Mining Integrated in an Object-Relational
Spatial Database. Proceedings of the 6th European Conference on Principles of Data Mining
and Knowledge Discovery (PKDD) (pp. 275–286). Springer.

Kohavi, R. (1995). A Study of Cross-Validation and Bootstrap for Accuracy Estimation and
Model Selection. Proceedings of the 14th International Joint Conference on Artificial Intelli-
gence (pp. 1137–1143). Morgan Kaufmann.

Kolter, J. Z. and Maloof, M. A. (2005). Using Additive Expert Ensembles to Cope with Concept
Drift. Proceedings of the 22nd International Conference on Machine Learning (ICML-2005)
(pp. 449–456). New York, NY, USA: ACM Press.

Komarek, P. (2004). Logistic Regression for Data Mining and High-Dimensional Classification.
Doctoral dissertation, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA.

Lavrac, N., Cestnik, B., Gamberger, D., and Flach, P. (2004a). Decision support through sub-
group discovery: three case studies and the lessons learned. Machine Learning, 57, 115–143.

Lavrac, N., Flach, P., Kavsek, B., and Todorovski, L. (2002a). Rule Induction for Subgroup
Discovery with CN2-SD. 2nd Int. Workshop on Integration and Collaboration Aspects of
Data Mining, Decision Support and MetaLearning.

Lavrac, N., Flach, P., and Zupan, B. (1999). Rule Evaluation Measures: A Unifying View. 9th
International Workshop on Inductive Logic Programming. Springer.

Lavrac, N., Kavsek, B., Flach, P., and Todorovski, L. (2004b). Subgroup discovery with CN2-
SD. Journal of Machine Learning Research, 5, 153–188.

Lavrac, N., Zelezny, F., and Flach, P. (2002b). RSD: Relational subgroup discovery through first-
order feature construction. 12th International Conference on Inductive Logic Programming.
Springer.

Lazarevic, A. and Obradovic, Z. (2002). Boosting algorithms for parallel and distributed learn-
ing. Distributed and Parallel Databases Journal, 11, 203–229.

260

BIBLIOGRAPHY

Lee, H. K. H. and Clyde, M. A. (2004). Lossless Online Bayesian Bagging. Journal of Machine
Learning Research, 5, 143–151.

Leite, R. and Brazdil, P. (2004). Improving Progressive Sampling via Meta-learning on Learning
Curves. Proceedings of the 15th European Conference on Machine Learning (ECML) (pp.
250–261).

Mackassy, S. A., Provost, F., and Rosset, S. (2005). ROC Confidence Bands: An Empirical
Evaluation. Proceedings of the 22nd International Conference on Machine Learning (ICML)
(pp. 537–544). ACM press.

Mackay, D. (1998). Introduction To Monte Carlo Methods. In Learning in graphical models,
175–204.

Mason, L., Baxter, J., Bartlett, P., and Frean, M. (1999). Boosting algorithms as gradient descent
in function space (Technical Report). RSISE, Australian National University.

Mehta, M., Rissanen, J., and Agrawal, R. (1995). MDL-Based Decision Tree Pruning. Proceed-
ings of the 1st International Conference on Knowledge Discovery and Data Mining (KDD)
(pp. 216–221). AAAI Press.

Melville, P. and Mooney, R. J. (2003). Constructing Diverse Classifier Ensembles using Arti-
ficial Training Examples. Proceedings of the Eighteenth International Joint Conference on
Artificial Intelligence (IJCAI) (pp. 505–512). Morgan Kaufmann.

Meo, R. and Psaila, G. (2002). Toward XML-Based Knowledge Discovery Systems. Proceed-
ings of the International Conference on Data Mining (ICDM) (pp. 665–668). IEEE Computer
Society.

Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., and Euler, T. (2006). YALE: Rapid Proto-
typing for Complex Data Mining Tasks. Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD 2006). ACM Press.

Mitchell, T., Caruana, R., Freitag, D., McDermott, J., and Zabowski, D. (1994). Experience with
a learning personal assistant. Communications of the ACM (CACM), 37, 81–91.

Mitchell, T. M. (1990). Becoming increasingly reactive. Innovative Approaches to Planning,
Scheduling and Control: Proc. of a Workshop (pp. 459–467). San Diego, CA: Morgan Kauf-
mann Publisher.

Mitchell, T. M. (1997). Machine learning. New York: McGraw Hill.

Morik, K. (2002). Detecting Interesting Instances. Proceedings of the ESF Exploratory Work-
shop on Pattern Detection and Discovery (pp. 13–23). Berlin: Springer Verlag.

Morik, K., Botta, M., Dittrich, K. R., Kietz, J.-U., Portinale, L., Vaduva, A., and Zücker, R.
(2001). M4 – The MiningMart Meta Model (Technical Report D8/9). IST Project MiningMart,
IST-11993.

Morik, K., Boulicaut, J.-F., and Siebes, A. (2005). Local pattern detection, vol. 3539 of Lecture
Notes in Computer Science. Springer.

261

BIBLIOGRAPHY

Morik, K. and Rüping, S. (2002). A Multistrategy Approach to the Classification of Phases in
Business Cycles. European Conference on Machine Learning (ECML-2002) (pp. 307–318).
Springer.

Morik, K. and Scholz, M. (2002). The MiningMart Approach. GI Jahrestagung (pp. 811–818).
GI, LNI Vol. 19, ISBN 3-88579-348-2.

Morik, K. and Scholz, M. (2004). The MiningMart Approach to Knowledge Discovery in
Databases. In N. Zhong and J. Liu (Eds.), Intelligent Technologies for Information Analy-
sis, chapter 3, 47–65. Springer.

Morik, K., Wrobel, S., Kietz, J.-U., and Emde, W. (1993). Knowledge Acquisition and Machine
Learning - Theory, Methods, and Applications. London: Academic Press.

Muggleton, S. (1995). Inverse entailment and progol. New Generation Computing, 13, 245–286.

Musick, R. and Critchlow, T. (1999). Practical Lessons in Supporting Large-scale Computational
Science. ACM SIGMOD Record, 28, 49–57.

Neal, R. M. (1993). Probabilistic Inference Using Markov Chain Monte Carlo Methods (Tech-
nical Report). Department of Computer Science, University of Toronto.

Niculescu-Mizil, A. and Caruana, R. (2005). Predicting Good Probabilities With Supervised
Learning. Proceedings of the 22nd International Conference on Machine Learning (ICML)
(pp. 625–632). ACM press.

Otey, M. E., Parthasarathy, S., Wang, C., Veloso, A., and Meira, W. (2004). Parallel and Dis-
tributed Methods for Incremental Frequent Itemset Mining. IEEE Transactions on Systems,
Man, and Cybernetics, Part B, 34, 2439–2450.

Oza, N. C. and Russell, S. (2001). Online Bagging and Boosting. Eighth International Workshop
on Artificial Intelligence and Statistics. Key West, Florida, USA.

Pearl, J. (1991). Probabilistic reasoning in intelligent systems: Networks of plausible inference.
San Mateo, CA: Morgan Kaufmann. 2nd edition.

Piatetsky-Shapiro, G. (1991). Discovery, analysis, and presentation of strong rules. In
G. Piatetsky-Shapiro and W. Frawley (Eds.), Knowledge discovery in databases, 229 –248.
Cambridge, Mass.: AAAI/MIT Press.

Platt, J. C. (1999). Probabilistic Outputs for Support Vector Machines and Comparisons to
Regularized Likelihood Methods. Advances in Large Margin Classiers, 61–74.

Provost, F. and Fawcett, T. (1997). Analysis and Visualization of Classifier Performance: Com-
parison under Imprecise Class and Cost Distributions. Proceedings of the 3rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD) (pp. 43–48).
ACM press.

Provost, F. and Fawcett, T. (2001). Robust Classification for Imprecise Environments. Machine
Learning, 42, 203–231.

Provost, F. J., Jensen, D., and Oates, T. (1999). Efficient Progressive Sampling. Proceedings of
the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(pp. 23–32). ACM press.

262

BIBLIOGRAPHY

Quinlan, J. R. (1993). C4.5: Programs for machine learning. Machine Learning. San Mateo,
CA: Morgan Kaufmann.

Quinlan, J. R. (1996). Bagging, Boosting, and C4.5. Proceedings of the 13th National Confer-
ence on Artificial Intelligence (pp. 725–730). AAAI Press, MIT Press.

Quinlan, R. (2001). Relational Learning and Boosting. In S. Dzeroski and N. Lavrac (Eds.),
Relational Data Mining, chapter 12, 292–306. Springer.

Rahm, E. and Bernstein, P. A. (2001). A Survey of Approaches to Automatic Schema Matching.
The VLDB Journal, 10, 334–350.

Raspl, S. (2004). PMML Version 3.0—Overview and Status. Proceedings of the Workshop
on Data Mining Standards, Services and Platforms at the 10th ACM SIGKDD Int. Conf. on
Knowledge Discovery and Data Mining (KDD) (pp. 18–22).

Rätsch, G. and Warmuth, M. (2005). Efficient Margin Maximization with Boosting. Journal of
Machine Learning Research, 6, 2131–2152.

Richeldi, M. and Perrucci, A. (2002). Churn Analysis Case Study (Technical Report D17.2).
IST Project MiningMart, IST-11993.

Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14, 465 – 471.

Romei, A., Ruggieri, S., and Turini, F. (2006). KDDML: A Middleware Language and System
for Knowledge Discovery in Databases. Data and Knowledge Engineering, 57, 179–220.

Rosset, S. (2004). Model Selection via the AUC. Proceedings of the 21th International Confer-
ence on Machine Learning (ICML-04). Banff, Alberta, Canada.

Royce, W. W. (1970). Managing the Development of Large Software Systems. Technical Papers
of Western Electronic Show and Convention (WesCon) (pp. 1–9). IEEE Computer Society
Press.

Rudin, C., Cortes, C., Mohri, M., and Schapire, R. E. (2005). Margin-Based Ranking Meets
Boosting in the Middle. Proceedings of the 18th Annual Conference on Learning Theory
(COLT) (pp. 63–78). Springer.

Rüping, S. (1999). Zeitreihenprognose fur Warenwirtschaftssysteme unter Berucksichtigung
asymmetrischer Kostenfunktionen. Master’s thesis, Universität Dortmund.

Rüping, S. (2000). mySVM Manual. Universität Dortmund, Lehrstuhl Informatik VIII.
http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/.

Rüping, S. (2001). Incremental Learning with Support Vector Machines. Proceedings of the
IEEE International Conference on Data Mining (ICDM ’01) (pp. 641–642).

Rüping, S. (2002). Support Vector Machines in Relational Databases. Pattern Recognition with
Support Vector Machines — First International Workshop, SVM 2002 (pp. 310–320). Springer.

Rüping, S. (2006). Learning Interpretable Models. Doctoral dissertation, Universität Dortmund,
Fachbereich Informatik.

Saitta, L., Botta, M., Beccari, G., and Klinkenberg, R. (2000). Studies in Parameter Setting
(Technical Report D4.2). IST Project MiningMart, IST-11993.

263

BIBLIOGRAPHY

Salton, G. and Buckley, C. (1988). Term weighting approaches in automatic text retrieval. In-
formation Processing and Management, 24, 513–523.

Sarawagi, S., Thomas, S., and Agrawal, R. (1998). Integrating Association Rule Mining with re-
lational Database Systems: Alternatives and Implications. Proceedings of the ACM SIGMOD,
International Conference on Management of Data (pp. 343–354).

Schapire, R. E. (1990). The Strength of Weak Learnability. Machine Learning, 5, 197–227.

Schapire, R. E., Freund, Y., Bartlett, P., and Lee, S. (1998). Boosting the Margin: A New Expla-
nation for the Effectiveness of Voting Methods. Annals of Statistics, 1651–1686.

Schapire, R. E., Rochery, M., Rahim, M., and Gupta, N. (2002). Incorporating Prior Knowl-
edge into Boosting. Proceedings of the 19th International Conference on Machine Learning
(ICML). Morgan Kaufmann.

Schapire, R. E. and Singer, Y. (1999). Improved Boosting Using Confidence-rated Predictions.
Machine Learning, 37, 297–336.

Scheffer, T. and Wrobel, S. (2001). Incremental Maximization of Non-Instance-Averaging Util-
ity Functions with Applications to Knowledge Discovery Problems. Proceedings of the 18th
International Conference on Machine Leraning (ICML-2001).

Scheffer, T. and Wrobel, S. (2002). Finding the Most Interesting Patterns in a Database Quickly
by Using Sequential Sampling. Journal of Machine Learning Research, 3, 833–862.

Schölkopf, B. and Smola, A. J. (2002). Learning with Kernels – Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press.

Scholz, M. (2002a). Representing Constraints, Conditions and Assertions in M4 (Technical
Report TR18-01). IST Project MiningMart, IST-11993.

Scholz, M. (2002b). Using real world data for modeling a protocol for ICU monitoring. In-
telligent Data Analysis in Medicine and Pharmacology Workshop (IDAMAP 2002), at 15th
European Conference on Artificial Intelligence (pp. 85–90). Lyon, France.

Scholz, M. (2005a). Comparing Knowledge-Based Sampling to Boosting (Technical Report 26).
Collaborative Research Center on the Reduction of Complexity for Multivariate Data Struc-
tures (SFB 475), University of Dortmund, Germany.

Scholz, M. (2005b). Knowledge-Based Sampling for Subgroup Discovery. In K. Morik, J.-F.
Boulicaut and A. Siebes (Eds.), Local pattern detection, vol. LNAI 3539 of Lecture Notes in
Artificial Intelligence, 171–189. Springer.

Scholz, M. (2005c). On the Complexity of Rule Discovery from Distributed Data (Technical
Report 31). Collaborative Research Center on the Reduction of Complexity for Multivariate
Data Structures (SFB 475), University of Dortmund, Germany.

Scholz, M. (2005d). On the Tractability of Rule Discovery from Distributed Data. Proceed-
ings of the 5th IEEE International Conference on Data Mining (ICDM ’05) (pp. 761–764).
Houston, Texas, USA: IEEE Computer Society.

264

BIBLIOGRAPHY

Scholz, M. (2005e). Sampling-Based Sequential Subgroup Mining. Proceedings of the 11th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD
’05) (pp. 265–274). Chicago, Illinois, USA: ACM Press.

Scholz, M. (2006). Boosting in PN Spaces. Proceedings of the 17th European Conference on
Machine Learning (ECML-06) (pp. 377–388). Berlin, Germany: Springer.

Scholz, M. and Euler, T. (2002). Documentation of the MiningMart Meta Model (M4) (Technical
Report TR12-05). IST Project MiningMart, IST-11993.

Scholz, M., Euler, T., and Saitta, L. (2002). Applicability Constraints on Learning Operators
(Technical Report D18). IST Project MiningMart, IST-11993.

Scholz, M. and Klinkenberg, R. (2005). An Ensemble Classifier for Drifting Concepts. Pro-
ceedings of the 2nd International Workshop on Knowledge Discovery in Data Streams (pp.
53–64). In conjunction with ECML/PKDD’05.

Scholz, M. and Klinkenberg, R. (2006). Boosting Classifiers for Drifting Concepts (Technical
Report 6/06). Collaborative Research Center on the Reduction of Complexity for Multivariate
Data Structures (SFB 475), University of Dortmund, Germany.

Scholz, M. and Klinkenberg, R. (2007). Boosting Classifiers for Drifting Concepts. Intelligent
Data Analysis (IDA), Special Issue on Knowledge Discovery from Data Streams (accepted for
publication).

Schuster, A. and Wolff, R. (2001). Communication-Efficient Distributed Mining of Association
Rules. Proceedings of ACM SIGMOD Conference.

Shannon, C. and Weaver, W. (1969). The mathematical theory of communication. Chapman and
Hall. 4 edition edition.

Silberschatz, A. and Tuzhilin, A. (1996). What makes patterns interesting in knowledge discov-
ery systems. IEEE Transactions on Knowledge and Data Engineering, 8, 970–974.

Stanley, K. O. (2003). Learning Concept Drift with a Committee of Decision Trees (Technical
Report AI-03-302). Department of Computer Sciences, University of Texas at Austin.

Sterling, L. and Shapiro, E. (1994). The Art of Prolog. MIT Press. 2nd edition.

Street, W. N. and Kim, Y. (2001). A Streaming Ensemble Algorithm (SEA) for Large-Scale
Classification. Proceedings of the 7th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD ’01) (pp. 377–382).

Suzuki, E. (2004). Discovering Interesting Exception Rules with Rule Pair. ECML/PKDD 2004
Workshop, Advances in Inductive Rule Learning.

Tang, E. K., Suganthan, P. N., and Yao, X. (2006). An analysis of diversity measures. Machine
Learning, 65, 247–271.

Taylor, C., Nakhaeizadeh, G., and Lanquillon, C. (1997). Structural change and classification.
Workshop Notes on Dynamically Changing Domains: Theory Revision and Context Depen-
dence Issues, 9th European Conf. on Machine Learning (ECML ’97), Prague, Czech Republic
(pp. 67–78).

265

BIBLIOGRAPHY

The Data Mining Group (2004). Predictive Model Markup Language (PMML).
http://www.dmg.org. Version 3.0.

Theis, W. and Weihs, C. (1999). Clustering Techniques for the Detection of Business Cycles
(Technical Report 40). Collaborative Research Center on the Reduction of Complexity for
Multivariate Data Structures (SFB 475), University of Dortmund, Germany.

Toivonen, H. (1996). Sampling large databases for association rules. Proceedings of the 22nd
VLDB Conference (pp. 134–145). Morgan Kaufmann.

Tsymbal, A., Pechenizkiy, M., and Cunningham, P. (2003). Diversity in ensemble feature selec-
tion (Technical Report TCD-CS-2003-44). Trinity College Dublin.

Utgoff, P. E. (1989). Incremental induction of decision trees. Machine Learning, 4, 161–186.

Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM, 27, 1134–1142.

Wagner, M. (2005). Schema-Abbildungen für die Falladaption in MiningMart. Master’s thesis,
Fachbereich Informatik, Universität Dortmund.

Wang, H., Fan, W., Yu, P. S., and Han, J. (2003). Mining Concept-Drifting Data Streams using
Ensemble Classifiers. Proceedings of the 9th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD ’03) (pp. 226–235). Washington, DC, USA:
ACM Press.

Webb, G. I. and Ting, K. M. (2005). On the Application of ROC Analysis to Predict Classifica-
tion Performance under Varying Class Distributions. Machine Learning, 58, 25–32.

Widmer, G. and Kubat, M. (1996). Learning in the presence of concept drift and hidden contexts.
Machine Learning, 23, 69–101.

Wiederhold, G. (1992). Mediators in the Architecture of Future Information Systems. IEEE
Computer, 25, 38–49.

Witten, I. and Frank, E. (2000). Data mining – practical machine learning tools and techniques
with java implementations. Morgan Kaufmann.

Wolpert, D. and Macready, W. (1997). No Free Lunch Theorems for Optimisation. IEEE Trans.
on Evolutionary Computation, 1, 67–82.

Wrobel, S. (1997). An Algorithm for Multi–relational Discovery of Subgroups. Principles of
Data Mining and Knowledge Discovery: First European Symposium (PKDD 97) (pp. 78–87).
Berlin, New York: Springer.

Wu, X. and Srihari, R. (2004). Incorporating Prior Knowledge with Weighted Margin Support
Vector Machines. Proceedings of the 10th International Conference on Knowledge Discovery
and Data Mining (KDD-2004). AAAI Press.

Wurst, M. and Scholz, M. (2006). Distributed Subgroup Discovery. Proceedings of the 10th Eu-
ropean Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD-
06) (pp. 421–433). Berlin, Germany: Springer.

Zadrozny, B. (2004). Learning and Evaluating Classifiers under Sample Selection Bias. Pro-
ceedings of the 21th International Conference on Machine Learning (ICML-04).

266

BIBLIOGRAPHY

Zadrozny, B., Langford, J., and Naoki, A. (2003). Cost–Sensitive Learning by Cost–
Proportionate Example Weighting. Proceedings of the 2003 IEEE International Conference
on Data Mining (ICDM’03).

Zaki, M. J. (1999). Parallel and Distributed Association Mining: A Survey. IEEE Concurrency,
7, 14–25.

Zelezny, F. and Lavrac, N. (2006). Propositionalization-based relational subgroup discovery
with RSD. Machine Learning, 62, 33–63.

Zhang, S., Zhang, C., and Yu, J. (2004). An Efficient Strategy for Mining Exceptions in Multi-
databases. Information Sciences, 1-2, 1–20.

Zhang, Y., Burer, S., and Street, W. N. (2006). Ensemble Pruning Via Semi-definite Program-
ming. Journal of Machine Learning Research, 7, 1315–1338.

Zhong, N., Liu, C., and Ohsuga, S. (1997). A Way of Increasing both Autonomy and Versatility
of a KDD System. Foundations of Intelligent Systems (pp. 94–105). Springer.

Zhong, N., Liu, C., and Ohsuga, S. (2001). Dynamically Organizing KDD Processes. Interna-
tional Journal of Pattern Recognition and Artificial Intelligence, 15, 451–473.

267

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Motivation
	1.2 Scalable knowledge discovery
	1.3 A constructivist approach to learning
	1.4 Outline

	2 Machine Learning -- Some Basics
	2.1 Formal Framework
	2.2 Learning Tasks
	2.2.1 Classification
	2.2.2 Regression
	2.2.3 Subgroup discovery
	2.2.4 Clustering
	2.2.5 Frequent itemset and association rule mining

	2.3 Probably Approximately Correct Learning
	2.3.1 PAC learnability of concept classes
	2.3.2 Weakening the notion of learnability
	2.3.3 Agnostic PAC learning

	2.4 Model selection criteria
	2.4.1 General classifier selection criteria
	2.4.2 Classification rules
	2.4.3 Functions for selecting rules

	2.5 ROC analysis
	2.5.1 Visualizing evaluation metrics and classifier performances
	2.5.2 Skews in class proportions and varying misclassification costs

	2.6 Combining model predictions
	2.6.1 Majority Voting
	2.6.2 A NaïveBayes-like combination of predictions
	2.6.3 Combining classifiers based on logistic regression

	3 Sampling Strategies for KDD
	3.1 Motivation for sampling
	3.2 Foundations of uniform sub-sampling
	3.2.1 Sub-sampling strategies with and without replacement
	3.2.2 Estimates for binomial distributions

	3.3 Iterative refinement of model estimates
	3.3.1 Progressive sampling
	3.3.2 Adaptive sampling

	3.4 Monte Carlo methods
	3.4.1 Stratification
	3.4.2 Rejection Sampling

	3.5 Summary

	4 Knowledge-based Sampling for Sequential Subgroup Discovery
	4.1 Introduction
	4.2 Motivation to extend subgroup discovery
	4.3 Knowledge-based sampling
	4.3.1 Constraints for re-sampling
	4.3.2 Constructing a new distribution

	4.4 A knowledge-based rejection sampling algorithm
	4.4.1 The Algorithm
	4.4.2 Analysis
	4.4.3 Discussion

	4.5 Sequential subgroup discovery algorithms
	4.5.1 KBS-SD
	4.5.2 Related work: CN2-SD

	4.6 Experiments
	4.6.1 Implemented operators
	4.6.2 Objectives of the experiments
	4.6.3 Results

	4.7 A connection to local pattern mining
	4.8 Summary

	5 Boosting as Layered Stratification
	5.1 Motivation
	5.2 Preliminaries
	5.2.1 From ROC to coverage spaces
	5.2.2 Properties of stratification

	5.3 Boosting
	5.3.1 AdaBoost
	5.3.2 Ada2Boost
	5.3.3 A reformulation in terms of stratification
	5.3.4 Analysis in coverage spaces
	5.3.5 Learning under skewed class distributions

	5.4 Evaluation
	5.5 Conclusions

	6 Boosting Classifiers for Non-Stationary Target Concepts
	6.1 Introduction
	6.2 Concept drift
	6.2.1 Problem definition
	6.2.2 Related work on concept drift

	6.3 Adapting ensemble methods to drifting streams
	6.3.1 Ensemble methods for data stream mining
	6.3.2 Motivation for ensemble generation by knowledge-based sampling
	6.3.3 A KBS-strategy to learn drifting concepts from data streams
	6.3.4 Quantifying concept drift

	6.4 Experiments
	6.4.1 Experimental setup and evaluation scheme
	6.4.2 Evaluation on simulated concept drifts with TREC data
	6.4.3 Evaluation on simulated drifts with satellite image data
	6.4.4 Handling real drift in economic real-world data
	6.4.5 Empirical drift quantification

	6.5 Conclusions

	7 Distributed Subgroup Discovery
	7.1 Introduction
	7.2 A generalized class of utility functions for rule selection
	7.3 Homogeneously distributed data
	7.4 Inhomogeneously distributed data
	7.5 Relative local subgroup mining
	7.6 Practical considerations
	7.6.1 Model-based search
	7.6.2 Sampling from the global distribution
	7.6.3 Searching exhaustively

	7.7 Distributed Algorithms
	7.7.1 Distributed global subgroup discovery
	7.7.2 Distributed relative local subgroup discovery

	7.8 Experiments
	7.9 Summary

	8 Support for Data Preprocessing
	8.1 The KDD process
	8.2 The MiningMart approach
	8.2.1 The Meta-Model of Meta-Data M4
	8.2.2 Editing the conceptual data model
	8.2.3 Editing the relational model
	8.2.4 The Case and its compiler
	8.2.5 The case-base

	8.3 Related work
	8.3.1 Planning-based approaches
	8.3.2 KDD languages -- proposed standards
	8.3.3 Further KDD systems

	8.4 Summary

	9 A KDD Meta-Data Compiler
	9.1 Objectives of the compiler
	9.2 M4 -- a unified way to represent KDD meta-data
	9.2.1 Abstract and operational meta-model for data and transformations
	9.2.2 Static and dynamic parts of the M4 model
	9.2.3 Hierarchies within M4

	9.3 The MiningMart compiler framework
	9.3.1 The architecture of the meta-data compiler
	9.3.2 Reducing Case execution to sequential single-step compilation
	9.3.3 Constraints, Conditions, and Assertions
	9.3.4 Operators in MiningMart

	9.4 Meta-data-driven handling of control- and data-flows
	9.4.1 The cache -- an efficient interface to M4 meta-data
	9.4.2 Operator initialization
	9.4.3 Transaction management
	9.4.4 Serialization
	9.4.5 Garbage collection
	9.4.6 Performance optimization

	9.5 Code at various locations
	9.5.1 Functions, procedures, triggers
	9.5.2 Operators based on Java stored procedures
	9.5.3 Wrappers for platform-dependent operators

	9.6 The interface to learning toolboxes
	9.6.1 Preparing the data mining step
	9.6.2 Deploying models

	10 Conclusions
	10.1 Principled approaches to KDD -- theory and practice
	10.2 Contributions
	10.2.1 Theoretical foundations
	10.2.2 Novel data mining tasks and methods
	10.2.3 Practical support by specific KDD environments

	10.3 Summary

	A Joint publications
	B Notation
	C Reformulation of gini index utility function
	Bibliography

