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Abstract

This paper analyses the tractability of rule selection for
supervised learning in distributed scenarios. The selection
of rules is usually guided by a utility measure such as pre-
dictive accuracy or weighted relative accuracy. A common
strategy to tackle rule selection from distributed data is to
evaluate rules locally on each dataset. While this works
well for homogeneously distributed data, this work proves
limitations of this strategy if distributions are allowed to de-
viate. The identification of those subsets for which local
and global distributions deviate, poses a learning task of its
own, which is shown to be at least as complex as discover-
ing the globally best rules from local data.

1. Introduction

The induction of interesting rules from classified exam-
ples has been studied extensively in the Machine Learning
literature throughout the last decades. A variety of met-
rics like predictive accuracy, precision, or the binomial test
function have been suggested to formalise the notions of in-
terestingness and usefulness of rules. [4] gives an overview
of different metrics and illustrates the differences by means
of ROC isometrics. There are several learning tasks that are
formulated as optimisation problems with respect to a spe-
cific metric. Classifier induction and subgroup discovery
are two examples. Usually it is assumed that all the avail-
able data is accessible to a single learner. In this case the
metrics allow to identify a set of patterns that maximise the
selected utility function. The amount of data necessary to
identify the best rules with high probability depends on the
evaluation metric [7], and can be considered as an indicator
of complexity from an information theoretic point of view.

There are several learning scenarios in which the access
to the available data is restricted. In the domain of knowl-
edge discovery in databases, for example, the data is often
split to different sites and may not be communicated at the

level of single examples. Among the reasons are privacy
issues and costs.

Learning tasks can be adopted to distributed scenarios
in various ways. The objective of this work is to analyse
the corresponding increase in complexity of rule selection,
compared to non-distributed learning. Due to its generality
the task of subgroup discovery fits nicely into this frame-
work. It allows to specify the utility function used for pat-
tern selection as a parameter [5]. Each subgroup is usually
represented by a Horn logic rule, so utility functions are
specific kinds of rule selection metrics. This paper inves-
tigates in which situations a local evaluation of rules may
help to identify globally best rules, and how corresponding
learning tasks are related to each other.

2. Standard subgroup discovery

This sections discusses the task of non-distributed sub-
group discovery. Given is a set of m classified examples
E := 〈x1, y1〉, . . . , 〈xm, ym〉 from X × Y . X defines an
instance space and Y a set of labels. The representation
language (H) contains logical rules, denoted as A → C.
Antecedents A are identified with their corresponding sub-
sets of X , while conclusions C predict a label from Y .

Rules are evaluated with respect to a distribution func-
tion over X . This work confines itself to descriptive learn-
ing, so given a single database or example set E it is often
appropriate to assume a uniform distribution D over E .

Definition 1 The coverage (COV) of a rule A → C under
distribution D is defined as the probability that it is appli-
cable for an example 〈x, y〉 sampled ∼ D :

COVD(A → C) := Pr〈x,y〉∼D [x ∈ A]

Definition 2 The bias of a rule A → C, C ∈ Y under D is
defined as the difference between the conditional probabil-
ity of C given A and the default probability of C:

BIASD(A → C) := Pr〈x,y〉∼D [y = C | x ∈ A]
− Pr〈x,y〉∼D [y = C]



Def. (1) and (2) allow to state a broad class of metrics.

Definition 3 Functions f : H × D → IR satisfying the
following constraint for all r, r′ are called utility functions:

(COVD(r) ≥ COVD(r′)) ∧ (BIASD(r) ≥ BIASD(r′) > 0)
⇒ f(r,D) ≥ f(r′,D)

Additionally, if one of the inequalities is strict, then
f(r,D) > f(r′,D).

The most commonly used class of utility functions for sub-
group discovery [5] is given by the following definition:

Definition 4 For a given parameter α and distribution D

the utility (or quality) Q
(α)
D of a rule r ∈ H is defined as

Q
(α)
D (r) := COVD(r)α · BIASD(r).

The parameter α allows for a data- and task-dependent
trade-off between coverage and bias. Def. 4 covers met-
rics that are factor-equivalent to the binomial test function
(α = 0.5), weighted relative accuracy (α = 1), and a func-
tion applied to put higher emphasis on coverage (α = 2).

Def. 3 is broad enough to also cover predictive accuracy,
which is equivalent to Q

(1)
D for binary prediction tasks with

equal default probabilities for both classes, and which is
still monotone in COV and BIAS, otherwise. The similar-
ity between rule selection metrics for different skew ratios
is discussed in [3].

In association rule mining [1] rules are filtered (or
pruned) by their support (COV) and confidence. The latter
is monotone in the BIAS, although the default probability
is usually ignored. When support and confidence are com-
bined (respecting monotonicity) to find a ranking of most
interesting rules, this problem can also be considered as a
specific case of subgroup discovery.

3. Homogeneously distributed data

A first extension towards distributed subgroup discovery
is to assume that several sets of data are available, which all
obey a common underlying probability distribution. One
can think of the different sets as generated by bootstrapping
from a single, global dataset. In such a case local and global
subgroups are basically identical. However, due to statisti-
cal deviations caused by bootstrapping and the smaller size
of example sets, some of the rules with lower global utili-
ties might be found among the n best subgroups evaluated
locally at each site.

Choosing Q(1) (Def. 4), the probability that the utility
function deviates locally from the true (global) value by
more than a fixed constant ε ∈ IR+ can be bounded by
Chernoff’s inequality. This probability decreases exponen-
tially with a growing number of examples. Sample bounds

have been proven for different utility functions [7], espe-
cially for Q(α) with α ∈ {.5, 1, 2}. Accordingly, the n-best
subgroups problem has been adopted to a probabilistic sce-
nario, in which utility functions are evaluated using i.i.d.
samples [7]:

Definition 5 Let δ ∈ (0, 1) denote a given minimum con-
fidence and ε ∈ IR+ denote a given maximal error. Then
the approximate n-best hypotheses problem is to identify a
set G of n hypotheses from a hypothesis space H, such that
with confidence 1 − δ

(∀h′ ∈ H \ G) : Q(h′) ≤ min
g∈G

(Q(g) + ε)

The results reported for this problem directly apply to ho-
mogeneously distributed datasets: For large local datasets
the probability of missing a subgroup that is globally much
better than the locally best ones is reasonably small.

4. Inhomogeneously distributed data

This section addresses the situation in which data is split
to different sites, but no distributional assumption can be
made. First of all the notation for different databases is
introduced. The example set E is composed of k subsets
E1, . . . , Ek that were sampled from different probability dis-
tributions. Let Di denote the distribution at site i for the
corresponding example set Ei ⊆ E , and let D denote the
global distribution over E . D is a weighted average of the
local distributions.

Local COV and BIAS of a rule A → C at site i can be
expressed in terms of Def. 1 and 2, replacing D by Di, e.g.

BIASDi
(A → C) := Pr〈x,y〉∼Di

[y = C | x ∈ A]
− Pr〈x,y〉∼Di

[y = C]

refers to the local BIAS at site i. Accordingly, a local utility
function evaluates each rule A → C by

Q
(α)
Di

(A → C) = [COVDi
(A → C)]α · BIASDi

(A → C).

The first task stated in this setting is to find subgroups that
globally perform well, given a discovery procedure that
evaluates rules locally. The idea is, that if one of the glob-
ally best rules appears poor at any site, then it obviously
needs to perform even better at some other. For this rea-
son one could expect that the globally best rules are easily
found at the local sites, even if the local distributions dif-
fer. A similar property eases frequent itemsets mining from
distributed data [2].

In the case of homogeneously distributed data as dis-
cussed in Sec. 3, the marginal distributions over X and the
conditional probabilities of the target given x ∈ X were
identical at all sites. In order to quantify by how much each
of these assumptions is weakened the following definitions
are useful.



Definition 6 Two distributions D1,D2 : X → IR+ are
called factor-similar up to γ for an A ⊂ X and γ > 1,
if

(∀x ∈ A) : γ−1 ≤ Di(x)
D(x)

≤ γ.

Definition 7 For an A ⊆ X two joint distributions
D1,D2 : X × Y → IR+ are called conditionally similar
up to ε, ε > 0, if

(∀〈x, y〉 ∈ A × Y) :
∣∣∣∣D1(x, y)

D1(x)
− D2(x, y)

D2(x)

∣∣∣∣ ≤ ε.

Please recall that utility functions are defined based on dis-
tributions underlying the example sets. For this reason
Def. 6 and 7 do not require the same set of examples to
be observable at all sites to allow for finite bounds.

The following theorem shows, that if the assumption of
homogeneously distributed data made in Sec. 3 is weakened
at all, then it is possible to obtain drastically different sets of
best rules when evaluating a quality function globally and
locally.

Theorem 1 Let Gi denote the set of n best rules for each
site i ∈ {1, . . . k} (k ≥ 2), given an arbitrary utility func-
tion. Let G denote the set of n best rules with respect to
the global distribution. Then it is possible in the general
case, that every x ∈ X is covered by at most one ruleset
from {G,G1, . . . , Gk}, where a ruleset is said to cover x if
one of its elements does. This statement even holds in the
following two cases:

1. For all local sites i ∈ {1, . . . , k} the conditional distri-
butions of X×Y are identical, and each local marginal
distribution of X is factor-similar to the global one up
to an arbitrarily small γ > 1 for any subset of X .

2. The global and local marginal distributions of X are
equivalent, and global and local joint distributions of
X × Y are conditionally similar up to an arbitrarily
small ε > 0.

A proof is given in an extended version of this article [8].
Theorem 1 implies that rules globally performing best are
not necessarily among the n locally best rules at any site.
Even for arbitrarily unskewed data, formalised in terms of
Def. 6 and 7, the best rules collected from all sites, including
the globally best rules, may be completely disjoint, in the
sense that no example is covered twice. Please note that
unlike for the case of homogeneously distributed data this
is not a problem of misestimation. Theorem 1 applies to
arbitrarily large sample sizes.

Although finding the globally best rules from local data
is not possible in the worst case, finding approximately best

rules might still be tractable. The following theorem gives a
tight bound on the difference between locally and globally
evaluated utility, for simplicity assuming positive utilities
and common default probabilities.

Theorem 2 Let D : X × Y → IR+ denote a global distri-
bution which is a weighted average of k local distributions
Di, all sharing the same default probabilities of classes.
Considering a rule (A → C) ∈ H, let the marginal distri-
butions of D and a local distribution Di (i ∈ {1, . . . , k}) be
factor-similar up to γ for A, and let the joint distributions
D and Di be conditionally similar up to ε for the rule. Then
the difference between global and local utilities of Q(α) is
bounded by

max

(
0,

Q
(α)
Di

(A → C)
γα

− ε

γα
COVDi

(A → C)α

)

≤ max
(
0, Q

(α)
D (A → C)

)
≤ max

(
0, γαQ

(α)
Di

(A → C) + ε [γCOVDi
(A → C)]α

)
For valid choices of ε these bounds are tight in general.

For similarly distributed data the bounds are tight enough
to allow for estimates with bounded uncertainty. A proof of
theorem 2 and an illustration of the bounds are given in [8].

Please note that theorem 2 allows to exploit different es-
timates for each antecedent A ⊂ X under consideration.
Hence, the theorem is not restricted to learning tasks in
which conditional or marginal distributions are known to be
very similar. It also allows to collect rule-specific bounds
from various sites. Possible sources of rule-dependent
bounds on γ and ε range from background knowledge over
density estimates to previously cached queries.

The results given in this section also help to understand
why methods like distributed boosting [6] are often success-
ful in practice, although different kinds of skews at different
sites are common, and are a known source of failure.

The question which rules do not allow to compute their
utilities sufficiently well by techniques related to theorem 2
motivates a new extension of the learning task, discussed in
Sec. 5, that explicitly takes the locality of data into account.

5. Relative local subgroup mining

As motivated in the last section, inhomogeneously dis-
tributed data allows to define subgroups as subsets of an ex-
ample set1 Ei that follow different distributions of the target
attribute than E . This definition of a subgroup has a natu-
ral interpretation that might be of practical interest in sev-
eral domains. The corresponding rules could help to point

1More precisely, these definitions refer to the weight of subsets with
respect to D and Di. These weights are of course estimated based on the
example sets.



out the characteristics of a single supermarket in contrast to
the average supermarket, for example. The following utility
function captures the idea of locally deviating rules.

Definition 8 For r ∈ H the utility function RQ
(α)
Di

at a site i
is defined as

RQ
(α)
Di

(r) := COVDi
(r)α · (BIASDi

(r) − BIASD(r))

The rules maximising this utility function are referred to as
relative local subgroups.

Please note that only the global conditional distribution is
required in this context, since COV is evaluated locally. Ex-
ploiting that COV differs by at most a factor of γ and as-
suming common class priors, theorem 2 can be simplified:

Corollary 1 For a given target class C let

rq(α)
max := max{RQ

(α)
Di

(r) | r ∈ H, r predicts C} and

rq
(α)
min := min{RQ

(α)
Di

(r) | r ∈ H, r predicts C}

denote the maximal and minimal utilities of relative local
subgroups. Then for all rules r′ ∈ H the difference between
local and global utility is bounded by

γ−α ·
(

Q
(α)
Di

(r′) − rqmax

)
≤ Q

(α)
D (r′)

≤ γα ·
(

Q
(α)
Di

(r′) − rqmin

)
if all terms are positive.

Cor. 1 allows to translate the utilities of local subgroups
into global scores with bounded uncertainty for any rule-
dependent γ. The special case of a common marginal dis-
tribution is obtained by setting γ = 1.

Corollary 2 For γ = 1 the functions for local, relative lo-
cal, and global subgroup discovery complete each other:

Q
(α)
D (A → C) = Q

(α)
Di

(A → C) − RQ
(α)
Di

(A → C)

Obviously, the tasks of discovering relative local subgroups
and that of approximating the global conditional distribu-
tion are of similar complexity in this case. Cor. 2 suggests
how to detect global subgroups locally, given estimates of
RQ

(α)
Di

, and how to compute RQ
(α)
Di

from Q
(α)
D for γ = 1.

6. Conclusion

The behaviour of different rule selection metrics, their
similarity for various skews and how well they may be es-
timated from samples has been investigated in recent years.
What is lacking is an investigation of how these metrics be-
have in the scope of distributed learning. This paper is a

first step into this direction. First of all it was shown that the
utility measures common in the literature on subgroup dis-
covery can be applied to homogeneously distributed data in
the same way as to a single example set. If the different sites
do not share a single underlying distribution generating the
data, however, then even precise estimates may yield com-
pletely disjoint rulesets at all sites, none of which contains
a single one of the best n rules. For the general case a tight
bound for the difference between global and local rule utili-
ties was proven, which allows to translate local rule utilities
into global ones with bounded uncertainty. For the task of
discovering rules that have a higher local than global utility
it was shown that it is at least as hard as approximating the
global conditional distribution of the target attribute. For a
common marginal distribution one problem can be solved
locally, given a solution for the other one.

The results indicate that distributed subgroup discovery
is a hard problem, since it requires precise estimates of both,
the global marginal and the global conditional distribution.
Future work will evaluate algorithms for distributed rule
mining, based on synthetic and real-world data.
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