
Bachelor’s Thesis

Scaling up the Equation-Encoder - Handling
High Data Volume through the Efficient Use

of Trainable Parameters

Jonathan Schill
March 2020

Reviewers:

Prof. Dr. Katharina Morik

M. Sc. Lukas Pfahler

TU Dortmund University

Department of Computer Science

Artificial Intelligence Group

http://ai-www.cs.tu-dortmund.de

Contents

1 Introduction 1

1.1 Literature Search . 1

1.2 Math-based Literature Search . 2

1.3 Objective of this Thesis . 3

1.4 Structure of this Thesis . 4

2 Principles 5

2.1 Machine Learning . 5

2.2 Deep Learning . 6

2.2.1 Deep Feedforward Networks . 6

2.2.2 Types of Layers . 7

2.2.3 Learning Distributed Representations 10

2.2.4 Backpropagation . 11

2.2.5 Architectural Choices and Hyperparameters 12

3 Related Work 17

3.1 The Equation-Encoder . 17

3.1.1 Equation-Encoder Network Architecture 19

3.2 SqueezeNet . 19

3.2.1 The Fire Module . 20

3.2.2 Overall Architecture . 22

4 Experiments 23

4.1 Experimental Setup . 23

4.1.1 Dataset . 23

4.1.2 Performance Measures . 26

4.1.3 Baseline Equation-Encoder . 26

4.1.4 Squeezed Equation-Encoder . 27

4.1.5 Miscellaneous . 28

4.2 Experiments . 29

4.2.1 Experiment I - Vanishing Gradient 29

i

ii CONTENTS

4.2.2 Experiment II - Activation and Initialisation 31

4.2.3 Experiment III - Learning Rate . 32

4.2.4 Experiment IV - Sampling via Citation Graph 33

4.2.5 Experiment V - Margin . 34

4.2.6 Final Con�guration . 35

4.2.7 Experiment VI - Full Dataset . 35

5 Evaluation 37

5.1 Comparison . 37

5.1.1 Loss on Test Data . 37

5.1.2 Size and Speed . 38

5.1.3 User Study . 39

5.1.4 Conclusion . 41

5.2 Quality of the Search Engine . 41

6 Conclusion and Outlook 45

A Further Information 47

A.1 Proof: Why do we need nonlinear activation functions? 47

A.2 Activation Functions . 48

A.3 Triples . 49

A.4 Search Results from User Study - SEE . 52

A.5 Search Results from User Study - BEE . 59

Notation 67

List of Acronyms 68

List of Figures 70

List of Tables 72

Bibliography 73

Chapter 1

Introduction

This chapter should give a quick overview of the problem at hand. The following questions

shall be answered: What problem do we want to solve? Why is this problem important?

Why is it not a trivial problem? What will be the procedure in this thesis?

1.1 Literature Search

Literature search is a substantial part of the scienti�c process. Publishing papers and

reading other people's papers is the way researchers all over the world communicate and

cooperate with each other. If this exchange of knowledge does not work properly, the

ability to bene�t from research done by other people than yourself is strongly limited. For

a working scienti�c system, it must be possible for researchers to �nd relevant publications.

However, �nding relevant papers is not a simple task. As the world gets more connected,

the number of researchers cooperating with each other grows. This results in a rapidly

growing amount of possibly relevant publications. In 2018 36,000 computer science related

papers were uploaded on the pre-print service arXiv.org alone (See Figure 1.1). As Pfahler

et al. [27] already stated in their work it is infeasible to �lter, index or organise literature

manually because of the sheer number of available documents.

Nowadays a big part of this work is done by search engines that are specialised for

literature research, e.g. Google Scholar. These search engines make it possible to search

for natural language keywords in all publications available in the search engine's database.

A task that would take an unbelievable amount of person-hours if done manually. But even

after this �lter, the number of resulting papers maybe so high that reading all of them is

impractical. To tackle this problem, most search engines do not only �lter all available

papers with a set of keywords, they also rank the results according to their relevance. The

relevance may be in�uenced by di�erent factors including number of matched keywords,

number of citations or recency. Keyword-based search engines have simpli�ed literature

search and have become an indispensable part of the scienti�c process.

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Yearly submission rates of computer science papers on the pre-print service arXiv.org.

The letter combinations are acronyms for the di�erent subject areas (e.g. LG stands for Machine

Learning and CV stands for Computer Vision). A full list of the acronyms can be found here:

here. Source: arXiv.org.

1.2 Math-based Literature Search

A limitation to this keyword-based approach is that in many research �elds natural lan-

guage is not the only component of a publication. In subjects like mathematics, computer

science, physics etc. you will �nd a lot of mathematical expressions as well. These expres-

sions are arguably as important as the natural language text surrounding them - if not

more important. Some ideas presented in a paper are way easier represented by a formula

or a collection of formulas than by natural language text. If natural language could express

anything a formula can in a comparable compact way, formulas would not be used after all.

Researchers in the respective �elds often make use of this property of formulas when doing

literature search. Instead of reading a possibly relevant paper completely they might just

look at the formulas in it and make their decision concerning the relevance of this paper

based on the formulas they have seen [27]. Given the role that mathematical expressions

play in many scienti�c manuscripts, one may have the impression that for literature search

using formulas has great potential.

There have been various e�orts to make use of the potential of formula-based literature

search [22, 35, 34]. But, these e�orts have not lead to a widespread use of math-based

search engines yet. This is probably the case because these search engines are simply not

good enough. Evaluating similarity between mathematical expressions is hard. For the

semantics of a formula the overall structure is very important. Singular symbols or short

sequences of symbols can mean very di�erent things since their interpretation is highly

dependant on context. This property makes math-based search distinct from keyword

https://arxiv.org/corr/subjectclasses
https://arxiv.org/help/stats/2018_by_area/index

1.3. OBJECTIVE OF THIS THESIS 3

search. In natural language a single keyword or a short sequence of them is often expressive

and their meaning is less dependant on context (see following Examples). For this reason

techniques that work well for natural language, do usually not work well for mathematical

expressions.

Example 1.2.1
∑n

x=1(x− 1) and 1/(x− 1)

Although both expressions contain the subexpression (x− 1) the expressions have very

little in common on a semantic level.

Example 1.2.2 2n and n2

The semantic of both expressions is quite dissimilar although the expressions share the

exact same symbols (Example taken from Kamali et al. [15]).

Example 1.2.3 Paper titles that contain the same word combination.

For example both of these titles contain the combbiniation Embedding Learning :

"Feature Selection via joint Embedding Learning and Sparse Regression" and

"Sampling Matters in Deep Embedding Learning ".

These two papers have arguably something in common on a semantic level.

Example 1.2.4 "This is our loss."

The semantic of this senetence can also change depending on its context. E.g. in context

of machine learning or in the context of a funeral. This example shows that words can

also change their semantics dependant on the context. However, it does not occure as

often as with formulas.

1.3 Objective of this Thesis

In order to overcome some of the di�culties regarding math-based literature search, Pfahler

et al. [27] proposed the Equation-Encoder (see Section 3.1): A Convolutional Neural Net-

work (CNN) (see De�nition 2.2.1) that evaluates similarities between bitmap representa-

tions of mathematical expressions. The Equation-Encoder seems to be able to solve the

task at hand to a certain degree. Yet it is questionable whether it is powerful enough

to work properly as a backend for a real-world search engine. There is much space for

improvement and some of the possible improvements shall be investigated in this work.

One obvious point of attack is the data that is used for training. The Equation-Encoder

was trained with data that was curated from the pre-print service arXiv.org. This service

gives "open access to 1,637,485 e-prints in the �elds of physics, mathematics, computer

science, quantitative biology, quantitative �nance, statistics, electrical engineering and sys-

tems science, and economics."1. Pfahler et al. [27] used only a small subset with ∼44,000
1Source: arXiv.org, visited on 27.12.2019

www.arxiv.org

4 CHAPTER 1. INTRODUCTION

publications from only one research area. The work of Sun et al. [31] suggests that training

on a much larger and more diverse dataset might improve the performance of our model.

But, as the volume of the dataset increases, the throughput of the Equation-Encoder be-

comes more important. Even on the small dataset used by Pfahler et al. [27] a single

training run with 30 epochs takes about 24 hours on an Nvidia GTX-1080 GPU. Consid-

ering that we will have to deal with a dataset that is more than ten times larger, using the

original Equation-Encoder is impracticle. In order to use a larger dataset, we need a new,

more e�cient model. This will be the main contribution of this work: Making experiments

using a much larger dataset and designing a model that is more suitable for a dataset of

this size.

1.4 Structure of this Thesis

This thesis is structured as follows: We will begin with a brief introduction to the the-

oretical foundations of the methods that are important for this work - namely machine

learning and deep learning. With these basics covered, we will take a look at two deep

learning architectures that are crucial for this work: the Equation-Encoder itself and an

architecture called SqueezeNet [11] that will be the main inspiration for the new model.

In the following chapter, we will derive the exact architecture and con�guration of this

new model by combining both architectures that were presented earlier and by conducting

experiments regarding the architecture of the network and the con�guration of the learning

algorithm. The resulting model and a baseline model2 will then be trained on a dataset

that is substantially larger than the dataset from Pfahler et al. [27]. This allows us to

evaluate the performance of the proposed model in relation to the baseline's performance.

Amongst other evaluation methods, there will be a small user study which aims at assess-

ing the real-word applicability of both models. This thesis will end with a summary of the

obtained results and an outlook on future work.

2The Equation-Encoder [27] with a few adjustments.

Chapter 2

Principles

This chapter shall give the reader a basic understanding of the underlying principles of the

methods used in this work. We will start with a very brief introduction into the �eld of

machine learning using the example of our math-similarity problem and continue with a

more comprehensive introduction into the sub�eld of deep learning. My remarks regarding

these topics will focus on the aspects that are particularly important for the scope of this

thesis.

2.1 Machine Learning

Mitchell et al. [23] de�nes machine learning as follows: "A computer program is said to

learn from experience E with respect to some class of tasks T and performance measure

P , if its performance at tasks in T , as measured by P , improves with experience E.".

There are many variants of machine learning methods and a wide range of tasks that

we can solve with machine learning. However, we will focus on how machine learning is

applicable to our problem. The question is therefore: What does machine learning mean

regarding our problem of math-based literature search?

Our task is to evaluate semantic similarity between mathematical expressions. A

broader and more precise overview of di�erent possible performance measures will be

given in Chapter 5, but in principle we just need some mathematical expressions with

some true annotation about their semantic relation. We may then just let our model

(computer program) calculate its estimate of the semantic similarity between some of the

given mathematical expressions and compare them to the relations that are given by the

annotations. The closer our model's predictions are to the annotations, the better we

consider the performance of our model. The experience E, that shall help our model to

improve its performance regarding P , is of the same form as the data that we need for our

5

6 CHAPTER 2. PRINCIPLES

performance measure. Again we need mathematical expressions and annotations about

their semantic relation1.

The method that we will use for learning from E to get better at similarity evalua-

tion between mathematical expressions is called Deep Feedforward Network (DFN). Its

functionality will be described in the next section.

2.2 Deep Learning

Deep learning is a sub�eld of machine learning and a powerful method for certain tasks. It

caused some major breakthroughs for di�erent machine learning related tasks e.g. image

classi�cation [18] or playing the complex board game Go at human-level [30]. The topic is

particularly important for this work because the Equation-Encoder [27] is a deep learning

method. The following section shall give an overview of some basic deep learning aspects

and some more advanced aspects that are relevant for reconstructing the Equation-Encoder

in a more e�cient way.

2.2.1 Deep Feedforward Networks

The following de�nition and explanation of DFNs is based on the popular textbook of

Goodfellow et al. [6]. A DFN2 de�nes some function f : Rn → Rm. It consists of a set of

several parametrized subfunctions L = {l1, l2, ..., ln} that are consecutively applied to the

input ~x and a directed acyclic graph G that de�nes the order in which the subfunctions

are applied. A subfunction from L is also called layer. We refer to lk as the kth layer of

our network. The �rst layer l1 is called input layer and ln is called output layer. All other

layers are called hidden layers. The depth of a network is de�ned as |L|. This is where the
term deep learning comes from. Together with their order, the layers from L determine the

network's function f . The output of this function f(~x) ∈ Rm for a speci�c input ~x ∈ Rn

is given by

f(~x) = ln(ln−1(...(l1(~x)))).

The purpose of a DFN is to approximate a function f∗ : Rn → Rm. To this end, the

network learns all the parameters of its layers θ. Ordinarily the desired function f∗ is given

by a dataset D that contains approximate examples of f∗. These examples consist of a

feature vector ~x and a label ~y ≈ f∗(~x). For the learning process, an objective function is

de�ned in order to measure how good our current network is at approximating f∗. Since

this objective function is often measuring some error, it is also called loss function or

1The data that we use for evaluation and the data that we provide to the computer program in order

to learn (or train) should be disjunct. Otherwise the program could achieve an optimal performance by

just storing the exact examples from the training set.
2These models are originally inspired by neural activity in the brain. Hence there are also called Neural

Networks (NNs) in literature.

2.2. DEEP LEARNING 7

cost function. A simple example for such a loss function on a single training example

(~x, ~y) with f∗(~x) ≈ ~y is the squared error: J(x) = (f(~x; θ)− ~y)2.

Of course, this loss function is usually not computed on a single example, but on a

set of examples. During the learning process, we alter the network's parameters in a way

that minimises the cost function. We want to achieve that for as many examples (~x, ~y) as

possible f(~x) ≈ ~y ≈ f∗(~x). The optimistation process is usually done with some gradient

descent method [3]. Because it would be infeasible for large datasets to compute the loss

and the respective gradient for the whole dataset at once, we divide the dataset into mini-

batches, compute the cost and the respective gradient for every one of these batches and

then perform a gradient descent step for every gradient [6, pp.274-276].

2.2.2 Types of Layers

Fully-connected layers (cf. [6, p. 168]) A fully-connected layer has a weight matrix

Wk ∈ Rm×n, a bias vector ~bk ∈ Rm and an activation function a : R → R. The output

~y ∈ Rm of a fully-connected layer for a speci�c input ~x ∈ Rn is given by

~y = lk(~x) = a(Wk~x+~bk).

The activation function is applied elementwise to the vector that is resulting from (Wk~x+

~bk). Because of this activation function, the output of a layer itself is often called activation.

The output values of the layer before a is applied are called pre-activations.

If the respective layer is the output layer of a DFN, a might be the identity function:

i(x) = x. In all other cases, the activation function should be nonlinear. Otherwise, the

transformation performed by two following fully-connected layers could also be done by

one layer (Explanation in the Appendix A.1). Hence, activation functions are often called

nonlinearities. A commonly used activation function is ReLU [6, p. 189] (see Appendix

A.2).

Convolutional layers (cf. [6, chapter 9]) Although convolutional layers may be used with

input tensors of any dimensionality, we will focus on the special case of a convolutional

layer for which the input has three dimensions, since this work deals with 3-dimensional

tensors that represent images. The input could also be seen as a set of matrices that are

concatenated in a third dimension. A single matrix corresponds to a color channel of e.g.

an RGB-image. We will refer to a single matrix as a channel or a feature map.

A convolutional layer consists of a number of kernels (also called �lters), a bias vector

~b ∈ Rcout and an activation function a : R → R. Each of these kernels is a 3D-Tensor

of the form K ∈ Rcin×w×h. It de�nes an operation ∗ : Rcin×m×n → Rm′×n′
. The output

(X ∗K) ∈ Rm′×n′
of such a kernel operation is a single feature map. For the overall output

of the convolutional layer, all resulting feature maps are combined by concatenating them

in a third dimension. So, the function de�ned by a convolutional layer is of the form

8 CHAPTER 2. PRINCIPLES

lconv : Rcin×m×n → Rcout×m′×n′
, where cout equals the number of kernels of the respective

layer.

In order to understand how the convolution operation ∗ of a kernel K works, it may

be helpful to think of the K as a window that is gliding over the input [6, p. 330] (see

Figure 2.1). We start by placing the kernel in the top-left corner of the input X. At this

point for every value k ∈ K there is a value x ∈ X that is in the same place. Now, for

Figure 2.1: Illustration of how the kernel (red cube) is placed over the input tensor and of

the movement of the kernel. Source: https://towardsdatascience.com/a-comprehensive-guide-to-

convolutional-neural-networks-the-eli5-way-3bd2b1164a53.

every value of k and x that are in the same place, we multiply these values and add the

products together. For our output matrix Z ∈ Rm′×n′
the resulting sum de�nes the value

in the top-left corner z0,0. To compute the value next to it z1,0, we move the kernel one

step to the right. Then we can again multiply the values in the same place and add them

together. We do this for all values in the �rst row until we reach zm,0. The next step is to

move the kernel down and to move successively to the left from thereon. This gives us the

values in the row ~z•,1. We continue this movement of the kernel until we shifted it along

the whole input. The mathematical formulation of this operation3 is:

zi,j = (X ∗K)i,j =
∑

d

∑

w

∑

h

xd,i+w,j+hkd,w,h (2.1)

Z = (X ∗K) (2.2)

With a well de�ned convolutional operation we are now also able to de�ne the function

of a convolutional layer lconv. For an input tensor X, a set of �lters K = {K0, ...,Kn}, a
bias vector ~b and the activation function a, a singular feature map Yj is given by:

Yj = a(bj + (X ∗Kj)) (2.3)

Note that bj is a scalar value. It is added elementwise to each value of the matrix

resulting from (X ∗Kj).

3Technically this is cross-correlation and not a convolution. However, these operations are used syn-

onymously in literature [6, p. 329]. The implementation of convolutional layers used in this work [26]

implements cross-correlation.

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

2.2. DEEP LEARNING 9

In our example we shift the kernel always by one while gliding over the input. It is

also possible that it is shifted by more than one. The value by that we shift a kernel is

called stride [6, p. 343]. For kernels with height or width greater than one, the output

dimensions are smaller than the input dimensions. But, we may want to maintain the

dimensions. To achieve this, we increase the e�ective height and width of the input tensor

by adding new scalars with value zero to its margin. This extra added values are called

padding [6, p. 343]. A DFN that uses at least one convolutional layer is called a CNN (see

De�nition 2.2.1).

This architecture is particularly useful for high-dimensional input, where some spatial

relation between the di�erent features (scalars in the input) plays an important role. E.g.

we want to process some image and we represent the image as a Tensor X ∈ [0, 1]3×32×32.

We could use fully-connected layers by transforming our input to a vector with 3 ∗ 322 =

3072 dimensions, but there would be two problems: First, this would lead to a huge amount

of trainable parameters in the layer's weight matrix. Even if we scaled the dimensionality

of the output of the �rst layer down to 1024, we would have 3072 ∗ 1024 = 3 145 728

parameters for our weight matrix. In contrast, a convolutional layer with 128 kernels of

dimensionality 3× 3× 3 would require only 33 ∗ 128 = 3456 parameters. This allows us to

deal with high-dimensional input with a relatively small amount of trainable parameters

[6, p. 330]. Second, important patterns may be found in di�erent places. If our images

showed animals and we wanted to train our DFN to recognize what animals are depicted, it

would be useful for the network to detect certain shapes that are characteristic for certain

animals e.g. the shape of a beak for detecting a duck. Unfortunately, for di�erent images

the beak is most certainly at di�erent places. A single weight of a fully-connected layer

does only correspond to one single value (or pixel) of the input. If we succesfully train

several weights to detect a beak at one place, but for the next image the beak is at some

other place, these weights will not help to detect this second beak. Convolutional kernels

do not have this problem because they are moved over the input image and every weight

corresponds to multiple values in the input [6, pp. 332-333].

Pooling layers (cf. [6, pp. 335-339]) Pooling layers are layers without trainable param-

eters. It is their purpose to reduce the dimensionality of the tensors passed through the

network. A pooling layer de�nes a function lp : Rc×m×n → Rc×m′×n′
with m > m′,n > n′.

Another property of pooling layers is that their output is approximately invariant to small

changes of the input. I.e. if some values in the input change by a small margin, in most

cases the output does not change. The reduction of dimensionality is done by gliding a

rectangular window over the singular channels of the input and computing some summary

statistics of the values within this window at every position (See Figure 2.2).

10 CHAPTER 2. PRINCIPLES

Figure 2.2: Illustration of how a 3 × 3 pooling window is placed over the input (blue/bottom

grid) to produce the output (cyan/top grid). Source [4].

There are two types of pooling layers that we will use in this work:

1. Max pooling For max pooling the summary statistic is computed by returning the

highest value within the window at the current position.

2. Average pooling For average pooling the summary statistic is computed by returning

the mean value of all values within the window at the current postion.

De�nition 2.2.1 Convolutional Neural Networks

CNNs are DFNs with at least one convolutional layer. Usually they consist of some

convolutional layers, some pooling layers and optionally some fully-connected layers at

the end of the network.

Batch-Normalisation layers Batch-Normalisation [13] is a technique for stabilising the

training process. This is done by ensuring that the input for a layer always comes from a

normal distribution with a mean of zero and a variance of one. To this end, each element

of the input is normalised batchwise. Let X ∈ RN×n be a matrix with a mini-batch of N

feature vectors with dimensionality n. With ~x(k) we denote a vector containing the kth

value of each vector in our mini-batch. For each dimension we normalise ~x(k):

~x′
(k)

=
~x(k) − E[~x(k)]√

Var[~x(k)]
(2.4)

This might constrain the model expressibility. Most pre-activation would be in the interval

[−1, 1]. Hence, we introduce a scale parameter γ(k) and a shift parameter β(k) for each

activation ~x(k). These parameters are trainable and learned along with all other parameters

of our network. The transformation with γ and β is of the form:

~y(k) = γ(k)~x′
(k)

+ β(k) (2.5)

2.2.3 Learning Distributed Representations

For our application we want our DFN to evaluate similarities between mathematical ex-

pressions. For doing so, we want the model to approximate a function e : M → Rn with

the following property:

2.2. DEEP LEARNING 11

Let a, b, c ∈M be some representations of mathematical expressions.

If and only if a is semantically more similar to b than to c,

the following equation holds: 〈e(a), e(b)〉 > 〈e(a), e(c)〉
(2.6)

With M we denote a set of numerical representations of mathematical expressions. The

results of function e are called distributed representations [6, pp. 544-550] or embeddings of

the mathematical expressions. Each dimension of a resulting embedding e(x) ∈ Rn can be

seen as a particular feature of the respective formula x. With a properly learned function,

it is easy to evaluate the similarity between two images of mathematical expressions. We

can just compute both distributed representations and calculate the similarity i.e. the dot

product of the two resulting vectors. A suitable objective function for learning a function

like e is presented in Section 3.1.

2.2.4 Backpropagation

As already stated the parameters θ are optimised with gradient descent. For gradient de-

scent we need the partial derivative of each parameter and backpropagation [28] is an e�-

cient algorithm for computing all of them. A DFN is a composition of the functions that are

de�ned by its layers. To compute the derivatives of all these composed functions backprop-

agation makes use of the chain rule of calculus (see De�nition 2.2.2).

De�nition 2.2.2 Chain rule of calculus

The chain rule of calculus de�nes the derivative of some function composition. For

y = f(g(x)) the derivative of y with respect to (w. r. t.) x is given by [6, p.203]:

∂y

∂x
=
∂g(x)

∂x

∂y

∂g(x)
(2.7)

The properties of the chain rule of calculus can be exploited for the e�cient computing

of the gradient in the context of function compositions. Let J(x) = f(g(h(x))) with

z1 = h(x), z2 = g(z1) and z3 = f(z2), . We want to compute the partial derivatives of

J(x) w. r. t. z2, z1 and x. We could simply derive the respective formulas and compute all

partial derivatives with these formulas:

∂J(x)

∂x
=
∂z1

∂x

∂z2

∂z1

∂z3

∂z2

∂J(x)

∂z1
=
∂z2

∂z1

∂z3

∂z2

∂J(x)

∂z2
=
∂z3

∂z2

(2.8)

As we go back from z2 to x the formula for the derivative gets longer. If x was also a result

of some composed functions and we wanted to get the derivative of J(x) w. r. t. the inputs

12 CHAPTER 2. PRINCIPLES

of these functions, the formula would get even longer. And while the formulas would get

longer the computational cost would rise. For this reason, this naïve approach does not

seem to be very e�cient. For a more e�cient way, we can exploit the relations between the

partial derivatives of z2, z1 and x. A careful reader might have noticed some repetitions in

Equation (2.8). We could use the de�nition of ∂J(x)
∂z1

to write the derivative of J(x) w. r. t.

x like this:
∂J(x)

∂x
=
∂z1

∂x

∂J(x)

∂z1
(2.9)

Actually, for one step more into the chain of functions, we only get one new partial

derivative. The rest of the partial derivatives are computed already if we compute the

derivatives in the order z2, z1,x. We can reuse ∂J(x)
∂z1

to compute ∂J(x)
∂x more e�cient. This

means that with this procedure we only need to compute one derivative per parameter,

while the number of derivatives to be calculated is linearly growing for the naïve procedure.

Because of the layered structure of a DFN, the partial derivative of a single weight w

in layer li depends on the partial derivative of certain other weights W in layer li+1. By

computing the partial derivatives in the right order, we can reuse the partial derivatives

of the parameters from li+1 for our computations in layer li. This is why the algorithm

is called backpropagation. The gradient, which is some kind of error signal, is propagated

through the network in reverse order - from the output layer to the input layer.

2.2.5 Architectural Choices and Hyperparameters

The design space for deep models is huge. For some given machine learning task there is

an in�nite amount of DFNs that we could deploy for solving the task. We need to choose

how deep we want our model to be, what nonlinearity we want to deploy and which types

of layers we want to use. We also need to de�ne the order of our layers, the kernel size

and many things more (cf. [6, pp.193-199]). Additionally, we need to set hyperparameters

(see De�nition 2.2.3) for our learning process - e.g. the learning rate or the size of the

mini-batches.

De�nition 2.2.3 Hyperparameters

Hyperparameters con�gurate a machine learning algorithm and determine its behaviour.

However, they are not learned by the algorithm itself. They have to be chosen by the

user (cf. [6, p. 118]).

An exhaustive search for all these opportunities is infeasible. There are guidelines for

designing a model, but these guidelines are in most cases heuristic and may change over

time while research on this �eld continues. Theoretical foundations with performance guar-

antees for such guidelines are rare. In the end, we simply have to try out a set of possible

con�gurations for a given task in order to know what will work best. Con�gurations that

lead to better performance may exist but may be not found [6, chapter 11].

2.2. DEEP LEARNING 13

The Role of Depth

In theory, any DFN with at least three layers is able to approximate any desired function

that has the following property to an arbitrary degree. The function has to be either

continuous on a closed and bounded subset of Rn or it has to map from and into a �nite

dimensional discrete space. This property of DFNs is described by the universal approx-

imation theorem4 [10]. However, this does not mean that a DFN is always able to learn

such a desired function f∗. Or in other words: There is a con�guration for the parameters

θ with which the DFN would represent f∗, but it is uncertain whether this con�guration

will be found during the gradient-based learning process. Additionally, the universal ap-

proximation theorem gives no bound for the size of the hidden layer. Although there might

be a DFN with three layers that is able to approximate some desired function, this DFN

might require an infeasibly large hidden layer (cf. [6, p. 195]). For this second problem

increasing the depth of a network might help. The work of Montufar et al. [24] suggests

2 4 6 8 10 12

92

94

96

98

Number of hidden layers

A
cc

ur
ac

y
in

%

Accuracy versus Depth

CNNs with one fully-connected layer
CNNs with two fully-connected layers

0 0.2 0.4 0.6 0.8

92

94

96

98

Number of parameters x108

A
cc

ur
ac

y
in

%

Accuracy versus #parameters

3 conv. layers
3 dense layers 11 conv. layers

Figure 2.3: As can be seen from the left graph a su�ciently deep model showed to be an important

factor for achieving good accuracy in the work of Goodfellow et al. [7]. The right graph shows

that this e�ect is not reducible on the number of trainable parameters in deeper models. It showed

that shallower models with about the same number of weights and biases performed inferior. Data

from: [7].

that functions which would require a huge amount of trainable parameters with only three

layers might be representable with a much lower number of parameters if the network is

deeper. Experiments from Goodfellow et al. [7] on a dataset for house-number recognition

4In fact the universal approximation theorem applies to all borel measurable functions. But a complete

de�nition of borel measurability would lead too far and at this point it should be enough to say that any

function that is continuous and on a closed and bounded subset of Rn or any function that maps from and

to a �nite dimensional discrete space is borel measurable.

14 CHAPTER 2. PRINCIPLES

[25] showed that depth is an important factor for achieving a good accuracy whereas in-

creasing the sheer number of trainable parameters does not necessarily help (see Figure

2.3).

Montufar et al. [24] give the following explanation for the e�ectiveness of depth: Each

layer is capable of mapping di�erent input regions to a common output region. This can

be seen as some kind of abstraction. The abstraction done by one layer is not arbitrarily

complex. But, because of the compositional structure of a DFN, higher layers can make

use of abstraction that was done in lower layers. The di�erent input regions that some

layer lk maps to the same output region are again the result of several region summarising

mappings in the lower layers ∀li, 0 < i < k. This means that the mapping in layer lk

implicitly a�ects all input regions from the lower layers that have already been summarised

to the respective input regions for layer lk (see Figure 2.4). The number of input regions

that can be summarised to common output regions grows exponentially in depth. For this

reason, deep models are in general superior in terms of expressivity to shallow models. But

they are also harder to train as we will see later in this section.

Figure 2.4: Sub�gure (a) and (b) illustrate the abstraction performed by single layer as a folding

of the input space and show how a successive folding can make regions linearly seperable. Sub�gure

(c) visualises how the abstraction from lower layers (bottom to middle) can be reused in the higher

layers (middle to top) to summarise di�erent input regions. In this case the �rst layer maps its

�ve red input regions to two red output regions. Finally, this two red regions are then mapped to

a common output region by the second layer. Source: [24].

Initialisation

Gradient descent is an iterative method that does some kind of local search for minimas on

the given objective function. If the given objective function is su�ciently complex (which

will be the case for interesting deep learning problems), the outcome of the optimisation

process is highly dependant on the initial starting point. An unfortunate starting point

might cause that our training process shows no convergence at all or that we get stuck in a

2.2. DEEP LEARNING 15

suboptimal local minimum. In contrast, a good starting point that is already near the de-

sired minimum will lead to short training and good performance [6, p.297]. Unfortunately,

there is no initialisation strategy with a guarantee for good performance. There are only

heuristics for initialising trainable parameters which have proven themselves empirically.

These strategies aim at ensuring certain properties at the beginning of the training proce-

dure. Nevertheless, the optimisation of deep models is not yet su�ciently understood to

explain whether these properties remain unchanged during the training process [6, p.297].

One example of such heuristics is the kaiming initialisation (see De�nition 2.2.4) pro-

posed by He et al. [8]. This approach aims at keeping the variance of the activations

constant throughout the network. This means that the initial con�guration of the weights

should ensure that at initialisation time the variance of the input and the output is equal

at each layer. He et al. [8] consider this property to be useful because it prevents the mag-

nitude of the signal propagated through the network (i.e. the magnitude of the activations)

to be scaled by a certain factor after each layer. A scaling by a constant factor β in each

layer would lead to an exponential scaling by βL over all L layers. The authors argue that

this scaling of the signal's magnitude will bring a DFN to stall or to diverge dependant on

whether β is smaller or greater than one. They derive the following initialisation scheme

for networks with convolutional or fully-connected layers and the ReLU activation func-

tion that keeps this scaling factor close to one and thereby keeps the signal's magnitude

constant throughout the network.

De�nition 2.2.4 Kaiming Initialisation

All weights are drawn from a normal distribution with zero mean and �xed variance:

w ∼ N (0, var) with var = 2/fanin. Biases are initialised with zero.

For some convolutional layer: fanin = chin ∗kwidth ∗kheight and fanin = chout ∗kwidth ∗
kheight

Gradient Propagation

Intuitively, the gradient can be seen as some error signal for all the trainable parameters.

It controls how the weights and biases are altered. So, for a smooth training the gradient

should be propagated properly throughout our network. But this is not always the case.

Gradients in DFNs have a tendency to get too small or too big [9]. Both of these extremes

are unwanted. As can be seen in Section 2.2.4 the gradient in some layer li depends on the

gradient in the following layer li+1. This gradient is again dependant on the gradient in

the next layer li+2 and so on. All these values are multiplied (see Equation (2.9)). If the

respective partial derivatives are under one but to close to zero, the gradient gets smaller

as nearer you get to the input layer. This is called the vanishing gradient problem. If the

respective partial derivatives are far bigger than one, the gradient gets bigger as nearer you

get to the input. This is called the exploding gradient problem. The deeper a network gets,

16 CHAPTER 2. PRINCIPLES

the stronger this gradient e�ect is. For this reason, deeper models are in general harder to

train.

Dynamics of the Forwarded Signals

Yang et al. [33] rank the dynamics within a DFN on a scale between stable and chaotic.

The ranking on this scale is determined by the network's tendency to align activations for

di�erent inputs throughout the network or its tendency to produce very di�erent activations

for similar inputs. This can be measured by forwarding two di�erent inputs through the

network and computing the cosine similarity between the activations for the respective

inputs layer-wise. For a cosine similarity near one, the activations are very similar. Thus,

the network's behaviour is called rather stable. For a cosine similarity near zero, the

activations are very di�erent. Thus, the network's behaviour is called rather chaotic. Yang

et al. [33] state that e�cient learning is only possible on the edge of chaos.

If the network is too stable, the activations for very di�erent inputs get more similar,

the deeper they get forwarded through our network. In that case, the gradient will be close

to zero - especially for the parameters in the early layers. If the activations in layer lk are

very similar regardless of whether the inputs are similar or not, the activations of the input

layer do not have much e�ect on the activations of layer k either. Hence, the e�ect of the

parameters in the input layer is marginal which causes the gradient to vanish.

A network that is too chaotic will produce very di�erent activations even for similar

inputs. If so, there will be a contrary e�ect. The parameters of the network - especially in

the early layers - will have a huge impact on the evolution of activations throughout the

network. The respective gradient tends to explode i.e. become huge.

Chapter 3

Related Work

Now that we are familiar with deep learning, we will focus on two deep learning models

that are crucial for this work. First we will take a look at the Equation-Encoder [27],

which is the method that we try to improve in terms of e�ciency. We will then take a

look at SqueezeNet [11]: A CNN architecture that is designed for achieving satisfactory

performance with a small number of trainable parameters. The construction of SqueezeNet

gives us some insights about the e�ects that certain architectural choices have on the size

and the performance of a model. We will use these insights to construct a new, more

e�cient Equation-Encoder in the next chapter.

3.1 The Equation-Encoder

In contribution to the ultimate goal of creating a search engine for scienti�c publications

that works with mathematical formulas as queries instead of natural language keywords,

Pfahler et al. [27] proposed a method for evaluating similarity between bitmap represen-

tations of mathematical expressions: the Equation-Encoder. The Equation-Encoder is a

CNN that embeds bitmap representations of mathematical expressions into a low dimen-

sional vector-space in a similarity preserving fashion. The function e that the Equation-

Encoder tries to approximate has the property presented in Section 2.2.3. For the Equation-

Encoder, the numerical representations of the input are of the form X ∈ [0, 1]32x333.

Wang et al. [32] propose a loss function that makes it possible for a DFN to learn the

desired similarity preserving function. The loss function (see Equation (3.1)) requires three

samples (or formulas): the anchor sample x, the positive sample x+ and the negative sample

x−. The semantic similarity between the anchor and the positive sample should be higher

than the similarity between the anchor and the negative sample. These three samples

form a triple. After the network computed the embeddings for all three samples, we can

compute the loss with some kind of similarity measure between the vector representations

17

18 CHAPTER 3. RELATED WORK

e.g. the dot product. The margin value ∆ determines by how much x and x+ should be

more similar than x and x−.

`tri(x,x+,x−) = max{0, ∆− 〈e(x), e(x+)〉+ 〈e(x),e(x−)〉} (3.1)

For this loss function to work well the input embeddings need to be normalised to unit

length (|x|2 = 1). Otherwise the Equation-Encoder may satisfy an absolute margin just

by returning embeddings that contain big values, which would result in high values for the

dot product of two embeddings. Therefore, Pfahler et al. [27] normalise the embeddings

computed by the Equation-Encoder with e′(x) = e(x)
||e(x)||2+ε (ε is a small constant that

ensures numerical stability). We will adapt this technique for all models used in this work.

Balntas et al. [2] suggest a technique that they call the anchor swap in order to make

the triple loss more strict. This technique exlpoits that the relation between x and x+

is symmetric. The symmetry allows us two swap the roles of the anchor sample and the

positive sample if this yields a higher loss. With an anchor swap the triple loss function

looks like this:

`tri(x,x+,x−) = max





0

∆− 〈e(x), e(x+)〉+ 〈e(x), e(x−)〉
∆− 〈e(x+), e(x)〉+ 〈e(x+), e(x−)〉

(3.2)

The data used by Pfahler et al. [27] comes from two publicly available crawls of arXiv-

ids. The formulas of the respective publications were extracted and compiled to bitmaps. In

order to learn e by using this data, some kind of supervision is needed. Unfortunately, the

dataset comes with no labels that de�ne a clear relation of similarity between formulas. To

address this problem, Pfahler et al. [27] de�ned some weak-labels based on the information

available. This weak-label approach is based on a simple assumption: Two equations are

likely to be similar if they are taken from the same document, and if two equations are

taken from two di�erent random documents, they are less likely to be similar. With these

weak-labels, the Equation-Encoder can be trained with the loss function (3.1). Pfahler

et al. [27] sample the anchor formula and the positive formula from the same paper and

the negative formula from a di�erent paper.

Once the Equation-Encoder has been trained, all formulas from all papers listed in

the search engine's database are embedded. The obtained embeddings can then be in-

serted into an e�cient index structure which allows us to perform a query concerning a

mathematical expression by embedding the query formula and performing an approximate

nearest neighbour search [12].

3.2. SQUEEZENET 19

3.1.1 Equation-Encoder Network Architecture

Pfahler et al. [27] propose two Equation-Encoder architectures, a small one and a large

one. In this work we will only deal with the large one. The Equation-Encoder consists

of six convolutional layers and two fully-connected layers. There is a max pooling layer

after every other convolutional layer and a batch-normalisation between the fully-connected

layers. The resulting architecture can be seen in Table 3.1. Pfahler et al. [27] used ReLU

as the nonlinearity for all layers and intialised the weights with a version of the kaiming

initialisation (see De�nition 2.2.4) that draws the weights from a uniform distribution

instead of drawing them from a normal distribution1.

layer type output size �lter size / stride #parameter

Convolutional 64x30x331 3x3 / 1 640

Convolutional 64x28x329 3x3 / 1 36,928

Max Pooling 64x14x82 2x4 / 2x4 0

Convolutional 64x12x78 3x5 / 1 61,504

Convolutional 64x10x74 3x5 / 1 61,504

Max Pooling 64x5x18 2x4 / 2x4 0

Convolutional 64x3x16 3x3 / 1 36,928

Convolutional 64x1x14 3x3 / 1 36,928

Max Pooling 64x1x4 → 256 1x3 / 1x3 0

Fully-connected 64 - 16,448

Batch-Normalisation 64 - 128

Fully-connected 64 - 4,160

Total 255,168

Figure 3.1: Architecture of the large Equation-Encoder used by Pfahler et al. [27]. Input size is

1x32x333.

3.2 SqueezeNet

SqueezeNet is a special CNN architecture that is designed for using as few trainable pa-

rameters as possible while maintaining the network's ability to approximate the desired

function. Originally it was designed for the ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) [29]. It performed as good as the winner from 2012 [18], but has

50 times less trainable parameters. There are three di�erent strategies in the SqueezeNet

architecture to save trainable parameters:

1This initialisation scheme is the default for the used deep learning framework [26]

20 CHAPTER 3. RELATED WORK

1. Use 1x1 convolutional �lters The height and width of convolutional �lters are

important factors when it comes to reducing the amount of trainable parameters. A

3x3 �lter for example has 9 times as much parameters as a 1x1 �lter.

2. Reduce input channels Despite their economic use of parameters, 1x1 �lters are

a bit constrained in their ability to detect certain features. We may also want to use

�lters with a higher dimensionality. To keep the amount of parameters consumed by

this more powerful �lters small, we can reduce the number of input channels for the

respective layer. Lets say we have a layer with 64 3x3 �lters. For each input channel

we need 64 ∗ 9 = 576 parameters. So for example, if we halved the number of input

channels from 64 to 32, we would save 32 ∗ 576 = 18 432 parameters.

3. Pool as late as possible We discard some information when we are using pooling

layers. Convolutional layers are more e�ective if they have access to more informa-

tion. As a consequence we give them more information by not pooling too early.

3.2.1 The Fire Module

Strategies one and two result in a new module that is the main component of SqueezeNet.

Iandola et al. [11] call this the �re module. A �re module consists of two consecutive

convolutional layers (see Figure 3.2). We refer to the �rst one as the squeeze layer. The

purpose of the squeeze layer is to reduce the number of channels that are forwarded to the

next layer as a consequence of strategy two. To achieve this the layer has less kernels than

it has input channels. This reduction layer would be useless if it consumed the amount of

parameters that it saves for the following layer. Thus, a squeeze layer uses only 1x1 kernels.

The second layer in a �re module is called the expand layer. As the name implies this layer

annuls the reduction of the channels. Therefore, it has more kernels than the squeeze layer.

The expand layer uses 1x1 as well as 3x3 kernels. With a standard convolutional operation

this would result in feature maps with di�erent dimensions. Iandola et al. [11] solve this

mismatch by using padding for the convolutions with the 3x3 kernels.

Figure 3.2: A visualisation of a �re module. Source: [11].

For the design of a �re module Iandola et al. [11] introduce two hyperparameters: The

�rst is the percentage of 3x3 �lters in an expand layer pct3x3. The second is the squeeze

3.2. SQUEEZENET 21

ratio, which is the proportion between the number of �lters in the squeeze layer and the

number of �lters in the expand layer. Both hyperparameters control the model's size

(number of trainable parameters). It is clear that a model with higher squeeze ratio or

higher pct3x3 is at least as powerful as versions with lower values for these hyperparameters.

There is a tradeo� between the model's size and performance. Iandola et al. [11] studied

the relation between those properties with experiments on the ILSVRC dataset. Their

models showed no improvements for pct3x3 greater than 0.5 or squeeze ratios greater than

0.75. For their �nal model (SqueezeNet) they used pct3x3 = 0.5 and a squeeze ratio of

0.125. Since it was not the goal to design a model as accurate as possible, but a model

that is much smaller than AlexNet [18] while maintaining performance, they did not choose

the squeeze ratio with the best performance (86.0% Top-5 accuracy). Instead they chose

the squeeze ratio to be 0.125, which lead to a performance that is a bit lower (80.3% Top-5

accuracy).

There are three additional hyperparameters that control the number of channels through-

out the network: With freq and incre Iandola et al. [11] control when and by how much

the number of channels is increased i.e. after freq �re modules they increase the number of

output channels of the expand layer by incre. The value of basee determines the number

of output channels from the expand layer of the �rst �re module.

SqueezeNet does not have any fully-connected layers at the end of the network because

these layers need a rather large amount of trainable parameters and the work of Lin et al.

[20] suggests that a global average pooling layer at the end of a CNN works at least as well

as a fully-connected layer.

22 CHAPTER 3. RELATED WORK

3.2.2 Overall Architecture

All nonlinearities in SqueezeNet are ReLU activations and the weights are initialised with

a method proposed by Glorot et al. [5]. The overall architecture of SqueezeNet can be seen

in Table 3.3. It might be irritating to see that the total amount of trainable parameters is

much higher for SqueezeNet than for the Equation-Encoder (1,248,424 vs. 255,168), but we

have to keep in mind that SqueezeNet has much more channels. This is necessary because

SqueezeNet needs an output layer with a dimensionality of 1000 for the task that it should

solve. Already the �rst layer in SqueezeNet has more channels than the Equation-Encoder

and in contrast to the Equation-Encoder the number of channels is increased every other

layer for SqueezeNet. With fewer channels the SqueezeNet architecture would also require a

much lower amount of weights and biases. We will see this when we design a new Equation-

Encoder by combining the architectures of SqueezNet and the original Equation-Encoder

(see Section 4.1.4).

layer type output size �lter size / stride squeeze ratio pct3x3 #parameter

Convolutional 96x111x111 7x7 / 2x2 - - 14,208

Max Pooling 96x55x55 3x3 / 2x2 - - 0

Fire 128x55x55 - 0.125 0.5 11,920

Fire 128x55x55 - 0.125 0.5 12,432

Fire 256x55x55 - 0.125 0.5 45,344

Max Pooling 256x27x27 3x3 / 2x2 - - 0

Fire 256x27x27 - 0.125 0.5 49,440

Fire 384x27x27 - 0.125 0.5 104,880

Fire 384x27x27 - 0.125 0.5 111,024

Fire 512x27x27 - 0.125 0.5 188,992

Max Pooling 512x13x13 3x3 / 2x2 - - 0

Fire 512x13x13 - 0.125 0.5 197,184

Convolutional 1000x13x13 1x1 / 1x1 - - 513,000

Average Pooling 64x1x1 13x13 / 13x13 - - 0

Total 1,248,424

Figure 3.3: Architecture of SqueezeNet. Input size is 3x224x224.

Chapter 4

Experiments

This chapter describes the experiments that we conduct for deriving a new Equation-

Encoder architecture which is suitable for high data volume. First, we will take a look

at the experimental setup, then we will move on to the actual experiments and �nally

we will close with a short summary of the obtained results and the derived architec-

ture/hyperparameters. A comprehensive evaluation of the results will be done in the

next chapter.

4.1 Experimental Setup

In this section, we will introduce the data, the performance measures and the architecture

types that will be used for the experiments.

4.1.1 Dataset

As already stated the available data was taken from arXiv.org. Preliminary to this work

raw LATEX sources of all papers that were published on arXiv.org before March 2019 were

downloaded. The formulas in the respective papers were extracted by searching for reg-

ular expressions that represent di�erent LATEX math-environments. The resulting LATEX-

expressions were compiled to bitmaps that show the respective formulas. Not all of the

extracted formulas compile properly to a png-�le and some of the sources downloaded from

arXiv.org are empty. Thus, the formulas in our dataset are still only a part of the set of

all formulas that are possibly available on arXiv.org

Meta data about the formulas is available as well. For each formula we store the paper

and the section in which the formula appears. For each paper we also store the author, the

subject, the abstract, the year in which the paper was published and outgoing citations.

All in all, this results in a dataset with 651,414 papers, 32,661,225 formulas and 748,719

citations between papers within the dataset. From this formula collection three datasets

for di�erent purposes were curated:

23

24 CHAPTER 4. EXPERIMENTS

Tuning Dataset We will use this dataset for hyperparameter tuning. Hyperparameter

tuning with all data would have been computationally expensive and would have con-

sumed a lot of time. Therefore, a dataset with a tenth of the original size was curated.

This dataset contains all available publications from the subjects General Relativity and

Quantum Cosmology (Physics), Information Theory (Computer Science) and Probability

(Mathmatics). All three subjects contribute roughly the same amount of formulas. The

tuning dataset is already bigger and contains more di�erent subjects than the dataset used

by Pfahler et al. [27].

Qualitative Evaluation Dataset We will use this dataset for qualitative evaluation

(see Section 5.1.3). In order to test the suitability as a real-world search engine, it would

be insightful to perform queries on an index structure that contains embeddings from the

trained model. However, to be able to evaluate the quality of the query result domain spe-

ci�c knowledge is needed. Due to a lack of experts for all subjects in our data, the dataset

for qualitative evaluation dataset contains only publications from the �eld of Machine

Learning (Computer Science).

It would probably be hard for our model to evaluate similarities between machine

learning speci�c formulas if it had never encountered formulas from this subject. Therefore,

this dataset contains solely papers published after 2017. Machine learning papers/formulas

published before 2017 can be used for training.

Full Dataset This is the dataset on which we will train our �nal model. It contains all

available publications except for the papers contained in the qualitative evaluation dataset.

Dataset #triples #papers #formulas #citations

Tuning 1,000,000/250,000 36,750/9,189 2,985,193/740,100 37,993/2,207

Qual. Eval. - 4,631 149,083 2,027

Full 10,000,000/2,500,000 517,442/129,341 26,029,067/6,483,075 702,056/44,636

Table 4.1: A Description of the Datasets in numbers. The value left from the slash refers to the

train split of a dataset the other refers to the test split.

The tuning dataset and the full dataset are both divided into two parts: one that

contains roughly 80% of the data and is used for training models and another one containing

the rest of the data that is used for comparing the performance of di�erent models. We

will refer to these subdatasets as the train data and the evaluation/test data.

4.1. EXPERIMENTAL SETUP 25

Sampling of Triples

For a triple, we need an anchor formula �rst. This anchor is sampled randomly from a

paper which is again randomly chosen from all possible papers1. With a given anchor we

can sample the negative and the positive formula. The negative sample is chosen in the

same way as the anchor but with the constraint that the resulting equation cannot be from

the same paper as the anchor. The positive sample may be chosen in three di�erent ways:

1. Same Section The positive sample is uniformly drawn from all equations that appear

in the same section as the anchor.

2. Same Paper The positive sample is uniformly drawn from all equations that appear

in the same paper (not necessarily the same section) as the anchor.

3. Along Citation (optional)2 This is only possible if the paper of the respective anchor

has outgoing citations to other papers within the dataset. If this is the case, �rst a

cited paper is uniformly drawn and then a random formula from this cited paper is

chosen as the positive sample.

Quality of the Sampled Triples

To give a quick overview of the quality of the sampled triples, 50 triples were drawn

randomly from the full dataset. From this 50 triples, I chose eight examples manually (see

Section A.3) to discuss their quality3.

The �rst observation is that the negative sampling works quite well. The semantic and

syntactic similarity between anchor and negative sample seems to be very low. There are

few or no shared symbols and there is arguably a great di�erence in the formula's structure.

The quality of the positive sample is much more diverse. Most of the positive pairs

in A.3 share at least a few symbols, but there are also triples where the anchor and the

positive formula do not have a single symbol in common (Triple 1,3 and 7). Triple 1 is a

special case because for the positive formula it is not the sampling that went wrong but

the extraction of the formula. This is clearly not a mathematical expression and should

have not been extracted from the LATEX-Source in the �rst place.

In Triple 6 the positive formula contains a sub-expression that appears in almost the

same manner in the anchor formula (|∆(Ai +Aj)|2) and for Triple 4 the number of shared

symbols is very small, but therefore the overall structure is very similar (∆�γ
s,t = �0−�γ

s,t).

There are positive pairs where the anchor and the positive formula seem to describe similar

1This ensures that all papers are equally represented and that papers with a huge amout of formulas

are not overrepresented
2This sampling method is optional and its value shall be determined in an experiment (see Section

4.2.4).
3All 50 formulas can be found in the supplementary material and here.

https://github.com/la-gaffe/bt-suppl

26 CHAPTER 4. EXPERIMENTS

properties. E.g. In Triple 2 both formulas describe the relation of some values Oi and Bi

and in Triple 8 both formulas indicate that some λL should be maximised. An important

lesson that we can learn from this small dataset investigation is that we are dealing with a

very loose de�nition of semantic similarity. With our positive pairs we tell our model when

to consider two formulas rather similar. We see that similarity between anchor and positive

formula can look very di�erent (shared symbols but di�erent structure, same structure but

few shared symbols, similar sub expressions etc.). For this reason, we can expect our model

to learn a rather loose perception of similarity.

In conclusion, the negative and the positive sampling method seem to match quite

well. In most cases, the semantic relation between the anchor and the positive formula

is higher. Nevertheless, this quick view into the data also implicates that the sampling

and the formula extraction is far from perfect and we have several triples that may be

counter-productive for our learning process.

4.1.2 Performance Measures

To be able to �nd adequate hyperparameters and a good architecture we need some kind

of quantitative performance measure. This allows us to compare di�erent con�gurations.

The two basic performance measures for the following experiments are computed on a set

of triples and are de�ned as follows:

1. Ranking Loss: P (x,x+,x−) =





1, if 〈e(x), e(x+)〉 ≤ 〈e(x), e(x−)〉
0, if 〈e(x), e(x+)〉 > 〈e(x), e(x−)〉

2. Constant Margin Loss: P (x,x+,x−) = max{0, ∆− 〈e(x), e(x+)〉+ 〈e(x), e(x−)〉}

Of course both performance measures are computed on a test set, which has not been

used for training. The constant margin loss is our objective function (see Eq. (3.1)) on

that our model is trained and the ranking loss is some discrete version of this objective

function. While the ranking loss simply counts how many of the triples are classi�ed

incorrect (i.e. the negative sample is more similar to the anchor as the positive sample:

〈e(x), e(x+)〉 ≤ 〈e(x), e(x−)〉), the constant margin loss also cares about how incorrect a

false classi�cation is (i.e. by how much the margin is violated). For both losses, we will

swap the anchor and the positive sample if this yields a higher loss.

4.1.3 Baseline Equation-Encoder

The baseline model against which we will compare our new Equation-Encoder is the larger

model from Pfahler et al. [27] with some small adjustments. We will refer to this model

as the Baseline Equation-Encoder (BEE). The smaller model from Pfahler et al. [27]

performed substantially worse than the BEE on the tuning dataset. Thus, it will be not

4.1. EXPERIMENTAL SETUP 27

considered for the following experiments. Pfahler et al. [27] turned Batch-Normalisation

o� after the �rst training epoch. Since the Squeezed Equation-Encoder (SEE) (see Section

4.1.4) uses Batch-Normalisation throughout the whole training procedure, we will also do

this for the BEE. This will give us a fair comparison between both models. For the

same reason, the baseline model will use the nonlinearity, the initialisation scheme and the

margin that worked best for the SEE (see Con�guration 4.2.1). The overall structure of

the BEE is depicted in Table 3.1.

4.1.4 Squeezed Equation-Encoder

Since our new architecture is heavily in�uenced by SqueezeNet [11], we will name it the

Squeezed Equation-Encoder. The SEE is based on the torchvision4 [26] implementation of

SqueezeNet. This is not exactly the same architecture as the one presented in the original

layer type output size �lter size / stride squeeze ratio pct3x3 #parameter

Convolutional 64x15x166 3x3 / 2x2 - - 640

Max Pooling 64x7x82 3x3 / 2x2 - - 0

Batch-Normalisation 64x7x82 - - - 128

Fire 64x7x82 - 0.5 0.5 12,384

Fire 64x7x82 - 0.5 0.5 12,384

Max Pooling 64x3x40 3x3 / 2x2 - - 0

Batch-Normalisation 64x3x40 - - - 128

Fire 64x3x40 - 0.5 0.5 12,384

Fire 64x3x40 - 0.5 0.5 12,384

Max Pooling 64x1x19 3x3 / 2x2 - - 0

Batch-Normalisation 64x1x19 - - - 128

Fire 64x1x19 - 0.5 0.5 12,384

Fire 64x1x19 - 0.5 0.5 12,384

Fire 64x1x19 - 0.5 0.5 12,384

Fire 64x1x19 - 0.5 0.5 12,384

Convolutional 64x1x8 1x5 / 2x2 - - 20,544

Batch-Normalisation 64x1x8 - - - 128

Convolutional 64x1x3 1x3 / 2x2 - - 12,352

Average Pooling 64x1x1 1x3 / 1x3 - - 0

Total 133,120

Figure 4.1: Architecture of the SEE. Input size is 1x32x333.

paper [11], because the authors continued to develop their model and ended up with a

slightly di�erent architecture that achieves the same accuracy with a smaller amount of

necessary computations5. This architecture will be the starting point for the SEE. From

4https://github.com/pytorch/vision
5The repository can be found here.

https://github.com/pytorch/vision
https://github.com/forresti/SqueezeNet

28 CHAPTER 4. EXPERIMENTS

thereon we will make some adjustments that are either necessary for our speci�c task or

improve the performance. SqueezeNet is designed for quadratic inputs and output vectors

with a dimensionality of 1000, but we have rectangular inputs and output vectors with a

dimensionality of 64. Therefore, the last two convolutional layers have rectangular kernels

instead of quadratic ones and one more convolutional layer was added. Because of the

lower output dimensionality, it was also possible to reduce the number of channels. For

all plain convolutional layers and for all �re modules, we use 64 in- and output channels6.

This means that in our case basee is 64. The values of freq and incre do not play any

role because we do not increase the number of channels at all. For all �re modules we use

a �xed value for pct3x3 = 0.5 and the squeeze ratio (also 0.5). The SEE also has some

Batch-Normalisation layers for better convergence. The overall structure of the SEE is

depicted in Table 4.1.

4.1.5 Miscellaneous

Objective function The objective function for the training process will be the constant

margin loss from Section 4.1.2. As suggested by Janocha et al. [14] we will square the

training loss for faster convergence.

Hardware The experiments for this entire work were done on a machine with the fol-

lowing technical speci�cations:

CPUs: 56x Intel(R) Xeon(R) CPU E5-2690 v4 2.60GHz

GPU: Nvidia GeForce GTX 1080

RAM: 503 GB

Optimiser For all experiments we will use the Adam-optimiser [16].

6The �rst convolutional layer is an exception it has only one input channel.

4.2. EXPERIMENTS 29

4.2 Experiments

As already mentioned in Section 2.2.5 the design space for our model and our algorithm

is huge. Even with the type and order of our layers �xed, there are a lot of choices to

be made. For this thesis, we conduct experiments regarding the activation function, the

initialisation scheme, the learning rate and the margin of the loss function. All experiments

except for the last one (see Section 4.2.7) use the Tuning Dataset. The starting point are

the choices from Pfahler et al. [27] and we will try to improve performance from thereon.

The architecture/hyperparameter choices we begin with are:

Con�guration 4.2.1 Initial Con�guration for the SEE

Activation: ReLU

Initialisation: Kaiming initialisation (with uniform distribution)

Learning Rate: 0.0025

Margin: 1.0

4.2.1 Experiment I - Vanishing Gradient

With this initial setup the SEE performs poorly. For the �rst �ve epochs (�ve million

triples forwarded), the training loss hardly changes. The optimisation seems to be stuck.

After �ve million triples that have been forwarded there is some minimal improvement in

the loss and the gradient's norm starts to have non-zero values, but the result is still very

unsatisfying (see Figure 4.2). As we can see in the right plot of Figure 4.2, the reason for

this is the vanishing gradient problem. The y-axis shows the norm of the weight's gradient

in the �rst layer to give an overview of how big the partial derivatives are in general. For

the �rst �ve epochs, the values are very close to zero. This means that the gradient i.e. the

error signal is not properly propagated through the network, which causes the optimisation

process to stall.

0.5 1 1.5 2
·107

0.7

0.8

0.9

1

Triples forwarded

C
on

st
an

tM
ar

gi
n

Lo
ss

(∆
=

1)

Training Loss

0 0.5 1 1.5 2
·107

0

0.2

0.4

Triples forwarded

N
or

m

Norm of gradient in first layer

Figure 4.2: A training run of the SEE with the initial setup. The optimisation process seems to

su�er from the vanishing gradient problem.

30 CHAPTER 4. EXPERIMENTS

For a better understanding of the dynamics within the SEE with standard setup, we

will take a look at the variance7 and the cosine similarity8 of the activations at initialisation

time (see Figure 4.3, top left plot). The curve of the cosine similarity of the activations

Figure 4.3: The cosine similarity (blue squares) and the variance (red triangles) of the feature

maps at a given layer within the SEE. The data points for layer zero show the variance and the

cosine similarity for the input. Top Left: ReLU/Kaiming, Top Right: SELU/Kaiming, Bottom

Left: ReLU/LeCun, Bottom Right: SELU/LeCun.

within the network converges very quickly to one, meaning that the activations get really

similar really fast. In the terminology of Yang et al. [33] the dynamic of this network is too

stable. The low variance emphasizes this dynamic. But where does this low variance come

from? A quick look into the input data shows that the input itself has only a variance

of approximately 0.015. Actually, this is not surprising having in mind that our input

images mainly consist of white pixels (numerically represented as zero). But, together

with the variance preserving property of our initialisation scheme it inhibits training. If

the variance is already low for the input layer and we initialise our weights in a way that

aims at preserving that variance, we will have low variance throughout all the network. My

7Following the strategy of [8] (see Section 2.2.5 - Initialisation)
8Following the strategy of [33] (see Section 2.2.5 - Dynamics of the Forwarded Signals)

4.2. EXPERIMENTS 31

hypothesis is that this causes the stable behaviour of the SEE and thereby the vanishing

gradient.

4.2.2 Experiment II - Activation and Initialisation

This �rst experiment aims at determining an activation function and an initialisation

scheme with which we can evade the vanishing gradient problem. In order to achieve

stable gradient propagation, we will try an alternative activation function. The activation

function of our choice is SELU [17] (see Appendix A.2). SELU dampens the variance of

the output if the variance of the input is high and increases the variance of the output for

input with low variance. This property seems to be quite useful for our network since we

su�er from too low variance.

In fact SELU manages to increase the variance of the activations by a small margin

(see Figure 4.3, top right plot). Nevertheless, the variance is still very low and the cosine

similarity still converges very fast to one. SELU alone will probably not solve our vanishing

gradient problem. Thus, we will expand our approach: Klambauer et al. [17] suggest that

0.5 1 1.5 2
·107

0.4

0.6

0.8

1

Triples forwarded

C
on

st
an

tM
ar

gi
n

Lo
ss

(∆
=

1)

Training Loss

0 0.5 1 1.5 2
·107

0

0.2

0.4

0.6

0.8

Triples forwarded

N
or

m
of

gr
ad

ie
nt

in
fir

st
la

ye
r

Gradient’s Magnitude

0 5 10 15 20 25

0.6

0.8

1

Epochs

C
on

st
an

tM
ar

gi
n

Lo
ss

(∆
=

1)

Test Loss

Kaiming&ReLU
Kaiming&SELU
LeCun&ReLU
LeCun&SELU

Figure 4.4: Experiments for determining the activation function and the initialisation scheme.

32 CHAPTER 4. EXPERIMENTS

a certain initialisation scheme (see De�nition 4.2.1)9 should be used in combination with

SELU.

De�nition 4.2.1 LeCun Initialisation

All weights are drawn from a normal distribution with zero mean and �xed variance:

w ∼ N (0, var) with var = 1/fanin, biases are initialised with zero.

Together with the LeCun initialisation the variance and the cosine similarity look a

lot better throughout the SEE (see Figure 4.3, bottom right plot). Variance increases

while the input gets forwarded, but it does not ecxeed a value of 0.5. The cosine similarity

increases too, but it starts a lot lower and it does not converge towards one. Note that only

the LeCun initialisation with ReLU and without SELU manages to obtain a good curve

for the cosine similarity (see Figure 4.3, bottom left plot). However, this con�guration has

lower variance than the con�gurations with SELU.

This small preliminary experiments might give an intuition of what works better for

training our SEE and what is worth trying out, but they cannot replace an experimental

evaluation of di�erent setups. Thus, we still need to run four experiments for all possible

combinations of ReLU&SELU and Kaiming&LeCun initialisation.

For the combination of ReLU and Kaiming, we already know the outcome. The op-

timisation process is stuck. The setups with Kaiming&SELU and LeCun&ReLU perform

equally bad. They are stuck for all 30 epochs and hardly show any improvements. For-

tunately, the fourth combination (LeCun&SELU) works pretty well. For this combination

the loss starts converging at the very beginning and the gradient in the �rst layer seems

to be su�ciently large most of the time (see Figure 4.4).

An evaluation with the constant margin loss of all four models emphasizes this result.

LeCun initialisation together with the SELU nonlinearity outperforms all other setups (see

Figure 4.4). Hence, for the rest of our experiments we will work with SELU nonlinearities

and LeCun initialisation.

4.2.3 Experiment III - Learning Rate

The learning rate has a big impact on the behaviour of our optimisation algorithm and

thereby on the model's performance. Hence, it is important to �gure out an adequate

learning rate for out experimental setup. In this experiment, we test six di�erent learning

rates in the range from 0.1 to 0.000001 for the con�guration derived from Experiment II.

The training and the test loss can be seen in Figure 4.5.

The clear winner of this experiment is the model trained with a learning rate of 0.001,

which is not that far from our initial learning rate 0.0025 that was used by Pfahler et al.

[27].

9The initialisation scheme is very similar to the one proposed by LeCun et al. [19]. Therefore we will

refer to it as LeCun initialisation

4.2. EXPERIMENTS 33

Test loss comparison regarding the learning rate

0.5 1 1.5 2
·107

0.4

0.6

0.8

1

1.2

Epochs trained

C
on

st
an

tM
ar

gi
n

Lo
ss

(∆
=

1)

0 5 10 15 20 25
0.6

0.7

0.8

0.9

1

Epochs trained

C
on

st
an

tM
ar

gi
n

Lo
ss

(∆
=

1)

lr = 0.1 lr = 0.01 lr = 0.001
lr = 0.0001 lr = 0.00001 lr = 0.000001

Figure 4.5: Experiments for determining an adequate learning rate.

4.2.4 Experiment IV - Sampling via Citation Graph

With this experiment, we want to �nd out whether it is pro�table (in terms of performance)

to sample the positive formula for a triple also via the citation graph. To do this, we

compare the model which performed best in the learning rate experiment10 against a

model that was trained on the same data but with triples that are partially sampled

with the help of the citation graph. For both models we will compute our performance

measures on two test datasets: One that makes use of citations and one that does not.

0 5 10 15 20 25
0.6

0.7

0.8

0.9

Epochs trained

C
on

st
an

tM
ar

gi
n

Lo
ss

(∆
=

1)

Test loss comparison for citation sampling

train w/ cite, eval w/ cite train wo cite, eval wo cite

train wo cite, eval w/ cite train w/ cite, eval wo cite

Figure 4.6: Results of the experiments regarding citation sampling.

Both datasets come from the test split of the tuning dataset. This means that the second

one is the same that was used for the previous Experiments I, II & III. On the dataset

that contains triples with citation sampling the optimiser with the learning rate from

10performed on triples sampled without citation graph

34 CHAPTER 4. EXPERIMENTS

the previous experiment performed poorly. Thus, a new learning rate was determined

in an experiment similar to Experiment III. The learning rate that performed best and

will therefore be used for the second model in this experiment is 0.0001. The experiment

showed that using the citation graph for positive sampling has at best no positive e�ect.

It rather has a small negative e�ect on the performance. The model trained on triples

with no citation sampling outperforms the other model for both evaluation datasets (see

Figure 4.6). As a consequence of this result, sampling via citation will not be used for the

following experiments and for the rest of this work.

4.2.5 Experiment V - Margin

Another hyperparameter that might in�uence the performance of our model is the margin

∆ that is used in our objective function. Pfahler et al. [27] chose a value of one for the

margin, but they did not experiment with other margins in order to justify this choice.

Since the dot product between two normalised vectors is bound to the interval [−1, 1], the

di�erence between two such dot products can be two at most. Hence, for a margin of one

Test loss comparison regarding the margin ∆

0 5 10 15 20 25
0.2

0.25

0.3

0.35

0.4

Epochs trained

R
an

ki
ng

Lo
ss

0 5 10 15 20 25
0.6

0.7

0.8

0.9

Epochs trained

C
on

st
an

tM
ar

gi
n

Lo
ss

(∆
=

1)

0 5 10 15 20 25
0.1

0.2

0.3

0.4

0.5

Epochs trained

C
on

st
an

tM
ar

gi
n

Lo
ss

(∆
=

0.
5)

0 5 10 15 20 25
0.1

0.15

0.2

0.25

0.3

Epochs trained

C
on

st
an

tM
ar

gi
n

Lo
ss

(∆
=

0.
25

)

Trained with ... ∆ = 1.0 ∆ = 0.5 ∆ = 0.25

Figure 4.7: The four performance measures for the margin experiment. Only for the constant

margin loss with a margin of 0.25 the version of the model trained with a margin of one does not

perfom best.

4.2. EXPERIMENTS 35

most triples will violate that margin and the weights will be updated for most of the triples.

This can be an advantage because our model learns something from nearly every triple,

but it might be also a drawback because the weights are updated although the di�erence

between 〈e(x), e(x+)〉 and 〈e(x), e(x−)〉 is already su�ciently large. A high margin might

force the model to push two examples further apart although their dot product is already

a good representation of their semantic relation. With this experiment we want to �nd out

whether the advantages or the drawbacks of a high margin prevail. Three di�erent margin

are considered: 0.25, 0.5 and 1.0. We will determine the best working margin on the basis

of four performance measures:

� 1. The ranking loss

� 2. - 4. The constant margin loss with di�erent margins (0.25, 0.5, 1.0)

The experiment shows that a margin of one is the best choice. It outperforms the

other margins in three out of four performance measures, although the di�erence between

results achieved with di�erent margins are not that big. For example with the ranking loss

measure all three margins achieve approximately the same performance. The advantage of

the high margin (∆ = 1) is that it a) converges faster and b) that it pushes the samples

further apart i.e. it computes embeddings that are more di�erent or more diverse. It

performs much better for the higher constant margin losses (1.0, 0.5). This property can

be considered useful for our application. Nearest neighbor search will probably work better

if the vectors are more distinguishable.

4.2.6 Final Con�guration

These experiments lead to the following con�guration for our networks and our algo-

rithm:

Con�guration 4.2.2 Final Con�guration

Activation: SELU

Initialisation: LeCun initialisation

Learning Rate: 0.001

Margin: 1.0

4.2.7 Experiment VI - Full Dataset

With this last experiment, we aim at determining whether it is worthwile to train the SEE

on the full dataset. Training on a larger dataset would be unnecessary if we could achieve

the same performance with training on the tuning dataset. To justify the choice of the

training dataset, we train the SEE with the �nal con�guration 4.2.2 on the full dataset and

compute our performance metrics on the test split of this dataset. For a comparison, we

36 CHAPTER 4. EXPERIMENTS

also compute the performance metric on the full dataset's test split with a network that

was trained on the tuning dataset11. Furthermore, we measure the performance of both

models on the test split of the tuning dataset. Note that the formulas that are in the train

split of the tuning dataset may be used in the test split of the full dataset and the other

way around. Hence, the model trained on the full datset might have an advantage for the

loss on the tuning dataset's test split and the model trained on the tuning dataset might

have an advantage for the loss on the full dataset's test split. As can be seen from the plots

in Figure 4.8 the model that was trained on the full dataset performs substantially better

for all losses except for the constant margin loss that was computed on the test split of

the tuning dataset. Therefore, we will also train the BEE on the full dataset with the �nal

con�guration 4.2.2 and evaluate the performance of both models in the following chapter.

Test loss comparison regarding dataset size

0 5 10 15 20 25
0.4

0.6

0.8

1

Epochs trained

C
on

st
an

tM
ar

gi
n

Lo
ss

(∆
=

1)

0 5 10 15 20 25
0.2

0.25

0.3

0.35

0.4

0.45

Epochs trained

R
an

ki
ng

Lo
ss

trained on full dataset, tested on tuning dataset trained on tuning dataset, tested on full dataset

trained on tuning dataset, tested on tuning dataset trained on full dataset, tested on full dataset

Figure 4.8: Results of the experiments regarding the dataset that is used for training. A red

mark means that the loss was computed on the test split of the full dataset, whereas a blue mark

means that the loss was computed on the test split of the tuning dataset. A full circle means that

the model was trained on the full dataset, wheras a halfcircle means that it was trained on the

tuning dataset. The training run with the full dataset had only 20 epochs because training on a

bigger dataset is more time consuming. Nevertheless, it leads to better performance for three out

of four performance measures.

11We use the weights from the network trained in Experiment 4.2.5 with a margin of one.

Chapter 5

Evaluation

In this chapter, we will look at the performance of our models. The focus lies on comparing

the SEE and the BEE. First, we will compare the baseline and the proposed model via

the ranking loss and the constant margin computed on the full test dataset. Second,

there will be a comparison regarding the size and speed of both models. We will close the

comparison with a small user study, for which we will use the qualitative evaluation dataset

from Section 4.1.1 as the database of a �ctive search engine and perform math-queries on

with this search engine. The search results will be evaluated by a group of machine learning

experts. This allows us again to compare the squeezed model against the original one. At

the end of this chapter, we will use the results obtained from the user study to evaluate

the SEE in terms of applicability as a backend of a real-word search engine.

5.1 Comparison

For the �nal comparison of the SEE and the baseline, both models were trained with the

�nal con�guration (see 4.2.2) derived from the preleminary experiments.

5.1.1 Loss on Test Data

Figure 5.1 shows the ranking loss and the constant margin loss that the BEE and the SEE

obtain on the test split of the full dataset. In general, the plots show only a little di�erence

between the performance of the two Equation-Encoders. But, we can still see that the

baseline does perform a little bit better for both losses. In the end, the BEE achieves a

ranking loss of 0.192 and a constant margin loss of 0.575 whereas the SEE achieves a loss

of 0.205 and 0.607. The BEE manages to classify a few more triples correct i.e. it considers

the positive fomula more similar to the anchor than the negative formula. Besides these

di�erences, it is interesting to see that both models already achieve a pretty good loss after

the �rst epoch and do not show big improvement after that. It seems that the dataset is

so big that the networks have already learned the greater part of the desired function after

37

38 CHAPTER 5. EVALUATION

only one iteration over the dataset. For the tuning dataset, there is substantially more

change in the test loss (see Figure 4.7). However, it is notable that - in case of the tuning

dataset - the test loss stabilises after ten epochs. The full dataset is ten times bigger than

the tuning dataset. This means that for both datasets the same amount of triples has been

forwarded when the test loss starts to become more stable.

Test loss comparison between SEE and BEE

0 5 10 15
0.5

0.6

0.7

0.8

Triples forwarded

C
on

st
an

tM
ar

gi
n

Lo
ss

(∆
=

1)

0 5 10 15
0

0.2

0.4

0.6

Triples forwarded

R
an

ki
ng

Lo
ss

Figure 5.1: Performance of the BEE and SEE with their �nal con�guration (see 4.2.2) and

trained on the full dataset.

5.1.2 Size and Speed

For a comparison of the memory consumption of both models, we need to take a look at

two quantities:

1. The pure number of trainable parameters that a network has.

2. The number of values that are passed through the network (i.e. the feature maps and

the gradient).

These values and the bits needed to store them determine the memory consumption1. The

values from Table 5.1 show that the SEE is more memory saving than the BEE. The

Model Parameters Size Forward/Backward Pass Size Total Size

SEE 0.51 MB 6.00 MB 6.51 MB

BEE 0.97 MB 21.00 MB 21.97 MB

Table 5.1: Memory consumption (in MegaBytes) of the squeezed model and the baseline.

new architecture needs half of the space that the old one needed for storing the trainable

parameters and uses nearly four times less memory to store the values during the forward

and the backward pass.

1Technically, we also need to consider the number of values in the input for memory consumption, but

since both models have the same input this quantity is negligible for a comparsion.

5.1. COMPARISON 39

For a comparison of speed, we measure the time that the respective model needs for

processing 150,000 formulas. Since processing a formula requires more operations if one

wants to train the network instead of simply compute embeddings with a pretrained model,

we measure time at training time and at inference time. The results are presented in Table

5.2. The measurements show that the SEE is clearly faster. For training the throughput

is nearly four times higher and for inference it is even �ve times higher.

Model
Inference

Total Time

Inference

Throughput

Training

Total Time

Training

Throughput

SEE 8.3 sec ∼18,000 formulas
sec 35.6 sec ∼1,400 triples

sec

BEE 40.5 sec ∼3,600 formulas
sec 137.7 sec ∼360 triples

sec

Table 5.2: Speed and throughput of the SEE ande the BEE. For inference 149,084 singular

formulas were forwarded and the training was done on a dataset with 50,000 triples. Thus, for

both speed tests roughly the same number of formulas was processed.

In summary: Regarding the throughput and the memory consumption the Squeezed

Equation-Encoder performs clearly better.

5.1.3 User Study

For this evaluation, we will set up a small scale search engine which will then be evaluated

by members of the scienti�c sta� of the Arti�cial Intelligence Group at the TU Dortmund

University. The search engine allows a user to search for papers or formulas from the

qualitative evaluation dataset (see Section 4.1.1) by providing a mathematical expression

as a query. In principle, this search engine works as already described in Section 3.1. First,

we use the model that we want to evaluate to embed all formulas from the dataset. The

resulting vector representations are then inserted in an index structure [1] that allows us

to perform an e�cient approximate nearest neighbor search2. After the index structure

has been built up, we are already prepared for performing queries. If we want to query

some mathematical expressions, we can do that by providing this expression in LATEX.

The LATEX-Code will be compiled to a png-�le and the resulting png-�le can be forwarded

through our model. We end up with a distributed representation ~q (see Section 2.2.3) of

our query. The �nal step is to search the index structure for a number of ~q 's nearest

neighbors A = {~a1, ...,~ak}. The formulas that belong to the vectors in A are the results of

our query. This study will only consider the ten nearest neighbors. This is the number of

results that is usually shown to a user on the �rst page of a state-of-the-art search engine

like Google Scholar.

2The implementation used in this work can be found here.

https://github.com/spotify/annoy

40 CHAPTER 5. EVALUATION

In order to test our search engine, we have seven formulas that are related to popular

machine learning methods (see Table 5.3). For all of these methods, there are papers in our

evaluation dataset that deal with the respective topics and thereby contain semantically

similar formulas. Thus, it is ensured that �nding meaningful results is possible.

Generative Adversarial Network (GAN): minmax V (D,G) = E[log(1−D(x)]+

E[log(1−D(G(z)))]

Gradient Descent (GD): θi+1 = θi − η∇L(θi)

k-means: argmin
∑

k

∑
S ||x− µi||2

Long Short-Term Memory (LSTM): ft = σ(Wf ∗ xt + Uf ∗ ht−1 + bf)

Policy Gradient (PG): ∇J(θ) = Eπ[qπ(s, a)∇θπ(a|s, θ)]
Q-Learning (QL): Q(s, a) = R(s, a) +

∑
Q(s′,π(s′))

Variational Autoencoder (VAE): li(θ,φ) = −Ez∼qθ(z|xi)[log pφ(xi|z)]+
KL(qθ(z|xi)|p(z))

Table 5.3: The queries that are used for our user study.

The results of the queries will be evaluated in a small study with 14 participants. All

participants have either a master's or a bachelor's degree in computer science and have

experience in the �eld of machine learning. They were asked to classify each search result

(consisting of a paper and a formula from that paper) for a given query as either relevant or

not relevant. The participants could choose which of the queries they wanted to evaluate

based on their expertise regarding the respective topic and how much queries they wanted

to review. If a participant decided to review a query, he reviewed the search results of both

models. This gives us a direct comparison of the real-world performance of the BEE and

the SEE.

To compare the SEE against the baseline, we calculate a score that results from the

user study: For this score, we look at every single review of a query and count the number

of search results that the reviewer classi�ed as relevant. From this, we get a score for

each reviewer for each query for both models. For each query, we summarise the resulting

scores by computing the median. The median was chosen to make the scores more robust

to outliers. This score will be referred to as the per-reviewer-score.

As can be seen in Table 5.4 there is only little di�erence in the overall performance of

the BEE and the SEE. There are topics for that the baseline works better (LSTM, QL

and VAE) and there are some topics for which the squeezed version achieves higher scores

(GAN, GD and PG). The BEE achieves an overall score that is a little bit higher than

the score of the SEE. Most notably the scores di�er much for the variational autoencoder

query. For this particular topic, the SEE performs poorly while the BEE performs quite

well. However, it is di�cult to declare a clear winner because the overall di�erence is small

and for both models there are exactly three queries for that the respective model achieves

5.2. QUALITY OF THE SEARCH ENGINE 41

a higher per-reviewer-score. Additionaly, the study is small and thereby prone to outliers.

There are for example two search results that the SEE found for the VAE query that were

classi�ed as not relevant by both reviewers, but are arguably relevant since they come

from a paper that deploys VAEs [21]. To obtain more reliable results, one would have to

conduct a study with more queries and far more participants. However, this is out of the

scope of this work.

Query BEE SEE

Generative Adversial Networks 6.0 8.0

Gradient-descent 5.0 8.0

k-means 0.0 0.0

Long Short-Term Memory 9.0 8.0

Policy Gradient 5.0 6.0

Q-Learning 7.0 5.0

Variational Autoencoder 6.0 1.0

Total 38.0 36.0

Table 5.4: Results of the user study: The table shows the per-review-score for all seven queries.

5.1.4 Conclusion

The BEE has a small advantage regarding the loss. It seems to be a bit better at �tting

the function that is given by the data and objective function. However, it is much slower

and bigger. This makes hyperparameter tuning very time consuming and might be un-

satsifactory in a real-world application because embedding a set of formulas has a higher

computational cost. Also, the small advantage from the loss comparison does not result

in a clearly better performance in the user study. There are queries for which the SEE

performs better. Given all this, it is di�cult to give clear advice on which model should

be used. It depends on the circumstances. If for the given application time and resource

awareness are not important, the BEE might be a reasonable choice. Otherwise, I would

advise to use the squeezed version. It has comparable performance to the BEE, but is

easier to train because experiments do not take that long and it is more ressource-saving

in general.

5.2 Quality of the Search Engine

The user study does not only enable us to compare both models. It also gives us the

opportunity to take a �rst look at the quality of a search engine that runs with an Equation-

Encoder model as its backend. This should help us to identify strengths of our approach,

42 CHAPTER 5. EVALUATION

but more importantly it also allows us to identify the weaknesses of the Equation-Encoder

architecture. This second part is important for future work in which one might overcome

some of these weaknesses and thereby improve the quality of math-based search engines.

For this evaluation, we take the results of the search results of the SEE and calculate

yet another score out of this. This score looks at every single search result and accumulates

the number of reviewers that had the opinion that this particular search result is relevant.

This means when two out of four reviewers found the top-1-ranked search result for a given

query to be relevant, the score for this search result is two. This score will be referred to as

the per-result-score. The coloring of the search results in the appendix (see A.4) matches

the per-result-score. A green background means that the score is as high as possible (i.e.

all reviewers voted "relevant"), a red background means the score is zero and for all other

scores the background is yellow.

Rank GAN GD k-means LSTM PG QL VAE

(1) 3/3 6/6 0/3 2/3 3/3 1/3 2/2

(2) 3/3 6/6 0/3 3/3 3/3 3/3 0/2

(3) 1/3 5/6 0/3 3/3 2/3 3/3 0/2

(4) 3/3 1/6 0/3 3/3 0/3 1/3 0/2

(5) 0/3 6/6 0/3 3/3 0/3 3/3 0/2

(6) 3/3 0/6 0/3 1/3 2/3 3/3 0/2

(7) 2/3 6/6 0/3 3/3 3/3 2/3 0/2

(8) 3/3 6/6 0/3 0/3 2/3 0/3 0/2

(9) 2/3 6/6 0/3 3/3 3/3 2/3 0/2

(10) 3/3 5/6 0/3 1/3 0/3 1/3 0/2

Table 5.5: Results of the user study. The table shows the per-result-score for all seven queries.

The left value is the achieved score and the right value is the highest possible score (#reviewers).

For the queries GAN, GD and LSTM the SEE performs pretty well. The majority of

the search results are colored green and there is only one result with a red background.

For both queries that are related to reinforcement learning (QL and PG) our model does

not perform as good as for the queries mentioned earlier, but still most of the results are

meaningful. The remaining two queries (k-means and VAE) yield very unsatisfying results.

For the VAE query, there is only one relevant result and for the k-means query there are

no relevant results at all. Although the results for these two queries are unsatisfying,

they are not completely meaningless. Regarding the VAE query, the Results (2) and (3)

come from papers that deal with generative models, the results (5) and (6) come from a

paper that actually deals with VAEs and some other results do at least share some symbols

(Results (4), (8) and (9)). Especially Result (4) shows us again the di�culty of math-based

literature search. The model probably assumes this result to be equal because it contains

5.2. QUALITY OF THE SEARCH ENGINE 43

the subexpression q(...). But this is a misleading commonality. The q from the query refers

to some distribution whereas the q from Result (4) stands for the expected reward of a

particular action in a particular state. This emphasizes how important context is. For

example, a human expert may be able to distinguish both q subexpression because some

other symbols from Result (4) (e.g. π, st, at and rt) indicate that this formula comes from

the �eld of reinforcement learning and not from a generative model. This problem is even

more remarkable for the k-means query. The given results do often have shared symbols

(most notably
∑
) or a similar overall structure, but the context is always di�erent and

thereby the results were not relevant for the participants in the user study. Note that the

bad quality of the results for the k-means query is re�ected by the similarity predicted by

the SEE. Out of all results, the ones from the k-means query have the lowest similarity.

44 CHAPTER 5. EVALUATION

Chapter 6

Conclusion and Outlook

The objective of this thesis was to train a model similar to the one from Pfahler et al. [27]

on a larger dataset and to derive a model that has higher throughput in order to be able to

handle the increased data volume. With the full dataset (see Section 4.1.1) we had access to

a dataset that is not only larger but also more diverse (i.e. it includes formulas from di�erent

subjects). For training on that dataset we derived a new model by combining the original

Equation-Encoder [27] and the SqueezeNet architecture [11]. In order to justify some of

the architectural choices and hyperparamter settings, we also conducted experiments with

this new model. The most important �ndings from the experiments are:

1. The SEE is applicable to our math-similarity learning task and is thereby an ad-

equate strategy to increase the throughput while roughly maintaining performance

(see Section 5.1).

2. A bigger and more diverse dataset does indeed improve performance (see Section

4.2.7).

3. Deploying the SELU nonlinearity together with LeCun initialisation can be a good

strategy to deal with input that has a low variance (see Section 4.2.2).

4. The citation sampling approach from this work does not result in triples that are

more pro�table for learning (see Section 4.2.4).

5. A loss with a bigger margin that allows our model to learn from almost every triple

leads to faster convergence and pushes embeddings further apart (see Section 4.2.5).

All this are empirical �ndings for the task of this thesis and the applicability to di�erent

tasks is uncertain.

The user study from Chapter 5 showed that the Equation-Encoder approach has the

potential for being used as the backend of a math-based literature seach engine, but it the

study also showed that there is a lot of work do be done. There are still some unsatisfac-

tory search results for certain queries. An obvious point of attack for future work is the

45

46 CHAPTER 6. CONCLUSION AND OUTLOOK

labeling/sampling of the triples. Because of our loose de�nition of similarity between the

anchor and the positive formula, the trained models seem to have a very loose notion of

what they consider similar or dissimilar. This property can be useful in some cases since

not only the exact same formula is found but also formulas that appear in the same con-

text. However, this loose notion of similarity is also a likely reason for the rather unrelated

search results. Therefore, developing a more sophisticated method for sampling triples that

de�nes a more strict concept is a reasonable step towards improving the Equation-Encoder

approach. The following sampling strategies could be interesting for future work:

� Split mathematical expressions found in papers at =, >, ≥, < or ≤. The obtained
equations could be used as the anchor and the positive formula of a triple. Their

semantic and syntactic is very strong since one formula is the result of a mathematical

transformation of the other formula.

� Sometimes scienti�c publications have a small summary of their basic methods. Two

papers that use the same method and have such a summarisation might contain

formulas which describe the same concept with a di�erent notation or from a di�erent

perspective. So, we could do something like this: Take all papers with a certain

keyword (e.g. Q-Learning) in its abstract and put all formulas from those papers

that appear in an section called background, introduction, preliminary etc. in one

class. Then we can sample anchor and positive formula from the same class.

Both possible sampling methods would lead to much stronger relation between the x and

x+. Thus, they would require a more strict sampling for the negative formula too. Other-

wise it would probably be very easy for our model to �t the triple data.

For the overall performance of an Equation-Encoder backed search engine, we also

should consider other ranking criteria than pure similarity (e.g. number of citations or

recency). We also could combine the similarity ranking of di�erent models that learned on

datasets with di�erent sampling approaches.

Appendix A

Further Information

A.1 Proof: Why do we need nonlinear activation functions?

Let li and li+1 be two fully-connected layers with weight matricesWi,Wi+1 and bias vectors

~bi,~bi+1. The activation function of of both layers is the identity function. Input to li is

denoted with ~x and the output of li+1 with ~y. The following equation de�nes the output:

~y = Wi+1(Wi~x+~bi) +~bi+1 (A.1)

Because of the distributivity of matrix multiplications, the term could be transformed as

follows:

~y = Wi+1Wi~x+Wi+1
~bi +~bi+1 (A.2)

= W ′~x+~b′ (A.3)

with (A.4)

W ′ = Wi+1Wi and (A.5)

~b′ = Wi+1
~bi +~bi+1 (A.6)

In this case, we did not gain anything by stacking these two layers. We could used just one

layer with weights W ′ and biases ~b′ instead. So, to bene�t from stacking layers we need

some nonlinear activation function after each layer.

47

48 APPENDIX A. FURTHER INFORMATION

A.2 Activation Functions

ReLU (Recti�ed Linear Units) SELU (Scaled Exponential Linear Units)

ReLU(x) = max(0,x) SELU(x) = λ ∗




x if x > 0

α(ex − 1) if x ≤ 0

−6 −4 −2 0 2 4 6

−2

0

2

4

6

−6 −4 −2 0 2 4 6

−2

0

2

4

6

α = 1.6732632423543772848170429916717,

λ = 1.0507009873554804934193349852946

A.3. TRIPLES 49

A.3 Triples

1.

2.

3.

50 APPENDIX A. FURTHER INFORMATION

4.

5.

6.

7.

A.3. TRIPLES 51

8.

52 APPENDIX A. FURTHER INFORMATION

A.4 Search Results from User Study - SEE

Query:

minmax V (D,G) = E[log(1−D(x)] + E[log(1−D(G(z)))]

Generative Adversarial Network (Generative Model)

Results:

L(G,D;w) =
1

m

m∑

i=1

log(D(xi)) +

m∑

i=1

wi log(1−D(G(zi))).

From: Training Generative Adversarial Networks with Weights, Similarity: 0.981

min
G

max
D

V (D,G) = min
G

max
D

Ex∼pd(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))].

From: Generate the corresponding Image from Text Description using Modified GAN-CLS Algorithm, Similarity: 0.979

N∑

i=1

Eq(W) log p(y
i|xi,W)−KL(q(W)||p(W))→ max

m,σ

From: Bayesian Sparsification of Gated Recurrent Neural Networks, Similarity: 0.968

max
D

Ex∼ps [logD(F (x))] + Ex∼pt [log(1−D(F (x)))]

From: Domain Confusion with Self Ensembling for Unsupervised Adaptation, Similarity: 0.962

Q∗ (m, f, s, a) = maxπm
E [Rt|Mt = m,Ft = f, St = s,At = a, πm]

From: Catastrophic Importance of Catastrophic Forgetting, Similarity: 0.962

V (D,G) = E
x∼pdata(x)

[logD(x)] + E
z∼pz(z)

[log(1−D(G(z))]

From: A Survey on Data Collection for Machine Learning: a Big Data – AI Integration Perspective, Similarity: 0.962

Lclass =
1

|Dreal| (x,c)∈Dreal

logP (C = c | x) + EW,C∼pc [logP (C | G(W,C))],

From: Teacher-Student Compression with Generative Adversarial Networks, Similarity: 0.962

min
GJ

max
DJ

V (DJ , GJ) = Ex∼PJ
data

[log(DJ (x)]+

From: StackNet: Stacking Parameters for Continual learning, Similarity: 0.96

REGRETT (L; {wt, yt}Tt=1) =

T∑

t=1

E [|ft(wt)− yt|]−min
h∈H

∑
|h(wt)− yt|,

From: Passing Tests without Memorizing: Two Models for Fooling Discriminators, Similarity: 0.96

VMM(DθD , GθG) = Ex∼pr [log(DθD (x))] + Ez∼pz [log(1−DθD (GθD (z)))].

From: Convergence Problems with Generative Adversarial Networks (GANs), Similarity: 0.959

Model: Squeezed Equation-Encoder

A.4. SEARCH RESULTS FROM USER STUDY - SEE 53

Query:

θi+1 = θi − η∇L(θi)

Gradient-Descent (Optimisation)

Results:

θi+1 = θi + α∇θL(θi) (1)

From: Toward Interpretable Deep Reinforcement Learning with Linear Model U-Trees, Similarity: 0.982

θk+1 = θk − η∇θkJ(θk) (2)

From: A block-random algorithm for learning on distributed, heterogeneous data, Similarity: 0.975

gt,i = ∇θtJ(θt,i) (3)

From: Deep Learning based Estimation of Weaving Target Maneuvers, Similarity: 0.965

∂̃Λkk
∂uk′

=

{
∂Λkk

∂uk′ if k = k′

0 otherwise
(4)

From: Spectral Inference Networks: Unifying Deep and Spectral Learning, Similarity: 0.96

θt+1 = θt − αt+1∇L(θt) (5)

From: Few-shot Learning with Meta Metric Learners, Similarity: 0.958

λb =

∑k
i=1 ni‖µi − µ̄‖

2

k − 1
(6)

From: Understanding V2V Driving Scenarios through Traffic Primitives, Similarity: 0.955

θt+1 ← θt − α · ∇L̂t(θt) (7)

From: Quasi-hyperbolic momentum and Adam for deep learning, Similarity: 0.952

θk+1 = θk −∇Ũk(θk)hk+1 +
√

2hk+1ξk+1 (8)

From: Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning, Similarity: 0.946

θt+1 = θt − ηwIt∇θtL(Ψ(xIt ; θt), yIt) (9)

From: Not All Samples Are Created Equal: Deep Learning with Importance Sampling, Similarity: 0.945

θt+1 = θt −
η√

Gt + ε
� gt (10)

From: Deep Learning based Estimation of Weaving Target Maneuvers, Similarity: 0.944

Model: Squeezed Equation-Encoder

54 APPENDIX A. FURTHER INFORMATION

Query:

argmin
∑

k

∑

S

||x− µi||2

k-means (Clustering)

Results:

≈
∑

a

pa

∑

b

qabd(a, b)2 (1)

From: Introducing user-prescribed constraints in Markov chains for nonlinear dimensionality reduction,
Similarity: 0.911

xadvt+1 = xadvt + α · (gt+1) (2)

From: Improving the Generalization of Adversarial Training with Domain Adaptation, Similarity: 0.905

P (h|x) =
∏

i

P (hi|x) (3)

From: Deep Generative Networks For Sequence Prediction, Similarity: 0.904

R
(l,l+1)
i←j = zij

zj + ε · sign(zj) ·R
(l+1)
j (4)

From: Analyzing Neuroimaging Data Through Recurrent Deep Learning Models, Similarity: 0.903

pi =
∑

l 6=i

pilyil (5)

From: Feature Dimensionality Reduction for Video Affect Classification: A Comparative Study, Similarity:
0.902

x 7→
N∑

k=1
akσ(〈wk, x〉+ bk) (6)

From: Some Approximation Bounds for Deep Networks, Similarity: 0.896

ci
j ← λci

j + (1− λ)
∑

l

1
[
zq(yl) = ei

j

]
(7)

From: Fast Decoding in Sequence Models using Discrete Latent Variables, Similarity: 0.896

entropy = −
∑

g∈G

Ig ln pg (8)

From: Domain Adaptation for sEMG-based Gesture Recognition with Recurrent Neural Networks, Similarity:
0.895

=
∗∑

i=1
∗i∗i∗i =

∗∑

i=1
∗i∗i (9)

From: How do infinite width bounded norm networks look in function space?, Similarity: 0.894

hj = σf

(∑

i

Wjivi + bj

)
(10)

From: A Deep Learning Approach with an Attention Mechanism for Automatic Sleep Stage Classification,
Similarity: 0.894

Model: Squeezed Equation-Encoder

A.4. SEARCH RESULTS FROM USER STUDY - SEE 55

Query:

ft = σ(Wf ∗ xt + Uf ∗ ht−1 + bf)

Long Short-Term Memory (Deep Learning)

Results:

C̃t = tanh(WC · [ht−1, xt] + bC) (1)

From: Time is of the Essence: Machine Learning-based Intrusion Detection in Industrial Time Series Data, Similarity: 0.991

rt = sigmoid (Wrxt + Urht−1 + br) (2)

From: Recurrent Neural Networks for Time Series Forecasting, Similarity: 0.99

ot = sigmoid (Woxt + Uoht−1 + bo) (3)

From: Recurrent Neural Networks for Time Series Forecasting, Similarity: 0.99

ft = sigmoid (Wfxt + Ufht−1 + bf) (4)

From: Recurrent Neural Networks for Time Series Forecasting, Similarity: 0.989

vt = tanh(Wvht + bv) (5)

From: Deep Neural Net with Attention for Multi-channel Multi-touch Attribution, Similarity: 0.988

ht = (1− zt) ∗ nt + zt ∗ ht−1 (6)

From: Foresee: Attentive Future Projections of Chaotic Road Environments with Online Training, Similarity: 0.987

rt = σ(Wir ∗ xt + bir +Whr ∗ ht−1 + bhr) (7)

From: Foresee: Attentive Future Projections of Chaotic Road Environments with Online Training, Similarity: 0.987

exponent =
1

N
∗

N∑

i=0

log2(|Xi|) (8)

From: Low-Precision Floating-Point Schemes for Neural Network Training, Similarity: 0.986

it = sigmoid (Wixt + Uiht−1 + bi) (9)

From: Recurrent Neural Networks for Time Series Forecasting, Similarity: 0.986

ht = ([tprt, fprt]×W1 + b1)

cdL(t,D,C) = σ (ht ×W2 + b2)
(10)

From: Learning to Weight for Text Classification, Similarity: 0.985

Model: Squeezed Equation-Encoder

56 APPENDIX A. FURTHER INFORMATION

Query:

∇J(θ) = Eπ[qπ(s, a)∇θπ(a|s, θ)]
Policy Gradient (Reinforcement Learning)

Results:

∇θV (θ) = Es∼ρπ,a∼πw [∇θ log πθ(a|s)Q̂(s, a)] (1)

From: An Introduction to Deep Reinforcement Learning, Similarity: 0.97

∇θJ(π) = Eπ [∇θ log π(a|s) (Qπ(s, a)− b(s))] (2)

From: CM3: Cooperative Multi-goal Multi-stage Multi-agent Reinforcement Learning, Similarity: 0.96

= −Eε∼ρ0(·)
[
∇acψ∗(f(θ, ε), s)∇θfθ(s, ε)

]
(3)

From: Implicit Policy for Reinforcement Learning, Similarity: 0.956
∑

i∈High d
∇Ji (θ) = ∇J (θ)−

∑

i∈Low d

∇Ji (θ) = ∇J (θ) (4)

From: Accelerating Minibatch Stochastic Gradient Descent using Typicality Sampling, Similarity: 0.952

∇2
θ′KL(θ, θ

′)|θ′=θ := −∇2
θ′

∫

τ∈Υ

f(τ ; θ) [log (f(τ ; θ′))− log (f(τ ; θ))] dτ |θ′=θ (5)

From: Trust Region Policy Optimization for POMDPs, Similarity: 0.951

f̂(ψ) = α(∇θ log πθ(a|s)(R− Vθ(s)) (6)

From: Fast Efficient Hyperparameter Tuning for Policy Gradients, Similarity: 0.948

U(π) =

∫

s

∫

a

∫

s′
u(s, a, s′)p(s′|s, a)p(s, a|π) ds′ da ds (7)

From: Model-Based Active Exploration, Similarity: 0.946

T Q(s, a) = r(s, a) + γ

∫

s′∈S
P (s, s′, a)max

a′∈A
Q(s′, a′)ds (8)

From: Off-Policy Actor-Critic in an Ensemble: Achieving Maximum General Entropy and Effective Environment Exploration in

Deep Reinforcement Learning, Similarity: 0.946

∇aQ(st, a)|a=µ(st)∇θµµ(st) (9)

From: QUOTA: The Quantile Option Architecture for Reinforcement Learning, Similarity: 0.94

= −
∫

τ∈Υ

f(τ ; θ)∇2
θ′ log (f(τ ; θ

′)) dτ |θ′=θ (10)

From: Trust Region Policy Optimization for POMDPs, Similarity: 0.939

Model: Squeezed Equation-Encoder

A.4. SEARCH RESULTS FROM USER STUDY - SEE 57

Query:

Q(s, a) = R(s, a) +
∑

Q(s′, π(s′))

Q-Learning (Reinforcement Learning)

Results:

Q(s, a)← N(s, a) ·Q(s, a) + V (s)

N(s, a) + 1
(1)

From: Improved Reinforcement Learning with Curriculum, Similarity: 0.925

R̄(s, a, s′) = r̃(s, a) + γṼ (s′) (2)

From: Reward-estimation variance elimination in sequential decision processes, Similarity: 0.925

Q(s2, a1) = r+ + γQ(s3, a2) (3)

From: Interpretable Reinforcement Learning via Differentiable Decision Trees, Similarity: 0.924

∂ ln 1− βo(s′, ϑ) + πO(s′, o)βo(s′, ϑ)

∂ϑ
(4)

From: Natural Option Critic, Similarity: 0.923

Q(s3, a2) = r+ + γQ(s2, a1) (5)

From: Interpretable Reinforcement Learning via Differentiable Decision Trees, Similarity: 0.923

Qπδt(s, a) = r(s, a)δt+ (6)

From: Making Deep Q-learning methods robust to time discretization, Similarity: 0.922

Q(s1, a1) = Q(s1, a2) = Q(s4, a1) = Q(s4, a2) = r− (7)

From: Interpretable Reinforcement Learning via Differentiable Decision Trees, Similarity: 0.92

Dξ,ϕ(s, a, s′) =
exp[fξ,ϕ(s, a, s′)]

exp[fξ,ϕ(s, a, s′)] + π(a|s) (8)

From: Adversarial Imitation via Variational Inverse Reinforcement Learning, Similarity: 0.92

Ai(o, a) = Qψi (o, a)− b(o, a\i)), where (9)

From: Actor-Attention-Critic for Multi-Agent Reinforcement Learning, Similarity: 0.917

=
∑

s′,o

µO(s′, o)
(
βo(s

′, ϑ)(1− πO(s′, o))
∂i∂jβo(s

′, ϑ)

βo(s′, ϑ)
(10)

From: Natural Option Critic, Similarity: 0.916

Model: Squeezed Equation-Encoder

58 APPENDIX A. FURTHER INFORMATION

Query:

li(θ, φ) = −Ez∼qθ (z|xi)[log pφ(xi|z)] +KL(qθ(z|xi)|p(z))
Variational Autoencoder (Generative Model)

Results:

Lx(θx, φx;xu, zu, βx)
= Eqφx (zu|xu)[log pθx(xu|zu)]︸ ︷︷ ︸

Reconstruction loss

−βxKL(qφx(zu|xu)||p(zu))︸ ︷︷ ︸
Capacity limitation regularization

(1)

From: Variational Collaborative Learning for User Probabilistic Representation, Similarity: 0.986

MMD2(p||q) = Ex,y∼p[k(x, y)] + Ex,y∼q[k(x, y)] (2)

From: GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models, Similarity: 0.976

H(ε|x) = −Epθ(x,ε) log pθ(ε|x) (3)

From: Adversarial Learning of a Sampler Based on an Unnormalized Distribution, Similarity: 0.975

qπ(st, at) = rt + γmax
at+1

qπ(st+1, at+1) (4)

From: Improved robustness of reinforcement learning policies upon conversion to spiking neuronal network platforms applied to

ATARI games, Similarity: 0.974

u ∼ q(u|~x,~a, ~r)E [log p(xt|zt, u) + log p(at|zt, u) + log p(rt+1|zt, at, u)] (5)

From: Deconfounding Reinforcement Learning in Observational Settings, Similarity: 0.973

=

T∑

t=1

E
zt∼q(zt|zt−1,~x,~a,~r)

u∼q(u|~x,~a,~r)

[log p(xt|zt, u) + log p(at|zt, u) + log p(rt+1|zt, at, u)]−KL (q(u|~x,~a, ~r)||p(u))−KL (q(z1|~x,~a, ~r)||p(z1))−
T∑

t=2

E
zt−1∼q(zt−1|zt−2,~x,~a,~r)

[KL (q(zt|zt−1, ~x,~a, ~r)||p(zt|zt−1, at−1))] .

(6)
From: Deconfounding Reinforcement Learning in Observational Settings, Similarity: 0.972

= E(,)∼p(GD(,))

∑

y∈Y
post(, y,)∇ log(p(y|;)) (7)

From: Skeptical Deep Learning with Distribution Correction, Similarity: 0.971

l′ty = lty + [[y = eos]] log
(
σ(w1(ct − w2))

)
(8)

From: Calibration of Encoder Decoder Models for Neural Machine Translation, Similarity: 0.97

≥q(z|x1:n,y1:n)

[
n∑

i=m+1

log p(yi|z, xi) + log
p(z|x1:m, y1:m)

q(z|x1:n, y1:n)

]
(9)

From: Neural Processes, Similarity: 0.97

log p(yt, yc) ≥ Eq(z|yc,yt)

[
log p(yt|z) (10)

From: Neural Processes, Similarity: 0.97

Model: Squeezed Equation-Encoder

A.5. SEARCH RESULTS FROM USER STUDY - BEE 59

A.5 Search Results from User Study - BEE

Query:

minmax V (D,G) = E[log(1−D(x)] + E[log(1−D(G(z)))]

Generative Adversial Network (Generative model)

Results:

MMD(XS , XT) =

∥∥∥∥∥
1

n1

n1∑

i=1

f(xSi
)− 1

n2

n2∑

i=1

f(xTi
)

∥∥∥∥∥

2

H
(1)

From: TLR: Transfer Latent Representation for Unsupervised Domain Adaptation, Similarity: 0.982

ILoss =

∣∣∣∣I(X,Y)− E
[
log2

p̂(x, y)

p̂(x)p̂(y)

]∣∣∣∣ (2)

From: Interpreting Active Learning Methods Through Information Losses, Similarity: 0.974

E[ycz
ᵀ] = E[E[ycz

ᵀ|yc = 1]] = E[zᵀ|yc = 1]µc (3)

From: Deep Learning under Privileged Information Using Heteroscedastic Dropout, Similarity: 0.972

min
G

max
D

V (G,D) = Ex∼pdata
[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]. (4)

From: Training GANs with Centripetal Acceleration, Similarity: 0.972

AMscore({x}N1) = E[KL(c̄train||c(x)]−KL(c̄train||E[c(x)])] (5)

From: DeSIGN: Design Inspiration from Generative Networks, Similarity: 0.968

max
D

LD = Ex∼pdata
[− logD(x)] (6)

From: Task Transfer by Preference-Based Cost Learning, Similarity: 0.968

log(P (I|x∗)) = I ∗ log(f(x∗|x)) + (1− I) ∗ log(1− f(x∗|x)) (7)

From: Modelling Latent Travel Behaviour Characteristics with Generative Machine Learning, Similarity: 0.968

ŷ = W2((1− p)I + pr)W1x = W2rp(W1x) (8)

From: Drop-Activation: Implicit Parameter Reduction and Harmonic Regularization, Similarity: 0.968
(

1

n

(
1−

(
1− Pr(−u, v)K

)L) |Cv ∩ S−u|
|S−u|

)
(9)

From: Scaling-up Split-Merge MCMC with Locality Sensitive Sampling (LSS), Similarity: 0.967

MMD2(F,X, Y) =
1

m(m− 1)

m∑

i

m∑

i 6=j
k(xi, xj) (10)

From: A Theoretical Investigation of Graph Degree as an Unsupervised Normality Measure, Similarity: 0.966

Model: Baseline Equation-Encoder

60 APPENDIX A. FURTHER INFORMATION

Query:

θi+1 = θi − η∇L(θi)

Gradient Descent (Optimisation)

Results:

θi+1 = θi + α∇θL(θi) (1)

From: Toward Interpretable Deep Reinforcement Learning with Linear Model U-Trees, Similarity: 0.968

∂J(θ)

∂θ
= −

∑

i

I(y = Ci)
1

ŷi(θ)

∂ŷi(θ)

∂θ
(2)

From: When Work Matters: Transforming Classical Network Structures to Graph CNN, Similarity: 0.956

θ = arg min
β

1

n

n∑

i=1

k∑

j=1

wij`(xi, j, β) + λΩ(β) (3)

From: Training Set Debugging Using Trusted Items, Similarity: 0.949

i 6= k(wi − w∗i)2 + 2(wk − w∗k)2 + σ2 (4)

From: Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates, Similarity: 0.944

θk+1 = θk − η∇θkJ(θk) (5)

From: A block-random algorithm for learning on distributed, heterogeneous data, Similarity: 0.943

wt+1
i = wti − η

∂E

∂wti
− λwti (6)

From: Highly Scalable Deep Learning Training System with Mixed-Precision: Training ImageNet in Four Minutes, Similarity:
0.942

= − 1

m

m∑

j=1

L∑

l=1

∂fvj
∂θl
|>θl=θl,t

∂fi
∂θl
|θl=θl,t (7)

From: Learning to Reweight Examples for Robust Deep Learning, Similarity: 0.941

ut+1
i vt+1

i = uti exp(−ηgti)vti exp(ηgti) = utiv
t
i . (8)

From: Exponentiated Gradient Meets Gradient Descent, Similarity: 0.941

∂L

∂wl+1
ij

=
∂L

∂hl+1
j

ali (9)

From: Detecting Dead Weights and Units in Neural Networks, Similarity: 0.940

L(θ) = Ls(θ) + λLt(θ) (10)

From: Multimodal Deep Domain Adaptation, Similarity: 0.940

Model: Baseline Equation-Encoder
1

A.5. SEARCH RESULTS FROM USER STUDY - BEE 61

Query:

argmin
∑

k

∑

S

||x− µi||2

k-means (Clustering)

Results:

HammingLoss =
1

m

m∑

i=1

1

q

∣∣C(xi)4 yi
∣∣ (1)

From: Domain-Adversarial Multi-Task Framework for Novel Therapeutic Property Prediction of Compounds, Similarity: 0.987

F1(ỹ, ˜̂y) = 2 · precision · recall
precision+ recall

(2)

From: Recurrent Neural Networks for Time Series Forecasting, Similarity: 0.980

Rblock = −‖xobj − xgoal‖2 (3)

From: Meta-Reinforcement Learning of Structured Exploration Strategies, Similarity: 0.979

LLipschitz = β ∗max(0, k(x)− Ln) (4)

From: Towards Robust Neural Networks with Lipschitz Continuity, Similarity: 0.978

minimize D(x, xadv) (5)

From: ECGadv: Generating Adversarial Electrocardiogram to Misguide Arrhythmia Classification System, Similarity: 0.977

si,l =
exp(−||pcelli − pprojl ||2)

||[x, y]− [xsourcel , ysourcel]||
(6)

From: Learning agent’s spatial configuration from sensorimotor invariants, Similarity: 0.977

Precision@k =
Number of postive items in Top k

k
, (7)

From: Distributed Collaborative Hashing and Its Applications in Ant Financial, Similarity: 0.976

`weight =

c∑

i=1

oi(yi − f(x))2 (8)

From: Wrapped Loss Function for Regularizing Nonconforming Residual Distributions, Similarity: 0.975

xout = SimQuant(x) (9)

From: Quantizing deep convolutional networks for efficient inference: A whitepaper, Similarity: 0.975

γ = max||∆x||2 | sign(yif(xi)) = sign(yif(xi + ∆x)). (10)

From: Theory of Deep Learning IIb: Optimization Properties of SGD, Similarity: 0.975

Model: Baseline Equation-Encoder

62 APPENDIX A. FURTHER INFORMATION

Query:

ft = σ(Wf ∗ xt + Uf ∗ ht−1 + bf)

Long Short Term Memory (Recurrent Neural Networks)

Results:

ot = σ(Wxoxt +Whoht−1 + bo) (1)

From: Towards Binary-Valued Gates for Robust LSTM Training, Similarity: 0.998

ft = σ(Wfht−1 + Vfxt + bf) (2)

From: Neural Tensor Factorization, Similarity: 0.996

rt = σ(UrXt +W rst−1 + br) (3)

From: Decentralized Flood Forecasting Using Deep Neural Networks, Similarity: 0.995

J(wt+1) = J(wt)−
(dTt K(1− wt))2

dTt Kdt
(4)

From: Greedy Frank-Wolfe Algorithm for Exemplar Selection, Similarity: 0.994

ot = σ ((Woxt + Uoht−1 + bo) (5)

From: A deep learning approach to real-time parking occupancy prediction in spatio-temporal networks incorporating multiple

spatio-temporal data sources, Similarity: 0.994

ot = g(Wo.xt + Uo.ht−1 + bo) (6)

From: A Multi-variable Stacked Long-Short Term Memory Network for Wind Speed Forecasting, Similarity: 0.993

ft = g(Wf .xt + Uf .ht−1 + bf) (7)

From: A Multi-variable Stacked Long-Short Term Memory Network for Wind Speed Forecasting, Similarity: 0.993

c̃t = φ(BN(Wcht−1 + Vcxt + bc)) (8)

From: Neural Tensor Factorization, Similarity: 0.9993

ot = σ(Woht−1 + Voxt + bo) (9)

From: Neural Tensor Factorization, Similarity: 0.993

ot = σ(Wxoxt +Whoht−1 (10)

From: A Neural Network Approach to Missing Marker Reconstruction in Human Motion Capture, Similarity: 0.993

Model: Baseline Equation-Encoder

A.5. SEARCH RESULTS FROM USER STUDY - BEE 63

Query:

∇J(θ) = Eπ[qπ(s, a)∇θπ(a|s, θ)]
Policy Gradient (Reinforcement Learning)

Results:

θ′ = θ + α E
s,a∼ρ [(∗Qθ(s, a)−Qθ(s, a))∇θQθ(s, a)] , (1)

From: Towards Characterizing Divergence in Deep Q-Learning, Similarity: 0.979

= m

∫

c

[
∇θpθ(s, c)Qπ(s, c) + pθ(s, c)∇θQπ(s, c)

]
gs(c)dc (2)

From: Policy Gradients for Contextual Recommendations, Similarity: 0.978

∇θL(θ) = Es,a[(Q∗ −Q(s, a; θ))∇θQ(s, a; θ)]. (3)

From: Joint Modeling of Dense and Incomplete Trajectories for Citywide Traffic Volume Inference, Similarity: 0.976

= −Eε∼ρ0(·)
[
∇acψ∗(f(θ, ε), s)∇θfθ(s, ε)

]
(4)

From: Implicit Policy for Reinforcement Learning, Similarity: 0.976

∇θV (θ) = Eρ[∇θπθ(s)∇aQw(s, a)|a=πθ(s)] (5)

From: An Introduction to Deep Reinforcement Learning, Similarity: 0.973

E[∇θ log π(a|s)b(s, a)−∇θf(θ, s, ξ)∇ab(s, a)] = 0. (6)

From: Policy Optimization with Second-Order Advantage Information, Similarity: 0.973

∇θ log(f(τ ; θ)) = ∇θ log
(

Π
|τ |
h=1πθ(ah|yh)

)
(7)

From: Trust Region Policy Optimization for POMDPs, Similarity: 0.972

∇θH
[
πθ(·|s)

]
= −∇θEε∼ρ0(·)

[
log πθ(fθ(s, ε)|s)

]
(8)

From: Implicit Policy for Reinforcement Learning, Similarity: 0.969

∇θJ(θ) =

H−1∑

t=0

Est∼dtπθ
[
∇θπ(θ, st)∇aQtπθ (st,π(θ, st))

]
(9)

From: Contrasting Exploration in Parameter and Action Space: A Zeroth-Order Optimization Perspective, Similarity: 0.969

∇ωL = Eτ [∇ωlog(Dω(s, a))] + Eτh [∇ωlog(1−Dω(s, a))] (10)

From: Hindsight Generative Adversarial Imitation Learning, Similarity: 0.969

Model: Baseline Equation-Encoder

64 APPENDIX A. FURTHER INFORMATION

Query:

𝑄(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) +
∑︁

𝑄(𝑠′, 𝜋(𝑠′))

Q-learning (Reinforcement Learning)

Results:

𝑄(𝑠, 𝑎)← 𝑁(𝑠, 𝑎) ·𝑄(𝑠, 𝑎) + 𝑉 (𝑠)
𝑁(𝑠, 𝑎) + 1 (1)

From: Improved Reinforcement Learning with Curriculum, Similarity: 0.986

𝑄(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾𝑚𝑎𝑥𝑎′(𝑄(𝑠′, 𝑎′)) (2)

From: Mitigation of Policy Manipulation Attacks on Deep Q-Networks with Parameter-Space Noise,
Similarity: 0.979

𝑄(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾𝑚𝑎𝑥𝑎′(𝑄(𝑠′, 𝑎′)) (3)

From: The Faults in Our Pi Stars: Security Issues and Open Challenges in Deep Reinforcement Learning,
Similarity: 0.979

𝑃 (𝑠0|𝑠, 𝑎) = 0∀𝑠, 𝑎 (4)

From: Off-Policy Deep Reinforcement Learning by Bootstrapping the Covariate Shift, Similarity: 0.976

𝑄(𝑠, 𝑎) := 𝑅(𝑠, 𝑎) + 𝛾 max
𝑎′

𝑄(𝑠′, 𝑎′) (5)

From: Interpretable Reinforcement Learning via Differentiable Decision Trees, Similarity: 0.970

𝜇(𝑠)𝑃 (𝑠, 𝑠′) = 𝜇(𝑠′)𝑃 (𝑠′, 𝑠) ∀𝑠, 𝑠′ (6)

From: Approximate Temporal Difference Learning is a Gradient Descent for Reversible Policies, Similarity:
0.969

𝑟(𝑠, 𝑎, 𝑠′) = 𝑓(𝑠, 𝑎, 𝑠′)− log 𝜋(𝑎|𝑠) (7)

From: Adversarial Imitation via Variational Inverse Reinforcement Learning, Similarity: 0.968

𝑃 (𝑠′|𝑠, 𝑎) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0, if 𝑠′ = 1, 4
𝑝, if 𝑠′ = 𝑠 + 1, 𝑎 = 𝑎1

𝑝, if 𝑠′ = 𝑠− 1, 𝑎 = 𝑎2
1−𝑝
|𝑆|−1 , otherwise

(8)

From: Interpretable Reinforcement Learning via Differentiable Decision Trees, Similarity: 0.965

∀𝑠,𝑎 : 𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼𝛿𝑡𝑒(𝑠, 𝑎) (9)

From: Using Deep Reinforcement Learning for the Continuous Control of Robotic Arms, Similarity: 0.963

𝜋(𝑠) = argmax𝑎𝑄(𝑠, 𝑎) + 𝑀 · 𝑙𝑛(𝑠, 𝑎) (10)

From: Safety-Guided Deep Reinforcement Learning via Online Gaussian Process Estimation, Similarity: 0.960

Model: Baseline Equation-Encoder

A.5. SEARCH RESULTS FROM USER STUDY - BEE 65

Query:

li(θ, φ) = −Ez∼qθ (z|xi)[log pφ(xi|z)] + KL(qθ(z|xi)|p(z))
Variational Autoencoder (Generative model)

Results:

log p(yt|C, xt) = log

∫
p(yt|z, xt)p(z|C)dz (1)

From: Neural Processes, Similarity: 0.987

logpθ(x) = Eqφ(h|x)log

(
pθ(x, h)

qφ(h|x)

)
+KL [qφ(h|x)||pθ(h|x)] (2)

From: A Review of Learning with Deep Generative Models from Perspective of Graphical Modeling, Similarity: 0.986

min
G

max
D

Ex∼pr [log(D(x))] + Ex′∼pg [1− log(D(x′))]. (3)

From: Collaborative Sampling in Generative Adversarial Networks, Similarity: 0.985

Ex∼pθ(x|z)(exp(1 + log(
p̂data(x)

pθ(x|z)
)− 1))) (4)

From: Biadversarial Variational Autoencoder, Similarity: 0.984

= Ex∼p̂dataKL(qφ(z|x)||p(z)) (5)

From: Biadversarial Variational Autoencoder, Similarity: 0.984

=z∼qφ(z|x) [log pθ(x|z)]−DKL[qφ(z|x)||p(z)]. (6)

From: Bounded Information Rate Variational Autoencoders, Similarity: 0.984

= KL[qψ(x|c)||p(x)] +KL[pφ(cg|z)||pθ(c|x)] (7)

From: Adversarially Approximated Autoencoder for Image Generation and Manipulation, Similarity: 0.984

= ∆w

∫
q(w|θ, α)] log p(y|x,w)dw (8)

From: A Survey on Methods and Theories of Quantized Neural Networks, Similarity: 0.983

LMAP (w) =

N∑

n=1

log p(yn|xn, w)− log p(w) (9)

From: Distributed Weight Consolidation: A Brain Segmentation Case Study, Similarity: 0.983

p(z|x) = arg min
p(z|x)

Ex∼p̃(x)
[∫

p(z|x) log
p(z|x)

q(z|x)q(x)
dz

]

= arg min
p(z|x)

Ex∼p̃(x) [KL (p(z|x)‖q(z|x))− log q(x)]

= arg min
p(z|x)

Ex∼p̃(x) [KL (p(z|x)‖q(z|x))]

(10)

From: Variational Inference: A Unified Framework of Generative Models and Some Revelations, Similarity: 0.983

Model: Baseline Equation-Encoder
1

66 APPENDIX A. FURTHER INFORMATION

Notation

Scalars and Arrays

a A scalar.

~a A vector.

A A matrix or tensor (two or more dimensions).

Indexing

ai,j Element i, j of matrix A, i goes from left to right.

~ai,• ith column of matrix A.

~a•,j jth row of matrix A.

Sets, Graphs and Distributions

A A set.

A A graph

N (µ, var) The normal distribution with mean = µ and variance = var.

Operations

∗ The convolutional operation.

〈~a,~b〉 The dot product of the two vectors.

Number Seperators

Decimal Sign "."

Thousand Seperator ","

67

List of Acronyms

CNN Convolutional Neural Network

DFN Deep Feedforward Network

NN Neural Network

ILSVRC ImageNet Large Scale Visual Recognition Challenge

SEE Squeezed Equation-Encoder

GAN Generative Adversarial Network

GD Gradient Descent

LSTM Long Short-Term Memory

VAE Variational Autoencoder

PG Policy Gradient

QL Q-Learning

BEE Baseline Equation-Encoder

69

List of Figures

1.1 Yearly submission rates of computer science papers on the pre-print service

arXiv.org. The letter combinations are acronyms for the di�erent subject

areas (e.g. LG stands for Machine Learning and CV stands for Computer

Vision). A full list of the acronyms can be found here: here. Source: arXiv.org. 2

2.1 Illustration of how the kernel (red cube) is placed over the input tensor and

of the movement of the kernel. Source: https://towardsdatascience.com/a-

comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53. 8

2.2 Illustration of how a 3×3 pooling window is placed over the input (blue/bottom

grid) to produce the output (cyan/top grid). Source [4]. 10

2.3 As can be seen from the left graph a su�ciently deep model showed to be an

important factor for achieving good accuracy in the work of Goodfellow et

al. [7]. The right graph shows that this e�ect is not reducible on the number

of trainable parameters in deeper models. It showed that shallower models

with about the same number of weights and biases performed inferior. Data

from: [7]. 13

2.4 Sub�gure (a) and (b) illustrate the abstraction performed by single layer as

a folding of the input space and show how a successive folding can make

regions linearly seperable. Sub�gure (c) visualises how the abstraction from

lower layers (bottom to middle) can be reused in the higher layers (middle

to top) to summarise di�erent input regions. In this case the �rst layer maps

its �ve red input regions to two red output regions. Finally, this two red

regions are then mapped to a common output region by the second layer.

Source: [24]. 14

3.1 Architecture of the large Equation-Encoder used by Pfahler et al. [27]. Input

size is 1x32x333. 19

3.2 A visualisation of a �re module. Source: [11]. 20

3.3 Architecture of SqueezeNet. Input size is 3x224x224. 22

4.1 Architecture of the SEE. Input size is 1x32x333. 27

71

https://arxiv.org/corr/subjectclasses
https://arxiv.org/help/stats/2018_by_area/index
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

4.2 A training run of the SEE with the initial setup. The optimisation process

seems to su�er from the vanishing gradient problem. 29

4.3 The cosine similarity (blue squares) and the variance (red triangles) of the

feature maps at a given layer within the SEE. The data points for layer

zero show the variance and the cosine similarity for the input. Top Left:

ReLU/Kaiming, Top Right: SELU/Kaiming, Bottom Left: ReLU/LeCun,

Bottom Right: SELU/LeCun. 30

4.4 Experiments for determining the activation function and the initialisation

scheme. 31

4.5 Experiments for determining an adequate learning rate. 33

4.6 Results of the experiments regarding citation sampling. 33

4.7 The four performance measures for the margin experiment. Only for the

constant margin loss with a margin of 0.25 the version of the model trained

with a margin of one does not perfom best. 34

4.8 Results of the experiments regarding the dataset that is used for training.

A red mark means that the loss was computed on the test split of the full

dataset, whereas a blue mark means that the loss was computed on the test

split of the tuning dataset. A full circle means that the model was trained

on the full dataset, wheras a halfcircle means that it was trained on the

tuning dataset. The training run with the full dataset had only 20 epochs

because training on a bigger dataset is more time consuming. Nevertheless,

it leads to better performance for three out of four performance measures. 36

5.1 Performance of the BEE and SEE with their �nal con�guration (see

4.2.2) and trained on the full dataset. 38

List of Tables

4.1 A Description of the Datasets in numbers. The value left from the slash

refers to the train split of a dataset the other refers to the test split. 24

5.1 Memory consumption (in MegaBytes) of the squeezed model and the baseline. 38

5.2 Speed and throughput of the SEE ande the BEE. For inference 149,084

singular formulas were forwarded and the training was done on a dataset

with 50,000 triples. Thus, for both speed tests roughly the same number of

formulas was processed. 39

5.3 The queries that are used for our user study. 40

5.4 Results of the user study: The table shows the per-review-score for all seven

queries. 41

5.5 Results of the user study. The table shows the per-result-score for all seven

queries. The left value is the achieved score and the right value is the highest

possible score (#reviewers). 42

73

Bibliography

[1] Yoram Bachrach et al. �Speeding up the XBox Recommender System using a Eu-

clidean Transformation for Inner-Product Spaces�. In: Proceedings of the ACM Con-

ference on Recommender systems. 2014, pp. 257�264.

[2] Vassileios Balntas et al. �Learning Local Feature Descriptors with Triplets and Shal-

low Convolutional Neural Networks.� In: Proceedings of the British Machine Vision

Conference. 2016.

[3] Augustin-Louis Cauchy. �Méthode générale pour la résolution de systèmes d'équations

simultanées�. In: Compte rendu des séances de l'académie des sciences. 1847, pp. 536�

538.

[4] Vincent Dumoulin and Francesco Visin. �A Guide to Convolution Arithmetic for

Deep Learning�. In: arXiv preprint arXiv:1603.07285 (2016).

[5] Xavier Glorot and Yoshua Bengio. �Understanding the Di�culty of Training Deep

Feedforward Neural Networks�. In: Proceedings of the International Conference on

Arti�cial Intelligence and Statistics. 2010, pp. 249�256.

[6] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.

deeplearningbook.org. MIT Press, 2016.

[7] Ian J. Goodfellow et al. �Multi-Digit Number Recognition from Street View Imagery

using Deep Convolutional Neural Networks�. In: Proceedings of the International

Conference on Learning Representations. 2014.

[8] Kaiming He et al. �Delving Deep into Recti�ers: Surpassing Human-Level Perfor-

mance on ImageNet Classi�cation�. In: Proceedings of the IEEE International Con-

ference on Computer Vision. 2015, pp. 1026�1034.

[9] Sepp Hochreiter. �Untersuchungen zu dynamischen neuronalen Netzen�. In: Diploma,

Technische Universität München 91.1 (1991).

[10] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. �Multilayer Feedforward

Networks are Universal Approximators�. In: Neural Networks 2.5 (1989), pp. 359�

366.

75

http://www.deeplearningbook.org
http://www.deeplearningbook.org

[11] Forrest N. Iandola et al. �SqueezeNet: AlexNet-Level Accuracy with 50x fewer Pa-

rameters and < 0.5 MB Model Size�. In: arXiv preprint arXiv:1602.07360 (2016).

[12] Piotr Indyk and Rajeev Motwani. �Approximate Nearest Neighbors: Towards Re-

moving the Curse of Dimensionality�. In: Proceedings of the ACM Symposium on

Theory of Computing. 1998, pp. 604�613.

[13] Sergey Io�e and Christian Szegedy. �Batch Normalization: Accelerating Deep Net-

work Training by Reducing Internal Covariate Shift�. In: arXiv preprint arXiv:1502.03167

(2015).

[14] Katarzyna Janocha and Wojciech Marian Czarnecki. �On Loss Functions for Deep

Neural Networks in Classi�cation�. In: Schedae Informaticae. 2016, pp. 49�59.

[15] Shahab Kamali and Frank Wm. Tompa. �Retrieving Documents with Mathematical

Content�. In: Proceedings of the International ACM SIGIR Conference on Research

and Development in Information Retrieval. 2013, pp. 353�362.

[16] Diederik P. Kingma and Jimmy Ba. �Adam: A Method for Stochastic Optimization�.

In: Proceedings of the International Conference on Learning Representations. 2015.

[17] Günter Klambauer et al. �Self-Normalizing Neural Networks�. In: Advances in Neural

Information Processing Systems 30. Ed. by I. Guyon et al. Curran Associates, Inc.,

2017, pp. 971�980.

[18] Alex Krizhevsky, Ilya Sutskever, and Geo�rey E Hinton. �ImageNet Classi�cation

with Deep Convolutional Neural Networks�. In: Advances in Neural Information Pro-

cessing Systems 25. Ed. by F. Pereira et al. 2012, pp. 1097�1105.

[19] Yann A. LeCun et al. �E�cient Backprop�. In: Neural networks: Tricks of the trade.

2012, pp. 9�48.

[20] Min Lin, Qiang Chen, and Shuicheng Yan. �Network in Network�. In: arXiv preprint

arXiv:1312.4400 (2013).

[21] Chaochao Lu, Bernhard Schölkopf, and José Miguel Hernández-Lobato. �Decon-

founding Reinforcement Learning in Observational Settings�. In: arXiv preprint

arXiv:1812.10576 (2018).

[22] Behrooz Mansouri et al. �Tangent-cft: An Embedding Model for Mathematical For-

mulas�. In: Proceedings of the ACM SIGIR International Conference on Theory of

Information Retrieval. 2019, pp. 11�18.

[23] Thomas M. Mitchell et al. Machine learning. 1997.

[24] Guido F. Montufar et al. �On the Number of Linear Regions of Deep Neural Net-

works�. In: Advances in Neural Information Processing Systems 27. Ed. by Z. Ghahra-

mani et al. Curran Associates, Inc., 2014, pp. 2924�2932.

[25] Yuval Netzer et al. �Reading Digits in Natural Images with Unsupervised Feature

Learning�. In: NIPS Workshop on Deep Learning and Unsupervised Feature Learning.

2011.

[26] Adam Paszke et al. �PyTorch: An Imperative Style, High-Performance Deep Learn-

ing Library�. In: Advances in Neural Information Processing Systems 32. Ed. by H.

Wallach et al. Curran Associates, Inc., 2019, pp. 8024�8035.

[27] Lukas Pfahler, Jonathan Schill, and Katharina Morik. �The Search for Equations -

Learning to Identify Similarities between Mathematical Expressions�. In: Proceedings

of the European Conference on Machine Learning and Principles and Practice of

Knowledge Discovery in Databases. 2019.

[28] David E. Rumelhart, Geo�rey E. Hinton, and Ronald J. Williams. �Learning Repre-

sentations by back-propagating Errors�. In: Nature 323.6088 (1986), pp. 533�536.

[29] Olga Russakovsky et al. �ImageNet Large Scale Visual Recognition Challenge�. In:

International Journal of Computer Vision 115.3 (2015), pp. 211�252.

[30] David Silver et al. �Mastering the Game of Go with Deep Neural Networks and Tree

Search�. In: Nature 529 (2016), pp. 484�503.

[31] Chen Sun et al. �Revisiting Unreasonable E�ectiveness of Data in Deep Learning

Era�. In: Proceedings of the IEEE International Conference on Computer Vision.

2017.

[32] Jiang Wang et al. �Learning Fine-Grained Image Similarity with Deep Ranking�. In:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

2014, pp. 1386�1393.

[33] Ge Yang and Samuel Schoenholz. �Mean Field Residual Networks: On the Edge of

Chaos�. In: Advances in Neural Information Processing Systems 30. Ed. by I. Guyon

et al. Curran Associates, Inc., 2017, pp. 7103�7114.

[34] Richard Zanibbi et al. �NTCIR-12 MathIR Task Overview.� In: Proceedings of the

NTCIR Conference on Evaluation of Information Access Technologies. 2016.

[35] Wei Zhong and Richard Zanibbi. �Structural Similarity Search for Formulas Using

Leaf-Root Paths in Operator Subtrees�. In: Proceedings of the European Conference

on Information Retrieval. 2019, pp. 116�129.

	Introduction
	Literature Search
	Math-based Literature Search
	Objective of this Thesis
	Structure of this Thesis

	Principles
	Machine Learning
	Deep Learning
	Deep Feedforward Networks
	Types of Layers
	Learning Distributed Representations
	Backpropagation
	Architectural Choices and Hyperparameters

	Related Work
	The Equation-Encoder
	Equation-Encoder Network Architecture

	SqueezeNet
	The Fire Module
	Overall Architecture

	Experiments
	Experimental Setup
	Dataset
	Performance Measures
	Baseline Equation-Encoder
	Squeezed Equation-Encoder
	Miscellaneous

	Experiments
	Experiment I - Vanishing Gradient
	Experiment II - Activation and Initialisation
	Experiment III - Learning Rate
	Experiment IV - Sampling via Citation Graph
	Experiment V - Margin
	Final Configuration
	Experiment VI - Full Dataset

	Evaluation
	Comparison
	Loss on Test Data
	Size and Speed
	User Study
	Conclusion

	Quality of the Search Engine

	Conclusion and Outlook
	Further Information
	Proof: Why do we need nonlinear activation functions?
	Activation Functions
	Triples
	Search Results from User Study - SEE
	Search Results from User Study - BEE

	Notation
	List of Acronyms
	List of Figures
	List of Tables
	Bibliography

